
Additive Combinatorics and Discrete Logarithm Based
Range Protocols

*** Second e-print version?, October 3, 2009 ***

Rafik Chaabouni1, Helger Lipmaa2, and Abhi Shelat3

1 EPFL, Switzerland
2 Cybernetica AS, Estonia

3 University of Virginia, USA

Abstract. We show how to express an arbitrary integer interval I = [0, H] as
a sumset I =

∑`
i=1Gi ∗ [0, u − 1] + [0, H ′] of smaller integer intervals for

some small values `, u, and H ′ < u − 1, where b ∗ A = {ba : a ∈ A} and
A+ B = {a+ b : a ∈ A ∧ b ∈ B}. We show how to derive such expression of
I as a sumset for any value of 1 < u < H , and in particular, how the coefficients
Gi can be found by using a non-trivial but efficient algorithm. This result may be
interesting by itself in the context of additive combinatorics. Given the sumset-
representation of I, we show how to decrease the communication complexity of
the recent range proof of Camenisch, Chaabouni and Shelat from ASIACRYPT
2008 by the factor of 2.
Keywords. Additive combinatorics, cryptographic range proof, sumset, zero
knowledge.

1 Introduction

New Result in Additive Combinatorics. The principal contribution of this paper is to
show that for any integer interval I = [0, H] and any 1 < u < H , there is a sumset-
representation

I =
`−1∑
j=0

Gj ∗ [0, u− 1] + [0, H ′] (1)

for some ` ≤ dlogu(H + 1)e and H ′ ∈ [1, u − 2], where b ∗ A = {ba : a ∈ A} and
A + B = {a+ b : a ∈ A ∧ b ∈ B}. We first derive a recursive formula for computing
Gj for any u > 1. As an interesting technical contribution, we then show a semi-
closed form for Gj , that is, we show how to compute Gj given only H , j and u. This
algorithm is efficient and only requires simple arithmetic. More precisely, we show that
Gj is equal to the sum of

⌊
H/uj+1

⌋
and a simple (but non-trivial) function of the j+1

lowest u-ary digits of H . We think that the presented algorithm may be interesting by
itself say in the general context of additive combinatorics [TV06]: decompositions of
sets as sumsets are common in additive combinatorics, but our concrete result differs
significantly from existing results in that field.
? Corrected some small typos. The most annoying of them was that we had typos in the definition

of hj+ and [[x]] on page 6.

2 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

Range Proof: Background. We are now going to apply Eq. (1) in cryptography, more
precisely in the construction of cryptographic range proofs. In a cryptographic range
proof, the prover proves in zero knowledge that for given C and H , C is a commitment
of some element σ ∈ [0, H]. (Modifying it to general ranges [L,H] is trivial when
one uses a homomorphic commitment scheme.) Range proofs are needed in various
applications like e-voting [DJ01], e-auctions [LAN02], e-cash, etc. Range proofs with
communication complexity O(1) were introduced in [Bou00,Lip03]. However, such
proofs work under very specific security assumptions, and thus there is still interest in
protocols that are based on the discrete logarithm scenario. There exists a well-known
folklore cryptographic range proof, see for example [DJ01], in the special case when
H = u` − 1 for some integers u, ` > 0. In this protocol, the prover writes σ as σ =∑
σju

j , commits—by using a homomorphic commitment scheme—to all values σj ,
and then proves in zero-knowledge (using say a Σ-protocol) that σj ∈ [0, u − 1] for
all j. The folklore protocol is most efficient in the case u = 2, and thus this case has
been studied the most. (For larger u, one has to use recursive range proofs for every
σj .) Notice, however, that the communication complexity of this folklore range proof
is Θ(logH).

Recently, Camenisch, Chaabouni and Shelat [CCS08] presented a new range proof
that works in the non-binary case. Assuming again H = u` − 1, the verifier in their
range proof first publishes signatures on all integers in [0, u − 1]. The prover gives
a proof of knowledge on signatures of ` committed elements σj . Analogously to the
folklore protocol, this shows that the prover knows elements σj ∈ [0, u − 1] such that
σ =

∑
σju

j (the latter part is trivial with a public homomorphic commitment to σ).
However, ifH 6= u`−1 then both the folklore protocol and the protocol of [CCS08]

get more complicated, and require up to 2 times more communication. (In a nutshell,
this is because they show that σ ∈ [0, H] by using an AND composition of two range
proofs of form σ′ ∈ [0, u` − 1].) In the special case u = 2, an efficient modification
of the folklore case for general ranges was proposed (though its correctness was not
proven) in [LAN02]. There it was noted that for any H ≥ 1, σ ∈ [0, H] if and only if
σ =

∑blog2Hc
j=0 Gjσj , where σj ∈ {0, 1} and Gj :=

⌊
(H + 2j)/2j+1

⌋
. For example,

σ ∈ [0, 11] iff σ = 6σ0 +3σ1 +σ2 +σ3 for σj ∈ {0, 1}. Thus the folklore protocol can
be extended to arbitrary values of H with virtually no efficiency loss. In the language
of additive combinatorics, the result of [LAN02] says that

[0, H] =
∑⌊

(H + 2j)/2j+1
⌋
∗ [0, 1] . (2)

Note that Eq. (2) does not straightforwardly generalize to the case where we are inter-
ested in a larger range [0, u − 1]. In fact, [LAN02] did not even present a proof that
Eq. (2) holds. As a straightforward corollary of our sumset-representation of [0, H], we
obtain a proof that the presentation of Eq. (2) is correct.

Application of the Sumset-Representation in Range Proofs. We show how to use
the sumset-representation Eq. (1) to modify the range proof of [CCS08] so that it will
become at least 50% more communication-efficient in practice (and so that it is always
more efficient than the folklore protocol). For this we use a simple corollary of our gen-
eral sumset-representation that [0, H] =

∑`−1
j=0Gj ∗ [0, u − 1] whenever (u − 1)|H .

Additive Combinatorics and Discrete Logarithm Based Range Protocols 3

Moreover, if we set u = O(logH/ log logH), then the total communication of the
range proof is Θ(logH/ log logH). We also point out some mistakes in [CCS08],
namely, that the so called OR composition proposed there does not work in most of
the cases, and thus their protocols are somewhat less efficient than claimed.

Finally, our secondary contribution is an implicit framework for generating range
proofs. Recall that when the group order is hidden (e.g., in RSA-like settings), earlier
range protocols [Lip03] exploit the quadratic form

y = x2
1 + x2

2 + x2
3 + x2

4

to represent any positive integer. Since there is a 4-term quadratic form, range proofs
in this setting have constant size. As discussed below, this idea does not help when the
group order is known (e.g. under discrete-log like assumptions). Nonetheless, finding
more efficient linear or quadratic forms for ranges [0, H], in which each term is in a
small range will immediately lead to more efficient range proofs in the discrete loga-
rithm setting.

2 Preliminaries

We summarize and copy some of the notation and definitions from [CCS08] for consis-
tency and to make it easier for the reader to follow.

Notation. PPT means probabilistic polynomial-time. k is the security parameter. In
all protocols, prover and verifier send elements from G1, GT and Zp. We denote the
length of representation (which may differ from the logarithm of the cardinality of
the groups) of such elements by replen(G1), replen(GT) and replen(Zp) respectively.
For any two integers L ≤ H , let [L,H] := {x ∈ Z : L ≤ x ≤ H}. We use the usual
“set-theoretic” arithmetic notation. For example, if A and B are sets then A + B =
{a+ b : a ∈ A ∧ b ∈ B}. Moreover, for an integer b andA ⊂ Z, b∗A = {ba : a ∈ A},
this is also called the b-dilate of A [TV06].

Commitment Schemes. A (string) commitment scheme is a triple of algorithms C =
(Gen,Com,Open) representing the generation, the commit and the open algorithm.
The Gen algorithm generates parameters p for a scheme. The Com algorithm runs on
input (p,m, r) wherem is a string, and r is a random tape, and produces a pair of values
(c, o) representing the committed string and an opening string. The Open algorithm
runs on input (c,m, o) and outputs 0 or 1. The scheme should have a ”hiding” property
and a ”binding” property which informally require it to be difficult (or impossible) for
the adversary to determine the message m from c or to open the value of a commitment
c to two different messages m1,m2.

Zero-Knowledge Proofs andΣ-Protocols. We use definitions from [BG92,CDM00].
A pair of interacting algorithms (P,V) is a proof of knowledge (PK) for a relation
R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for all

4 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

(α, β) ∈ R, V(α) accepts a conversation with P(β) with probability 1; and (2) there
exists an expected polynomial-time algorithm E, called the knowledge extractor, such
that if a cheating prover P∗ has probability ε of convincing V to accept α, then E, when
given rewindable black-box access to P∗, outputs a witness β for α with probability
ε− κ.

A proof system (P,V) is computational honest-verifier zero-knowledge if there ex-
ists a PPT algorithm Sim, called the simulator, such that for any (α, β) ∈ R, the outputs
of V (α) after interacting with P(β) and that of Sim(α) are computationally indistin-
guishable. When we will talk about honest-verifier zero-knowledge we will assume the
computational case.

Note that standard techniques can be used to transform an honest-verifier zero-
knowledge proof system into a general zero-knowledge one [CDM00]. This is espe-
cially true of special Σ-protocols that will be presented later in the paper. Thus, for the
remainder of the paper, our proofs will be honest-verifier zero-knowledge. (This also
allows us to make more accurate comparisons with the other proof techniques since
they are usually also presented as honest-verifier protocols.)

A Σ-protocol is a proof system (P,V) where the conversation is of the form
(a, c, z), where a and z are computed by P, and c is a challenge randomly chosen by
V. The verifier accepts if φ(α, a, c, z) = 1 for some efficiently computable predicate φ.
A Σ-protocol must satisfy three security requirements: correctness, special soundness
and special honest-verifier zero knowledge (SHVZK). A Σ-protocol is correct when a
honest prover convinces honest verifier with probability 1− k−ω(1). A Σ-protocol has
the special soundness property when from two accepting views (a, c, z) and (a, c′, z′),
where c 6= c′, one can efficiently recover a witness w such that w ⇒ x ∈ L. A Σ-
protocol has the SHVZK property if there exists a PPT simulator Sim that can first
randomly pick c∗, z∗ (from some fixed sets) and then compute an a∗ such that the view
(a∗, c∗, z∗) is accepting and the distribution (a∗, c∗, z∗) is computationally indistin-
guishable from the distribution of accepting views between honest server and honest
verifier.

We use the notation introduced by Camenisch and Stadler [CS97] for various zero-
knowledge proofs of knowledge of discrete logarithms and proofs of the validity of
statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that y =
gαhβ and y = gαhγ holds, where v ≤ α ≤ u,” where y, g, h, y, g, and h are elements of
some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is that Greek letters
denote quantities the knowledge of which is being proved, while all other parameters
are known to the verifier. Using this notation, a proof-protocol can be described by just
pointing out its aim while hiding all details. We note that all of the protocols we present
in this notation can be easily instantiated as Σ-protocols.

Definition 1 (Proof of Set Membership [CCS08]).
Let C = (Gen,Com,Open) be the generation, the commit and the open algorithm of
a string commitment scheme. For an instance c, a proof of set membership with respect

Additive Combinatorics and Discrete Logarithm Based Range Protocols 5

�������������������
�������������������
�������������������
��������������������������������������

�������������������
�������������������
���

��������������������������������������

��������������������������������������
��������������������
��������������������
��������������������
��

��������������������
��������������������
��

�������������������
�������������������
�������������������
���������������������������������������

��������������������
��������������������
��������������������

��

�������������������
�������������������
�������������������
�������������������

16151413121110987643210 175

Fig. 1. Illustration of the first recursive step of Thm. 1. Here H = H0 = 17, and u ∈ {3, 4, 5}.
For example, in the top graph, u = 3, G0 = b(17 + 1)/3c = 6, and H1 = 17− 2 · 6 = 5

to commitment scheme C and set Φ is a proof of knowledge for the following statement:

PK{(σ, ρ) : c← Com(σ; ρ) ∧ σ ∈ Φ}

Definition 2 (Range Proof [CCS08]). A range proof with respect to a commitment
scheme C is a special case of a proof of set membership in which the set Φ is a contin-
uous sequence of integers Φ = [a, b] for a, b ∈ N.

As discussed in the introduction, some efficient range proofs were proposed
in [Bou00,LAN02,Lip03,CCS08]. We will give a precise description of the proof
from [CCS08] in Sect. 4.

3 Sumset-Representation of Integer Intervals

The goal of this section is to derive a sumset-representation [0, H] =
∑`−1
i=0 Gi ∗ [0, u−

1] + [0, H ′], where 1 < H ′ < u� H , of an arbitrary integral interval [0, H]. (Integral
means that all involved parameters H , H ′, u and Gi are positive integers.) Moreover,
we aim to find minimal ` for any fixed value of u.

First we give an intuitive derivation of our result. (See also Fig. 1.) FixH and u. Let
H0 = H . Then clearly [0, H0] = G0 ∗ [0, u− 1]+ [0, H1], where G0 := b(H0 + 1)/uc
and H1 = H0 − (u − 1) · G0. This can be derived as follows: we want to divide
[0, H0] into u smaller (possibly overlapping) intervals of equal size H1 such that H1 is
minimal. The sub-intervals should start at periodic positions jG0, for someG0. Because
all elements from [0, H0] must belong to at least one of those subareas, it must be the
case that H1 ≥ G0 − 1 and (u − 1)G0 + H1 = H0. Thus, in the optimal case when
H1 = G0 − 1, we get uG0 − 1 = H0 or G0 = (H0 + 1)/u. Since G0 has to be an
integer, we set G0 = b(H0 + 1)/uc. Finally, H1 = H0 − (u− 1)G0 as stated.
These formulas reduce the case [0, H0] to a smaller case [0, H1] that can be solved
similarly. Recursively,

[0, H] = [0, u− 1] ·
∑
j

Gj + [0, H ′] ,

6 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

where

Gj :=
⌊
Hj + 1
u

⌋
. (3)

and

Hj+1 := Hj − (u− 1) ·Gj = Hj − (u− 1) ·
⌊
Hj + 1
u

⌋
.

This process stops when the interval [0, Hj+1] is small enough so that it cannot be
covered by u different non-empty intervals, that is, if Hj+1 ≤ u − 1. Then we define
`(u,H) := j + 1 to be the number of steps in this recursive process. Clearly, after we
are done with the recursive process,

H ′ := Hj+1 = H −
⌊

H

u− 1

⌋
· (u− 1) .

This means in particular that if (u− 1) | H then H ′ = 0.

Example 1. For example, with H = 57 and u = 4, one can verify that [0, 57] =
14 ∗ [0, 3] + 4 ∗ [0, 3] + [0, 3]. As another example, [0, 160] = 40 ∗ [0, 3] + [0, 40] =
40 ∗ [0, 3] + 10 ∗ [0, 3] + [0, 10] = 40 ∗ [0, 3] + 10 ∗ [0, 3] + 2 ∗ [0, 3] + [0, 4] =
40∗[0, 3]+10∗[0, 3]+2∗[0, 3]+1∗[0, 3]+[0, 1]. Now we are done since 1 < u−1 = 3.

(Another, though non-recursive, example withH = 17 was already depicted by Fig. 1.)
Finally, the sequence (. . . , Gj , . . .) clearly decreases the slowest when for all j,

u | (Hj+1 + 1), since then the floor operation is not applied. But u | (Hj+1 + 1) iff
u | (Hj − (u− 1)Gj + 1) iff u | (Hj +Gj + 1) iff (because also u | (Hj + 1)) u | Gj .
Thus, the sequence is slowest to decrease if H + 1 = u` for some `. This means, that
the process is guaranteed to stop in `(u,H) ≤ logu(H + 1) steps.

This leads us to the following theorem.

Theorem 1. Let u ≥ 2, H ≥ u. Let Gj , Hj and H ′ be defined as before. Denote
` = `(u,H) ≤ dlogu(H +1)e as above. Then [0, H] =

∑`−1
j=0Gj ∗ [0, u− 1]+ [0, H ′].

If (u− 1) | H then H ′ = 0.

Proof. Clear from above. ut

Semi-Closed Form for Gj . While the presented recursive formulas for Gj and Hj+1

are efficient, it is desirable to to have a closed form for Gj . In the next we show a
semi-closed form, that is, a formula for Gj that only depends on u, j and H .

Assume that H =
∑
hju

j with hj ∈ {0, . . . , u− 1}. For any j, write hj+ :=⌊
H/uj

⌋
, that is,H = ujhj+ +

∑j−1
i=0 u

ihi. In particular, hj+ = uh(j+1)+ +hj . Define
[[x]] := x (mod u− 1). Our proof is built up on the initial observation that

G0 = h1+ +
⌊
h0 + 1
u

⌋
,

H1 = h1+ + h0 − (u− 1)
⌊

1 + h0

u

⌋
= h1+ + [[h0]] .

Additive Combinatorics and Discrete Logarithm Based Range Protocols 7

The latter equation is obvious: if h0 < u − 1 then h0 − (u − 1)
⌊

1+h0
u

⌋
= h0 = [[h0]]

and if h0 = u− 1 then h0 − (u− 1)
⌊

1+h0
u

⌋
= u− 1− (u− 1) = 0 = [[h0]]. We can

now prove that

Theorem 2. Gj = h(j+1)+ +
⌊
hj+[[∑j−1

i=0 hi]]+1

u

⌋
.

Proof. By induction. We prove that Hj = h(j+1)+ +
[[∑j

i=0 hi

]]
, from this the claim

for Gj is obvious. Induction basis (j = 0) is obvious since H0 = h0+.

Induction step (j > 0). Assume that Hj = hj+ +
[[∑j−1

i=0 hi

]]
= uh(j+1)+ + hj +[[∑j−1

i=0 hi

]]
and Gj = h(j+1)+ +

⌊
hj+[[∑j−1

i=0 hi]]+1

u

⌋
. Then

Hj+1 = Hj−(u−1)Gj = h(j+1)++hj+

[[
j−1∑
i=0

hi

]]
−(u−1)·

hj +
[[∑j−1

i=0 hi

]]
+ 1

u

 .

Thus to finish the proof we only have to show that

hj +

[[
j−1∑
i=0

hi

]]
− (u− 1) ·

hj +
[[∑j−1

i=0 hi

]]
+ 1

u

 =

[[
j∑
i=0

hi

]]
(4)

for any hi ∈ {0, . . . , u− 1}. We consider the next cases.

Case 1,
[[∑j−1

i=0 hi

]]
= 0. Then the left hand side of Eq. (4) is hj − (u − 1) ·

b(1 + hj)/uc = [[hj]] and the right hand side is equal to the same value.

Case 1,
[[∑j−1

i=0 hi

]]
6= 0 and hj +

[[∑j−1
i=0 hi

]]
+ 1 < u. Then the left hand side of

Eq. (4) is hj+
[[∑j−1

i=0 hi

]]
and the right hand side is

[[∑j−1
i=0 hi + hj

]]
=
[[∑j−1

i=0 hi

]]
+

hj .

Case 3,
[[∑j−1

i=0 hi

]]
6= 0 and hj +

[[∑j−1
i=0 hi

]]
+ 1 ≥ u. Then the left hand side of

Eq. (4) is hj +
[[∑j−1

i=0 hi

]]
− (u − 1) and the right hand side is

[[∑j−1
i=0 hi + hj

]]
=[[∑j−1

i=0 hi

]]
+ hj − (u− 1). ut

In the binary case u = 2, a formula like this was already given in [LAN02]. How-
ever, while [LAN02] stated the closed form, they did not prove it. Fortunately, their
formula follows straightforwardly from the general result.

Corollary 1 (Binary case, [LAN02]). If u = 2 then Gj = h(j+1)+ +
⌊
hj+1
u

⌋
=⌊

H+2j

2j+1

⌋
.

Proof. Straightforward corollary.

8 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

4 Preliminaries: CCS Range Proof

Computational Assumptions. The following protocols require bilinear groups and
associated hardness assumptions. These assumptions are summarized from [CCS08].

Let PG be a pairing group generator that on input 1k outputs descriptions of multi-
plicative groups G1 and GT of prime order p where |p| = k. Let G∗1 = G1 \ {1} and
let g ∈ G∗1. The generated groups are such that there exists an admissible bilinear map
e : G1×G1 → GT, meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab;
(2) e(g, g) 6= 1; and (3) the bilinear map is efficiently computable.

Definition 3 (Strong Diffie-Hellman Assumption [BB04]). We say that the q-SDH
assumption associated to a pairing generator PG holds if for all PPT adversariesA, the
probability that A(g, gx, . . . , gx

q

) where (G1,GT) ← PG(1k), g ← G∗1 and x ← Zp,
outputs a pair (c, g1/(x+c)) where c ∈ Zp is negligible in k.

As noted by [CCS08], Cheon’s [Che06] attack against this type of assumption is not
relevant if q ≤ 50 as it is in this protocol.

Boneh-Boyen Signatures. Our scheme relies on the elegant Boneh-Boyen short signa-
ture scheme [BB04] which we briefly summarize. The signer’s secret key is x← Zp, the
corresponding public key is y = gx. The signature on a message m is σ ← g1/(x+m);
verification is done by checking that e(σ, y · gm) = e(g, g). This scheme is similar to
the Dodis and Yampolskiy verifiable random function [DY05].

Security under weak chosen-message attack is defined through the following game.
The adversary begins by outputting ` messages m1, . . . ,m`. The challenger generates
a fresh key pair and gives the public key to the adversary, together with signatures
σ1, . . . , σ` on m1, . . . ,m`. The adversary wins if it succeeds in outputting a valid sig-
nature σ on a message m 6∈ {m1, . . . ,m`}. The scheme is said to be unforgeable under
a chosen-message attack if no p.p.t. adversary A has non-negligible probability of win-
ning this game. Our scheme relies on the following property of the Boneh-Boyen short
signature [BB04] which we paraphrase below:

Lemma 1 ([BB04]). Suppose the q-Strong Diffie Hellman assumption holds in
(G1,GT). Then the basic Boneh-Boyen signature scheme is q-secure against an ex-
istential forgery under a weak chosen message attack.

The Camenisch-Chaabouni-Shelat range proof in the case when H = u` − 1 is
depicted by Prot. 1. In particular, e : G1 ×G1 → GT is an admissible bilinear map for
some multiplicative groups G1,GT , and g is a generator of G1 with h ∈ 〈g〉.

Communication of CCS Range Proof for “Nice” H . The CCS range proof for nice
H requires the prover to compute 3` exponentiations and 2` pairings (in [CCS08], this
was summed up as 5` exponentiations). It requires non-interactive (static) communica-
tion of

NIComccs(u, `) := (1 + u) · replen(G1) ,

Additive Combinatorics and Discrete Logarithm Based Range Protocols 9

Assume σ =
∑blogu(H+1)c
j=0 σju

j .
Common input: g, h, u, `, and a commitment C.
Prover’s input: σ, r such that C = gσhr and σ ∈ [0, H].

1. The verifier does: generate a random x ← Zp, and set y ← gx. For i ∈ [0, u − 1], set
Ai ← g1/(x+i) ∈ G1. She sends (y,A0, . . . , Au−1) to the prover.

2. The prover does: For all j ∈ [0, ` − 1], generate random vj ← Zp, set Vj ← A
vj
σj ∈ G1.

He sends (V0, . . . , V`−1) to the verifier.
3. The prover uses the next Σ-protocol to prove to the verifier that C = hr · g

∑
σju

j

, and
Vj = gvj/(x+σj) for all j:
(a) The prover picks sj , tj ,mj ← Zp for j ∈ [0, ` − 1]. He sets aj ←

e(Vj , g)
−sj e(g, g)tj ∈ GT , for j ∈ [0, `− 1], and D ← g

∑
j u

jsj · h
∑
j mj ∈ G1. He

sends (a0, . . . , a`−1, D) to the verifier.
(b) The verifier sends a random challenge c← Zp to the prover.
(c) The prover sets z(σ)

j ← sj − σjc mod p, z(v)
j ← tj − vjc mod p, for j ∈

[0, ` − 1]. He sets z(m) ← m − rc mod p, where m =
∑`−1
j=0mj . He sends

(z
(σ)
0 , . . . , z

(σ)
`−1, z

(v)
0 , . . . , z

(v)
`−1, z

(m)) to the verifier.

(d) The verifier checks thatD = Cchz
(m)

g
∑
j u

j ·z(σ)
j and aj = e(Vj , y)

c ·e(Vj , g)−z
(σ)
j ·

e(g, g)z
(v)
j for every j ∈ [0, `− 1].

Protocol 1: The CCS cryptographic range proof for range [0, u` − 1].

bits (signatures and public keys that can be shared between different protocol runs), and
interactive communication (which is unique for every protocol run) of

IComccs(u, `) := (1 + `) · replen(G1) + ` · replen(GT) + (2 + 2`) · replen(Zp)

bits.

Communication of CCS for Arbitrary Range [L,H]. As noted in [CCS08], to prove
that σ ∈ [L,H] for arbitrary L and H , one can use an AND composition. More pre-
cisely, suppose that u`−1 < H < u`. Then to show that σ ∈ [L,H], it suffices to
show that σ ∈ [L,L + u`) and σ ∈ [H − u`, H). Equivalently, one has to show that
σ − L ∈ [0, u`) and σ −H + u` ∈ [0, u`).

For this, one uses the standard AND composition of Prot. 1 with itself. Recall that
an AND composition of two Σ-protocols A1 and A2 is a Σ protocol where the first
message is a composition of the first messages of A1 and A2, the second message is
a single challenge c, and the third message is a composition of the third messages of
A1 and A2 that correspond to the first messages and the single challenge c. Moreover,
static information (the public key y and all signatures) and also the values Vj are only
sent once. Thus, in the AND composition of the CCS protocol, there are two versions
of aj , D, z(σ)

j , z(v)
j and z(m), which makes the (static) communication of the AND

composition of Prot. 1 with itself equal to

NIComccsand(u, `) = NIComccs(u, `) = (1 + u) · replen(G1) ,

10 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

and the dynamic communication is equal to

IComccsand(u, `) =IComccs(u, `) + ` · replen(GT) + replen(G1) + (2`+ 1) · replen(Zp)
= (`+ 2) · replen(G1) + 2` · replen(GT) + (4`+ 3) · replen(Zp) .

Remark on OR Composition. [CCS08] also considered the OR composition. The
communication of an OR composition is twice the communication of the single proto-
col, but with ` − 1 instead of `, and thus the OR composition has the potential to be
more efficient than the AND composition. In our case, for the OR composition to work,
we have to assume that u is such that u`−1 < H ≤ 2 · u`−1. In this case, σ ∈ [0, H] iff
σ ∈ [0, u`−1] or σ ∈ [H − u`−1, H]. This differs slightly from the misstated require-
ment of [CCS08], where it was said that one just needs that u`−1 < H . In particular,
this means that the OR composition does not work for values, considered in Sect. 4.4
of [CCS08], and thus the communication-efficiency of their range proof is (in most of
the cases) slightly worse than claimed in [CCS08].

Communication Analysis. Let us assume that replen(GT) ≈ 12 ∗ replen(G1) ≈
replen(Zp) [GPS08]. Following [CCS08] and plugging in parameters in terms of the
replen(G1), the communication can then be minimized by solving the following system

min 6 + u+ 29` s.t. u` > H

Setting u = logH
log logH then we get a total asymptotic communication complexity of

Com(u, `) = O

(
logH

log logH − log log logH

)
which is asymptotically smaller than O(logH). For concrete parameters, we substitute
the constraint that u` ≈ H into the equation u+ ` above, set the derivative with respect
to u to 0 and attempt to solve the equation:

1− 29 logH
u log2 u

= 0

which simplifies to

u log2 u = 29 logH. (5)

This equation cannot be solved analytically. However, given H , we can use numerical
methods to find a good u as described in [Bla97].

5 Modified Range Proof: New

The idea of the next proof follows from Thm. 1. We can assume that u > 1. Clearly,
σ ∈ [0, H] iff

(u− 1)σ ∈ [0, (u− 1)H]

Additive Combinatorics and Discrete Logarithm Based Range Protocols 11

Assume (u− 1)·σ =
∑`−1
j=0 σj ·Gj for ` = `(u, (u− 1)H) ≤dlogu((u− 1) ·H + 1)e.

Common input: g, h, u, `, and a commitment C.
Prover’s input: σ, r such that C = gσhr and σ ∈ [0, H].

1. The verifier does: she generates a random x ← Zp, and sets y ← gx. For i ∈ [0, u − 1],
she sets Ai ← g1/(x+i) ∈ G1. She sends (y,A0, . . . , Au−1) to the prover.

2. The prover does: For all j ∈ [0, ` − 1], generate random vj ← Zp, set Vj ← A
vj
σj ∈ G1.

He sends (V1, . . . , V`−1) to the verifier.
3. The prover uses the nextΣ-protocol to prove to the verifier thatCu−1 = h(u−1)·r ·g

∑
σjGj ,

and Vj = gvj/(x+σj) for all j ∈ [0, `− 1]:
(a) The prover picks sj , tj ,mj ← Zp for j ∈ [0, ` − 1]. He sets aj ←

e(Vj , g)
−sj e(g, g)tj ∈ GT , for j ∈ [0, `− 1], and D ← g

∑
j sj ·Gj · h(u−1)·

∑
j mj ∈

G1. He sends (a0, . . . , a`−1, D) to the verifier.
(b) The verifier sends a random challenge c← Zp to the prover.
(c) The prover sets z(σ)

j ← sj−σjc, z(v)
j ← tj−vjc for j ∈ [0, `−1] and z(m) ← m−rc

for m =
∑
jmj . He sends (z

(σ)
0 , . . . , z

(σ)
`−1, z

(v)
0 , z

(v)
`−1, z

(m)) to the verifier.

(d) The verifier checks thatD = Cc(u−1) ·h(u−1)·z(m)
· g

∑
j z

(σ)
j ·Gj and aj = e(Vj , y)

c ·
e(Vj , g)

−z(σ)
j · e(g, g)z

(v)
j for every j ∈ [0, `− 1].

Protocol 2: New, generalization of CCS protocol for arbitrary range [0, H].

iff, because of Thm. 1,

(u− 1)σ =
`(u,(u−1)H)−1∑

j=0

σjGj

for some σj ∈ [0, u− 1], and Gj are defined as in Thm. 1 with H0 = (u− 1)H .
Thus, we can propose a new range proof where we prove that Cu−1 commits a

value in (0, (u − 1)H] by using the CCS protocol for “nice” H , see Prot. 2. Note that
changing 0 to any meaningful L, 1 ≤ L < (u− 1)H , is trivial. In the description of the
protocol, see Prot. 2, new parts (compared to the CCS protocol) have been colored red
for easy parsing.

Rationale for multiplying by u − 1. If (u − 1) divides H , then it is not necessary to
multiply by the commitment by (u − 1). Recall that if u − 1 does not divide H , then
H ′ < u (the leftover value) defines some small range [0, H ′]. In this case, one could
(instead of multiplying by u − 1) add an extra step to the range proof that shows that
some new committed element belongs to the range [0, H ′]. Doing this would require an
extra H ′ + 1 elements from replen(G1), one extra element from replen(GT), and one
extra element from replen(Zp) to be transmitted. Thus, it will always be more expensive
to add this extra step. Another idea might be to use a simple OR-proof to handle the last
[0, H ′] elements. This would require extra communication of H ′ · replen(G1) + (1 +
H ′) · replen(Zp) bits. Since one element of replen(GT) is roughly 12 times larger than
the size of one element from either G1 or Zp, this approach is favorable when H ′ < 6.

12 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

Theorem 3. Assuming the q-SDH assumption, Prot. 2 is correct and has the property
of special soundness and SHVZK.

Proof (Sketch.). The proof is a straightforward extension of the security proof
from [CCS08]. ut

Concrete Efficiency of New. Clearly, both the static and dynamic communication of
New is related to communication of the CCS protocol in the next simple way:

NIComNew(u, `) := NIComccs(u, `(u, (u− 1)(H + 1)))

and
IComNew(u, `) := IComccs(u, `(u, (u− 1)(H + 1))) .

This is easily seen to be a factor of 2 more efficient than having to use two proofs to
handle an arbitrary range H .

Efficiency of New. Asymptotically, the total communication NIComNew + IComNew

of remains the same:

u+ `(u, (u− 1)(H + 1)) ≤ u+ logu((u− 1)(H + 1))
= u+ logu(u− 1) + logu(H + 1)

≤ u+ 1 + logu(H) +
1
H

As before, this value is (approximately) minimized when we set u ← log2H
log2 log2H

. Con-
cretely, there is a factor of two difference. The communication can be minimized by
solving

min 4 + u+ 15` such that ` > logu((u− 1)(H + 1))

As mentioned before, in some cases when u − 1 already divides H , it is not necessary
to multiply by u−1; even when (u−1) does not evenly divide H , a standard OR-proof
can sometimes be used to handle H ′. We take this fact in account when computing the
protocol’s efficiency for a given range below. In the graph below, we show how the
complexity of our new protocol compares with that of [CCS08] for ranges [0, H] where
H varies from 1000 to 2 · 108.

5.1 Comparison of Case Analysis

As a second way to compare the new protocol with protocol from [CCS08] and
other previous work, we use the same numbers as in Sect. 4 of [CCS08]. In partic-
ular we assume that the size of G1 is 256 bits, the size of GT is 3072 bits and the
size of Zp is upper-bounded by 256 bits. We also use the range R = [L,H) =
[347184000, 599644800) as in [CCS08]. Also, clearly, the new protocol (as is the
CCS protocol) for R is exactly as efficient as protocol for range [0, H ′], where H ′ =
H − L− 1. That is, H ′ = 252460799.

Additive Combinatorics and Discrete Logarithm Based Range Protocols 13

103 104 105 106 107 108

50

100

150

200

[ccs08]

Range [0, H]

E
le

m
en

ts
of

Z p
Se

nt

1

Fig. 2. Relative Efficiency of the New Protocol vs. [CCS08]. The number of group elements
are computed under the assumption that replen(GT) ≈ 12 ∗ replen(G1) ≈ replen(Zp). The
complexity of our new protocol depends more sensitively on the exact value of H; therefore the
red shaded area represents the convex hull of the values for our new protocol. The vertical gaps
in the curve for [CCS08] are a result of the ratio 12 used above.

The values of NIComccsand, IComccsand, NIComNew and NIComNew for a few differ-
ent choices of u and ` are shown in the next two tables. Note that the optimal choice of
u depends on how many times the range proof is going to be reused: the larger is the
number w of reuses, the larger should be u, and for w reuses, one should choose a value
of u for which NIComNew(u, `) + (w − 1)IComNew(u, `) is minimal.

The values of NIComccsand and IComccsand for some chosen values of u, ` are given
below. (Here we only use the AND composition. As mentioned above, the OR compo-
sition is sometimes more efficient but only under certain restrictions.) The numbers in
Tbl. 1 show that the CCS protocol is less efficient than claimed but still more efficient
than the previous range proofs.

u ` NIComccsand NIComccsand Comments
48 5 12 544 38 400 Minimal NIComccsand + [1, 2] · IComccsand

57 5 14 848 38 400 Same parameters as in [CCS08]
633 4 162 304 23 552 Minimal NIComccsand + 10000 · IComccsand, IComccsand

Table 1. Communication of the CCS protocol with some chosen values of u (and implicitly
chosen optimal `

Communication of New for some concrete choices of u and ` is given in Tbl. 2.
Recall that we need to show that (u − 1)(σ + 1) − 1 ∈ [0, (u − 1)(H ′ + 1)] =
[0, 252460800(u − 1)]. We have calculated ` according to the point where the recur-
sions of Thm. 1 end, and we note that sometimes its value differs from the predicted
value blogu((u− 1)(H + 1))c.

14 Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat

u ` NIComNew(u, `) IComNew(u, `) Comments
25 6 6 656 27 648 Minimal NIComNew + IComNew

48 5 12 544 23 808 Minimal NIComNew + IComNew

57 4 14 848 23 808 Same parameters as in [CCS08]
632 4 162 048 16 128 Minimal NIComNew + 10000 · IComNew, IComNew

Table 2. Communication of New with some chosen values of u (and implicitly chosen optimal `

6 Conclusions

We showed that for any H and 1 < u < H , the interval [0, H] is equal to a sum∑
Gi ∗ [0, u − 1] + [0, H ′], where 0 ≤ H ′ < H , and both u and ` are “small” in

terms of H . We gave efficient (closed form) algorithms for computing the coefficients
Gi. This result may be interesting by itself in the context of additive combinatorics. We
then used this decomposition to show how to derive efficient range proofs for arbitrary
intervals [0, H]. Compared to the previous work [CCS08], we thus avoided the use of
AND composition of Σ-protocols. In addition, (1) we showed also that an earlier result
from [LAN02] (that only considered the case u = 2) is correct, though it was left
unproven in [LAN02], and (2) we pointed out that the range proof from [CCS08] is (in
most of the cases) less efficient than claimed there.

References

[BB04] Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer-
Verlag.

[BG92] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Ernest F.
Brickell, editor, CRYPTO ’92, volume 740 of Lecture Notes in Computer Science,
pages 390–420, Santa Barbara, California, USA, August 16–20, 1992. Springer-Verlag,
1993.

[Bla97] Kelly Black. Classroom note: Putting constraints in optimization for first-year calculus
students. SIAM Rev., 39(2):310–312, 1997.

[Bou00] Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In
Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 431–444, Bruges, Belgium, 14–18 May 2000. Springer-Verlag.

[CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient Protocols for Set Mem-
bership and Range Proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350
of Lecture Notes in Computer Science, pages 234–252, Melbourne, Australia, Decem-
ber 7–11, 2008. Springer-Verlag.

[CDM00] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient Zero-Knowledge
Proofs of Knowledge Without Intractability Assumptions. In Hideki Imai and Yuliang
Zheng, editors, PKC 2000, volume 1751 of Lecture Notes in Computer Science, pages
354–373, Melbourne, Victoria, Australia, 18–20 January 2000. Springer-Verlag.

[Che06] Jung Hee Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 1–11, St. Petersburg, Russia, May 28–June 1, 2006. Springer-Verlag.

Additive Combinatorics and Discrete Logarithm Based Range Protocols 15

[CS97] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for Large
Groups. In Burton S. Kaliski, Jr., editor, CRYPTO ’97, volume 1294 of Lecture
Notes in Computer Science, pages 410–424, Santa Barbara, USA, 17–21 August 1997.
Springer-Verlag.

[DJ01] Ivan Damgård and Mads Jurik. A Generalisation, A Simplification And Some Appli-
cations of Paillier’s Probabilistic Public-Key System. In Kwangjo Kim, editor, PKC
2001, volume 1992 of Lecture Notes in Computer Science, pages 119–136, Cheju Is-
land, Korea, February 13–15, 2001. Springer-Verlag.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short
Proofs and Keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of Lecture Notes
in Computer Science, pages 416–431, Les Diablerets, Switzerland, January 23–26,
2005. Springer-Verlag.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptogra-
phers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without
Threshold Trust. In Matt Blaze, editor, Financial Cryptography — Sixth International
Conference, volume 2357 of Lecture Notes in Computer Science, pages 87–101, South-
hampton Beach, Bermuda, March 11–14, 2002. Springer-Verlag.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In Chi Sung Laih, editor, ASIACRYPT 2003, volume 2894 of Lecture Notes in
Computer Science, pages 398–415, Taipei, Taiwan, November 30–December 4, 2003.
Springer-Verlag.

[TV06] Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2006.

