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Abstract. We here describe a new Password-based Authenticated Key Exchange (PAKE) pro-
tocol based on elliptic curve cryptography. We prove it secure in the Bellare-Pointcheval-Rogaway
(BPR) model. Our proposal is conceived in a such a way that it ensures that the elliptic curve
public parameters remain private. This is important in the context of ID contactless devices as,
in this case, it is easy to link these parameters with the nationality of the ID document owners.

1 Introduction

To enable secure communication over insecure channels, two-parties encrypt and authenticate
their messages using a shared secret key which is usually obtained via a key exchange. A key
exchange scheme enables the two parties to establish a common secret in an authenticated way
(Authenticated Key Exchange, AKE). The goal is that the session key should only be known
from the parties involved in the protocol: the session key should be indistinguishable from a
random data. Password-based key exchange protocols are a convenient way to achieve this.
The two parties rely on a shared low-entropy secret (e.g. a four-digit PIN) to derive a common
high-entropy session key.

Password-Based Authenticated Key Exchange (PAKE) protocols are now considered in the
context of identity documents to ensure the security of the communication between the chip
and a reader [15]. With machine readable travel documents (MRTD), the data stored on the
machine readable zone (MRZ) are seen as low-entropy shared information between the reader
and the chip to establish a secure link. For efficiency constraints, the protocols usually rely on
an elliptic curve setting. In such context, the parameters would almost surely depend on the
nationality of the document owner. However, if one eavesdrops the communication of an AKE
protocol based on elliptic curves, then he would learn some elliptic curve points and would be
able to obtain the elliptic curve parameters. With this knowledge, he may retrieve the owner’s
nationality, thus leading to a privacy leakage (which itself can conduce to security issues).
This is a great motivation to find PAKE protocols based on elliptic curves while enabling the
elliptic curve parameters to remain hidden. To the best of our knowledge, our work is the first
to provide a secure solution to this problem.

1.1 Related Works

AKE protocols Password-based Authenticated Key Exchange was considered first by Bellovin
and Merritt [4]. The goal is to authenticate a key exchange between two parties based on simple
passwords possibly from a small dictionary that an adversary may know. The basic idea behind
the several schemes described in [4] was to manage the key exchange partially in an encrypted
form (hence the acronym EKE for Encrypted Key Exchange). This work has been followed
by many variants and later on several security analysis in different models, e.g. [2–5, 7–9].



The main issue is the design of a protocol which could resist offline dictionary attacks. Other
security properties are also possible such as forward secrecy.

One of the most well-know variant of EKE is Diffie-Hellman EKE (DH-EKE) which is
merely a DH key exchange where at least one message exchanged under DH is encrypted via
the password. Bellare et al. introduced in [2] a formal security model to grasp the specificity
of password-based key exchange which has been used later in [8,9] to establish the security of
DH-EKE under ideal assumptions (namely the Ideal Cipher Model and the Random Oracle
Model, ROM). However Ideal Cipher Model is not easily applicable to elliptic curves and thus
in its classical version, DH-EKE is not well adapted to elliptic curves. A naive application of
the encryption step of DH-EKE to elliptic curves points would lead to an insecure scheme.
Due to the redundancy in a point representation, partition attacks [13] are made possible to
distinguish possible passwords from impossible ones and the security against offline dictionary
attacks does not hold. In [7], a modification of the scheme is suggested by using either a point
of the curve or a point over its twist. Although, this enables to withstand the security issue,
the scheme is not proved in the model of [2] and becomes much less simple than DH-EKE.

Another well-known PAKE, and widely used, is SPEKE (Simple Password Exponential
Key Exchange). It is part of the IEEE P1363.2 standard and is introduced in [12]. Likewise, it
is based on Diffie-Hellman key exchange but the password is here used to select the generator
of the DH key exchange, which is then operated in clear. To do so, a hash of the password
is used to generate a group element, and the security is based on the ROM. Here again such
operation is not straightforward to transpose into elliptic curves, although becoming feasible
via the recent work of [10].

Finally, in both cases, DH-EKE and SPEKE do not enable to hide the curve parameters
which are easily deduced from 2 eavesdropped points.

The BPR (Bellare-Pointcheval-Rogaway) model Several security models have been
suggested to analyze the security of password-based AKE. The BPR model [2] is now considered
as a standard model for PAKE protocols. It captures well the security requirements that a
PAKE should satisfy. In particular even if protocols remain always subject to online guessing
attacks, it should thwart offline dictionary attacks. Forward secrecy is another possible aspect.
Different protocols have been shown secure thanks to this model. The model is based on the
Find-Then-Guess principle where an adversary – mounting an active attack against several
protocol instances running concurrently – should not be able to determine whether a session
key is the actual one, i.e. that the key should be indistinguishable from a random string. This
ensures an implicit authentication between the two parties involved in the protocol. The model
is refined in [1] by requiring that all the concurrent session keys look random (Real-Or-Random
principle).

Admissible Encodings The notion of admissible encoding has been introduced by Boneh-
Franklin in order to hash into elliptic curves since it is required for their Identity-Based Encryp-
tion scheme [6]. Later, Coron and Icart [10] have introduced a more general notion of admissible
encodings. These encodings are build from deterministic functions into elliptic curves such the
ones of [11,14].

An admissible encoding from {0, 1}∗ into a group is a function which enables to transform
any bit string into a group element. To be such an encoding, it must exist a polynomial time
inversion algorithm, which is able to compute a bit string from a group element. This algorithm
ensures that for a random group element as input, the output is a random bit string. Thanks



to these encodings, [10] describes a way to create a random oracle into elliptic curve. We here
use the fact that a random point can be represented by a random bit string, whatever are the
elliptic curve public parameters.

This property can be used within the DH-EKE protocol, as it is much safer to encrypt
random bit strings, especially when the key is directly derived from a low entropy password.

1.2 Our Contribution

We provide the first PAKE protocol which ensures that the elliptic curve public parameters
remain hidden, even against dictionary attacks. This is made possible thanks to the existence
of admissible encodings. Since each elliptic curve point can be seen as a random bit string, it
enables to process bit string inside a block cipher in order to encrypt a point. The password can
here be seen as a seed for computing the secret key used in the block cipher. This has a direct
application within DH-EKE, because this implies that an eavesdropper cannot verify which
elliptic curve parameters are used. Since eavesdroppers only see random bit strings, whatever
are the elliptic curve public parameters, they cannot distinguish which ones are used.

This is a direct application of admissible encodings on elliptic curves. Moreover, we here
exploit the fact that the knowledge of the elliptic curve parameters can be interpreted as a
shared secret. This enables to drop out the encryption of EKE while the protocol can be still
proved secure. We introduce complexity assumptions based on the discrete logarithm problem
ensuring that finding one bit string which represents 2 points with known discrete logarithm
from 2 different curves, is hard. Using these assumptions enables us to prove the security of
our Diffie-Hellman AKE where the password gives the elliptic curve parameters.

2 Definitions

2.1 Coron-Icart Admissible encoding

We here give the definition from [10] of admissible encoding.

Definition 1. Given 2 random variables X and Y over a set S, we say that the distribution
of X and Y are (ε)-statistically indistinguishable if:∑

s∈S
|Pr(X = s)− Pr(Y = s)| < ε.

Moreover, given a security parameter, two distributions are statistically indistinguishable if they
are (ε)-statistically indistinguishable for an ε negligible in the security parameter.

Definition 2 (Admissible Encoding). A function F : S 7→ R is said to be an ε-admissible
encoding if:
1. F is computable in deterministic polynomial time;
2. there exists a probabilistic polynomial time algorithm IF such that given r ∈ R as input,
IF outputs s such that either F (s) = r or s = ⊥, and the distribution of s is ε-statistically
indistinguishable from the uniform distribution in S when r is uniformly distributed in R.

When an admissible encoding from {0, 1}L into a curve exists, its inversion algorithm IF
enables to transform uniformly distributed elliptic curve points into uniformly distributed bit
strings. Encrypting an elliptic curve point thus becomes easier when it is represented as a bit
string. In particular, no trivial partition attack is possible.



Icart’s Mapping in Characteristic 2 The equation which defines an elliptic curve Ea,b in
characteristic 2 is of general form:

(Ea,b) Y 2 +XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x 7→ x3 is a bijection. Let

fa,b : F2n 7→ (F2n)2

u 7→ (x, ux+ v2)

where v = a+u+u2 and x = (v4 + v3 + b)1/3 + v. It is clear that, whenever computing a cube
root is an exponentiation, computing fa,b is a deterministic polynomial time algorithm.

Lemma 1 ( [11]). Let F2n be a field with n odd. For any u ∈ F2n, fa,b(u) is a point of Ea,b.

We here focus on characteristic 2 for two reasons: the computation is simpler than in the
general case, and the inverting algorithm is deterministic and quite easy to implement (cf.
Section 6). Note that the Icart’s encoding is not the only known general encoding for elliptic
curves in characteristic 2. In [14], Shallue and van de Woestijne proposed another encoding.
This encoding is not as simple, but it seems clearly possible to adapt our work to any existing
admissible encoding.

Let E be an elliptic curve over a field F2n . From such a point encoding f and a generator
G of the group of points, an admissible encoding F from {0, 1}2n to E can be constructed.
Let l be a 2n-bit long string. This string is split in 2 substrings u||λ where λ is seen as a n-bit
integer. We thus consider:

F (l) = f(u) + λ ·G (1)

The resulting function is proved to be an admissible encoding in [10] with a negligible ε. The
main condition on f is to be an encoding which verifies a condition weaker than in Definition 2,
where the inversion algorithm needs to work only a polynomial fraction of the inputs and
where the statistically indistinguishability is measured only with respect to this fraction. Such
encoding is denoted in [10] a weak encoding. In the sequel, we refer to this construction as the
Coron-Icart admissible encoding.

Admissible Representation We introduce below the notion of admissible representations.
These representations are the outputs of IF , when it is applied to an elliptic curve point.

Definition 3 (Admissible Representation). Assume that F is an admissible encoding from
S to R. For any r ∈ R, we define as an admissible representation of r any output of IF (r).

An element r ∈ R may have many different admissible representations. Furthermore, an uni-
formly random r ∈ R has an uniformly random admissible representation s ∈ S. For instance,
following Eq. (1) a point P of an elliptic curve admits an admissible representation of the form
(u, λ) where u||λ is a random bit string of size 2n.

2.2 BPR Security Model

This model defines the notion of partnership, session key freshness and the security against
dictionary attacks. The model considers a set of honest players who do not deviate from the



protocol. The adversary controls all the network communications. This is an active adversary
modeled through queries. Users can have many protocol instances running concurrently. The
adversary can create, modify, or forward messages and has oracle access to the user instances.

Let A and B be two users which can be part of the key exchange protocol P . Several
concurrent instances may run in different executions of P : they are denoted by Ai and Bj . The
server and the user share a low-entropy secret pw uniformly drawn from a dictionary of size
N .

Oracles The protocol P consists of the execution of a key exchange algorithm. It is an inter-
active protocol between Ai and Bj that provides the instances of A and B with a session key
sk. The adversary A has access to the following oracles for controlling the interactions.

– Execute(Ai, Bj) simulates a passive attack where A eavesdrops the communication. It
causes an honest execution of P between fresh instances Ai and Bj .

– Send(Ui,m) models A sending a message m to instance Ui (U = A or B). The output is
the message generated by U in processing the message m according to the protocol and
the state of the instance. It simulates an active attack.

– Reveal(Ui) returns the session key of the input instance. This query models the misuse of
the session key by instance Ui. The query is only available to the adversary if the targeted
instance actually holds a session key (i.e. if the protocol has correctly terminated).

Security Notions The freshness notion captures the fact that a session key is not already
directly leaked. An instance is said to be fresh in the current protocol execution if the instance
has terminated and neither a Reveal query has been called on the instance nor on a partnered
instance. Here two instances are defined as partnered if both instances have terminated
correctly with the same session key.

The Test(Ui) query models the semantic security of the session key. It is available to the
adversary only if the aimed instance is fresh. When called, the oracle tosses a coin b and returns
the session key sk if b = 0 or a random value (from the domain of keys) if b = 1.

The AKE security is then defined as follows. By controlling executions of the protocol
P , the adversary A tries to learn information on the session keys. The game is initialized by
drawing a password pw from the dictionary and by letting A asking a polynomial number of
queries. At the end of the game, A outputs its guess b′ for the bit outputted by the Test
oracle.

The AKE advantage of the adversary A for the key exchange protocol P is denoted

Advake
P (A) = 2 Pr[b′ = b]− 1

Definition 4. The protocol P is said to be AKE-secure if the adversary’s advantage is neg-
ligible in the security parameter, for any polynomially bounded adversary.

A strategy of proof consists generally in the simulation of all the oracles to be able to show
that there is no leakage.

Remark 1. An oracle Corrupt is also available in this model to analyze the forward se-
crecy. When called, the adversary will obtain the player’s password. For AKE with forward
secrecy, the Test query should not be related to a player corrupted before the Test query.
Nevertheless, corruption after the query is allowed.



2.3 Classical Assumptions

We recall the classical Computational Diffie-Hellman (CDH) assumption.

Definition 5 (Computational Diffie-Hellman Assumption). Let E be an elliptic curve
and G be a generator of a subgroup of points of prime order. Let A be an algorithm that:

– inputs two random points P = a ·G and Q = b ·G;
– and outputs R = ab ·G.

The CDH assumption ensures that the best polynomial time adversary has a negligible proba-
bility of success, when the probability is taken over P and Q.

Throughout this work, we define CDHG(P,Q) to be the correct value of R. We introduce
later in the paper assumptions related to this problem when the elliptic curve parameters are
unknown. In particular, given two elliptic curves E1, E2, we rely on the hardness of finding
two admissible representations l and l′ such that the points CDH(F1(l), F1(l′)) ∈ E1 and
CDH(F2(l), F2(l′)) ∈ E2 are known (with Fi an admissible encoding into Ei).

3 A New Family of Complexity Assumptions

In order to prove the strength of our protocol, we need to introduce new complexity assump-
tions. These assumptions arise from the fact that we are using in the same scheme different
elliptic curve parameters.

Throughout this section, we use the following definitions. Let k be a security parameter.
Let S be a set of N = poly(k) sets of elliptic curve parameters: {ai, bi, qi, Gi}i∈[1,N ] over a field
F2n (i.e. elliptic curves Ei := Eai,bi over F2n with a point Gi, generator of a subgroup of points
of order qi) such that:

– for each i, an admissible encoding (cf. Definition 2) exists over Eai,bi ;
– qi is a prime integer and its cofactor is 1;
– for all i 6= j, we have qi 6= qj .

The last point ensures that there does not exist an isomorphism between the different
curves. It is important since it ensures that the discrete logarithm of a point over Ei is not
related to a discrete logarithm over another Ej .

Let Fi be the admissible encoding associated to Ei. In the sequel, we mainly focus on the
Coron-Icart admissible encoding obtained via Equation. (1) (Section 2.1). It ensures that an
admissible representation of size 2n exists for almost all points.

One question arises from this setting: Given a bit string l, is the discrete logarithm of each
Pi = Fi(l) in basis Gi still hard to compute?

3.1 Hard Problems around the Discrete Logarithm of the Points Pi

Since an admissible encoding has an inversion algorithm, over each curve Ei, given a point with
an unknown discrete logarithm, we can almost always (except with a negligible probability)
compute one of its admissible representations and thus we have:

Lemma 2. Assume that Fi is an admissible encoding. Computing the discrete logarithm of
any Pi = Fi(l) with the knowledge of l is as hard as solving the discrete logarithm problem over
the curves Ei.



When an adversary computes an admissible representation l of a point Pi over Ei, we want
that for all admissible representations he can choose, his advantage on the discrete logarithm
of Pj = Fj(l) in basis Gj over Ej remains negligible.

Definition 6 (Admissible Encoding Twin Discrete Logarithm Assumption). Let A
be an algorithm that:

– inputs S;
– outputs l and a couple (ri, rj) ∈ (Z/qiZ× Z/qjZ) such that
Pi = Fi(l) = ri ·Gi and Pj = Fj(l) = rj ·Gj.

The AETDL assumption holds if any polynomial algorithm succeeds with a negligible probability,
when the probability is taken over S.

Remark 2. This assumption can be expressed differently for the Coron-Icart admissible en-
coding of Eq. (1). Indeed, for this encoding, l is a couple of values (u, λ) such that Fi(l) =
fi(u)+λ ·Gi. Clearly, finding u and a couple (ri, rj) such that fi(u) = ri ·Gi and fj(u) = rj ·Gj
is equivalent at solving the AETDL problem. The problem is thus to find r1, r2 such that
f−1
1 (r1 · G1) ∩ f−1

2 (r2 · G2) is a non empty set. For a random couple (G,G′) ∈ Ei × Ej the
probability to have a u such that fi(u) = G and fj(u) = G′ is at most 4 × 4

2n = 2−(n−4) for
the Icart mapping (any point has at most 4 preimages through this mapping). Since the scalar
multiplication is a one-way map in each Ei, it is computationally hard to find such couples.

Definition 7 (Admissible Encoding Twin Computational Diffie-Hellman Assump-
tion). Let A be an algorithm that:

– inputs S and l;
– outputs l′ and a couple of points (Ri, Rj) such that

CDHGi(Fi(l), Fi(l
′)) = Ri and CDHGj (Fj(l), Fj(l

′)) = Rj.

The AETCDH assumption holds if any polynomial time adversary has a negligible probability
of success, when the probability is taken over S and l.

This assumption is stronger than the AETDL assumption because the AETCDH problem
can be solved using the l, ri, rj of the AETDL assumption.

Remark 3. Due to the special form of the Coron-Icart admissible encoding, Fi can be replaced
by fi into this assumption. For this reason, the AETCDH assumption ensures that an adversary,
which receives a bit string u, cannot compute u′ such that over Ei and Ej he knows both
CDHGi(fi(u

′), fi(u)) and CDHGj (fj(u
′), fj(u)). It is easily seen that CDHGi(fi(u

′), fi(u)) = Ri
implies CDHfi(u)(Gi, Ri) = fi(u′). The AETCDH problem is thus to find Ri ∈ Ei and Rj ∈ Ej
such that

f−1
i (CDHfi(u)(Gi, Ri)) ∩ f

−1
j (CDHfj(u)(Gj , Rj)) 6= ∅

As above, the probability for a random couple (G,G′) ∈ Ei×Ej to have a u′ such that fi(u′) =
G and fj(u′) = G′ is at most 4 × 4

2n = 2−(n−4) for the Icart mapping. Thanks to AETDL,
choosing u such that the adversary knows both logarithms of Gi in basis fi(u) and Gj in basis
fj(u) is hard. Thus either the map Ri 7→ CDHfi(u)(Gi, Ri) or the map Rj 7→ CDHfj(u)(Gj , Rj)
is one way. Consequently, it is computationally hard to find a couple (Ri,Rj).

Remark 4. The AETDL assumption is stronger than the DL assumption. Likewise, AETCDH
is a stronger assumption than the CDH assumption over any elliptic curve Ei. Indeed, AETCDH
is trivial if for one curve Ej CDH is an easy problem. The following algorithm illustrates this.



1. Randomly select ri, compute Pi = ri ·Gi, Ri = ri · Fi(l).
2. Compute l′ = IFi(Pi).
3. Compute Rj = CDHGj (Fj(l), Fj(l

′)) and return l′, Ri, Rj .

We finally introduce a last assumption, which is the password based variant of the AETDL
assumption.

Definition 8 (n-Password Based Admissible Encoding Twin Computational Diffie-
Hellman Assumption). Let Pπ be a point over Eaπ ,bπ . Let l be an admissible representation
of Pπ (Pπ = Fπ(l)). Let A be a polynomial algorithm that:

– inputs S and l;
– outputs l′, K1, . . . ,Kn, where each Ki is a point of one of the curves in S.

The n-PAETCDH assumption holds if any polynomial adversary A has a probability 1/N + ε
to have returned one Ki amongst n such that CDHGπ(Fπ(l), Fπ(l′)) = Ki, where ε is negligible.

In this assumption, ε is the advantage of the algorithm over the value of π. Indeed, a trivial
way to solve the n-PAETCDH problem is, from S and l, to randomly choose a j ∈ [1, N ] and
to assume that j = π. This has a probability at least 1/N to succeed. Further, this assumption
implies the AETCDH assumption. Indeed an algorithm Aaetcdh, which solves the AETCDH
problem, can be transformed into an adversary which solves the n-PAETCDH problem with
ε = 1/N . The following lemma proves that the opposite is also true.

Lemma 3. The AETCDH assumption implies the n-PAETCDH assumption, for any n.

Proof. Let Succx be the probability of success of the best adversary against the problem x.
Let Eventi be the event that an algorithm outputs i ≤ n points Kj1 , . . . ,Kji such that

CDHGji (Fji(l), Fji(l
′)) = Kji

We have:

Pr
[
Succpaetcdh

]
≤

min(N,n)∑
i=1

Pr [Eventi]
i

N

It is easily seen that for all i ≥ 2, Pr [Eventi] ≤ Pr
[
Succaetcdh

]
. This leads to:

Pr
[
Succpaetcdh

]
≤ Pr [Event1]

1
N

+ Pr
[
Succaetcdh

] N − 1
2

≤ 1
N

+ Pr
[
Succaetcdh

] N − 1
2

If Pr
[
Succaetcdh

]
is negligible, since N is polynomial, then: Pr

[
Succpaetcdh

]
= 1

N + ε ut

4 The EC-DH-EKE Protocol with an Admissible Encoding

The Diffie-Hellman Encrypted Key Exchange (DH-EKE) protocol is roughly a DH key exchange
where each data sent is encrypted by a block cipher with a key derived from a shared secret.
This protocol has been introduced in [4], extended in [2], and proved in the Ideal Cipher Model
and Random Oracle Model under the CDH assumption in [8]. Its basic flows are presented in



Device parameters : E,N,G Reader
password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β

Compute G1 = α ·G
z1=EKpw (G1)

−−−−−−−−−−−−−−−−→ Compute G2 = β ·G
z2=EKpw (G2)

←−−−−−−−−−−−−−−−−
Compute K = α · DKpw (z2) Compute K = β · DKpw (z1)

Fig. 1. Basic flows of the DH-EKE scheme

Figure 1 (a complete execution, with the final authentication checks, is given in Figure 2 in
our elliptic curve instantiation).

Note however that it is assumed that the ideal cipher inputs group element. Consequently,
a naive implementation of the DH-EKE over elliptic curves could be insecure. Indeed, the
encryption of a point P = (x, y) with a key Kpw = H(π) leads to a ciphertext z = EKpw(x||y).
However, for any password π′ 6= π, the decryption of z is not a point over the elliptic curve with
an overwhelming probability. This leads to an offline dictionary attack (see for instance [7]).

More generally, since there exists a redundancy in the representation of P = (x, y), it is
difficult to encrypt P without having a dictionary attack. The encryption over the elliptic
curves points should in fact be a permutation. One possibility to struggle this problem is to
represent P thanks to an admissible representation. Hence applying a classical cipher would
become possible.

4.1 Parameters

Let k be a security parameter. Let H be a hash function with {0, 1}l as output domain. Let
N be the size of D, the dictionary of the different passwords. Let Ea,b be an elliptic curve over
F22k+1 and G be a generator of its prime order subgroup of order q, with a cofactor 1.

We assume that the protocol takes place between different devices D and a reader R. Each
device possesses a password π ∈ D.

4.2 EC-DH-EKE

The DH-EKE scheme has been proved secure in [8] in the Ideal Cipher Model and the Random
Oracle Model under the CDH assumption. However, the Ideal Cipher requires to manage group
elements as inputs.

Thanks to the admissible encoding, a group element can be seen as a bit-string. For this
reason, a real implementation of the protocol is much more realistic because the Ideal Cipher
can be replaced by a cipher such as AES-128, while an ideal cipher from elliptic curve points
has still to be found. The resulting protocol is described by Figure 2.

This finally leads to an efficient and secure protocol. Additionally, the elliptic curves param-
eters remain hidden from an eavesdropper, since it only sees some encryption of statistically
indistinguishable bit string.

Remark 5. In the masked DH-EKE variant, which is proved in [9] in the ROM only, the
encryption primitive is a mask generation function instead of an ideal cipher, the Diffie-Hellman
values sent are masked by addition with a full-domain hash of the password. Here a similar
problem arises: the hash needs to be a ROM into elliptic curves. It is possible to use the [10]



Device Reader
parameters : Ea,b, N,G

password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β
Compute G1 = α ·G Compute G2 = β ·G
Compute l1 = IF (G1) Compute l2 = IF (G2)

z1=EKpw (l1)
−−−−−−−−−−−−−−−→

z2=EKpw (l2)
←−−−−−−−−−−−−−−−

Compute l2 = DKpw (z2) Compute l1 = DKpw (z1)
Compute K = α ·G2 Compute K = β ·G1

= α · F (l2) = β · F (l1)
Compute K = H(K, z1, z2) Compute K = H(K, z1, z2)
Compute Kenc = H(K, 1) Compute Kenc = H(K, 1)
Compute Kmac = H(K, 2) Compute Kmac = H(K, 2)
Compute TD = H (Kmac, z2) Compute TR = H (Kmac, z1)

TD−−−−−−−−−−−−−−−→
TR←−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 2. The EC-DH-EKE scheme with an Admissible Encoding

ROM construction, which is based on Admissible Encoding, to hash the password. But in that
case the elliptic curves parameters will not be kept hidden as the resulting ciphertext are points
on the curve.

Remark 6 (Eavesdroppers without the Elliptic Curve Parameters). The family of DH-EKE pro-
tocol is secure against offline dictionary attacks under the CDH assumption: an adversary has
to compute K = CDHG(G1, G2) to get some information on the password. Indeed, based on
CDH and the ROM, the distribution of G1, G2, TD, TR is computationally indistinguishable
from the uniform distribution over E2

a,b × {0, 1}
2l. Using this property and the property of

the admissible encoding (cf. Definition 2), we know that l1 and l2 are bit strings computa-
tionally indistinguishable from random ones. In the Ideal Cipher Model, this implies that the
z1, z2, TD, TR are indistinguishable as well. For this reason, an adversary who does not know
the elliptic curve parameters, cannot compute them, even if he has a list of curves parameters.

5 Our Proposal of Password Based EC-DH Key Exchange without
Encryption

In the EC-DH-EKE scheme (Figure 2), we use the admissible representation in order to encrypt
properly over elliptic curves. As an additional benefit, this protocol also ensures the privacy
of the elliptic curve parameters. Following this last idea, we modify further the EC-DH-EKE
protocol in order to base the authentication directly on the knowledge of the elliptic curve
parameters instead of the knowledge of an additional password.

Our proposal is similar to our EC-DH-EKE variant: points are represented by an admissible
representation but we did not encrypt the representations anymore. Since the distribution of
l1, l2, TD, TR is computationally indistinguishable from the uniform distribution, exchanging
these values in clear makes no difference from an eavesdropper point of view. This enables to
avoid the use of an ideal cipher in the security analysis. In the sequel, we denote our scheme
EC-DH-ARKE which stands for Elliptic Curve Diffie-Hellman Admissibly Represented Key
Exchange.



In our scheme, the dictionary of passwords becomes a set of different elliptic curves param-
eters indexed by a table.

5.1 Parameters

Let k be a security parameter and N a polynomial integer in k. Let H0,H1,H2 be 3 hash
functions with {0, 1}l as output domain. Let F2n be a field such that there exist efficient
admissible encodings and such that 2n = O(22k). Let S = {ai, bi, Gi, qi}i∈[1,N ] be a set of
elliptic curve parameters such that Gi is a generator of the prime order group of Ei = Eai,bi
of order qi. It is assumed that the cofactor is 1 for each group of points. We also assume that
the prime integers qi are pair-wise distinct. This last condition is sufficient to ensure that no
isomorphism exists between any couple (Ei, Ej).

5.2 The EC-DH-ARKE Protocol

During the initialization phase, each reader receives the set S as input and each device receives
one element of S as parameters. It can further define its own public discrete logarithm based
pair of public/secret keys with these parameters. The index i related to these parameters is
given to the device owner. We stress that the set S does not need to remain secret. We use the
index in order to enable a user to typeset data related to the parameter.

At the beginning of each authentication, the device holder has to typeset one index and
then the reader verifies that the index corresponds to the elliptic curve parameters used by the
device. The protocol is illustrated in Figure 3.

Device Reader
password : Eaπ,bπ , qπ , Gπ password : Eaπ,bπ , qπ , Gπ
Pick α Pick β
Compute G1 = α ·Gπ Compute G2 = β ·Gπ
Compute l1 = IFπ (G1) Compute l2 = IFπ (G2)

l1−−−−−−−−−−−−−−−→
l2←−−−−−−−−−−−−−−−

Compute K = α ·G2 Compute K = β ·G1

= α · Fπ(l2) = β · Fπ(l1)
Compute K = H0(K, l1, l2) Compute K = H0(K, l1, l2)
Compute Kenc = H1(K, 1) Compute Kenc = H1(K, 1)
Compute Kmac = H1(K, 2) Compute Kmac = H1(K, 2)
Compute TD = H2 (Kmac, l2) Compute TR = H2 (Kmac, l1)

TD−−−−−−−−−−−−−−−→
TR←−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 3. Our proposal EC-DH-ARKE

5.3 Security Result

Our proposal is secure in the Random Oracle Model under the AETCDH assumption. More
concretely:



Theorem 1 (AKE security). Let S be a randomly chosen set of N elliptic curve parameters
as above. Let π be an uniformly chosen index in [1, N ]. Let A be an adversary in the BPR model
against the AKE security of our scheme within a time T , with less than qs interactions with
the parties, qp eavesdroppings and qh hash queries. We have:

Advake
EC−DH−ARKE(A) ≤ qsSuccqh−paetcdh(T ′) + qpSucccdh(T ′) + ε

where T ′ = T +O(Q2), where Q = qs+qh+qp and ε is negligible if qs, qp and qh are polynomial
in k.

The security of this protocol relies on two ideas:

1. a passive eavesdropper does not get any information on the exchanged data whenever the
CDH is a hard problem for any curve in S;

2. an active adversary can find the password by an online dictionary attack with a probabil-
ity 1/N . In fact, an adversary can always be turned into an algorithm, which solves the
PAETCDH problem with almost the same probability.

5.4 Security Proof

We use a sequence of game in order to prove the security of the protocol. In the sequel Pr[Gi]
denotes the probability in the game Gi that the adversary outputs the good guess b′ = b.
Game G0: This is the real security game. A set of N parameters is chosen, the device receives
one element of S and the reader receives the same, while the set S is given to the adversary.
The reader and the device act as described in Figure 3. We assume that H0,H1,H2 are random
oracles into l bit strings.

Once the Test query is sent, following a randomly chosen bit b, the key Kenc or a random
string is returned. Hence

Advake
EC−DH−ARKE(A) = |Pr[G0]− 1/2|

Game G1: We simulate the device and the reader for each query to the Send, Execute,
Test and Reveal oracles, as the real players would do. We also simulate the random oracles
H0,H1,H2. This does not change the adversary advantage but modifies the duration of the
simulation because of the necessary table lookups. We thus have T ′[G1] = T +O(Q2).

Game G2: We abort the simulation if a collision occurs while simulating one of the random
oracles. A collision occurs with a probability Q2/2l+1 for each random oracle. We thus have:

|Pr[G2]− Pr[G1]| ≤ 5× Q2

2l+1

From this game, we are sure that the values of K are different. This property is also true for
Kenc,Kmac, TD, TR.

Game G3: We simulate the Execute oracle using random values. To distinguish this game
from the previous one, the adversary needs to solve the CDH problem over a curve for at least
one couple (l1, l2) exchanged during one of the Execute queries. For this reason, we have:

|Pr[G3]− Pr[G2]| ≤ qpSucccdh(T ′)



Game G4: We abort the simulation when we get a collision on elliptic curve points chosen at
the beginning. Since there are qπ points in the curve, we have that:

|Pr[G4]− Pr[G3]| ≤ Q2

qπ

From this game, we know that the admissible representations returned by the simulation are
pair-wise distinct.
Game G5: We abort when one triplet (CDHGπ(Fπ(l1), Fπ(l2)), l1, l2) is queried a second time
to H0, while l1, l2 are values exchanged during one instance I initiated by the query Send.
When this second query to H0 occurs, we know that the adversary knows the value K of the
instance I. We have assumed that the adversary does not make two identical queries to any
random oracle.

Before this abortion, the adversary does not have any advantage over the password π since
he has observed random values (due to the admissible representations property, see Section 2.1)
that he could not verify, without querying H0 with a correct query. Once this event arises, we
determine l, the value amongst l1 or l2, which is the value that we have sent while we simulated
the Send query. We then get all the triplets queried to the random oracle H0 by the adversary,
which contains l. These triplets form an answer to the PAETCDH problem. For this reason
we have:

|Pr[G5]− Pr[G4]| ≤ qsSuccqh−paetcdh(T ′)

Game G6: We do not use neither H1 nor H2 anymore when we simulate the execution of the
protocol. For this reason, the Reveal query does not give any information such as the Send
query concerning TR and TD. We thus have:

Pr[G6] = 1/2

Furthermore, since the adversary does not have computed K for any instance, there is no
difference from the adversary point of view between G5 and G6. ut

This result holds in the forward secrecy setting (cf. Remark 1) as well.

6 Implementation

We here describe how to implement the inversion map IF for F defined by Eq. (1) thanks to
the Icart mapping. We focus on this point, since the other computations are straightforward.
We recall the complete algorithm to compute IF , this algorithm is described by [10] and it
uses the algorithm Inv which is explained in the next section. q is the group order of the elliptic
curve group of points.

Algorithm If
Input: P ∈ Ea,b
Output: u ∈ F2n such that fa,b(u) = P or
u = ⊥
1. Compute the set U = f−1

a,b (P ) using al-
gorithm Inv

2. Let δP = |U |/4
3. With probability 1− δP return ⊥
4. Return a random element u in U .

Algorithm IF
Input: P ∈ Ea,b
Output: (u, λ) ∈ F2n × Zq such that P =
F (u, λ) = fa,b(u) + λ.G, or ⊥
1. For i = 1 to T = −k/ log(1− 2n−2/q):

(a) Randomly chooses λ ∈ ZN and
computes Z = λ.G

(b) Let X = P − Z ∈ G
(c) Compute a = If (X)
(d) If a 6= ⊥, return (a, λ)

2. Return ⊥.



6.1 Computing a Preimage with the Algorithm Inv

Inverting the Icart’s mapping [11] in characteristic 2 is possible by computing the roots of a
degree 4 polynomial. Given a point P = (x, y) on an elliptic curve Ea,b of equation (X3+aX2+
b = Y (X+Y )), we know that u is a preimage of P if and only if y+a2 +ux+u2 +u4 = 0. One
can remark that this equation is F2 linear. For this reason, finding its roots requires to solve a
linear system over F2. The matrix related to the linear function u 7→ u4 + u2 + ux is easy to
compute. Solving a linear system can be done thanks to Gaussian elimination. This operation
requires O(n3) binary operations. Furthermore, over a platform with registers of size w, the
running time is O(n3/w). Moreover, the inverting algorithm Inv is thus deterministic.

To compute the inverse of the admissible encoding, it is not necessary to compute the set U
of solutions but only its cardinality, which is the number of roots of the equation y+a2 +ux+
u2 +u4 = 0. One possibility is to compute each time the matrix and its row echelon. However,
a more clever way is to compute the greatest common divisor of P (U) = y+a2 +Ux+U2 +U4

with U2n − U . This does not change the complexity but it reduces the memory requirement
for the algorithm, from n2 bits to 4n bits.

Remark 7. One can remark that the polynomial U2n mod P is necessarily a F2 linear poly-
nomial. Furthermore, it can be expressed thanks to a polynomial expression in x, y and a2.

6.2 The Overall Running Time

In the algorithm IF , the process has to be repeated at most T . If one wants a deterministic
algorithm, one can run exactly T = −k/ log(1 − α) times the inversion process, where α =
2n−2/q. However, in the general case, a deterministic algorithm is not necessary. The average
number of steps of the probabilistic algorithm is 1/α. This average running time could leak
information on the elliptic curve parameter since α = 2n−2/q. However, since we have assumed
that the cofactor of each curve is 1, we know that q is near from 2n thanks to the Hasse’ bound.
This ensures that for two different elliptic curves E1, E2, we have∣∣∣∣ 1

α1
− 1
α2

∣∣∣∣ ≤ 24−n/2

Hence it requires an exponential number of observations to distinguish the running times 1/α1

and 1/α2.
To summarize, the running of the algorithm is O(n3/w), while the memory requirement is

O(n2), leading to the feasibility of practical implementations.

6.3 Minimizing the Communication Cost

It is possible to reduce the size of the exchanged data whenever the admissible encoding is the
one defined by Equation (1), Section 2.1. Indeed, instead of sending l = (u||λ) in the protocol,
both participants can send u only. Assume that the device receives u2, it then computes fπ(u2)
and to get the key, it computes (α− λ1) · fπ(u2). It is easily seen that fπ(u2) = (β − λ2) ·Gπ,
thus K = (α− λ1)(β − λ2) ·Gπ for the device. The reader, from u1 can also compute this key,
which is the seed for the future session key.

This simple trick reduces the total amount of data exchanged during the protocol and
thus makes it more efficient. However, this trick is not general and can only be use with some
particular admissible encoding. We remark that this enables to send only 1 element in F2n

instead of 2 for a classical representation of an elliptic curve point. It is in fact less than the
classical compressed representation (one F2n element and one additional bit).



7 Conclusion and Further Work

This paper describes a new and efficient Password-Based Authenticated Key Exchange protocol
which is especially adapted for elliptic curves settings. Particularly, it enables to keep the elliptic
curves parameters hidden. In the context of contactless ID documents, this opens a way for
implementing realistic solutions which preserve privacy of owners’s nationality. As extensions
of this work, a good perspective is to continue on adaptations of enhanced versions of EKE
which are analyzed on a more general model (e.g. UC) or with standard assumptions (standard
model).

An implementation in a PKI context with the property that the curve parameters remain
hidden is also a possible application of our idea. For instance, a smartcard could contain a
certified public key which is stored directly in its admissible representation.
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