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Abstract. This paper investigates the Learning from Parity with Noise
(LPN) problem under the scenario that the unknowns (secret keys)
are only unpredictable instead of being uniformly random to the ad-
versaries. In practice, this corresponds to the case where an adversary
already possesses some additional knowledge about the secret key. In
the information-theoretic setting, we show that the problem is robust
against arbitrary leakages as long as the unknowns remain some suf-
ficient amount of min-entropy. In the computational setting, we prove
Dodis et al.’s [STOC’09] conjecture that the auxiliary-input LPN as-
sumption is implied by the standard LPN assumption, i.e., encryption
schemes based on the standard LPN assumption is secure against any
exponentially hard-to-invert auxiliary input.

Our setting is more general than the traditional model of auxiliary in-
put which deals with secret keys of sufficient min-entropy, in particular,
we allow leakages that information-theoretically determine their secret
keys as long as the keys remain a linear amount of unpredictability pseu-
doentropy. Further, unlike most other schemes, our result is reducible to
a well-known hardness problem and does not quantify over all hard-to-
invert auxiliary functions.

1 Introduction

1.1 The LPN problem

The learning from parity with noise (LPN) problem refers to solve the following
system of equations:

a11 · x1 + a12 · x2 + · · ·+ a1n · xn + e1 = b1 (mod 2)
a21 · x1 + a22 · x2 + · · ·+ a2n · xn + e2 = b2 (mod 2)
...
at1 · x1 + at2 · x2 + · · ·+ atn · xn + et = bt (mod 2)

where x = [x1, x2, · · · , xn] are unknowns uniform over {0, 1}n, co-efficient Boolean
matrix [aij ]t×n is also uniform over {0, 1}t×n, both [aij ]t×n and vector [b1, · · · , bt]



are public, and error vector e = [e1, e2, · · · , et] is secret but with a known distri-
bution, namely each ei is independently distributed as below 1:





ei = 0, with probability γ

ei ∈ U1, with probability 1− γ
(1)

for 0 < γ < 1.

Hardness of the LPN Problem. While the noise-free case (i.e. γ = 1) can
be efficiently solved by Gaussian elimination, the problem appears to be signif-
icantly harder (in asymptotic order) for any γ ∈ (0, 1). In particular, the LPN
problem is known to be NP-Hard [1], and is hard even within an approximation
ratio of two [2]. Blum, Kalai and Wasserman [3] gave the first sub-exponential
algorithm that solves the problem in time 2O(n/ log n) with 2O(n/ log n) equations.
Regev [4] generalized the problem to the higher moduli case, namely the LWE
(learning with error) problem, and showed that any solution to LWE implies
a quantum solution to worst-case lattice problems such as SVP and SIVP, for
which the best known polynomial-time algorithms only yield subexponential ap-
proximation factors [5–7].

1.2 Cryptographic Applications

The LPN Assumption. The hardness of the LPN problem can be translated
into the LPN assumption2, on which efficient encryption schemes can be con-
structed. The (decisional) LPN assumption [8]: for every constant 0 < γ < 1
and for every polynomial t = poly(n), the two ensembles are computationally
indistinguishable:

{A, (A ·X + E)}n∈N
c≈ {A, Ut}n∈N (2)

where A, X and Ut are uniform over {0, 1}t×n, {0, 1}n and {0, 1}t respectively,
each bit of E is independent and identically distributed as in (1), “ + ” denotes
bitwise XOR, and A·X refers to matrix-vector multiplication over GF(2).

Cryptography with LPN. To make the above a useful (decryptable) CPA-
secure symmetric encryption scheme, plaintexts have to be encoded against ran-
dom noise, e.g., the encryption algorithm Ex,γ on encryption key x, noise rate
γ, and message m = b1· · ·bt/l, outputs

Ex,γ(m) = (A,Ax + e + enc(b1)enc(b2) · · · enc(bt/l)), where enc(bi)
def
= bi · · · bi︸ ︷︷ ︸

l

1 It is equivalent to say that each ei follows a Bernoulli distribution of parameter
(1− γ)/2, i.e., Pr[ei = 1] = (1− γ)/2 and Pr[ei = 0] = (1 + γ)/2.

2 We typically assume that the LPN problem cannot be efficiently solved (with any
non-negligible probability), called the computational LPN assumption, which is
equivalent to the decisional LPN assumption [8] (see Theorem 2).
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and the decryption algorithm D takes as input a key x and a ciphertext (A,c),
computes [enc′(b1),· · · ,enc′(bt/l)]←A·x+c, and decodes each enc′(bi) to 0 if it has
Hamming weight less than l/2, and to 1 otherwise, where the decoding success

rate is more than 1− exp−
l·γ2

2 (due to the Chernoff bound). We refer to [9, 10]
for other encryption schemes with additional properties, and [11–13] for other
cryptographic applications.

1.3 Related work

One can observe that if any constant portion (say α) of the unknowns are leaked,
the LPN assumption still holds, with the security parameter decreased from n
to (1−α)n (see also [14] for analogous results for the LWE assumption). Dodis,
Kalai and Lovett [8] further conjectured the auxiliary-input LPN assumption.

Conjecture 1 (The auxiliary-input LPN assumption [8]). For any constant 0 <
α < 1, and any easy-to-compute but (1−α)-exponentially hard-to-invert function

f (i.e. Pr[A(f(X)) = X] ≤ 2(1−α)n for any PPT adversary A), let L
def
= f(X), the

standard LPN assumption holds even conditioned on L, i.e.,

{A, (A ·X + E), L}n∈N
c≈ {A, Ut, L}n∈N (3)

They showed that if the above holds, it implies CCA secure encryption schemes
(assuming the existence of trapdoor permutations), reusable average-case obfus-
cators (for point functions) and reusable extractors, which remain secure with
exponentially hard-to-invert auxiliary input. However, they were not able to ob-
tain these results from the standard LPN assumption 3, and they only proved
the case that the noise is polynomially strong (i.e. γ = 1

poly(n) ). We note that
this would lead to low efficiency as even with noise rate γ = 1/n each message
has to be repeated l = Ω(n2) times (see Section 1.2) in codeword to ensure a
constant success rate of decoding/decryption.

The problem of securing cryptographic schemes against leakages of arbitrary
information was studied in various settings and contexts (e.g. [15–18]). In the
context of side channel attacks [19], Ishai et al. considered the case of making
circuits provably secure against probing [20] and even tampering with [21] a
bounded number of wires. Micali and Reyzin [22] initiated the study of building
leak-resilient stream ciphers, followed by the constructions that are secure in the
ideal cipher / random oracle model [23, 24] and in the standard model [25, 26].
We mention also some recent constructions of leak-resilient public-key encryption
schemes [14, 27] and signatures schemes [28, 29]. To summarize, most of the work
mentioned above require the secret key to have some sufficient min-entropy left

3 Dodis et al. showed that the auxiliary-input LPN assumption is implied by a stronger
and less well-studied assumption (than the standard LPN assumption), which they
called the Learning Subspace with Noise (LSN) assumption. Due to Raz’s attack
(see [8] for details), the LSN assumption is likely to hold only for γ = 1/poly(n) (as
opposed to constant noise rate) .
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while in this paper we extend the work of Dodis et al. [8], which deals with
the situation where the secret key does not necessarily have any min-entropy
(e.g. secret keys and their leakages can be one-to-one), but is exponentially
unpredictable in a computational sense.

1.4 Summary of contributions

In this paper, we show that the LPN problem is robust against arbitrary expo-
nentially hard-to-invert leakages in both settings. In particular, in the computa-
tional setting, we show the equivalence between the two versions (decisional and
computational) of the standard LPN assumption, and we prove the conjecture
in [8] that the auxiliary-input LPN assumption is implied by the standard LPN
assumption. Therefore, in the context of cryptography with auxiliary input, we
obtain positive results (as opposed to [18]) that: (a) do not require min-entropy
(or HILL pseudo-entropy) sources; (b) are reducible to a well-known hardness
problem (rather than relying on a new assumption [8] for which the constant
noise case has been refuted); (c) do not quantify over all hard-to-invert auxil-
iary inputs (unlike [15]).
On (non-)uniformity. In general, we consider non-uniform adversaries, but
all the reductions are uniform for efficiently computable leakages, which already
cover most leakage types in practice. Otherwise said, non-uniformity is needed
only for drawing random values from joint distribution [X,L] that is not effi-
ciently sampleable.

2 The LPN Problem in the Information-Theoretic
Setting

In this section, we investigate the LPN problem information theoretically and
show its robustness against arbitrary exponentially hard-to-invert leakages (in
terms of average min-entropy). We note that results obtained in the information-
theoretic setting hold only with respect to restrictive values of (n,t,γ), in the
sense that they do not give rise to practical encryptions schemes (i.e. statistical
security is trivial). Therefore, we defer most of the proofs to the appendix.

2.1 Notations, definitions and lemmata

Throughout this paper, we use calligraphic letters X , Y to denote sets, upper-
case letter X, Y to denote random variables, and lower-case letters x, y to
denote the binary values x0· · ·xn−1 and y0· · · yn−1 that X and Y assume. Set
{0, 1, · · · , n−1} is denoted by [n]. |a| denotes the length of a, and 〈a, b〉 denotes
the mod 2 inner product of binary vectors a and b. Unless otherwise specified,
all arithmetic operations are over GF(2).

We denote by |S| the length of S, by HW (S) the Hamming weight of S, and
by 〈X, Y 〉 the inner product of X and Y modulo 2. Un denotes a random variable
uniform over {0, 1}n and independent of other random variables under consider-
ation. {0, 1}n/{0n} refers to the subset of {0, 1}n that excludes zero vector 0n.
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For two distributions X and Y over the same set S, their statistical distance,
denoted by δ(X;Y ), is defined as the maximum distinguishing advantage with
respect to all adversaries A:

δ(X;Y )
def
= max

A
|Pr[A(X) = 1]− Pr[A(Y ) = 1] | =

∑
s∈S

|Pr[X = s]− Pr[Y = s]|
2

whereas their computational distance, denoted by δs(X; Y ), limits the com-
plexity of the above A to size s. If distribution X is over {0, 1}n then let

d(X)
def
= δ(X; Un) and ds(X)

def
= δs(X; Un).

Definition 1 (Min-entropy [30]). The min-entropy of a random variable X
is defined as:

H∞(X) = − log max
x∈X

Pr[X = x] .

Definition 2 (Average min-entropy [31]). The average min-entropy of X
conditioned on L is defined as:

H̃∞(X|L) = − log
(
El←L

[
max
x∈X

Pr[X = x|L = l]
])

.

Definition 3 (HILL pseudoentropy [32]). A random variable X has HILL
pseudoentropy k, denoted by HHILL

ε,s (X)≥k, if there exists a random variable Y
such that H∞(Y )≥k and δs(X;Y ) ≤ ε.

Definition 4 (Conditional HILL pseudoentropy [33]). For joint distribu-
tion (X,L), X has HILL pseudoentropy k conditioned on L, denoted by HHILL

ε,s (X|L)
≥ k, if there exists a collection of distributions Yl (giving rise to a joint distri-
bution [Y ,L]) such that H̃∞(Y |L) ≥ k and δs([X,L]; [Y, L]) ≤ ε.

Definition 5 (Conditional unpredictability pseudoentropy [33]). For joint
distribution (X,L), X has unpredictability pseudoentropy k conditioned on L, de-
noted by Hunp

s (X|L) ≥ k, if for all circuits A of size s it holds that Pr[A(L) = X]
≤ 2−k.

Lemma 1 (Parity Lemma [34, 35]). For any random variable X over {0,1}t,
it holds that

δ(X; Ut) ≤
√√√√

∑

v∈{0,1}t\{0t}
δ2(〈X, v〉; U1)

2.2 The LPN problem with auxiliary inputs

We show in Lemma 2 below that for any X with min-entropy k and t ≤
ln 2 · γ−2(k + 2 log2 ε + 2), the distribution [A, (A·X + E)] is ε-close to uni-
form. Then, Theorem 1 weakens the assumption from min-entropy source X (i.e.
worst-case randomness) to average min-entropy source (X,L) without incurring
further overheads (see Remark 1), where for concreteness one can consider L
as an arbitrary input conditioned on which X still has sufficient min-entropy in
average.
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Lemma 2 (Indistinguishability with weak random unknowns). Let 0 <
γ < 1 and t≥n be functions of parameter n, let matrix distribution A be uniform
over {0, 1}t×n, let X be over {0, 1}n with min-entropy k, let E be over {0, 1}t

with each bit independently distributed as in (1), then it holds that

d([A, (A·X + E)]) ≤ ε = 2−1− k
2
√

(1 + γ2)t − 1

where ε is upper bounded by 2−1− k
2 · exp

γ2t
2 (see Fact 1 below).

Proof. Denote the value that A assumes by a, which consists of row vectors
r1, · · · , rt. To use the parity lemma [34, 35] (see also Section 2.1), consider any
non-zero v=[v1, · · · , vt]∈ {0,1}t/{0t} with Hamming weight HW (v), we have

〈(a·X + E),v〉 =
t∑

i=1

vi · (〈ri, X〉+ ei) mod 2 = 〈(
1≤i≤t∑
vi=1

ri), X〉+
1≤i≤t∑
vi=1

ei

where
1≤i≤t∑
vi=1

ei equals to 0 with probability γHW (v) and U1 otherwise. Thus,

∑

a∈{0,1}t×n

δ2(〈(a ·X + E), v〉; U1)

= γ2HW (v) ·
∑

a∈{0,1}t×n

δ2(〈
1≤i≤t∑
vi=1

ri, X〉; U1)

= γ2HW (v) · 2(t−1)n ·
∑

y∈{0,1}n

δ2(〈y,X〉; U1) ( set y
def
=

1≤i≤t∑
vi=1

ri )

(4)

Then, using the technique in [36] it yields

δ([A, (A·X + E)]; [A,Ut])

≤
∑

a∈{0,1}t×n

Pr[A = a]
√ ∑

v 6=0t

δ2(〈(a ·X + E), v〉; U1)

(by the Parity Lemma [34, 35])

≤
√ ∑

v 6=0t

∑

a∈{0,1}t×n

Pr[A = a] · δ2(〈(a ·X + E), v〉; U1)

(by Jensen’s inequality, concavity case)

=
√

2(t−1)n·2−tn
∑

v 6=0t

γ2HW (v)
∑

y∈{0,1}n

δ2(〈y, X〉; U1) (by (4) above)

= 2−1− k
2

√√√√
t∑

HW (v)=1

(
t

HW (v)

)
γ2HW (v) = 2−1− k

2
√

(1 + γ2)t − 1 (by Lemma 4)

where Lemma 4 is given and proven in Appendix A. ut
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Theorem 1 (The LPN problem with auxiliary input). For n, γ, t A and
E as in Lemma 2, and for joint distribution (X,L) with H̃∞(X|L) ≥ k, it holds
that

δ([A, (A·X + E), L]; [A,Ut, L]) ≤ ε = 2−1− k
2
√

(1 + γ2)t − 1

Remark 1. Lemma 2 easily extends to Theorem 1 by the fact [31, Lemma 2.3]
that any strong worst-case extractor is also an average-case extractor, but that
incurs unnecessary costs, i.e., we only obtain in Theorem 1 that the above is
bounded by 1

δ · 2−1− k
2
√

(1 + γ2)t − 1 + δ for any δ > 0. The proof for a better
result is given in the appendix.

Fact 1 (Approximation of ε) For 0 < γ < 1 and t that are functions of n, it
holds that

(1 + γ2)t − 1





< expγ2t−1, for any 0 < γ < 1

≈ γ2t, if γ2t = o(1) with respect to n

3 The Auxiliary-Input LPN Assumption

In the information-theoretic setting, we see that the LPN problem is robust
against exponentially hard-to-invert auxiliary input (in the min-entropy sense),
but in practice, one still needs the LPN assumption (see Section 1.2) so that with
respect to polynomial-size adversaries the indistinguishability (see Equ (2)) holds
for much relaxed parameter settings (i.e. constant γ and t = poly(n)). In this
section, we show the equivalence among the decisional LPN assumption, the
computational LPN assumption (see footnote 2), and the seemingly stronger
auxiliary-input LPN assumption.

3.1 The equivalence of the two standard LPN assumptions

It is more natural to assume the computational LPN assumption as it directly
relates to the hardness of the LPN problem, but in practice it is convenient to use
the decisional case for building encryption schemes. We show their equivalence
in the theorem below.

Theorem 2 (Equivalence of the two LPN assumptions). The decisional
and computational LPN assumptions are equivalent.

Proof. On the one hand: Suppose that the decisional LPN assumption does
not hold, i.e., there exists a polynomial p and a family of distinguishers {Dn}n∈N
so that for infinitely many n’s it holds that

Pr[Dn([A,A ·X + E]) = 1]− Pr[Dn([A,Ut]) = 1] ≥ 1
p(n)

For convenience, write A in t rows [R1,· · · ,Rt] and E in t bits [E1,· · · ,Et], and
hence write [A,A ·X + E] as a t-tuple [(R1,〈 R1, X 〉 + E1),· · · ,(Rt,〈 Rt, X 〉
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+Et)] and by a hybrid argument there exists a 0≤i≤t − 1 so that conditioned
on the first i-tuple Dn distinguishes (Ri+1,〈 Ri+1, X 〉+Ei+1) from (Ri+1, U1)
with probability at least 1

t·p(n) (the rest are padded by uniform randomness),
namely, given the first i-tuple Dn can predict 〈 Ri+1, X 〉 with probability

2
γ·t·p(n) = 1

poly(n) for randomly chosen Ri+1. Then, employ the Goldreich-Levin
list-decoding technique one can efficiently recover X with a non-negligible prob-
ability, which contradicts the computational LPN assumption.

On the other hand: Suppose that the computational LPN assumption does
not hold, i.e., there exists {An}n∈N and a polynomial p so that

Pr[An([A,A ·X + E]) = X] ≥ 1
p(n)

holds for infinitely many n’s. Then define a distinguisher Dn that on input [A, Y ]
(either Y = A ·X + E or Y = Ut), invokes An on [A, Y ] to get output X ′, and
outputs 1 if and only if the Hamming weight HW (A·X ′ + Y ) is no more than
( 1−(γ/2)

2 )t. In case that Y is A ·X + E, let q1 be the success probability of An

conditioned on HW (E) ≤ ( 1−(γ/2)
2 )t, and q2 be that on HW (E) > ( 1−(γ/2)

2 )t.
Then,

Pr[HW (E) ≤ (
1− (γ/2)

2
)t] · q1 + Pr[HW (E) > (

1− (γ/2)
2

)t] · q2 ≥ 1
p(n)

By Hoeffding’s inequality,

Pr[HW (E) > (
1− (γ/2)

2
)t] = Pr

[
HW (E)− E[HW (E)] >

γt

4

]
≤ exp (− tγ2

8
)

and hence

Pr[Dn([A,A·X + E]) = 1] ≥ Pr[HW (E) ≤ (
1− (r/2)

2
)t] · q1 ≥ 1

p(n)
− exp (− tγ2

8
)

(5)
In the other case that Y is Ut, for any fixed value a (that A takes), the random
variable a·X ′

a assumes at most 2n values. Take into account all the errors of up
to ( 1−(r/2)

2 )t bits, on any a and random variable Ut, distinguisher Dn outputs 1
for at most

2n · (
(

t

0

)
+

(
t

1

)
+ · · ·+

(
t

1−(γ/2)
2 t

)
)

< 2n · 2t · (1− γ2

18
)

t
2 (see Fact 2 in Appendix)

values that Ut assumes, where b
def
= (1− γ2

18 ) < 1 is a constant. Hence,

Pr[Dn(A,Ut) = 1] <
2n·2t·b t

2

2t
< b

t
2+nlogb2 (6)

is negligible in n for constant γ and t = poly(n). Therefore, (5)−(6) > 1
2p(n) for

infinitely many n’s, which contradicts the decisional LPN assumption. ut
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3.2 Types of leakage

Prior to proving the auxiliary-input LPN assumption, we generalize and extend
the leakage type considered in [8] (see Conjecture 1). For X defined over {0,1}n

and constant 0 < α < 1, we define arbitrary 2(1−α)n-hard-to-invert leakage L in
the following ways:

1. H̃∞(X|L) ≥ (1− α)n (see Definition 2).
2. HHILL

ε,s (X|L)≥(1− α)n (see Definition 4).
3. Hunp

s (X|L) ≥(1− α)n (see Definition 5).

Any type of the above is more general than (and implied by) the one(s) preced-
ing to it, but not vice versa [33]. Type 1 is the most common leakage assumed
by most existing work (e.g. [25, 14, 26]) and type 2 is its computational ana-
logue. Type 3 is similar to, but more general than, the setting of Conjecture 1
as it also incorporates leakages that are not efficiently computable. Therefore,
by dealing with leakages of type 3 (which covers all other leakage types), we ob-
tain indistinguishability by using encryption keys of zero min-entropy and HILL
pseudoentropy but only with linear unpredictability pseudoentropy (see [33] for
their relationships).
Static vs. adaptive leakages. In the auxiliary-input LPN assumption, L has
to be independent of A and E, otherwise indistinguishability is not possible
as one could ask for a leakage that corresponds to the first bit of A·X + E.
Thus, under the assumption the encryption scheme in Section 1.2 is CPA-secure
w.r.t. static leakage. However, this does not rule out the possibility of building
CCA-secure encryption scheme against (properly defined) adaptive leakages. We
refer to [8] for the corresponding definition of CCA-secure symmetric encryption
schemes in the adaptive auxiliary input setting, and the technique for building
such schemes under the auxiliary-input LPN assumption and the existence of
trapdoor permutations.

3.3 Combating leakages by sampling from subspace

A weakened version of the auxiliary-input LPN assumption. In this
subsection, we show that the standard LPN assumption implies a weakened
version of the auxiliary-input LPN assumption. That is, instead of sampling A
from uniform, we sample the rows of A′ from a random subspace of dimension
βn, then Lemma 3 below states that A′X+E is pseudorandom conditioned on
A′ and any leakage L with Hunp

s (X|L) ≥ (1− α)n, where α and β are arbitrary
constants satisfying α+β<1. Such a construction looks “artificial” as it has at
most βn bits of security even in the leakage-free case, but it is an important step
towards reducing the auxiliary-input LPN to the standard LPN assumption.
Sampling from random subspace. For a t×n matrix A′, we can efficiently
sample its rows from a randomly chosen subspace of dimension βn using uniform
randomness, e.g., by performing matrix multiplication Ut×βn·Uβn×n for uniform
distributions Ut×βn and Uβn×n. One can consider Uβn×n as the randomness to
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sample the bases of a βn-dimensional subspace, and Ut×βn as the randomness to
sample t vectors from that subspace. By linear algebra, the rank of the product
of two matrices is less than or equal to the minimum of the rank of each factor,
so A′ has rank up to βn.

Lemma 3 (Preliminary results). Under the LPN assumption, let t be poly-
nomial in n, and let α (the portion of leakage), β (βn quantifies the remaining
security) and γ be any constants satisfying α+β< 1 and 0 < γ < 1, let the rows
of A′ be sampled from a random βn-dimensional subspace, let joint distribution
[X,L] satisfy either (a) H̃∞(X|L) ≥ (1 − α)n, or (b) HHILL

ε,s (X|L)≥(1 − α)n,
or (c) Hunp

s (X|L) ≥(1 − α)n, then the following ensembles are computationally
indistinguishable:

{A′, (A′ ·X + E), L}n∈N
c≈ {A′, Ut, L}n∈N (7)

Proof. By Claim 1 below, we have

{Uβn×n, (Uβn×n·X), L}n∈N
c≈ {Uβn×n, Uβn, L}n∈N

holds for all the 3 types of leakages (with different overheads). By left-multiplying

the above with Ut×βn (note that A′
def
= Ut×βn·Uβn×n), it yields

{A′, (A′·X + E), L}n∈N
c≈ {A′, (Ut×βn·Uβn + E), L}n∈N

Then, by the LPN assumption (note that L is independent of Uβn), it holds that

{A′, (Ut×βn·Uβn + E), L}n∈N
c≈ {A′, Ut, L}n∈N

which completes the proof. ut
Claim 1 (Extractor for all conditional pseudoentropy sources)

δs′( [Uβn×n, (Uβn×n·X), L]; [Uβn×n, Uβn, L] ) ≤ ε′ (8)

where constant c
def
= (1− α− β) and

(s′, ε′) =





(∞, 2−1− c·n
2 ) for H̃∞(X|L) ≥ (1− α)n;

(s−O(n2), ε + 2−1− c·n
2 ) for HHILL

ε,s (X|L)≥(1− α)n;
(Ω( ε2

n2 ·s), O(βn · 3
√

n2ε)) for Hunp
s (X|L)≥(1− α)n and ε ≥ 2−c·n.

Proof. The min-entropy case is implied by Theorem 2 by setting k = (1− α)n,
γ = 1 (noise-free), and t = βn. The HILL pseudoentropy case then follows by
Definition 4 and a triangle inequality. The unpredictability pseudoentropy case
follows from the Goldreich-Levin Theorem [37, 35] and a hybrid argument (for
any 0≤i ≤ βn it holds that Hunp

s−O(n)(X|L,Ui×n·X)≥(1 − α)n − i ). We note
that the Goldreich-Levin Theorem (see the general version in [38, Lemma 9]
quantitatively) does not require L to be efficiently computable from X (although
it improves the efficiency of list-decoding by a polynomial factor). ut

10



3.4 The auxiliary-input LPN assumption

We now define a distribution Fβn×n that is uniform over all full-rank βn×n
Boolean matrices. It is not hard to see that Lemma 3 and Claim 1 still hold
if Uβn×n is replaced by Fβn×n (i.e. A′ = Ut×βn·Fβn×n). This is because in
Claim 1, any uβn×n∈Uβn×n but 6∈Fβn×n is a “bad” value conditioned on which
adversaries can efficiently distinguish (8) with advantage 1/2 (by exploiting the
linear dependency in uβn×n).

Theorem 3 (The equivalence of the LPN assumption and the auxiliary-
input LPN assumption [8]). Under the LPN assumption, for every constant
0 < γ < 1, and for every polynomial t = poly(n), let A be uniform distribu-
tion over {0, 1}t×n, let joint distribution [X,L] satisfy either (a) H̃∞(X|L) ≥
(1 − α)n, or (b) HHILL

ε,s (X|L)≥(1 − α)n, or (c) Hunp
s (X|L) ≥(1 − α)n for any

constant 0 < α < 1, then the following ensembles are computationally indistin-
guishable:

{A, (A ·X + E), L}n∈N
c≈ {A, Ut, L}n∈N (9)

Proof. We recall that A′ = Ut×βn·Fβn×n and A = Ut×n = Ut×n·Fn×n. By
comparing the above with the statement in Lemma 3, it suffices to prove the
claim below. ut
Claim 2 For any βn≤i < n, if

δs( [Ai
def
= (Ut×i·Fi×n), Ai·X + E, L]; [Ai, Ut, L] ) ≤ ε (10)

then it holds that

δs−O(n3)( [Ai+1
def
= (Ut×(i+1)·F(i+1)×n), Ai+1·X+E, L]; [Ai+1, Ut, L] )≤ε+2−Ω(n)

Proof (of Claim 2). For convenience, write

Ut×(i+1)
def
= [Ut×i, Ci+1] , Fi×n

def
=




B1

...
Bi


 , F(i+1)×n

def
=

[
Fi×n

Bi+1

]

where Ci+1 is the (i + 1)th column of Ut×(i+1), and B’s are the bases of an
i-dimensional (and (i+1)-dimensional) random subspace. The following two dis-
tributions are identical:

[Ai+1, Ci+1, B1, · · · , Bi, Bi+1] ∼ [Ai+1, Ci+1, B1, · · · , Bi, Bi+1 +
∑

1≤j≤i

U
(j)
1 ·Bj ]

due to that Ut×i is not being conditioned on, where U
(j)
1 is uniform over {0,1} and

U
(j)
1 ·Bj is scalar-vector multiplication. Then, as Ai+1·X = Ai·X+〈Bi+1, X〉·Ci+1,

we have distribution [Ai+1, Ai+1·X + E, L] is identical to

[ Ai+1, Ai ·X + E + 〈(Bi+1 +
∑

1≤j≤i

U
(j)
1 ·Bj), X〉 · Ci+1, L ]

11



where 〈Bi+1, X〉+
∑

1≤j≤i

U
(j)
1 · 〈Bj , X〉 is identical to U1 if [〈B1, X〉, · · · , 〈Bi, X〉]

is not all zero, which has probability

Pr
B1,··· ,Bi,X

[
[〈B1, X〉, · · · , 〈Bi, X〉] 6= 0i

]
= Pr

[
Ui 6= 0i

]
= 1− 2−i = 1− 2−Ω(n)

Thus, we have

δ([Ai+1, Ai+1 ·X + E, L]; [Ai+1, Ai ·X + E + U1 · Ci+1, L]) ≤ 2−Ω(n) (11)

and by (10), it holds that

δs−O(n3)( [Ai+1, Ai·X + E + U1·Ci+1, L]; [Ai+1, Ut, L] ) ≤ ε (12)

as Ai+1 = Ai + Ci+1·Bi+1, and Bi+1 can be efficiently sampled given Ai. The
conclusion follows from (11) and (12) by a triangle inequality. ut

4 Concluding Remarks

We answer the open question in [8] whether the auxiliary-input LPN assumption
is implied by (and thus equivalent to) the standard LPN assumption. In addition,
they are equivalent for any constant noise rate.
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28. Joël Alwen, Y.D., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: CRYPTO. (2009) 36–54

29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: ASIACRYPT (to appear). (2009)

30. Zuckerman, D.: General weak random sources. In: FOCS 1990. (1990) 534–543

31. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1) (2008)
97–139

32. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28 (1999) 12–24

33. Hsiao, C.Y., Lu, C.J., Reyzin, L.: Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In: EUROCRYPT. (2007) 169–186

34. Vazirani, U.: Strong communication complexity or generating quasi-random se-
quences from two communicating semi-random sources. Combinatorica 7(4) (1987)
375–392

13



35. Goldreich, O.: Three XOR-Lemmas — An Exposition. Electronic Colloquium on
Computational Complexity (ECCC) 2 (1997)

36. Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from
two independent sources. In: RANDOM-APPROX. (2004) 334–344

37. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: STOC
1989. (1989) 25–32

38. Goldreich, O., Nisan, N., Wigderson, A.: On yao’s xor-lemma. Technical report,
Electronic Colloquium on Computational Complexity (1998)

39. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory. In: FOCS. (1986) 337–347

40. Worsch, T.: Lower and upper bounds for (sums of) binomial coefficients (1994)

A Lemmata and Proofs Omitted from the Main Body

Lemma 4. For n-bit random variable X with H∞(X) = k, it holds that

∑

y∈{0,1}n

δ2(〈X, y〉; U1) ≤ 2n−k−2

Proof. Following the proof of the Lindsey Lemma [39], there exists a 2n × 2n

Hadamard matrix (which can be constructed recursively using Sylvester’s tech-
nique) H = [hij ]2n×2n (i.e. a ±1 matrix with pairwise orthogonal rows and
columns indexed by vectors over {0, 1}n) and the inner product 〈x, y〉 (mod 2)
can be considered as identifying the element hxy on x-th row and y-th column
and producing hxy+1

2 as output. Let Rx be the row indexed by x and we recall
that by orthogonality the Euclidean inner product RT

x Rx′ over R is 2n if x = x′,

and 0 otherwise. Define vector R ∈ R2n

as R
def
= 1

2Σx Pr[X = x] ·Rx, then we
see that the y-th coordinate of R, denoted by ry, is

ry =
1
2
(
∑

x
Pr[X = x, hxy = 1]−

∑
x

Pr[X = x, hxy = −1])

= δ(〈X · y〉; U1)

Then we have
∑

y∈{0,1}n

δ2(〈X · y〉; U1) =
∑

y∈{0,1}n

r2
y = RT ·R

=
1
4

∑
x

(Pr[X = x])2RT
x ·Rx +

1
4

∑
x 6=x′

Pr[X = x] Pr[X = x′]RT
x ·Rx′

=
1
4
2n

∑
x

(Pr[X = x])2 (note that Pr[X = x] ≤ 2−k for any x)

≤ 2n−2 · 2−k
∑

x
Pr[X = x] = 2n−k−2

which finishes the proof. ut
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Proof (of Fact 1).
In case that γ2t = o(1), it converges to zero for sufficiently large n’s and thus

(1 + γ2)t − 1

= tγ2 +
t(t− 1)
1× 2

γ4 +
t(t− 1)(t− 2)

1× 2× 3
γ6 + · · ·+ t(t− 1) · · · 1

1× 2× · · · × t
γ2t

= tγ2(1 +
(t− 1)γ2

1× 2
+

(t− 1)(t− 2)γ4

1× 2× 3
+ · · ·+ (t− 1) · · · 1 · γ2(t−1)

1× 2× · · · × t
)

< tγ2(1 +
tγ2

1× 2
+

t2γ4

1× 2× 3
+ · · ·+ tt−1γ2(t−1)

1× 2× · · · × t
) ≈ tγ2

In a general case, to show that (1 + γ2)t − 1 < expγ2t − 1, it suffices to have the
following (using the technique above):

(1 + γ2)γ−2

< 1 + γ−2γ2(1 +
γ−2γ2

1× 2
+

γ−4γ4

1× 2× 3
+ · · ·+ γ−(2γ−2−2)γ2γ−2−2

1× 2× · · · × γ−2
)

= 1 + 1 +
1

1× 2
+

1
1× 2× 3

+ · · ·+ 1
1× 2× · · · × γ−1

< exp

where by Taylor series the mathematical constant exp is the sum of the infinite
series: 1

0! + 1
1! + 1

2! + 1
3! + 1

4! + · · · , which completes the proof. ut
Proof (of Theorem 1). Denote maxx Pr[X = x|L = l] by 2−kl

, we have

δ([A, (A·X + E), L]; [A,Ut, L])

≤
∑

l

Pr[L = l] · 2−1− kl

2 ·
√

(1 + γ2)t − 1 (by Lemma 1)

= 2−1 ·
√

(1 + γ2)t − 1 ·
∑

l

√
Pr[L = l] ·

√
Pr[L = l] · 2− kl

2

≤ 2−1 ·
√

(1 + γ2)t − 1 ·
√√√√

(∑

l

Pr[L = l]

)
·
(∑

l

Pr[L = l] · 2−kl

)

(by Cauchy’s inequality)

= 2−1 ·
√

(1 + γ2)t − 1 ·
√∑

l

Pr[L = l] · 2−kl

= 2−1 ·
√

(1 + γ2)t − 1 ·
√

2−H̃∞(X|L) ≤ 2−1− k
2 ·

√
(1 + γ2)t − 1

which completes the proof. ut
Fact 2 For 0 < γ < 1 and t > 0 it holds that

(
t

0

)
+

(
t

1

)
+ · · ·+

(
t

1−(γ/2)
2 t

)
< 2t · (1− γ2

18
)

t
2
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Proof. By the upper bound on the partial sum of binomial coefficients [40],
(

t

0

)
+

(
t

1

)
+ · · ·+

(
t

1−(γ/2)
2 t

)

≤ 2t · ((1− γ

2 + γ
) · exp

γ
2+γ )

t(2+γ)
4 (see [40, Corollary 4.2])

Let b
def
= (1− γ

2+γ ) · exp
γ

2+γ < 1. We have

b = (1− γ

2 + γ
) · (1 +

γ

2 + γ
+

1
2!

(
γ

2 + γ
)2 +

1
3!

(
γ

2 + γ
)3 + · · · )

< 1− 1
2
(

γ

2 + γ
)2 + (

1
3!
− 1

2!
)(

γ

2 + γ
)3 + (

1
4!
− 1

3!
)(

γ

2 + γ
)4 + · · ·

< 1− 1
2
(

γ

2 + γ
)2 < 1− 1

2
(
γ

3
)2 < 1− γ2

18

Hence 0 < b < 1 and it follows that b
t(2+γ)

4 < b
t
2 , which completes the proof. ut
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