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ABSTRACT
As RFID applications are entering our daily life, many new
security and privacy challenges arise. However, current re-
search in RFID security focuses mainly on simple authenti-
cation and privacy-preserving identification. In this paper,
we discuss the possibility of widening the scope of RFID
security and privacy by introducing a new application sce-
nario. The suggested application consists of computing statis-
tics on private properties of individuals stored in RFID tags.
The main requirement is to compute global statistics while
preserving the privacy of individual readings. PPS assures
the privacy of properties stored in each tag through the com-
bination of homomorphic encryption and aggregation at the
readers. Re-encryption is used to prevent tracking of users.
The readers scan tags and forward the aggregate of their
encrypted readings to the back-end server. The back-end
server then decrypts the aggregates it receives and updates
the global statistics accordingly. PPS is provably privacy-
preserving. Moreover, tags can be very simple since they are
not required to perform any kind of computation, but only
to store data.

1. INTRODUCTION
In Radio Frequency IDentification (RFID), tags are trans-

ponders that reply to reader queries and send their identi-
fiers. Being cost effective, tags are deployed on a large scale
and typically used for identification of goods or even individ-
uals. However, such a deployment comes with new security
and privacy threats such as impersonation on the one hand,
and tracking of tags and therewith individuals on the other
hand. The cost effectiveness also implies strong limitation
of computational capabilities of the tags. Current passive
RFID tags can hardly afford for security mechanisms re-
lying on complex cryptographic operations to counter the
security and privacy threats.

Revisiting security problems such as authentication and
privacy preserving identification in the highly constrained
setting of RFID tags has given rise to a number of research
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activities, focusing on lightweight authentication, identifi-
cation schemes, and formal security and privacy proper-
ties thereof, e.g., see Ateniese et al. [1], Bringer and Cha-
banne [6], Bringer et al. [7], Dimitrou [13], Pietro and Molva
[21], Tsudik [25], Vaudenay [26], Weis et al. [27].

In an attempt to explore new security and privacy prob-
lems with RFID tags, we introduce a new application sce-
nario, raising new requirements beyond the classical authen-
tication and identification issues. The target scenario is the
collection of statistics over private properties of a large pop-
ulation of individuals. Due to RFID users’ demands and due
to regulatory matters, the main challenge in this scenario is
to preserve the privacy of these individuals with respect to
their properties.

Addressing this scenario with RFID tags, each tag would
contain the attributes of its holder in an encrypted form.
The ultimate goal would be to allow a centralized party,
such as a server, to compute global statistics. For exam-
ple, the distribution over the properties held by a group of
individuals might be of interest, but without disclosing the
attributes of individuals to any party involved in the collec-
tion of these statistics.

Hence, we suggest a scheme called PPS (“Privacy-Pre-
serving Statistics”) that assures privacy of individual at-
tributes in this scenario. In PPS, intermediate parties called
readers collect encrypted properties from tags, compute ag-
gregates over encrypted readings without decrypting them,
and periodically forward the result of such aggregation op-
erations to the back-end server. The server is then able to
compute a global aggregate in cleartext based on the aggre-
gates of the encrypted readings transmitted by readers.

The main challenge in this scenario is to allow the readers
to perform the aggregation over encrypted attribute values
from which the server can derive global statistics in clear-
text. We address this problem through homomorphic en-
cryption. Another threat to the privacy of the tag holders
is the tracing of tags by readers. In order to circumvent
this threat, we use re-encryption mechanisms. However, the
scarcity of resources in tags prohibits the assignment of com-
plex operations to tags. Therefore, the readers will perform
re-encryption of the ciphertexts stored on the tags. Thus,
tags do not have to perform any cryptographic operations.

The major contributions of PPS are:

• contrary to related work on privacy preserving tag
identification, such as Ateniese et al. [1], PPS provides
an RFID-based mechanism to collect statistics over a
set of properties in a privacy-preserving manner.
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• formal proofs of privacy and unlinkability against ex-
ternal eavesdroppers, malicious readers, and curious
back-end servers.

• minimal hardware requirements resulting in cheap tags:
PPS does not require tags to do any cryptographic
computation, tags are passive, i.e., battery-less and
only require data storage functions. Contrary to re-
lated work, PPS’ storage-only requirements enable im-
plementations on today’s available EPC class1 Gen2
tags.

• data integrity: tampering with data stored on tags can
be detected.

The sequel of this paper is organized as follows. In Section 2,
we present a typical scenario for our application, we state
the problem, and we derive the requirements for the solu-
tion. In Section 3, we present the building blocks of PPS.
In Section 4, we define the notion of privacy and unlinka-
bility in the context of our application, and we present the
adversary model. Section 5 gives the formal analysis of the
protocol. Finally, related work is presented in Section 6.

2. PROBLEM STATEMENT
In this section, we introduce a typical scenario for PPS,

and we present a system model and the requirements PPS
should fulfill.

2.1 Application scenario
The solution we propose targets applications involving a

central organization that wants to collect statistics on a
given population. This population will be equipped with
RFID tags that will be read by readers managed by inter-
mediary entities that are independent from the central or-
ganization.

We can imagine a scenario where the ministry of culture
wants to come up with statistics about the attendance of
cultural events in order to properly determine its funding
policy. Basically, the cultural venues as well as the ministry
of culture are interested in knowing which kind of exhibitions
attract more people and which part of the population are
more interested in their activity.

To that effect, the ministry will deploy readers at the en-
try of venues where cultural events take place such as cine-
mas, theaters, museums, etc. In this scenario, each potential
attendee of cultural events is equipped with an RFID tag.
The tag could be embedded into a museum membership card
that allow the holder of the tag to get discounts on museum’s
events.

There could be other scenarios where a shopping mall
wants to compare the activity of the shops it hosts or which
type of clients it attracts the most throughout the year. The
shopping mall will deploy readers at the cashiers of the shops
it hosts. The visitors of the shopping mall are provided with
RFID tags that could be embedded in the mall’s loyalty
cards that allows the visitors of the mall to get discounts on
the mall services such as: parking, restaurants, etc.

To give an incentive to the visitors of museums or shop-
ping malls to carry their tags, we embed RFID tags into
membership cards/loyalty cards that allow tag owners to
have discounts or privileged access to the events organized
by museums or shopping malls.

Such an incentive requires binding the RFID tag to the
identity of the tag owner to ensure that the RFID tag is
being used by its owner when scanned. Cheap RFID tags
that are the target technology of PPS cannot afford cryp-
tographic authentication. Therefore, we use an out of band
authentication such as a printed picture on the membership
card or the loyalty card to verify the identity of the tag
holder at payment for instance.

Associating the RFID tag only with the picture of its
owner assures that the holder of the tag will be the actual
owner while preserving his anonymity with respect to the
museum or the mall he is visiting.

The RFID tag encodes the private properties of the tag
holder, for example gender, age, profession etc. When the
tag holder enters the venue of a cultural event for instance,
the encrypted properties on the tag will be scanned by a
reader. Each reader will aggregate the encrypted data it
collects during a period such as a day. At the end of each
period, each reader will forward the aggregate data to a
server managed by the ministry of culture. The server will
then update the overall statistics based on the aggregate
values sent by all the readers.

The key requirement in these scenarios is preserving pri-
vacy: a solution should allow the server to compute global
statistics over private properties of visitors while assuring
the privacy of individual properties with respect to the read-
ers and the server.

2.2 System model
PPS is the solution we propose to collect privacy preserv-

ing statistics. A typical application scenario for PPS in-
volves several parties as follows:

• Issuer I: the issuer initializes each tag by writing into
the tag’s memory an encrypted representation of the
properties of the tag holder.

• Tags {Ti}: each tag stores an encrypted representa-
tion of the properties of the tag holder. The encrypted
representation of p properties in each tag consists of
{Pi, 1 ≤ i ≤ p} where Pi is set to “true” if the tag
holder possesses the corresponding property.

• Readers {Ri}: readers are in charge of collecting
properties stored on tags. They read the data stored
on each tag and forward the result of these readings to
the back-end server.

• A back-end server S: S processes the aggregate data
received from readers and derives some global statistics
such as distribution of attendance rate with respect to
event types and population characteristics.

The issuer and the back-end server can be managed by in-
dependent parties. For instance, in a typical scenario, social
security could act as an issuer, whereas the back-end server
would be managed by the ministry of culture.

2.3 Requirements: Privacy & Unlinkability
The basic requirement for S is to count the number of

tag holders satisfying each property Pi for all the proper-
ties. The main concern is to gather statistics such as counts
about each property Pi, while preserving the privacy of tag
holders. Neither readers nor the back-end server should be
able to disclose the values of a tag holder’s properties. To

2



Back-end 
server

∑→∑
ii

E ωω )(

∑ )(
i

E ω

T1 T2 Tγ

Reader

…

)(
2

ωE)(
1

ωE )( γωE

Figure 1: Aggregation in an RFID-based system

ensure privacy in our scheme, we propose a solution that
combines encryption and aggregation. In that solution, the
list ωi of the tag holder properties are encrypted as E(ωi)
and stored on the tag. Through subsequent readings of tags
in its range, the reader computes the aggregate of the cipher-
texts received from the tags,

P
E(ωi), and periodically for-

wards the encrypted aggregate value to the back-end server
as shown in Fig. 1.

The back-end server S is the only entity that can decrypt
ciphertexts. To enforce privacy against S, readers must ag-
gregate the ciphertexts received from the tags in their range
before forwarding the encrypted data to S. If the readers
forward data without aggregation to the back-end server S,
the latter can always tell which properties the tag holders
satisfy. Nonetheless, forwarding each individual reading to
the server would strongly overload typically embedded, low
capacity readers.

Even though the privacy of properties is assured through
encryption, unlinkability of tags, as defined by Chatmon
et al. [10], has to be assured, too. An adversary should
never be able to link two responses of the same tag over
different sessions. In order to assure unlinkability, the en-
crypted property values sent by the same tag should be dif-
ferent for each reading. Re-encryption is used to that effect.
In Section 4.2, we formally define the notion of unlinkability.

Note that, at first glance, PPS appears to be similar to
voting, cf., Benaloh and Tuinstra [3], Sako and Kilian [23].
Instead of counting the number of tag holders satisfying a
property Pi , we count the number of voters voted for a given
candidate. However, the RFID settings considered in this
paper are very constrained regarding a secure voting appli-
cation. In secure voting, the voters are required to perform
additional complex operations such as public key encryption
and zero knowledge proofs to ensure not only privacy and
correctness of the votes, but also other sophisticated prop-
erties such as receipt freeness, and universal verifiability, cf.,
Baudron et al. [2], Benaloh and Tuinstra [3], Cramer et al.
[12], Sako and Kilian [23]. Clearly, these operations cannot
be performed by read/write only tags.

3. PPS
Plain encryption of the properties of the tag holders en-

sures privacy of the data sent to readers. However, encryp-
tion prevents aggregation. Conversely, if readers decrypt

the data sent by the tag at every reading, the privacy of the
tag holder against readers would not be assured. Hence, we
suggest to use a homomorphic encryption scheme in order
to allow the aggregation of encrypted data without decryp-
tion. Homomorphic encryption allows the back-end server
to derive the value

P
ωi in cleartext from the aggregate

of encrypted values
P
E(ωi). Furthermore, aggregation is

used as privacy enforcement mechanism against the back-
end server in order to prevent the back-end server from de-
riving individual properties of a tag holder.

Even though the privacy of properties is met through ho-
momorphic encryption and aggregation of encrypted read-
ings, these two mechanisms do not ensure the unlinkability
of tags. Unlinkability of tags is required in order to pre-
vent the readers or eavesdropping adversaries from tracking
tags over different sessions. A basic solution for unlinkabil-
ity can be provided through re-encryption, cf., Golle et al.
[17]. Re-encryption cannot be performed by tags, as they
are completely passive, therefore, it will be performed by
readers. The readers on the other hand, should not be able
to decrypt the ciphertexts they receive, otherwise, they can
always learn the properties a tag holder satisfies. To tackle
this problem, we use an asymmetric encryption that is ho-
momorphic.

As a well studied homomorphic asymmetric encryption
scheme, Elgamal [15] meets the requirements of our appli-
cation, and we use it as the underlying technique. In addi-
tion to its homomorphism, Elgamal supports re-encryption.
The target scenario for our application calls for an addi-
tive homomorphism. However, Elgamal is multiplicatively
homomorphic and thus falls short of suiting the target appli-
cation. To cope with this limitation, the last component of
the solution is a special property encoding technique based
on Gödel encoding [16].

3.1 Elgamal Cryptosystem

• Setup: the system outputs two large prime P and Q
such that Q divides (P − 1) and |P | = τ . Here, τ
represents the security parameter of Elgamal. Let G
be a subgroup of Z∗P of order Q, and g be a generator
of G. All arithmetic operations will be performed mod
P .

• Key generation: the secret key sk is x ∈ ZQ. The
public key pk is y = gx.

• Encryption: to encrypt a message m ∈ G, one ran-
domly selects r ∈ ZQ and computes (u, v) = (gr, yrm).
The ciphertext is c = (u, v).

• Decryption: to decrypt a ciphertext c = (u, v), one
computes m = v

ux .

Elgamal encryption is multiplicatively homomorphic:

∀m1,m2 ∈ G, E(m1) · E(m2) = E(m1 ·m2)

To adapt Elgamal to our scheme, we encode the properties
using Gödel encoding before encryption as follows.

3.2 Gödel Property Encoding
In order to collect statistics on p properties Pi, we as-

sign to each property a prime number pi. Without loss of
generality the first prime number p1 will correspond to the
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property P1, the second prime number p2 will correspond to
P2 and so on. Both, properties Pi and primes pi are publicly
known. If the holder of a tag satisfies two properties Pi, Pj
this will be represented by {pipj}. More formally:

• Setup: let Pi, 1 ≤ i ≤ p, be the p properties the back-
end server is interested in, and pi are p primes. Each
property Pi will be mapped to prime number pi.

• Encoding: let m be the vector (ν1, ..., νp) such that
νi = 1, if the tag T fulfills the property Pi, otherwise
νi = 0. The encoding of the properties of the tag T is
defined as Ω(m) =

Qp
i=1 p

νi
i .

3.3 Protocol
In PPS, the tags are initialized once by the issuer. When-

ever a tag T is read by a reader R, the reader aggregates the
ciphertext c = (u, v) it receives from T , then it re-encrypts
the ciphertext c and writes the new ciphertext into T . Pe-
riodically, readers in the system forward their aggregates to
the back-end server. The latter decrypts and decodes the
aggregates and computes the statistics it is interested in.

We assume that the system comprises, for ease of under-
standing, a single reader, and it has γ tags in its range.

• System setup: let G be a group in which the discrete
logarithm is intractable, g a generator of G, Q the order
of G and Pi the p properties of the system. The output
of the setup operation is a pair of keys (pk, sk): (y =
gx, x), x ∈ ZQ, and p primes pi such that the property
Pi corresponds to prime number pi. Elgamal secret
key sk = x is known by both the issuer and the back-
end server. Generator g, the public key pk = y and
the p primes are made public.

• Tag initialization: the input comprises the vector
m = (ν1, ..., νp), the public key y, the p primes pi,
and a random number r ∈ ZQ. The issuer of the tag
encodes the vector m following the Gödel encoding and
computes ω = Ω(m). The output of the initialization
operation is a ciphertext (u, v) = (gr, yrω).

• Aggregation: the input is a set of γ ciphertexts (ui, vi),
1 ≤ i ≤ γ, received by the reader from the tags in its
range. The reader outputs the aggregate, a new cipher-
text (U, V ) = (

Qγ
i=1 ui,

Qγ
i=1 vi), cf., Fig. 2.
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Figure 2: Readers aggregate ciphertexts from different tags

• Re-encryption: the input of re-encryption is a ci-
phertext (u, v) = (gr, yrω) received by the reader from
a tag T , g the generator of G, the public key y, and a
random number r′ ∈ ZQ. The output is a new cipher-

text (u′, v′) = (g(r+r′), y(r+r′)ω), cf., Fig. 3.
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Figure 3: Readers re-encrypt ciphertexts received from tags

On a side note, the value y(r+r′)ω = 0 mod P is con-
sidered as “forbidden”. When a reader reads a tag
that stores 0, it discards the tag. This means that the
reader does not aggregate or re-encrypt the tag, and
the reader considers the tag as corrupted. Writing 0
into a tag is a malicious writing attack, see Section 4.3.

• Decryption and decoding: the input is a ciphertext
(U, V ) = (

Qγ
i=1 ui,

Qγ
i=1 vi) received from the reader,

the secret key x, and the p primes pi. The back-end
server computes W = V

Ux and factorizes W . This
factorization is easily feasible, as the back-end server
knows the primes pi. Given that this factorization is
unique, the back-end server gets Ω−1(W ) = (ν1, ..., νp).
The respective νi corresponds to the number of tags
satisfying the property Pi that have been read by the
reader.

To get the total number of tags satisfying a property Pi in
the case of multiple readers, the back-end server sums the
νi for all the readers in the system.

3.3.1 Aggregation under restrictions:
In order to ensure the correctness of statistics obtained

by the back-end server, we cannot allow the readers to ag-
gregate an infinite number of ciphertexts. They are only
allowed to aggregate up to a threshold γ of ciphertexts ci =
E(ωi) at a time, such that

Qγ
i=1 ωi < P .

3.3.2 Evaluation:
Typically, |P | = 1024 bits and |Q| = 160 bits.
Given p properties Pi and p prime numbers pi, the thresh-

old γ could be defined as |P |
log2(

Qp
i=1 pi)

. If a reader has σ tags

in its range, it will aggregate ciphertexts by bunches of size
at most γ. Instead of forwarding one aggregate, the reader
forwards bσ

γ
c+ 1 aggregates to the back-end server.

Furthermore, if the readers send to the back-end server
the number of tags they read, we can reduce the number of
prime numbers used in the Gödel encoding to represent the
different properties, cf. Table 1. This applies in the case
we have complementary properties, for instance, (P1, P2) =
(male, female). Given the total number of tags read and the
number of tag holders satisfying the property P1, we deduce
the number of tag holders satisfying the property P2. Using
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Table 1: Potential properties and their encoding on
museum cards

Properties Gödel encoding
Male 2
under 25 3
Student 5
Employee 7
European union citizen 11
Disabled 13
Aggregate size γ 68

this fact leads to a more efficient property encoding and thus
a larger aggregate size γ which improves the privacy of PPS
against the back-end server as discussed in Section 5.2.2.

4. ADVERSARY & PRIVACY MODELS
In this section, we introduce the adversary model and de-

fine the notions of privacy and unlinkability for the proposed
application.

4.1 Adversary model
PPS protects against two different categories of adver-

saries,

1. ADV1, external adversaries and malicious readers,

2. ADV2, a malicious back-end server.

ADV1 does not collude with ADV2.

4.1.1 ADV1:
Borrowing notions from Cramer and Damg̊ard [11], we as-

sume a rushing, active adversary who has full control over
all communication between tags and readers. He can not
only eavesdrop messages, but also intercept, modify, and
even initiate communication. For example, the adversary
might impersonate a tag and communicate with the reader
or read-out tags. He might even replace a tag’s content by
re-writing it. However, re-writing tags has some special im-
plications on PPS’s security and privacy, so we discuss this
issue separately in Section 4.3. Finally, the adversary might
compromise readers, read-out and tamper with their mem-
ory and program – consequently, malicious readers might
not behave in protocol compliant manner.

4.1.2 ADV2:
The back-end server might be under the control of the

adversary, e.g., as assumed if the organization collecting the
statistics is generally not trusted. The back-end server is not
assumed to have full control over the network. The back-end
server is passive in the sense that it only receives aggregates
from readers. It cannot initiate communication with tags or
readers.

We conjecture that there might be scenarios where back-
end servers have full control over all communication and
might collude with compromised readers, e.g., envisioning
an extreme scenario whereby the ministry of culture would
also control the readers of all the cultural venues. We clearly
state that PPS will not provide privacy in such scenarios.

As motivated in the introduction, the adversary’s primary
goal in any case, i.e., ADV1 or ADV2, is to gain some knowl-
edge about sensitive information, in this case individual tag

holders’ properties as formalized in the following privacy
models.

4.2 Privacy Models
PPS borrows privacy models for storage-only tags as orig-

inally proposed by Ateniese et al. [1] and Juels et al. [20].
At the end of the protocol execution, PPS is said to be

privacy-preserving, if ADV1 and ADV2

• cannot decide which properties a given tag (and there-
with tag holders) satisfies.

• cannot link tags (and therewith tag holders) to previ-
ous protocol executions.

We use experiment-based definitions to formalize RFID
privacy, cf., Juels and Weis [19]. In conclusion, the adver-
sary should not have higher chance in breaking privacy or
unlinkability than simple guessing. The following oracle-like
constructions exist:
Opick is an oracle that randomly selects some tags from

all the n tags in the system.
Osemantic represents the oracle of semantic security of El-

gamal: Osemantic is provided with two plaintexts ω0, ω1, ran-
domly chooses b ∈ {0, 1}, encrypts ωb using Elgamal and
public key pk, and returns the resulting ciphertext cb.
Osemantic−re stands for the oracle in semantic security of

Elgamal under re-encryption: Osemantic−re is provided with
two Elgamal ciphertexts c0, c1, randomly chooses b ∈ {0, 1},
re-encrypts cb using public key pk, and returns the resulting
ciphertext c′b.
Ore−encrypt is an Elgamal re-encryption oracle that uses

public key pk and ciphertext c = (u, v) stored on tag T , and
writes a new (re-encrypted) ciphertext c′ = (u′, v′) into T ,
cf., Section 3.3.
Oflip is an oracle that, provided with two tags T0, T1, ran-

domly chooses b ∈ {0, 1} and re-encrypts the ciphertext
stored on Tb using Ore−encrypt. It returns Tb with the re-
encrypted ciphertext.
Oaggregate computes a total of s aggregates Agg1, Agg2,

. . . , Aggs, each time by randomly choosing a set of γ tags,
as follows: Agg1 is computed using tags (T 1

1 , T
2
1 , . . . , T

γ
1 ),

Agg2 is computed using (T 1
2 , T

2
2 , . . . , T

γ
2 ), . . ., Aggs is com-

puted using (T 1
s , T

2
s , . . . , T

γ
s ). The sets of tags are chosen

randomly, but there is at least one tag that is an element
of two different sets, i.e., used in the computation of two
different aggregates. Finally, Oaggregate returns Agg1, Agg2,
. . . , Aggs.

4.2.1 Privacy against ADV1:
An adversary breaks the privacy of PPS, if given the pub-

lic key pk, a tag T , the ciphertext c = (u, v) stored on the
tag T , and a property Pi, he can decide if a tag T satisfies
the property Pi or not.

More formally, for τ the security parameter of Elgamal
and s ∈ N, we define the following privacy experiment:

Experiment Expprivacy
ADV1

[τ, r, s, t]

1. Setup: the issuer initializes n tags with their corre-
sponding ciphertexts using Gödel encoding and Elga-
mal. It publishes the public key pk. It shares its secret
key sk only with the back-end server.

2. Learning: adversary ADV1 is provided with: 1.) a
challenge tag Tchallenge, 2.) using Opick, a total of r−1
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different tags {Ti, 1 ≤ i ≤ r − 1}, 3.) for each tag
Ti, the list of properties Pj that Ti satisfies. Now,
ADV1 is allowed to read from and write into Ti for
a maximum of s times. ADV1 is allowed as well to
read from Tchallenge for a maximum of t times. Yet,
after each read or write access to any of the r tags,
Ore−encrypt re-encrypts the content stored on tags.

3. Challenge: Given the public key pk, the readings’
results, and the ciphertext stored on Tchallenge, ADV1

outputs 1 if he guesses that Tchallenge satisfies Pi, and
0 otherwise. ADV1 succeeds, if his guess is right.

Definition 1. Let τ ∈ N be a security parameter. We
consider as negligible in τ any function µ : N → [0, 1] such
that ∀c > 0, µ(τ) < 1

τc for every sufficiently large τ .

Definition 2. PPS is said to be privacy-preserving with
respect to ADV1:

if for all adversaries of category ADV1,

Pr[Expprivacy
ADV1

[τ, r, s, t] succeeds] ≤ 1

2
+ µ(τ),

such that µ(τ) is a function negligible in τ.

4.2.2 Privacy against ADV2:
Formalizing properties’ privacy with respect to ADV2 is

difficult: as assumed in the adversary model above, ADV2,
i.e., a malicious back-end server, only receives aggregates
from readers. In any case, there is no relation between tags,
and therewith tag holders, and ADV2. In conclusion, ADV2

simply cannot learn anything about properties of tags.
While we do not target a formal proof, privacy against
ADV2 is furthermore discussed and additional reasoning is
given in the according security analysis section 5.1.2.

4.2.3 Unlinkability against ADV1:
The tags targeted in this paper are passive in that they

only features storage capabilities. Hence, tags cannot up-
date the content of their memory themselves after a read and
therefore the content of a tag’s memory does not change be-
tween two protocol executions. In the face of an overwhelm-
ingly powerful adversary who can eavesdrop all communi-
cations between tags and readers, using our scheme tags
would be trivially linkable. However, we conjecture that it
is fair to assume that an adversary in the real world cannot
continuously monitor tags and that there is at least one pro-
tocol execution ,i.e., re-encryption that is “un-observed” by
the adversary. Once a tag T is re-encrypted, the adversary
should not be able to link the previous interactions he has
seen to tag T . In accordance with related work: insubvert-
ible encryption by Ateniese et al. [1], backward security by
Dimitrou [13] and privacy against anonymizers by Sadeghi
et al. [22], we assume that there is at least one protocol ex-
ecution that takes place outside the range of the adversary.

Under this assumption, neither external adversaries nor
readers should be able to link two responses from the same
tag once it is re-encrypted outside their range.

Experiment Expunlinkability
ADV1

[τ, r, s, t]

1. Setup: the issuer initializes n tags with their corre-
sponding ciphertexts using Gödel encoding and Elga-
mal cryptosystem, it publishes its public key pk. It
shares its secret key sk only with the back-end server.

2. Learning: the oracle Opick provides the adversary
ADV1 with r tags in the system that he is allowed
to read from and write into for a maximum of s times.
The tags are re-encrypted after each read byOre−encrypt.

3. Challenge: ADV1 is provided with two challenge tags
T0, T1 that he is allowed to write into and read from
for a maximum of t times and they are re-encrypted
each time by Ore−encrypt.

Then, Oflip is queried with T0 and T1, Oflip provides
ADV1 with a re-encrypted Tb. Given the public key
pk, the results of the readings performed, and the cur-
rent ciphertext stored on the tag Tb, the adversary
ADV1 guesses the value of b ∈ {0, 1}. He succeeds, if
his guess is right.

Definition 3. PPS is said to provide unlinkability with
respect to ADV1:

if for all adversaries of category ADV1,

Pr[Expunlinkability
ADV1

[τ, r, s, t] succeeds] ≤ 1

2
+ µ(τ),

such that µ(τ) is a function negligible in τ.

4.2.4 Unlinkability against ADV2:
A malicious back-end server should not be able to link

aggregates to aggregates it has received before. More pre-
cisely, a malicious back-end server should not tell, whether
a received aggregate involves a tag that was involved in an-
other aggregate received earlier. We illustrate the unlink-
ability against a malicious back-end server (ADV2) by the
following experiment:

Experiment Expunlinkability
ADV2

[γ, s]

1. Setup: the issuer initializes n tags with their corre-
sponding ciphertexts using Gödel encoding and Elga-
mal cryptosystem, it publishes its public key pk. It
shares its secret key sk with the back-end server, i.e.,
ADV2.

2. Learning: Oaggregate provides ADV2 with s aggre-
gates Agg1, . . . , Aggs.

3. Guess: given private key sk and aggregates Agg1,
. . . , Aggs, ADV2 guesses a pair b, b′ ∈ {1, . . . , s} and
therewith Aggb and Aggb′ . ADV2 succeeds, if Aggb
and Aggb′ have been computed by Oaggregate with at
least one tag in both aggregates.

Definition 4. PPS is said to provide unlinkability with
respect to ADV2:

if for all adversaries of category ADV2,

Pr[Expunlinkability
ADV2

[γ, s] succeeds] ≤ 1

s(s− 1)
+ µ(γ),

such that µ(γ) is a function negligible in γ.

Untraceability. Note that in this work, we do not focus
on untraceability, although this is also being considered in
related work. However, the notion of untraceability is weaker
than unlinkability, cf., Chatmon et al. [10]. Thus, as PPS
provides unlinkability, it also provides untraceability.
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4.3 Malicious writing
Tags in our scheme have a writable memory, where the

ciphertext is stored every time it is re-encrypted by readers.
As there is no access control on tags to check the authenticity
of readers, our scheme is vulnerable to “malicious writing”.

We can divide malicious writing attacks into two cate-
gories:

• Writing an invalid ciphertext (“garbage”) into
the tag: this attack can be detected at the back-end
server, as decryption and Gödel decoding will not suc-
ceed. Moreover, if the adversary writes the value 0
into the tag, this will be detected at the next honest
reader to read the tag.

• Writing a valid ciphertext into the tag: a mali-
cious reader could try to alter statistics. The simplest
way to implement such an attack is by copying the con-
tent of a tag into another one (“cloning”). Moreover,
given that Elgamal is malleable and that the adversary
knows the primes, the adversary can generate a set of
valid ciphertexts from a ciphertext he has seen [14].
Since the ciphertext written into the tag is a valid one,
this type of attack cannot directly be detected at de-
cryption, and we will tackle it in the following.

Malicious writing affects the correctness of the results ob-
tained at the back-end server. Given that access control is
not feasible in our read-write only tags, this attack cannot
be prevented. However, we propose the following solution to
detect ciphertexts written by an adversary at the back-end
server.

Instead of one ciphertext, each tag stores two ciphertexts
(c, cID). The first ciphertext c encrypts the properties of
the tag holder as described in the previous section. The
second ciphertext cID encrypts a unique ID of the tag using
standard Elgamal encryption. After a tag is scanned by a
reader, the reader re-encrypts both ciphertexts c and cID
and writes the new ciphertexts into the tag. The reader
aggregates c and keeps a record of cID. During decryption
at the back-end server, if the back-end server suspects that a
received aggregate is not correct, he contacts a“trusted third
party”. This trusted third party (TTP) checks the records
cID stored at the readers. TTP decrypts these ciphertexts
and gets the IDs of the tags that were scanned along with the
corresponding properties of their holders. In this manner,
the TTP detects tag cloning as the ID of the cloned tag will
be repeated several times.

Furthermore, in order to detect tag tampering, the tag
issuer should keep a database of the tag IDs and their cor-
responding properties and reveal it to the TTP. Therewith,
the TTP can compare the decrypted properties and the ac-
tual properties stored in the issuer database. If there is
a discrepancy between the properties corresponding to the
same tag ID, the TTP reports a fraud. Meanwhile, the TTP
does not reveal the records of the IDs stored on the readers
either to the back-end server or to the readers.

We clearly acknowledge that readers can fake statistics.
However, the readers could be provided with an incentive
to encourage them to ensure the integrity of the results ob-
tained at the back-end server and therefore not to tamper
with tags’ content. For instance, the statistics could be used
by the cultural venues or the shops to define their marketing
strategy. As mentioned before, PPS focuses on privacy and
unlinkability of tag holders.

5. PRIVACY ANALYSIS
This section provides formal proofs for PPS’s privacy and

unlinkability as defined in the models of Section 4.2.

5.1 Privacy

5.1.1 Privacy against ADV1:

Theorem 1. PPS is privacy-preserving with respect to
ADV1 under the DDH assumption over G.

Proof. Assume we have an adversary A ∈ ADV1 whose
advantage to break the privacy experiment is not negligible.
We construct a new adversary A′ that executes A as a sub-
routine and breaks the semantic security of Elgamal which
leads to a contradiction under the DDH assumption. In this
proof, we make use of the fact that a tag T satisfies a prop-
erty Pj , iff the corresponding prime number pj divides the
plaintext underlying the ciphertext stored on T .

• A′ picks p properties pi, 1 ≤ i ≤ p that he maps to p
distinct primes pi, 1 ≤ i ≤ p.

• A′ initializes n tags as follows: he computes n Gödel
encodings ωj , 1 ≤ j ≤ n using the primes pi. Provided
with Elgamal public key pk, he encrypts ωj , 1 ≤ j ≤ n
and gets n ciphertexts that he stores on the tags.

• A′ specifies two plaintexts ω0 =
Q
p
ν0,i

i ≤ P − 1 and
ω1 =

Q
p
ν1,i

i ≤ P − 1, such that ∀i, 1 ≤ i ≤ p, and
b′ ∈ {0, 1}: νb′,i ∈ {0, 1} and ν0,i+ν1,i = 1. In terms of
properties Pi, this means that tag T0, storing plaintext
ω0, and tag T1, storing ω1, do not have a property in
common.

The adversary A′ should specify ω0 and ω1 such that
ν0,i + ν1,i = 1. Otherwise, A could choose a challenge
property Pi that both ω0 and ω1 encode. In this case,
the output ofA about Pi will not provide the necessary
information to A′ to break the semantic security of
Elgamal. The same holds if A chooses a property Pi
that neither ω0 nor ω1 encode.

• A′ transmits {ω0, ω1} to the oracle Osemantic.

• Osemantic returns the encryption cb of one of the plain-
texts ω0, ω1 to A′.

• A′ writes cb into a challenge tag Tchallenge.

• A′ calls the adversaryA that enters the learning phase.
Simulating Opick, A′ provides A with r− 1 tags along
with the list of properties they are satisfying. A is al-
lowed to read and write into these tags for a maximum
of s times. A′ provides A as well with the challenge tag
Tchallenge. A has only read access to Tchallenge and he is
allowed to read it for a maximum of t times. Tags are
required to be re-encrypted by Ore−encrypt after being
read or written into. As pk is public, A′ can simulate
successfully Ore−encrypt

• A selects a property Pi and outputs 1 if the tag satisfies
the Pi and 0 otherwise.

If A outputs 1, this implies that the prime number pi cor-
responding to Pi divides ωb. By construction, ω0 and ω1 do
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not have any prime divisor in common, and therefore, ωb is
the plaintext dividable by pi.

If A outputs 0, this implies that pi does not divide ωb
and by construction pi divides ω1−b. Therefore, ωb is the
plaintext that is not dividable by pi.
A′ can tell which plaintext ωb corresponds to cb. This

breaks the semantic security of Elgamal ensured under the
DDH assumption [24], which leads to a contradiction.

5.1.2 Privacy against ADV2:
As stated in Section 4.1, ADV2 receives only aggregated

ciphertexts. Still, given the aggregates, ADV2 can learn
some information about the properties of tags read by read-
ers, but is never able to tell which tag, and therewith which
holder satisfies which property.

For instance, if ADV2 receives an encrypted aggregate
from a reader R, and decrypts it to Agg =

Qp
i=1 p

νi
i , and ∃j

such that νj = 0 after factorization, ADV2 can learn that
all the tags that were read by R do not satisfy the property
Pj .

However, as ADV1 and ADV2 do not collude, ADV2 can-
not tell which tag satisfies or does not satisfy a certain prop-
erty Pi.

5.2 Unlinkability

5.2.1 Unlinkability against ADV1:

Theorem 2. PPS provides tag unlinkability against ADV1

under the DDH assumption over G.

Proof. Assume we have an adversary A ∈ ADV1 whose
advantage to break the unlinkability experiment is not neg-
ligible. We construct a new adversary A′ that executes A
and breaks the semantic security under re-encryption of El-
gamal.

The semantic security property of Elgamal encryption can
be extended to the semantic security of Elgamal under re-
encryption [20]. Let A′ be an adversary that chooses two
ciphertexts c0 and c1, A′ then sends {c0, c1} to Osemantic−re.
Osemantic−re flips a coin b, re-encrypts cb to c′b and returns c′b
to A′. The semantic security of Elgamal under re-encryption
entails that guessing the value of b is as difficult as DDH,
see Juels et al. [20].

• A′ picks p properties pi, 1 ≤ i ≤ p that he maps to p
distinct primes pi, 1 ≤ i ≤ p. Then, he initializes n
tags.

• A′ calls the adversaryA that enters the learning phase.
A′ simulates Opick and provides A with r tags. A is al-
lowed to read and write into these tags for a maximum
of s times. After each reading, A′ simulatesOre−encrypt

and re-encrypts the ciphertexts, as pk is public.

• A enters the challenge phase: A′ simulates Opick and
submits tags T0 and T1 to the adversary A. A writes
into and reads from T0 and T1 for a maximum of t
times. A′ can simulate Ore−encrypt successfully, as pk
is public.

• A′ reads the data stored on T0 and T1. Basically, the
data stored on a tag is a pair (u, v) that corresponds

to the encryption of v
ux where x is the secret key of

Elgamal. Without loss of generality, let c0 (c1 resp.)
denotes the ciphertext stored on T0 (T1 resp.). Then,
A′ transmits c0 and c1 to the oracle Osemantic−re.

• Osemantic−re returns the result c′b of re-encrypting one
of the two ciphertexts to A′. A′ writes c′b into a tag T .

• A′ calls A and provides him with T , simulating Oflip.
Then, A outputs his guess for the value of b.

Since A’s advantage in the unlinkability experiment is not
negligible, A can tell which tag corresponds to the new
ciphertext c′b. If A outputs 0, this means that c′b is re-
encryption of c0, otherwise c′b is a re-encryption of c1. There-
fore, A′ can break the semantic security under re-encryption
of Elgamal that is ensured under the DDH assumption [20],
again leading to a contradiction.

5.2.2 Unlinkability against ADV2:

Theorem 3. PPS provides unlinkability of tags against
ADV2 for large γ.

Proof Sketch. An aggregate Agg =
Qp
i=1p

νi
i is called

completely blinded, iff ∀i, 1 ≤ i ≤ p : νi > 0. Now, given a
sufficiently large γ, the aggregates received by the back-end
server will be completely blinded with high probability.

Therefore, the back-end server cannot distinguish between
the tags involved in the aggregates. Moreover, using a large
s in the learning phase would not give the adversary ADV2

a greater advantage in guessing (b, b′).
In the following, we compute an upper bound of the ad-

vantage ε of ADV2 in the unlinkability experiment.

Let E be the event that aggregate Agg is completely blinded,
so ∀i, 1 ≤ i ≤ p : νi > 0. Let γ be the number of ciphertexts
participating in the aggregate, and πi is the probability that
a tag holder satisfies property Pi. Without loss of generality,
we assume π1 ≤ π2 ≤ . . . ≤ πp.

Then, the probability that νi = 0 is Pr(νi = 0) = (1 −
πi)

γ ≤ (1− π1)γ .
Let E be the complementary event of E. Therefore,

Pr(E) = Pr(ν1 = 0 ∨ ν2 = 0 . . . ∨ νp = 0) ≤
pX
i=1

Pr(νi = 0)

Pr(E) ≤
pX
i=1

(1− πi)γ ≤ p(1− π1)γ .

ε = Pr(E) is the advantage of ADV2 in the unlinkability
experiment which is negligible in γ. Therefore, we say that
PPS is ε-unlinkable against ADV2, such that ε ≤ p(1−π1)γ .

Note that the advantage of ADV2 heavily depends on the
probability π1. If π1 is very small, i.e., representing a rare
property such as being disabled, PPS cannot provide unlink-
ability against ADV2. In such a case, the back-end server
can link tags to aggregates. For instance, if the back-end
server sees two aggregates where the property “disabled” is
satisfied, it can guess with a non negligible probability that
these two aggregates have one tag in common.
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6. RELATED WORK
Juels et al. [20] were among the first to introduce re-

encryption into RFID settings. Their proposal aims at en-
suring the privacy of an RFID-enabled banknote. The serial
number of the banknote is encrypted and the ciphertext is
stored on the tag embedded in the banknote. Each time
the banknote is spent, the readers in shops or banks re-
encrypt the ciphertext stored on the tag. The drawback of
this scheme is that the authorized readers have access to the
plaintext underlying the ciphertext which allows tracking.

Golle et al. [17] introduce universal re-encryption. As the
name implies, universal re-encryption allows re-encryption
without knowing the public key initially used to encrypt the
plaintexts. Re-encryption is performed by the readers in or-
der to prevent tracking. This protocol provides key privacy
– however, it fails at preventing tracing through malicious
writing. An adversary can write into a tag a message m and
encrypt it under its public key, by doing so, the adversary
can always trace the tag.

To tackle this problem, Ateniese et al. [1] propose insub-
vertible encryption, which is a universal re-encryption based
on bilinear pairings. This scheme makes use of randomizable
certificates – based on bilinear pairings – to prove that a ci-
phertext stored on a tag can only be decrypted by authorized
entities. If the certificate is valid, the ciphertext stored on
the tag will be re-encrypted. Otherwise, it will be discarded
and replaced by a dummy encryption. The insubvertible en-
cryption as proposed in [1] allows only privacy preserving
identification but not privacy preserving statistics collection
which is the focus of PPS. Also, the use of elliptic curves
as the underlying group in [1] requires special message en-
coding to map messages to points on the elliptic curve. Yet,
current efficient encoding schemes fail at preserving the ho-
momorphism of Elgamal which is an essential property to
PPS. Therefore, due to the inherent lack of homomorphism
in its basic building blocks, the scheme suggested by [1] does
not lend itself to an extension performing privacy preserving
data aggregation at the readers.

Blundo et al. [4] propose a scheme for untraceable tags
using universal re-encryption and bilinear groups. Unlike
Ateniese et al. [1], their construction takes place in the sym-
metric bilinear setting and uses linear encryption as pro-
posed by Boneh et al. [5]. As in [1], the scheme suggested in
[4] requires message to point mapping and therefore, it does
not preserve the homomorphism of the linear encryption.

Camenisch and Groß [8] propose an attribute encoding for
anonymous credentials. The scheme allows users to prove
the possession of an attribute with a given value while pre-
serving the privacy of the users. To do so, Camenisch and
Groß [8] encode the attributes using Gödel encoding com-
bined with a Camenish-Lysyanskaya signature [9] to gen-
erate the credentials. While such an approach could be
theoretically used to “emulate” privacy-preserving computa-
tion of statistics, the main drawback is the requirement for
complex interactive proofs – infeasible in our setting with
storage-only tags.

Han et al. [18] propose a scheme that allows estimating
the number of tags in the vicinity of a reader without col-
lecting the ID from each RFID tag. The main idea is to
infer the number of tags by examining the number of empty
and collision slots in the framed slotted Aloha protocol. Al-
though the solution proposed in [18] enables estimating the
total number of tags anonymously, it does not lend itself to

collect statistics on tag properties as targeted in the paper
at hand.

7. CONCLUSION
RFID systems can be used for many applications besides

identification and authentication. In this paper, we intro-
duced a new application for RFID that collects statistics
over a population of tag holders. We presented PPS, a pro-
tocol to mitigate resulting new privacy problems. PPS does
not require tags to perform any (cryptographic) computa-
tion. Instead, tags only need to feature some cheap storage.
All computations within PPS are solely performed by read-
ers. PPS provably ensures the privacy of tags and therewith
holders’ properties as well as their unlinkability: tag hold-
ers can be sure that neither RFID readers, nor a back-end
system can reveal the properties stored on their tags. Ad-
ditionally, if scanned at different readers on different occa-
sions, tag holders can be sure that these occasions cannot
be linked.
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