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Abstract. Asymmetric pairings e : G1 ×G2 → GT for which an efficiently-computable
isomorphism ψ : G2 → G1 is known are called Type 2 pairings; if such an isomorphism
ψ is not known then e is called a Type 3 pairing. Many cryptographic protocols in the
asymmetric setting rely on the existence of ψ for their security reduction while some use
it in the protocol itself. For these reasons, it is believed that some of these protocols
cannot be implemented with Type 3 pairings, while for some the security reductions
either cannot be transformed to the Type 3 setting or else require a stronger complexity
assumption. Contrary to these widely held beliefs, we argue that Type 2 pairings are
merely inefficient implementations of Type 3 pairings, and appear to offer no benefit for
protocols based on asymmetric pairings from the point of view of functionality, security,
and performance.

1. Introduction

Pairing-based cryptography, though proposed only at the turn of the century, has wit-
nessed a tremendous growth. The successful application of pairings in the design of novel
cryptographic protocols [28, 33, 9] and their potential use as a principal building block for
many others fuelled this growth. The main thrust of research efforts in this area has been,
and still is, in the development of new protocols. Simultaneously, substantial research has
been carried out to find suitable pairings [32, 4] and efficient pairing algorithms [27, 30].

For three groups G1, G2, GT of the same (prime) order, a pairing is a function e :
G1 × G2 → GT that is bilinear, non-degenerate, and efficiently computable. If G1 = G2

then the pairing is symmetric and following [24] we call it a Type 1 pairing. The pairing is
asymmetric when G1 6= G2. In the asymmetric setting, if there is an efficiently-computable
isomorphism ψ : G2 → G1 then e is called a Type 2 pairing. If no efficiently-computable
isomorphism is known from G2 to G1 (or from G1 to G2) then we call it Type 3. Known
examples of such pairings are the Weil and Tate pairings over suitable elliptic curve groups
G1 and G2, and their modifications such as the ate pairing [27] and the R-ate pairing [30].1

Since Type 1 pairings are quite restricted in terms of the choice of curves and are significantly
slower than their asymmetric counterparts at higher security levels [26], they will not be
considered in the remainder of this paper.

Current research [24] suggests that Type 3 is a better choice than Type 2 in terms of the
size of elements in G2, the cost of performing group operations in G2, the cost of member-
ship testing in G2, the feasibility of hashing into G2, and the cost of the pairing operation.
However, these performance advantages do not immediately make Type 3 pairings an obvi-
ous choice for protocols described in the asymmetric setting. Cryptographic protocols are

Date: September 27, 2009.
1Cryptographically suitable pairings can also be defined from hyperelliptic curves and, more generally,

from abelian varieties [23]. Since elliptic curve pairings are believed to offer superior performance, this paper
will only be concerned with pairings derived from elliptic curves.
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designed to realize some concrete functionality in a secure way. The question of security is
intrinsic to that of functionality for such protocols. The question of efficiency enters only
after issues of functionality and security have been settled. In the context of pairing-based
protocols in the asymmetric setting, Type 3 can be considered to be a better choice only
if it is possible to argue that whatever is achievable in terms of functionality and security
in Type 2 can also be achieved in Type 3, and moreover if the overall performance of the
Type 3 version of the protocol is at least as good (if not better) than its Type 2 counterpart.

Performance apart, the key difference between Type 2 and Type 3 is the existence or oth-
erwise of the map ψ. While there exist some protocols in the asymmetric setting which do
not require ψ to be efficiently computable, there are many others which do – either in the se-
curity proof or in the protocol itself. For example, consider the very first protocol described
in the asymmetric setting – the Boneh-Lynn-Shacham (BLS) short signature scheme [11].
In [11] the authors observed that the efficiently-computable isomorphism ψ : G2 → G1 is
essential for the security of the protocol and can be avoided only at the cost of making a
stronger complexity assumption. The same argument was later echoed by Shacham in his
PhD Thesis [34] which asserts that “the map [ψ] isn’t merely a proof artifact”. These ob-
servations were likely instrumental in causing much of the subsequent work in pairing-based
cryptography to consider the Type 2 setting as the natural choice either when proposing a
new protocol or when modifying a protocol from the symmetric to the asymmetric setting.
While most of these protocols need ψ in the security argument only, some do use it in the
protocol itself. The use of ψ in a protocol might further be construed as evidence that
the map ψ cannot possibly be avoided altogether even if one is prepared to make stronger
complexity assumptions.

Galbraith, Paterson and Smart in their timely work “Pairings for cryptographers” [24]
provided an excellent exposition of what is achievable and what isn’t when a particular
type of pairing is employed. They too comment that for many pairing-based primitives, the
“security proof does not apply if the cryptosystem is implemented using pairings of the third
type” (i.e., Type 3). Since Type 3 offers better performance and flexibility they conclude
that it would be desirable if the protocol designers prove the security of their protocol in
the Type 3 setting.

While Type 3 might allow better performance for some protocols, the map ψ appears
to be necessary for some of the known security reductions to go through. One possible
way to resolve this dichotomy is to use a relativized assumption as introduced by Smart
and Vercauteren [36]. Using such a notion it is assumed that an underlying hard problem
remains hard even when the adversary is given oracle access to ψ. Such an oracle access
allows a security reduction to go through in the Type 3 setting even when one cannot
efficiently compute ψ. Smart and Vercauteren discuss the security of the Boneh-Franklin
identity-based encryption (BF-IBE) scheme and the BLS signature scheme under this kind of
relativized assumption. Their approach was further pursued by Chen, Cheng and Smart [18]
to prove the security of some identity-based key agreement protocols in the Type 3 setting.

In [16] Chatterjee et al. took a closer look at the security and efficiency aspects of two
signature schemes and two aggregate signature schemes when implemented with Barreto-
Naehrig (BN) elliptic curves [4]. One of the contributions of that work is to establish that
there is no security (or performance) benefit to be gained by using a Type 2 pairing instead
of Type 3 for the particular schemes under consideration. For example, compared to Type 2,
the BLS signature scheme in Type 3 does not depend on a stronger complexity assumption
as was stated in [11], nor is it necessary to use a relativized assumption as suggested in
[36]. This motivated us to further investigate the exact role played by ψ in pairing-based
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protocols and in their security arguments. The current work takes the findings of [16] as its
starting point and can be seen as a sequel of it in a broader canvas.

Specifically, we find it relevant to raise the following questions. Can any cryptographic
protocol originally described in the Type 2 setting be transformed to the Type 3 setting?
What about the security of the transformed protocol – is it equivalent to the original one?
Is there any performance benefit to be accrued by working in the Type 3 setting after such
a transformation?

Our study indicates that given any protocol, Protocol-2, described using a Type-2 pair-
ing, and a security proof for Protocol-2 with respect to some problem P-2, there is a natural
transformation of Protocol-2 to a Protocol-3 that uses a Type-3 pairing, a natural trans-
formation of P-2 to P-3, and a natural transformation of the security proof to one for
Protocol-3 with respect to P-3. Moreover, Protocol-3 is at least as efficient as Protocol-2,
and P-3 is equally as hard as P-2 (for appropriately chosen parameters). In other words,
ψ does not play any cryptographically significant role and hence there is no reason to use
Protocol-2 instead of Protocol-3.

The remainder of the paper is organized as follows. In §2, we compare the performance of
Type 2 and Type 3 pairings derived from elliptic curves having even embedding degree. The
complexity assumptions in the asymmetric setting are reviewed in §3 and we demonstrate
that for each complexity assumption in Type 2, there is a natural counterpart in Type 3
such that the two problems are equivalent when parameters are chosen in an appropriate
way. §4 is devoted to existing protocols in the asymmetric setting. We show how some
known protocols in the Type 2 setting can be transformed into Type 3 without affecting
the functionality or security, and moreover it is sometimes possible to obtain better per-
formance. These observations are extended in §5 where we provide general guidelines on
how to transform a given protocol as well as its security argument from Type 2 to Type 3.
Finally, we conclude in §6 with some open problems which we think will shed further light
on the role of ψ in the context of cryptographic protocols in the asymmetric setting.

2. Asymmetric Pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic curve
defined over Fq. Let n be a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the
embedding degree) be the smallest positive integer such that n | qk − 1. We will assume
that k > 1, whence E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group of E. We will

further assume that n3 ∤ #E(Fqk ). Let GT be the order-n subgroup of F∗
qk . The (full) Tate

pairing is a non-degenerate bilinear function ê : E[n] × E[n] → GT and can be defined as
follows:

(1) ê(P,Q) =

(

fn,P (Q+R)

fn,P (R)

)(qk−1)/n

,

where R ∈ E(Fqk) with R 6∈ {∞, P,−Q,P − Q}, and where the Miller function fn,P is a
function whose only zeros and poles in E are a zero of order n at P and a pole of order n at
∞. For cryptographic applications, one generally restricts the domain of ê to a product of
two order-n subgroups G1 and G2 of E[n]. The first group G1 is taken to be E(Fq)[n], and
any other order-n subgroup can be selected for the second group G2. Then the definition

of ê simplifies to ê(P,Q) = (fn,P (Q))(q
k−1)/n for all P ∈ G1 and Q ∈ G2 [3]. Moreover, one

assumes k to be even because then the ‘denominator elimination’ [3] speedup is applicable
for the Type 3 pairings defined next.
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2.1. Type 3 pairings. Following [24], we denote by D the CM discriminant of E and set

(2) e =







gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

and d = k/e. For example, BN curves [4] have k = 12, e = 6 and d = 2, whereas MNT

curves [32] have k = 6, e = 2 and d = 3. Now, E has a unique degree-e twist Ẽ defined over

Fqd such that n | #Ẽ(Fqd) [27]. Let P̃2 ∈ Ẽ(Fqd) be a point of order n, and let G̃2 = 〈P̃2〉.

Then there is a monomorphism φ : G̃2 → E(Fqk) such that P2 = φ(P̃2) 6∈ G1. The group
G2 = 〈P2〉 is the Trace-0 subgroup of E[n], so named because it consists of all points

P ∈ E[n] for which Tr(P ) =
∑k−1
i=0 π

i(P ) = ∞, where π denotes the q-th power Frobenius.

The monomorphism φ can be defined so that φ : G̃2 → G2 can be efficiently computed in
both directions; therefore we can identify G̃2 and G2, and consequently G2 can be viewed as
having coordinates in Fqd (instead of in the larger field Fqk). The restriction of ê to G1×G2

gives a pairing tn : G1 × G2 → GT that is of the Type 3 variety because no efficiently-
computable isomorphism is known from G2 to G1. Several Type 3 pairings that are faster
to evaluate have been discovered. Among these are the ate pairing an : G1 × G2 → GT

[27] and the R-ate pairing Rn : G1 × G2 → GT [30]. In particular, the R-ate pairing with
BN curves is the fastest pairing presently known for the 128-bit security level. Like the
ate pairing, it has the property that there is a fixed integer N (with n ∤ N) such that
Rn(P,Q) = ê(Q,P )N for all P ∈ G1, Q ∈ G2.

In the remainder of the paper we will consider the R-ate pairing and denote it by e3.

2.2. Type 2 pairings. If P ′
2 ∈ E[n] with P ′

2 6∈ G1 and P ′
2 6∈ G2, then G′

2 = 〈P ′
2〉 is an

order-n subgroup of E(Fqk) with G′
2 6= G1 and G′

2 6= G2. Bilinear pairings e : G1×G′
2 → GT

are of the Type 2 variety because the map Tr is an efficiently-computable isomorphism from
G′

2 to G1. These pairings have the property that hashing onto G′
2 is not feasible (other than

by multiplying P ′
2 by a randomly selected integer).

Consider now the Type 2 pairing e2 : G1 × G′
2 → GT defined by e2(P,Q) = ê(Q,P )2N .

Notice that this choice of pairing is without much loss of generality since in any cryptographic
application of the pairing it makes no difference if the pairing is replaced by its (2N)-th
power. As first shown in [29], the computation of e2 is easily reduced to the task of computing
the R-ate pairing.

Lemma 1 ([29]). Let P ∈ G1 and Q ∈ G′
2. Then e2(P,Q) = e3(P, Q̂), where Q̂ = Q−πf(Q)

and f = k/2.

Proof. First note that Q̂ 6= ∞ since Q 6∈ E(Fqf ). Moreover, Tr(Q̂) = Tr(Q) − Tr(πf (Q)) =

∞, and hence Q̂ ∈ G2. Finally,

e2(P,Q) = ê(Q,P )2N

= ê(2Q,P )N

= ê(Q+ Q̂+ πf (Q), P )N

= ê(Q̂, P )N · ê(Q+ πf (Q), P )N

= e3(P, Q̂),

since Q+ πf (Q) ∈ E(Fqf ) whence ê(Q+ πf (Q), P ) = 1 [22, Lemma IX.8]. �
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2.3. Comparing the performance of Type 2 and Type 3 pairings. Since points in
G′

2 have coordinates in Fqk whereas points in G2 have coordinates in Fqd , it would appear
that the ratio of the bitlengths of points in G′

2 and G2 is k/d. Similarly, the ratio of the
costs of addition in G′

2 and G2 can be expected to be k2/d2 bit operations (using naive
methods for extension field arithmetic). These ratios are given in Table 3 of [24]; see also
Table 5 of [18]. However, as observed in [16], points in G′

2 have a shorter representation
which we describe next. We emphasize that this representation can be used for all order-n
subgroups G′

2 of E[n] different from G1 and G2.
Let P ′

2 be an arbitrary point from E[n] \ (G1 ∪ G2), and set G′
2 = 〈P ′

2〉. Define P1 =
1
kTr(P ′

2) so that the map

(3) ψ : G′
2 → G1, Q 7→

1

k
Tr(Q)

is an efficiently-computable isomorphism with ψ(P ′
2) = P1. Finally, set P2 = c−1(P ′

2 − P1)
for an arbitrary integer c ∈ Z∗

n. Then P2 ∈ G2 and the map

(4) ρ : G′
2 → G2, Q 7→ Q− ψ(Q)

is an efficiently-computable isomorphism with ρ(P ′
2) = cP2.

Now, given a point Q ∈ G′
2, one can efficiently determine the unique points Q1 ∈ G1

and Q2 ∈ G2 such that Q = Q1 + Q2; namely, Q1 = ψ(Q) and Q2 = ρ(Q) = Q − Q1.
Writing D(Q) = (ψ(Q), ρ(Q)), and letting H′

2 ⊆ G1 × G2 denote the range of D, we
have an efficiently-computable isomorphism D : G′

2 → H′
2 whose inverse is also efficiently

computable. Hence, without loss of generality, points Q ∈ G′
2 can be represented by a

pair of points (Q1, Q2) with Q1 ∈ G1 and Q2 ∈ G2. Note that arithmetic in G′
2 with this

representation is component-wise. Thus the ratio of the bitlengths of points in G′
2 and G2

is in fact (d+ 1)/d, while the ratio of the costs of addition in G′
2 and G2 is (d2 + 1)/d2.

Table 2 of [16] lists the costs of performing basic operations in G1, G2 and G′
2 for a

particular BN curve. The table confirms the expectation that basic operations in G′
2 are

only marginally more expensive than the operations in G2. One exception is that testing
membership in G′

2 is several times more expensive than membership testing in G2 since the
former requires two pairing operations.

In summary, we have shown that while the basic operations in the Type 2 group G′
2

are indeed more expensive than in the Type 3 group G2, the differences are not as high as
previously reported. The same is true for the bitlengths of points in G′

2 versus G2. The
remainder of the paper will compare the security and efficiency of protocols that use the
pairings e2 or e3. For consistency with the literature on pairing-based protocols, we will use
multiplicative notation for elements of G1, G2 and G′

2. In particular, the generators of these
groups will be denoted by g1, g2 and g′2, and the identity element will be denoted by 1.

3. Hardness Assumptions in the Asymmetric Setting

Security of a pairing-based protocol is based on some hard problem in the respective
pairing groups. The standard practice is to argue the security of the protocol in terms of a
reduction from the hard problem to breaking the protocol in an appropriate security model.
Suppose that we have a protocol, Protocol-2, described in the Type 2 setting whose security
is based on some hard problem P-2 in that setting. Also suppose that we have some means
of obtaining a version of Protocol-2, say Protocol-3, in the Type 3 setting which achieves
the same functionality as Protocol-2. Simultaneously, we would like the assurance that
Protocol-3 is at least as secure as Protocol-2. One way to achieve this is to define a version
of problem P-2, say P-3 in the Type 3 setting, and then argue the security of Protocol-3
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based on P-3. Now, if P-3 can be shown to be at least as hard as P-2, then the assurance
provided by the reduction for Protocol-3 is at least as high as the assurance provided by the
reduction for Protocol-2. If P-2 and P-3 are computationally equivalent, then the assurances
provided by the reductions are the same. Hence the security of Protocol-2 and Protocol-3
can be compared if one can find a way to define P-3 so that it is at least as hard as P-2.

For example, as shown in [16], security of BLS in the Type 2 setting is based on the
co-DHP problem (compute hz given h ∈ G1 and g′2

z
∈ G′

2), whereas that of BLS in the
Type 3 setting is based on the co-DHP* problem (compute hz given h, gz1 ∈ G1 and gz2 ∈ G2).
Furthermore, these two problems are equivalent if the generators g1, g2, g

′
2 are appropriately

chosen. We next show equivalence of the Type 2 and Type 3 variants of the bilinear Diffie-
Hellman (BDH) problem.

3.1. The bilinear Diffie-Hellman assumption. The bilinear Diffie-Hellman problem was
originally defined in the symmetric setting [9] and later extended to the asymmetric set-
ting [25, 14]. It is possible to define several versions of the problem in the asymmetric setting
– see e.g., [36, 13] and the note on variants of BDH below. We consider the following version
of the problem in Type 2 used by Galindo in [25] and which is the same as the problem
discussed in [14] when specialized to Type 2.

Definition 1 (Bilinear Diffie-Hellman Problem in Type 2 (BDH-2)). Given gα1 ∈ G1 and

g′2
β
, g′2

γ
∈ G′

2 for α, β, γ ∈R Zn, the BDH-2 problem is to compute the Type 2 pairing
value e2(g1, g

′
2)
αβγ . The BDH-2 assumption asserts that the BDH-2 problem is hard. The

decisional version DBDH-2 of the problem is to decide, given (gα1 , g
′
2
β
, g′2

γ
, Z) ∈ G1 × G′

2 ×
G′

2 × GT , whether or not Z = e2(g1, g
′
2)
αβγ . The DBDH-2 assumption is that the DBDH-2

problem is hard.

We define a version of the BDH-2 problem in Type 3 as follows.

Definition 2 (Bilinear Diffie-Hellman Problem in Type 3 (BDH-3)). Given gα1 , g
β
1 , g

γ
1 ∈ G1

and gβ2 , g
γ
2 ∈ G2 for α, β, γ ∈R Zn, the BDH-3 problem is to compute the Type 3 pairing

value e3(g1, g2)
αβγ . The decisional version DBDH-3 of the problem is defined analogously

to DBDH-2. The BDH-3 (resp. DBDH-3) assumption 3 asserts that the BDH-3 (resp.
DBDH-3) problem is hard.

It might appear at first sight that the BDH-3 assumption is stronger than BDH-2 as two

extra elements, namely gβ1 , g
γ
1 ∈ G1, are provided as input to the BDH-3 problem. However,

note that one can easily compute these values in BDH-2 by virtue of ψ. Hence we consider
these two problems as natural counterparts and in fact they are equivalent as we show in
Lemma 3. Essentially the same argument also applies for the decisional versions DBDH-2
and DBDH-3.

Lemma 2. Let g1, g
′
2, g2 be generators of G1,G

′
2,G2 with g1 = ψ(g′2) and g2 = (ρ(g′2))

1/c

for some c ∈ Z∗
n. Then e2(g1, g

′
2) = e3(g1, g2)

2c.

Proof. First note that g′2 = g1g
c
2. Hence, by Lemma 1, we have

e2(g1, g
′
2) = e3

(

g1,
g′2

πf (g′2)

)

= e3

(

g1,
g1g

c
2

g1(πf (g2))c

)

.

The result then follows if we can establish that πf (g2) = g−1
2 .

Note that Tr(π(g2)) = π(Tr(g2)) = π(1) = 1, whence π(g2) ∈ G2. Hence we can write

π(g2) = gr2 for some r ∈ [1, n− 1]. Since πk(g2) = g2, we have gr
k

2 = g2 and hence

(5) g
(rf−1)(rf+1)
2 = 1.
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Now, n ∤ rf − 1 since πf (g2) 6= g2. Hence (5) implies that gr
f+1

2 = 1, so πf (g2) = g−1
2 . �

Lemma 3. Let g1, g
′
2, g2 be generators of G1,G

′
2,G2 with g1 = ψ(g′2) and g2 = (ρ(g′2))

1/c

for some c ∈ Z∗
n. Then BDH-2 is equivalent to BDH-3.

Proof. Given a BDH-2 problem instance (gα1 , g
′
2
β
, g′2

γ
), we apply the function ρ : G′

2 → G2 to

obtain gβ2 = (ρ(g′2
β
))1/c and gγ2 = (ρ(g′2

γ
))1/c and apply ψ : G′

2 → G1 to obtain gβ1 = ψ(g′2
β
)

and gγ1 = ψ(g′2
γ
). The resulting BDH-3 problem instance (gα1 , g

β
1 , g

γ
1 , g

β
2 , g

γ
2 ) is given to

the BDH-3 solver which returns e3(g1, g2)
αβγ from which the solution e2(g1, g

′
2)
αβγ of the

original BDH-2 problem is easily obtained by Lemma 2. This establishes that BDH-2 ≤
BDH-3.

Conversely, given a BDH-3 problem instance (gα1 , g
β
1 , g

γ
1 , g

β
2 , g

γ
2 ), we compute g′2

β
=

gβ1 (gβ2 )c and g′2
γ = gγ1 (gγ2 )c. The resulting BDH-2 problem instance (gα1 , g

′
2
β , g′2

γ) is given to
the BDH-2 solver which returns e2(g1, g

′
2)
αβγ . Thereafter, the solution e3(g1, g2)

αβγ of the
original BDH-3 problem is easily obtained showing that BDH-3 ≤ BDH-2. �

The formal equivalence between (D)BDH-2 and (D)BDH-3 is established under the con-
dition that the parameter c is known. No such equivalence is known if c is unknown, nor
is there any indication that one problem is weaker than the other. Note that BDH-2 can
be solved either by solving the Diffie-Hellman problem (DHP) in G1 or G′

2 or by solving
co-DHP. Similarly, BDH-3 can be solved either by solving DHP in G1 or G2 or by solving
co-DHP*. Currently there is no evidence to suggest that DHP is any easier in G2 than in
G′

2, or, for that matter, co-DHP* is any easier than co-DHP (see §2.3 of [16] for a discussion
on the relationship between co-DHP and co-DHP*).

Variants of BDH. As already noted, it is possible to formulate different versions of BDH in
the asymmetric setting. Some of these variants have been used to argue the security of some
existing protocols. For example, Smart and Vercauteren [36] discuss several such variants
(including the relativized versions) and their relationships and show that the security of
different versions of BF-IBE relies on different versions of the BDH problem. Boyen provides
a general statement of the problem (called BDH’) in [13] for all known pairing types, the
earliest mention of which can be traced back to the work of Boyen, Mei and Waters [14].2

In Type 2 the problem is to compute e2(g1, g
′
2)
αβγ given gα1 , g

β
1 ∈ G1 and g′2

β
, g′2

γ
∈ G′

2;
we call this problem BDH-2b. Clearly BDH-2b and BDH-2 are equivalent. The analogous
problem in Type 3, which we call BDH-3b, is obtained by replacing elements of G′

2 by
elements of G2 and the task is to compute e3(g1, g2)

αβγ . However, it is not known whether
BDH-3b is equivalent to BDH-3 (or for that matter to BDH-2 or BDH-2b). Still another
variant in Type 3, which we call BDH-3c, is to compute e3(g1, g2)

αβγ given gα1 ∈ G1 and

gβ2 , g
γ
2 ∈ G2. BDH-3c is attributed to Galbraith in [13]. It is easy to see that BDH-3 ≤

BDH-3b ≤ BDH-3c, but currently we do not know anything in the reverse direction.

3.2. Other assumptions. A large array of complexity assumptions have been proposed so
far in pairing groups; see [13] for a listing of such assumptions. Most of these assumptions
come in two flavors – computational and decisional as in the case of BDH. Many of these
assumptions were initially introduced in the symmetric setting to be generalized later in
the asymmetric setting. As we have noted, some authors [36, 18, 17] also used the notion

2The statement allows uniform description of the problem across different settings. However, that does
not imply that the problem remains equivalent in different settings. In other words, though the “statement
complexity” remains the same the computational complexity may be quite different!
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of relativized assumption in the Type 3 setting – assuming that the problem remains hard
even when the adversary is given oracle access to ψ.

Their apparent diversity notwithstanding, the complexity assumptions in pairing groups
can be broadly classified into two categories.

(i) Assumptions where the problem does not explicitly involve any element from GT –
examples are the co-DHP, Linear, Strong DH, Hidden SDH, and Poly-SDH assump-
tions.

(ii) Assumptions where the problem involves a pairing computation and hence element of
GT – examples are BDH, Bilinear DH Inversion (BDHI), and Bilinear DH Exponent
(BDHE) assumptions.

Given a hardness assumption in the Type 2 setting, our primary concern here is to
formulate its natural counterpart in Type 3. Note that if one is given some element g′2

z
∈ G′

2,
then one can easily obtain gz1 = ψ(g′2

z
) without knowing z. So if the input to problem P-2

includes g′2
z

then that implicitly implies that gz1 ∈ G1 is also part of the input. However,
that is not the case for Type 3 as ψ is not known in that setting. Hence, as in the case of
BDH and co-DHP, we insist that both gz1 and gz2 be included in the input to P-3 in order to
make it the natural counterpart of P-2 in the Type 3 setting. For an assumption in Category
(i) above, we can then use the argument of Lemma 2 of [16] (which shows the equivalence
of co-DHP and co-DHP*) to show that P-3 is equivalent to P-2, while the argument put
forth in Lemma 3 above for the case of BDH can be readily adapted to show equivalence
between P-2 and P-3 for an assumption in Category (ii).

Remark 1. For some cryptographic protocols in Type 3, it might be possible to drop one
or more elements of G1 from the problem statement of P-3 without affecting the reduction.
For example, BF-IBE-3 can be proven secure under BDH-3b (see §4.1). However, we do
not know any protocol that can be proven secure under the seemingly weaker assumption

BDH-3c. Note that the input to BDH-3c includes only gα1 ∈ G1 along with gβ2 , g
γ
2 ∈ G2,

whereas all known security reductions based on BDH in the asymmetric setting require at

least one of gβ1 or gγ1 as part of the problem input. We note that the situation is similar for
the “weaker statement” of the Linear assumption in Type 3 as stated in [13] (also attributed
to Galbraith). In fact an interesting open question is to what extent one can prune P-3 and
still use it in the security reduction of a natural cryptographic problem.

4. Protocols in the Asymmetric Setting

We revisit some existing pairing-based protocols in the asymmetric setting. Some of
these protocols employ the isomorphism ψ in the protocol itself and some others only in the
security reduction. The purpose of this investigation is twofold – to determine the exact
role played by ψ in the functionality and security of these protocols and then to investigate
whether it is possible to avoid the use of ψ altogether. We begin in §4.1 with the most famous
protocol in the pairing-based setting – the identity-based encryption scheme of Boneh and
Franklin [9]. This protocol was originally described in the symmetric setting but can also be
implemented in the asymmetric setting [25, 36]. In contrast to previous findings, our study
indicates that Type 3 is indeed a better choice than Type 2 for BF-IBE taking into account
functionality, security and efficiency. We then show in §4.2 and §4.3 that this observation
extends to some other known protocols where ψ is used either in the protocol and/or in the
security reduction.

4.1. Boneh-Franklin IBE. For simplicity we focus on the basic version of the protocol
(called BasicIdent in [9]). The same arguments apply to the full version. While it is known
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that the protocol can be implemented in both Type 2 and Type 3 (and it is possible to
better optimize the protocol in Type 3), an earlier work [36] gives the impression that the
security in the Type 3 setting might depend on a stronger complexity assumption.

BF-IBE-2. The master secret of the key generation center (KGC) is x ∈R Zn and the
corresponding public key is gpub = g′2

x
∈ G′

2. Given a user identity id ∈ {0, 1}∗, the public
key of the user is hid = H1(id) ∈ G1, where H1 : {0, 1}∗ → G1 is a publicly computable hash
function. The corresponding private key is did = hxid. To encrypt a message M ∈ {0, 1}n a
sender chooses r ∈R Zn and sends 〈g′2

r
,M ⊕ H2(e2(hid, gpub)

r)〉 where H2 : GT → {0, 1}n

is another publicly computable hash function. The receiver computes H2(e2(did, g
′
2
r
)) and

then xors it with the second component of the ciphertext to obtain M . The decryption
process succeeds since e2(did, g

′
2
r
) = e2(h

x
id, g

′
2)
r = e2(hid, gpub)

r. The security of BF-IBE-2
is argued by a reduction from BDH-2 to the breaking of BF-IBE-2.

BF-IBE-3. The above scheme can be directly implemented in Type 3 – the KGC’s public
key will be gpub = gx2 ∈ G2 and similarly the ephemeral key in the ciphertext will be
gr2 ∈ G2. The security of BF-IBE-3 is argued by a reduction from BDH-3b to the breaking
of BF-IBE-3.

A variant of BF-IBE in Type 3 can be obtained by hashing the identities into G2. We call
this variant BF-IBE-3b which gives a smaller ciphertext overhead. Such an optimization is
not possible for BF-IBE-2 as we do not know how to hash into G′

2.
3

BF-IBE-3b. The master public key of the key generation center is now gpub = gx1 ∈ G1

while H1 : {0, 1}∗ → G2 and so both hid = H1(id) and did are in G2. To encrypt a message
M ∈ {0, 1}n a sender chooses rR ∈ Zn and sends 〈gr1 ,M ⊕H2(e(gpub, hid)

r)〉. The receiver
computes H2(e(g

r
1, did)) and then xors it with the second component of the ciphertext to

obtain M . The security of BF-IBE-3b is argued by a reduction from BDH-3b.

Note that the ciphertext overhead in BF-IBE-3b is one element of G1 (namely gr1), while
that in BF-IBE-2 is one element of G′

2. Furthermore, exponentiation in G1 is faster than
exponentiation in G′

2, and hence BF-IBE-3b is a better choice as far as performance is
concerned.

Smart and Vercauteren [36] observed that the security of BF-IBE-3 can be reduced to
either BDH-3c with oracle access to ψ or to BDH-3b without such oracle access. In the first
case one does not know how to simulate the oracle and in the second case they consider
the problem (which they call coBDH1,2) to be “somewhat unnatural”. Based on these
observations they conclude that one should use a pairing with an efficiently-computable
isomorphism, i.e., Type 2 for BF-IBE. However, as we have already noted, BDH-3b is at
least as hard as BDH-2 and so Type 3 is overall a better choice for BF-IBE.

4.2. Protocols employing ψ. Some protocols in the asymmetric setting employ ψ in the
protocol itself. For example consider the verifiably encrypted signature scheme and ring
signature scheme of Boneh, Gentry, Lynn and Shacham (BGLS) [10] and the group signature
scheme with verifier-local revocation of Boneh and Shacham [12]. Here we describe the
ring signature scheme and its security argument in the original Type 2 setting and then
show how one can easily modify both to allow working in the Type 3 setting. A similar
argument applies to the verifiably encrypted signature scheme. As observed in [36], the

3Galindo in [25] assumed the existence of such a hash function. However, it is easy to either modify
the protocol in [25] which then corresponds to BF-IBE-2 above or to change the security assumption to
BDH-3b.
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Boneh-Shacham group signature scheme cannot be implemented in either Type 2 or Type 3
(cf. footnote 4).

A ring signature on a message is constructed using the public keys of a set of users U
and the private key of a single user u ∈ U . The verification process gives the assurance
that the signature was produced using one of the private keys of U but the verifier should
not be able to determine which particular u ∈ U signed the message. This is the so-called
signer-ambiguity property of a ring signature.

BGLS-2 ring signature scheme. Let e2 : G1×G′
2 → GT be a Type 2 pairing and ψ : G′

2 → G1

be an efficiently-computable isomorphism with ψ(g′2) = g1. The signature scheme employs
a hash function H : {0, 1}∗ → G1.

An individual signer’s private key is an integer x ∈R Zn and her public key is X = (g′2)
x.

Given the public keys X1, . . . , Xℓ of a set U of ℓ users, a message M ∈ {0, 1}∗, and a private
key xs corresponding to one of the users in U whose public key is Xs, the signer chooses
ai ∈R Zn for each i 6= s and computes h = H(M) and σs = (h/ψ(

∏

i6=sX
ai

i ))1/xs . She also

computes σi = gai

1 for each i 6= s. The ring signature onM is σ = 〈σ1, . . . , σℓ〉. Given (M,σ),

the verifier computes h = H(M) and accepts if and only if e2(h, g
′
2) =

∏ℓ
i=1 e2(σi, Xi).

The correctness of the verification algorithm can be easily checked using the bilinear
property. We show this for ℓ = 2 and s = 1. For h = H(M), we have σ1 = (h/ψ(Xa2

2 ))1/x1 =

(h/ga2x2

1 )1/x1 and σ2 = ga2

1 . Thus

e2(σ1, X1)e2(σ2, X2) = e2((hg
−a2x2

1 )1/x1 , g′2
x1)e2(g

a2

1 , g′2
x2) = e2(h, g

′
2).

There are two aspects of security for a ring signature scheme – signer ambiguity and
unforgeability. Using a probabilistic argument it has been shown in [10] that the signer’s
identity is unconditionally protected. Unforgeability is based on the following complexity

assumption: given gab1 and g′2
b

it is hard to compute ga1 . We call it the co-divisible compu-
tational Diffie-Hellman (co-DCDH) assumption – see [2] for the statement of DCDH in the
Diffie-Hellman setting. Here we briefly reproduce the original security argument.

Security argument. For simplicity, we assume ℓ = 2; the argument can be easily extended

to any ℓ > 2. Given gab1 and g′2
b
, the challenger S sets X1 = g′2

b
and X2 = (g′2

b
)x2 for some

x2 ∈R Zn, and gives X1, X2 to the adversary A. On receiving a hash query, S flips a coin
which shows 0 with some probability p and 1 otherwise; S selects r ∈R Zn and returns (gab1 )r

if the outcome of the coin flip is 0, and returns ψ(g′2
b)r in the other case. On receiving a

signing query for a message M , S aborts if the outcome of the coin flip on the hash query

for M was 0. Otherwise, H(M) = ψ(g′2
b
)r where r was chosen by S, and S returns the

signature σ = 〈gr−a2x2

1 , ga2

1 〉 for some a2 ∈R Zn. When A outputs a valid forgery on some
message M , S first checks that the output of the coin flip for the corresponding hash query
on M was 0; otherwise it aborts. Then, H(M) = gabr1 for some r chosen by S and S returns
(σ1σ

x2

2 )1/r as the solution to its own challenge. This completes the argument.

The map ψ is used in the protocol itself when the signer computes ψ(Xai

i ), and also in

the security argument to compute ψ(g′2
b
) when simulating the random oracle H . Both these

uses, however, can be easily avoided as we detail below.

BGLS-3 ring signature scheme. Let e : G1 × G2 → GT be a Type 3 pairing and H :
{0, 1}∗ → G1 a hash function. The private key of an individual signer is x ∈R Zn and her
public key is (W = gx1 , X = gx2 ). A certification authority entrusted with certifying the
public key should verify that W ∈ G1, X ∈ G2, W 6= 1, X 6= 1, and e(g1, X) = e(W, g2).
Note that the public key effectively gives ψ(X) = W though we do not have any means
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to compute ψ when supplied with a random element of G2. Except for this modification
BGLS-3 is identical to BGLS-2. In the signing algorithm, the signer now uses Wi in place of
ψ(Xi). The unforgeability of BGLS-3 can be established under the co-DCDH* assumption
that given gab1 , gb1, g

b
2 it is hard to compute ga1 ; co-DCDH and co-DCDH* are equivalent

under the assumption that the parameter c (cf. Lemma 2) is known. The security argument
for BGLS-2 can be modified in the obvious way by setting gb1 = ψ(gb2). Breaking BGLS-3 is
thus seen to be equivalent to solving co-DCDH∗.

Note that in BGLS-3 the signer only needs the G1 component of the public keys of the
other users in U while the verifier only needs the G2 component of the public keys of users
in U . They can respectively ignore the other component from G2 or G1, thus leading to
decreased communication bandwidth and computational cost than in BGLS-2.

4.3. Protocols where ψ is used in the security argument only. Several authors have
used ψ to argue the security of pairing-based protocols in the asymmetric settings – these
protocols include signature schemes [11, 6, 8], encryption schemes [17], and key agreement
[18].

The case of the BLS signature scheme has already been discussed in detail in [16]. Sev-
eral other signature schemes also use ψ in the security reduction. Some examples are
the short signature scheme of Boneh and Boyen [6], the short group signature scheme of
Boneh, Boyen and Shacham [8], and the anonymous short group signature of Delerablée and
Pointcheval [21]. In a later version [7] Boneh and Boyen modified the security argument of
their short signature scheme in [6] to remove the necessity of ψ and the same argument can
also be used for the short group signature scheme of Boneh, Boyen and Shacham.

While it is known that for some protocols (e.g., BF-IBE or the Boneh-Boyen short sig-
nature scheme) it is possible to give a security reduction without taking recourse to ψ, we
would like to argue in general that it is possible to avoid ψ in the security argument. As
an illustrative example we consider the case of an identity-based key agreement protocol.
However, the argument put forth here is quite general and is applicable to other protocols.

In [18], Chen, Cheng and Smart discuss the security and efficiency issues of several
identity-based key agreement protocols in the context of different types of pairings in a
modification of the Bellare-Rogaway key exchange model [5]. They show that the identity-
based key agreement protocol originally proposed by Smart [35] and later modified by Chen
and Kudla [19] (called SCK-1 and SCK-2 in [18]) and an enhanced version of the protocol
due to McCullagh and Barreto [31, 20] (called e-MB-2 in [18]) can be proven secure in the
asymmetric setting. Both the reductions make use of the map ψ and hence in Type 3 depend
on a relativized assumption, i.e., oracle access to ψ. It should be noted that the protocols
themselves do not require the map ψ.

The security reductions are quite involved (and runs into several pages). However, it is
possible to avoid the map ψ in the security argument by including some extra elements of G1

in the problem instance of the respective complexity assumption for Type 3 in the manner
described in §3. Here we provide a high-level description of how this can be achieved for
the security argument of SCK-1. A similar approach is applicable for SCK-2 and e-MB-2.

Protocol SCK-1 in Type 3. The master secret key of the Key Generation Center (KGC)
is s ∈R Zn and the corresponding master public key is R = gs2. Given an identity string
ID ∈ {0, 1}∗, the KGC obtains the public key as hID = H1(ID), where H1 : {0, 1}∗ → G1

is a publicly computable hash function. The corresponding private key is dID = hsID ∈ G1.
Two parties, A and B with key pairs (hA, dA) and (hB, dB) respectively, run the protocol
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as follows.

A→ B : EA = gx2 , where x ∈R Zn

B → A : EB = gy2 , where y ∈R Zn.

A (resp. B) checks whether EB (resp. EA) belongs to G2. If the check is successful A
computes K = e3(h

x
B, R) · e3(dA, EB) and (EB)x = gxy2 while B computes K = e3(h

y
A, R) ·

e3(dB , EA) and (EA)y = gxy2 . The session key is computed as SK = H2(A,B,EA, EB , g
xy
2 ,K),

where H2 is another publicly computable hash function.
The authors consider the random oracle model. Session key security of SCK-1 in the

Type 3 setting is established assuming the hardness of BDH-3c with oracle access to ψ, and
key forward secrecy under the computational Diffie-Hellman (CDH) assumption in G2 with
oracle access to ψ. We do not elaborate on the security arguments – interested readers can
consult Theorems 1 and 2 in [18]. Instead, we only indicate how the map ψ can be avoided
in the security arguments.

In Theorem 1, the simulator invokes the oracle ψ to compute either ψ(gβ2 ) or ψ(gβr2 ) where

gβ2 is part of the BDH-3c problem instance and r ∈R Zn is chosen by the simulator. The
simulator can easily compute the corresponding values without the oracle if it is provided

with gβ1 ∈ G1 as part of the problem instance, which means the security now depends on
BDH-3b. This is perfectly acceptable, because the security of SCK-1 in Type 2 depends
upon BDH-2 and we know that BDH-3b is at least as hard as BDH-2.

In Theorem 2, given ga2 and gb2 and oracle access to ψ the simulator interacts with the
adversary to compute gab2 . The oracle is used in a pairing computation which is either of the
form e3(ψ(X), Y ) or e3(ψ(Y ), X) where (X,Y ) are the protocol messages exchanged in a key
agreement session. At least one of these messages, say X ∈ G2, is chosen by the simulator
and set to either gar2 or gbr2 , where r ∈R Zn is chosen by the simulator. So the simulator can
compute ψ(X) without oracle access to ψ if she is also provided with ga1 and gb1 as part of the
problem instance. This together with the fact that e3(ψ(Y ), X) = e3(ψ(X), Y ) now allows
the simulation to go through. Note that the alternative formulation of the CDH problem
in G2 used here is equivalent to the CDH problem in G′

2 if the generators are appropriately
chosen.

5. Transforming a Protocol from Type 2 to Type 3

As case studies we have discussed in the last section how some known protocols in the
Type 2 setting can be transformed to the Type 3 setting without affecting the functionality
or security. We would like to generalize these observations now to propose some guidelines on
how to transform an arbitrary Type-2 protocol, Protocol-2, to a Type-3 protocol, Protocol-
3, where Protocol-3 is at least as secure as Protocol-2 and it is possible to achieve a better
performance.

Before delving into the guidelines let’s consider a (hypothetical) situation where such a
transformation is not possible. Suppose that a protocol in the Type 2 setting involves a
hash function H : {0, 1}∗ → G′

2 and the following steps – given a public string str ∈ {0, 1}∗,
first obtain X = H(str) ∈ G′

2 and then compute ψ(X) ∈ G1. This protocol cannot be
transformed into Type 3 because given a randomX ∈ G2 one does not know how to compute
ψ(X) ∈ G1. However, the protocol cannot be implemented in Type 2 either, because we do
not know how to hash into G′

2 in the first place.4 Hence in the following we assume that

4 For example, the Boneh-Shacham group signature scheme with verifier-local revocation [12] requires
precisely these two steps and hence cannot be implemented in either Type 2 or Type 3.
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Protocol-2 does not require hashing into G′
2 and argue that it is always possible to naturally

transform it into Protocol-3.
Suppose we have a protocol, Protocol-2, and its security reduction with respect to some

hard problem P-2. Let P-3 be the natural counterpart of P-2 in Type 3 as described in §3.
Our aim is to obtain the corresponding Protocol-3 with an analogous security reduction with
respect to P-3. Protocol-2 will typically include elements from G1,G

′
2 and GT and so also

the corresponding security reduction. (In the security reduction, the challenger essentially
simulates the protocol environment for an attacker based on the given instance of the hard
problem.) Note that the elements of G1 and GT will not be affected in any way when we
convert Protocol-2 and its security reduction to Type 3. So our primary concern will be
with the elements of G′

2.
Let g1, g

′
2, g2 be the generators of G1, G′

2 and G2 respectively, where g1 = ψ(g′2) and
g2 = ρ(g′2) (for simplicity we assume c = 1). Recall from §2.2 that for any elliptic curve
with even embedding degree, the task of computing the Type 2 pairing e2 : G1 × G′

2 → GT

can be easily reduced to the task of computing the Type 3 pairing e3 : G1 × G2 → GT .
Recall also from §2.3 that every element X ∈ G′

2 can be represented by the pair (X1, X2) =
(ψ(X), ρ(X)) ∈ G1 × G2. Given Protocol-2 and its reductionist security argument with
respect to P-2, let’s first consider the following ‘preliminary’ transformation. Represent
each X ∈ G′

2 appearing in Protocol-2 by (X1, X2) ∈ G1 ×G2. Also make similar changes in
the problem instance of P-2 and the security reduction.

It is easy to see that any protocol in the Type 2 setting as well as its security argument
can be rewritten in this way where elements of G′

2 are represented by elements of G1×G2. By
Lemma 2, computing a Type 2 pairing e2(·, X) is equivalent to computing the Type 3 pairing
value e3(·, X2), and hence it is possible to employ e3 directly instead of e2 in the protocol.
It is now possible to argue the security of this “modified” protocol with respect to P-3.
This new representation allows a better performance than the conventional representation
of a protocol in the Type 2 setting without affecting the functionality and security of the
protocol.

However, just because the protocol is now described in terms of elements of G1, G2

and GT does not necessarily mean that we are no longer in the Type 2 setting. What
really changed now is the representation of elements of G′

2, i.e., each X ∈ G′
2 involved in

Protocol-2 will now be written as (ψ(X), ρ(X)) ∈ G1 × G2. But for some protocols (and
their security argument) it might be sufficient to work only with the G2 component of X
and the G1 component is actually redundant. In that case one can drop those redundant
elements of G1 from the protocol description without affecting functionality and security.
The modified protocol will now be in the Type 3 setting and (in most cases) allows a still
better performance.

We illustrate this process of transformation with an example – the SCK-1 protocol of
§4.3. We start with the protocol in Type 2 with new representation of G′

2. Then for each
X = (X1, X2) ∈ G′

2 in the protocol description, check whether X1 = ψ(X) ∈ G1 is necessary

for the protocol or the security argument; if not then X1 is dropped. At the end we get the
corresponding protocol description in Type 3.

Protocol SCK-1 in Type 2. The KGC has a master secret key s ∈R Zn and a corresponding
master public key R = g′2

s
= (gs1, g

s
2) = (R1, R2) ∈ G1 × G2. Given an identity string

ID ∈ {0, 1}∗, the corresponding public and private keys are obtained as in §4.3, i.e., hID =
H1(ID) ∈ G1 and dID = hsID ∈ G1. Two parties, A and B with key pairs (hA, dA) and
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(hB, dB) respectively, run the protocol as follows.

A→ B : X = g′2
x

= (gx1 , g
x
2 ) = (X1, X2), where x ∈R Zn

B → A : Y = g′2
y

= (gy1 , g
y
2 ) = (Y1, Y2), where y ∈R Zn.

On receiving Y , A first checks whether Y actually belongs to G′
2. If the check is successful she

computes K = e2(h
x
B, R) · e2(dA, Y ) and then the session key SK = H2(A,B,X, Y, Y

x,K).
B follows an analogous procedure to compute the same session key.

In our new representation of G′
2, testing whether Y belongs to G′

2 amounts to deciding
whether Y1 belongs to G1 and Y2 belongs to G2 and then computing a product of pairings.
Similarly, computing Y x ∈ G′

2 amounts to computing Y x1 ∈ G1 and Y x2 ∈ G2. Also note that
e2(·, R) can be easily computed from e3(·, R2) and similarly e2(·, X) and e2(·, Y ). So the new
representation of G′

2 allows a much better performance than the conventional representation.
However, we are still in the Type 2 setting.

Now we consider whether it is possible to drop any of the G1 components R1, X1, Y1 of
the G′

2 elements R,X, Y from the protocol description without affecting the functionality
and security of the protocol. This can be a two step process. First we check whether, for
example, X1 = ψ(X) (and not just X) is explicitly used at any stage in the protocol or
the security argument. If there is no such use we right away discard X1 from the protocol
description. Otherwise in the next step we check whether it is still possible to obtain X1

without recourse to ψ. In that case also we drop X1 from the protocol description.
Investigating this way we observe that R1 is not used in the protocol but the simulator

needs it in the security argument. However, in the simulation R1 is provided as part of the
original problem instance so we can drop it from the protocol description. Next consider
the G1 component of the protocol messages, i.e., X1 and Y1. They too do not play any
independent role in the protocol (apart from being a part of the representation of X and Y )
while in the security argument one of them (but not both) is explicitly used by the simulator.
So it may appear at first sight that we have to provide X1 and Y1 as part of the protocol
message. However, in a typical simulation of a key-agreement session at least one of the
messages (say X) is chosen by the simulator. As we already argued in §4.3, the simulator
can directly compute X1 based on what she received as part of the problem instance. So
we can drop X1 and Y1 and modify the protocol so that the protocol messages are elements
of G2 only (i.e., X2, Y2). Note that in the modified protocol A derives the session key as
SK = H2(A,B,X2, Y2, Y

x
2 ,K) (and analogously for B).

This modified protocol achieves a better performance both in terms of communication
bandwidth and computational cost because the users are no longer burdened with the un-
necessary G1 components of the messages and the master public key. Note that once these
G1 components are dropped there is no way to obtain the conventional representation of
the corresponding elements of G′

2 or to apply ψ to them and we are actually in the Type 3
setting.

The transformation discussed above gives us the essential cue for the actual transforma-
tion from Protocol-2 to Protocol-3. Namely, for each X ∈ G′

2 involved in a particular step
of Protocol-2 or its security argument, the corresponding step in Protocol-3 or its security
argument requires the computation of X2 ∈ G2, and also X1 ∈ G1 if ψ(X) is necessary for
the protocol or its security argument.5 Note that in Protocol-3 and its security argument,
X2 can be obtained in the same way as X in the case of Protocol-2. However, we must have

5We consider ψ(X) to be necessary if either ψ(X) or some ψ(Y ) is required in the protocol or the security
argument where Y ∈ G′

2
is derived from X.
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some means to obtain X1 in Type 3 when necessary. The transformation will fail only when
we are unable to do so.

In Protocol-2, X can be part of the static data such as the private key, the public key
or the public parameters, or the “run-time” data, e.g., the signature in a signature scheme,
the ciphertext in an encryption scheme, or the ephemeral key in a key agreement protocol.
Given Protocol-2 and its security reduction, we consider these situations separately for the
conversion.

Private data contains an element X ∈ G′
2. If either the protocol or the security reduction

requires ψ(X) then include both X1 ∈ G1 and X2 ∈ G2 in the private information in
Protocol-3. If neither requires ψ(X) then include only X2.

Public data contains an element X ∈ G′
2. X can be part of the public key of a user when

we are in the traditional public-key setting or it can be part of the public parameters of
the KGC when we are in the identity-based setting. Whatever be the case, the entity who
generated X must also know its discrete log with respect to a known base in G′

2 (since
hashing into G′

2 is not feasible). There are two possibilities depending upon whether the
protocol uses ψ(X) or not.

(1) Protocol-2 employs ψ(X): Replace X = g′2
x

in the public data of Protocol-2 with
X1 = gx1 ∈ G1 and X2 = gx2 ∈ G2 in Protocol-3. This is always doable because the
entity who generated X must know x. In the traditional PKI setting a certification
authority entrusted with certifying the public key can easily verify whether they are
properly generated or not, and in the identity-based setting they are assumed to be
properly generated by the trusted KGC. If in Protocol-2 a user Alice requires only
ψ(X) (resp. X) then she will be concerned with only X1 (resp. X2) in Protocol-3.
This is the case for the BGLS-3 ring signature scheme which, as we have already
noted, performs better than the BGLS-2 ring signature because now the ring signer
is concerned only with the G1 component of the public key of the other signers in
the group while the verifier is concerned with the G2 components only. They can
respectively ignore the G2 and G1 components of the public key leading to decreased
communication bandwidth.

(2) ψ(X) is necessary for the security argument of Protocol-2: Replace X = g′2
x

in
Protocol-2 with X2 = gx2 in Protocol-3, as was done in the case of BF-IBE-3 in
§4.1, and BLS-3 and Waters-3a in [16]. This allows smaller public keys and hence
(sometimes) less computation in Protocol-3. In some protocols it might still be
necessary to include X1 = gx1 in the public key. For example, X1 may be required
for the reduction to go through as in the BGLS-3 aggregate signature scheme (see
[16]). Note that even if X1 were included in the public key or the public parameters,
it would never be required in the actual protocol run. So the users will effectively
ignore X1 in their computation, which in turn will lead to better optimization in
terms of communication bandwidth and perhaps even computational cost compared
to Protocol-2.

Protocol message contains elements of G′
2. Suppose that in Protocol-2 Bob receives a mes-

sage from Alice containing some Y ∈ G′
2. Alice may compute Y either solely based on her

secret information or in combination with some public data, such as Bob’s public key or the
system-wide public parameters. If Bob requires ψ(Y ) then in Protocol-3 Alice should send
both Y1 ∈ G1 and Y2 ∈ G2 to Bob. This is doable but, to the best of our knowledge, is not
required by any existing protocol. If Bob’s computation in Protocol-2 depends only on Y
then it is sufficient in Protocol-3 to send only Y2. However, for the known security argument
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of some protocols to go through, it might be necessary to send Y1 also. For example, in
the security argument of BF-IBE-3 it is sufficient to send the G2 component only of the
ephemeral key, while for the security argument of the Waters-3b signature scheme (see [16])
we need both the G1 and G2 components for one of the signature components. In the former
case, Protocol-3 will be more optimized than Protocol-2 while it will be at least as efficient
as Protocol-2 in the latter.

Now consider the security reduction for Protocol-3 where the challenger essentially simu-
lates the protocol environment for an adversary based on the problem instance in the given
security model. Note that Protocol-3 is derived based on both Protocol-2 and its security
reduction. Once we have obtained Protocol-3 in this manner, it is relatively straightforward
to modify the security argument of Protocol-2 to get an analogous security argument for
Protocol-3.

Like the protocol, our only concern here is with those elements X ∈ G′
2 for which the

challenger needs to compute ψ(X) in the simulation. Note that if X is part of the problem
instance of P-2 then by definition both X1 and X2 must be part of the problem instance of
P-3. So we only need to consider the following two situations in the simulation in Type 2
and show how one can obtain X1 in each case in Type 3.

(1) X is part of the message sent by the adversary: This can only happen if there is a
similar step in Protocol-2 and has been taken care of when we transformed it into
Protocol-3. Namely the corresponding message in Protocol-3 includes both X1 and
X2 and hence the adversary must send both to the challenger.

(2) The challenger generates X : The challenger cannot generate this by hashing into
G′

2. So the challenger can generate X either solely based on its own random coin
tosses, or along with that randomness it may also depend on the adversary’s input
or the problem instance P-2. Whatever be the case, the challenger will have enough
information to generate both X1 and X2 in the security reduction of Protocol-3.

6. Concluding Remarks

Many pairing-based protocols in the asymmetric setting rely on the existence of an
efficiently-computable isomorphism from G2 to G1, i.e., the Type 2 setting. Some ear-
lier works in pairing-based cryptography gave the impression that such an isomorphism is
necessary for the functionality or the security of the protocols (or both). In contrast, we
have demonstrated that relying on such an isomorphism is more of an artifact of initial
research in this area rather than an actual necessity as far as the functionality and security
of the protocols are concerned. Moreover, restricting a protocol to such a setting in most
cases has a negative impact on performance.

In particular, we have provided evidence in support of the following assertions:

(1) For any hard problem P-2 in the Type 2 setting, there is a natural counterpart P-3
in the Type 3 setting which is equally hard.

(2) Any protocol Protocol-2 and its security argument based on P-2 in the Type 2 set-
ting can be naturally converted to Protocol-3 with an analogous security argument
based on P-3 in the Type 3 setting.

(3) Protocol-3 is at least as efficient as Protocol-2 and in most cases outperforms
Protocol-2. In some situations one can further optimize Protocol-3, for example,
by hashing into G2 instead of G1 as is the case with BF-IBE-3b. Such optimiza-
tions are not possible for Protocol-2 as it is not known how to hash into G′

2.
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Setting aside the question of performance, our study indicates that there is no major
difference of cryptographic significance when a protocol originally described in the Type 2
setting is transformed into Type 3. This leads us to posit the question of whether there exists
a cryptographic protocol which necessarily has to be restricted to Type 2 for implementation
or security reasons. We conclude with the following remarks and question.

(1) Some authors have used the extended Diffie-Hellman assumption (XDH) to argue
the security of their protocols [8, 15, 21]. The XDH assumption requires that the
decision Diffie-Hellman problem (DDH) is hard in G1. If it is also required that
DDH is hard in G2 then the corresponding assumption is called symmetric XDH
(SXDH) [1]. Note that in the Type 2 setting, DDH is easy in G′

2 because of ψ. Hence,
the protocols described in [1, 37] where security is based on the SXDH assumption
cannot be instantiated securely in Type 2 (but can be implemented in Type 3 since
DDH is believed to be hard in G2). On the other hand, if some Protocol-2 or its
security argument requires DDH to be hard in G1 but easy in G′

2, then it may
appear at first glance that Protocol-2 cannot be converted to the Type 3 setting.
However, we expect that the conversion would be possible by adding the appropriate
elements from G1 to the protocol or its security argument in the same manner as
was used earlier to avoid ψ. Note that we are not aware of the existence of any such
protocols.

(2) In Type 3 it is possible to make a minimalist complexity assumption such as BDH-
3c as proposed by Galbraith [13]. Such minimalist assumptions do not have any
counterpart in Type 2. The question is whether there exists a protocol whose
security is based on such an assumption.

(3) Some protocols, such as the Boneh-Shacham group signature scheme with verifier-
local revocation [12] and the SYL, RYY and BMP identity-based key agreement
protocols (see [18]), that involve hashing into G2 followed by an application of ψ
on the resulting hash values cannot be implemented in either Type 2 or Type 3.
However, they can be implemented using Type 1 pairings.
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