
Fully Secure HIBE with Short Ciphertexts

Allison B. Lewko ∗

UT-Austin, abishop@math.utexas.edu

Brent Waters †

UT-Austin, bwaters@cs.utexas.edu

Abstract

We construct a fully secure HIBE scheme with short ciphertexts. The previous con-
struction of Boneh, Boyen, and Goh was only proven to be secure in the selective model,
under a non-static assumption which depended on the depth of the hierarchy. To obtain
full security, we apply the dual system encryption concept recently introduced by Waters.
A straightforward application of this technique is insufficient to achieve short ciphertexts,
since the original instantiation of the technique includes tags that do not compress. To
overcome this challenge, we design a new method for realizing dual system encryption.

We provide a system in composite order groups (of three primes) and prove the security
of our (first) scheme under three static assumptions. In addition, we provide a prime order
group analog of our first scheme and prove it secure in asymmetric bilinear groups.

∗Supported by National Defense Science and Engineering Graduate Fellowship.
†Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFO SR) under the MURI award

for “Collaborative policies and assured information sharing” (Project PRESIDIO).



1 Introduction

An IBE system is a public key system where an encryptor uses only the identity of the recipient
and a set of global public parameters, so a separate public key for each entity is not required.
A trusted authority holds a master secret key which allows it to create secret keys for identities
and distribute them to authenticated users.

A Hierarchical IBE system (HIBE) [12, 13] provides more functionality by forming levels
of an organizational hierarchy. A user at level k can delegate secret keys to descendant iden-
tities at lower levels, but cannot decrypt messages intended for a recipient that is not among
its descendants. For example, a user with the identity “University of Texas: computer science
department” can delegate a key for the identity “University of Texas: computer science depart-
ment: grad student”, but cannot delegate keys for identities that do not begin with “University
of Texas : computer science department”. A more formal definition of an HIBE system is given
in Section 2.

Most previous HIBE constructions were proven secure in the selective model of security
(where an attacker must declare the identity he intends to attacker before seeing the public
parameters of the system), with two recent exceptions. Gentry and Halevi [10] employ the
techniques of [9] to obtain full security, but at the cost of a strong assumption. Waters [19]
obtained full security with his new dual system encryption methodology from the d − BDH
and decisional Linear assumptions, but had ciphertexts with size growing linearly in the depth
of the hierarchy. This fell short of the constant size ciphertexts achieved by Boneh, Boyen, and
Goh [3], but their HIBE system was only proven to be selectively secure in the standard model
(or fully secure in the random oracle model).

In this paper, we resolve the question of whether full security and short ciphertexts (like
[3]) can be simultaneously achieved in a HIBE system. A natural approach is to combine the
Waters realization of dual system encryption with the Boneh-Boyen-Goh construction. This
direct combination, however, presents two problems:

1. tags for each level that do not compress

2. keys that are not fully rerandomized at delegation.

In the Boneh-Boyen-Goh system, group elements corresponding to each level of an identity are
compressed (multiplied together) into a constant number of ciphertext elements. The tags in the
Waters system do not allow this. These tags also prevent a key from being fully rerandomized
upon delegation, meaning that an attacker can tell the difference between a delegated key and
one freshly generated by the key generation algorithm. This requires a security definition that
keeps track of such subtleties, which substantially complicates the security proof. Removing
the tags from the Waters realization of dual system encryption is a nontrivial task because the
tags were used to avoid a potential paradox in the dual system proof strategy.

1.1 Our Approach

We develop a new realization of dual system encryption that does not use tags. This provides
several benefits:

1. compression of ciphertext is now possible

2. negligible correctness error caused by the tags is removed

3. schemes appear very natural and closely related to prior schemes.

Before giving the details of our approach, we first review the concept of dual system encryption.

1



Dual System Encryption In a dual system, ciphertexts and keys can take on two forms:
normal or semi-functional. Semi-functional ciphertexts and keys are not used in the real system,
they are only used in the security proof. A normal key can decrypt normal or semi-functional
ciphertexts, and a normal ciphertext can be decrypted by normal or semi-functional keys. How-
ever, when a semi-functional key is used to decrypt a semi-functional ciphertext, decryption
will fail. More specifically, the semi-functional components of the key and ciphertext will in-
teract to mask the blinding factor by an additional random term. Security for dual systems
is proved using a sequence of games which are shown to be indistinguishable. The first game
is the real security game (with normal ciphertext and keys). In the next game, the ciphertext
is semi-functional, while all the keys are normal. For an attacker that makes q key requests,
games 1 through q follow. In game k, the first k keys are semi-functional while the remaining
keys are normal. In game q, all the keys and the challenge ciphertext given to the attacker are
semi-functional. Hence none of the given keys are useful for decrypting the challenge ciphertext.
At this point, proving security becomes relatively easy.

The Waters Realization When arguing that games k and k − 1 are indistinguishable, we
create a simulator who can use any legal identities for the challenge ciphertext and keys. This
creates a potential problem. The simulator is prepared to make a semi-functional ciphertext
for an identity ID and is also prepared to make the kth key for identity ID, so it may seem
like the simulator can determine whether key k is semi-functional for itself by test decrypting
with a semi-functional ciphertext for the same identity. To resolve this paradox, the Waters IBE
scheme associates random tag values with each ciphertext and key. Decryption works only when
the tag values of the ciphertext and decrypting key are unequal. If the simulator attempted to
test semi-functionality of key k for itself by creating a semi-functional ciphertext for the same
identity, it would only be able to create one with an equal tag, and hence decryption would
unconditionally fail. This correlation of tags is hidden from an attacker who cannot request a
key with the same identity as the challenge ciphertext, so the tags look randomly distributed
from the attacker’s point of view.

Tags are used similarly in the Waters HIBE scheme, but here they cause two additional
problems. First, there is a separate tag value associated with each level of the identity in
a ciphertext or key. All these tag values must be given out in a ciphertext, so this forces
ciphertext size to grow linearly with the depth of the hierarchy. Secondly, there is no method
for rerandomizing the tags in key delegation. This means that a key at level d + 1 which is
delegated from a key at level d will share its first d tag values, a property which links the
distribution of a key to its lineage. Some previous security defintions for HIBE [12, 13] which
did not keep track of delegation paths of keys are hence invalid for such a system. Security
must be argued under a more complete definition introduced in [17].

Our Realization The additional complications of the proof and the linear ciphertext size
are undesirable artifacts of building the HIBE system with the same tag techniques as the IBE
system. To remove the tags, we must find a different way to resolve the paradox. Instead of
having decryption unconditionally fail when the simulator attempts to test semi-functionality of
the kth key, we design our system so that decryption will unconditionally succeed. We introduce
a variant of semi-functional keys which we call nominally semi-functional keys. These keys
are semi-functional in name only, meaning that they are distributed like semi-functional keys,
but are actually correlated with semi-functional ciphertexts so that when a nominally semi-
functional key is used to decrypt a semi-functional key, the interaction of the two semi-functional
components results in cancelation and decryption is successful. If the simulator attempts to
answer its own question by creating the kth key and challenge ciphertext for the same identity,

2



the created key will be nominally semi-functional and hence test decrypting will not distinguish
this from a normal key. This nominally semi-functional key will appear to be distributed like
a regular semi-functional key to the attacker, who cannot request a key that can decrypt the
challenge ciphertext.

With this technique, we are able to construct a fully secure IBE system with short parameters
without tags, and also give a fully secure HIBE system with constant-size ciphertexts. Our
proofs rely on simple (constant-size) assumptions which do not depend on the number of queries
the attacker makes. Our proof for our HIBE system is considerably simplified by the fact that
our keys can be fully rerandomized upon delegation, avoiding the corresponding difficulties of
the Waters HIBE proof.

In our the main body we provide a construction under a group of composite order N where
N is the product of three primes. In Appendix C, we provide an analog of this for prime order
groups. Our analog takes advantage of asymmetric bilinear groups where there is no efficient
isomorphism between G1 and G2.

An interesting observation arising from our work is that the existing Boneh-Boyen IBE [1]
and Boneh-Boyen-Goh HIBE [3] schemes which were only proven to be selectively secure can
be transformed into fully secure systems by embedding them in composite order groups. Our
IBE and HIBE systems are remarkably similar to these schemes.

1.2 Related Work

Identity Based Encryption was introduced by Shamir [16] and first realized by Boneh and
Franklin [4] and Cocks [7]. The Boneh-Franklin IBE construction [4] proved security in
the random oracle model. Subsequent constructions by Canetti, Halevi, and Katz [6] and
Boneh and Boyen [1] were proved secure in the standard model, but under the weaker notion
of selective security. Later, Boneh and Boyen [2] and Waters [18] gave constructions which
were fully secure in the standard model. The Waters system was efficient and fully secure in
the standard model under the decisional Bilinear Diffie-Hellman assumption (d-BDH), but it
had public parameters consisting of O(λ) group elements for security parameter λ. Gentry
[9] constructed an IBE system with short public parameters and proved full security in the
standard model, but used an assumption (q-ABHDE) which is substantially more complicated
than d-BDH and depends on the number of queries made by the attacker. Gentry, Peikert, and
Vaikuntanathan also gave an IBE construction based on lattice assumptions [11].

Hierarchical Identity Based Encryption was introduced by Horwitz and Lynn [13] and then
constructed by Gentry and Silverberg [12] in the random oracle model. Boneh and Boyen [1]
achieved security in the selective model without random oracles. Boneh, Boyen, and Goh [3]
then gave an HIBE with constant size ciphertexts, also in the selective model under a q-based
assumption. These short ciphertexts were particularly useful for applications, including forward
secure encryption [6] and converting the NNL broadcast encryption system [15] into a public-
key system [8]. Gentry and Halevi [10] constructed the first fully secure HIBE for polynomial
depth, though also under a complex assumption. Waters [19] attained full security under the
d − BDH and decisional Linear assumptions, but with ciphertext size growing linearly in the
hierarchy depth. We note that Waters first instantiated this result in composite order groups.
The complete definition of security for HIBE that we use in this paper was formulated by Shi
and Waters [17].

1.3 Organization

In Section 2, we formally define an HIBE system and give the complete security definition, give
background on bilinear groups, and state our assumptions. In Section 3, we present our IBE

3



scheme and prove its security. In Section 4, we give our HIBE scheme and prove its security.
In Section 6, we conclude and discuss open directions for further research.

2 Background

2.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme has five algorithms: Setup, Encrypt, KeyGen,
Decrypt, and Delegate.

Setup(λ) → PK,MSK The setup algorithm takes a security parameter λ as input and
outputs the public parameters PK and a master secret key MSK.

KenGen(MSK, ~I)→ SK~I The key generation algorithm takes the master secret key and an
identity vector ~I as input and outputs a private key SK~I .

Delegate(PK,SK~I , I)→ SK~I:I The delegation algorithm takes a secret key for the identity
vector ~I of depth d and an identity I as input and outputs a secret key for the depth d + 1
identity vector ~I : I formed by concatenating I onto the end of ~I.

Encrypt(PK,M, ~I) → CT The encryption algorithm takes the public parameters PK, a
message M , and an identity vector ~I as input and outputs a ciphertext CT .

Decrypt(PK,CT, SK) → M The decryption algorithm takes the public parameters PK, a
ciphertext CT , and a secret key SK as input and outputs the message M , if the ciphertext was
an encryption to an identity vector ~I and the secret key is for the same identity vector.

Notice that the decryption algorithm is only required to work when the identity vector for
the ciphertext matches the secret key exactly. However, someone who has a secret key for a
prefix of this identity vector can delegate to themselves the required secret key and also decrypt.

Security definition We give the complete form of the security definition [17] which keeps
track of how keys are generated and delegated. Security is defined through the following game,
played by a challenger and an attacker.

Setup The challenger runs the Setup algorithm to generate public parameters PK which it
gives to the adversary. We let S denote the set of private keys that the challenger has created
but not yet given to the adversary. At this point, S = ∅.

Phase 1 The adversary makes Create, Delegate, and Reveal key queries. To make a Create
query, the attacker specifies an identity vector ~I. In response, the challenger creates a key for
this vector by calling the key generation algorithm, and places this key in the set S. It only
gives the attacker a reference to this key, not the key itself. To make a Delegate query, the
attacker specifies a key SK~I in the set S and specifies an identity I ′. In response, the challenger
appends I ′ to ~I and makes a key for this new identity by running the delegation algorithm
on SK~I and I ′. It adds this key to the set S and again gives the attacker only a reference to
it, not the actual key. To make a Reveal query, the attacker specifies an element of the set
S. The challenger gives this key to the attacker and removes it from the set S. We note that

4



the attacker need no longer make any delegation queries for this key because it can run the
delegation algorithm on the revealed key for itself.

Challenge The adversary gives the challenger two messages M0 and M1 and a challenge
identity vector ~I∗. This identity vector must satisfy the property that no revealed identity in
Phase 1 was a prefix of it. The challenger sets β ∈ {0, 1} randomly, and encrypts Mβ under ~I∗.
It sends the ciphertext to the adversary.

Phase 2 This is the same as Phase 1, with the added restriction that any revealed identity
vector must not be a prefix of ~I∗.

Guess The adversary must output a guess β′ for β.
The advantage of an adversary A is defined to be Pr[β′ = β]− 1

2 .

Definition 1 A Hierarchical Identity Based Encryption scheme is secure if all polynomial time
adversaries achieve at most a negligible advantage in the security game.

2.2 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [5]. We define them by using a group
generator G, an algorithm which takes a security parameter λ as input and outputs a description
of a bilinear group G. In our case, G outputs (p1, p2, p3, G,GT , e) where p1, p2, p3 are distinct
primes, G and GT are cyclic groups of order n = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ Zn, e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We further require that the group operations in G and GT as well as the bilinear map e are
computable in polynomial time with respect to λ. Also, we assume the group descriptions of G
and GT include generators of the respective cyclic groups. We let Gp1 , Gp2 , and Gp3 denote the
subgroups of order p1, p2 and p3 in G respectively. We note that when hi ∈ Gpi and hj ∈ Gpj

for i 6= j, e(hi, hj) is the identity element in GT . To see this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 .
We let g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and gp2p3

generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 . We note:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 , Gp2 , Gp3 will be a principal tool in our constructions.
We now give our complexity assumptions. These same assumptions will be used to prove

the security of our IBE and HIBE systems. We note that they are static (not dependent on the
depth of the hierarchy or the number of queries made by an attacker). The first assumption is
just the subgroup decision problem in the case where the group order is a product of 3 primes.
In Appendix A, we show that these assumptions hold in the generic group model if finding a
nontrivial factor of the group order is hard. We prove this by applying the theorems of Katz,
Sahai, and Waters [14]. Their work also used composite order bilinear groups and provided a
general framework for proving generic security of assumptions in this setting.

5



Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator G,
we define the following distribution:

G = (p1, p2, p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,

D = (G, g,X3),

T1
R←− Gp1 ×Gp2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 2 We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 2 Given a group generator G, we define the following distribution:

G = (p1, p2, p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− Gp1 ×Gp2 ×Gp3 , T2

R←− Gp1 ×Gp3 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 3 We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (p1, p2, p3, G,GT , e)
R←− G, n = p1p2p3, α, s

R←− Zn,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3, Z3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2Z3),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 4 We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

6



3 Our IBE System

We begin by giving our new dual system encryption realization of IBE. Our construction will
use composite order groups of order n = p1p2p3 and identities in Zn. Remarkably, our construc-
tion looks almost exactly like the Boneh-Boyen IBE with keys additionally randomized in the
subgroup Gp3 . This resemblance to preexisting selectively secure schemes will continue in our
HIBE system as well. We regard this as a desirable feature of our approach.

We note that the subgroup Gp2 is not used in our actual scheme, instead it serves as our
semi-functional space. Keys and ciphertexts will be semi-functional when they include terms
in Gp2 and decryption will proceed by pairing key elements with ciphertext elements. This will
give us the decryption functionality we need: when we pair a normal key with a semi-functional
ciphertext or a normal ciphertext with a semi-functional key, the terms in Gp2 are orthogonal
to terms in Gp1 and Gp3 under the pairing and will cancel out. When we pair a semi-functional
key with a semi-functional ciphertext, we will get an additional term arising from the pairing
of the terms in Gp2 .

3.1 Construction

Setup The setup algorithm chooses a bilinear group G of order N = p1p2p3 (where p1, p2,
and p3 are distinct primes). We let Gpi denote the subgroup of order pi in G. It then chooses
u, g, h ∈ Gp1 and α ∈ ZN . The public parameters are published as:

PK = {u, g, h, e(g, g)α}.

The secret parameters are α and a generator of Gp3 .

Encrypt(M, ID) The encryption algorithm chooses s ∈ ZN randomly and creates the cipher-
text as:

C0 = Me(g, g)αs, C1 = (uIDh)s, C2 = gs.

KeyGen(ID,MSK) The key generation algorithm chooses r ∈ ZN , R3, R
′
3 ∈ Gp3 randomly.

The key is formed as:
K1 = grR3,K2 = gα(uIDh)rR′3.

Decryption If the ID’s of the ciphertext and key are equal, the decryption algorithm com-
putes the blinding factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uIDh, g)rs

e(uIDh, g)rs
.

3.2 Security

To prove security of our IBE system, we first define two additional structures: semi-functional
keys and semi-functional ciphertexts. These will not be used in the real system, but they will
be used in our proof.

Semi-functional Ciphertext We let g2 denote a generator of the subgroup Gp2 . A semi-
functional ciphertext is created as follows: first, a normal ciphertext C ′0, C

′
1, C

′
2 is generated by

the encryption algorithm. Random exponents x, zc ∈ ZN are chosen. Then, C0 is set to be C ′0,
C1 is set to be C ′1g

xzc
2 , and C2 is set to be C ′2g

x
2 .

7



Semi-functional Key A semi-functional key is created as follows: first, a normal key K ′1,
K ′2 is generated by the key generation algorithm. Random exponents γ, zk ∈ ZN are chosen.
K1 is set to be K ′1g

γ
2 and K2 is set to be K ′2g

γzk
2 .

Notice that if a semi-functional key is used to decrypt a semi-functional ciphertext, the
blinding factor will be obscured by an additional factor of e(g2, g2)xγ(zk−zc). If zc = zk, de-
cryption will still work. In this case, we say that the key is nominally semi-functional: it has
components in Gp2 , but these do not hinder decryption.

Our proof of security relies on Assumptions 1, 2, 3 defined in Section 2. We will prove
security by a hybrid argument using a sequence of games. The first game, GameReal, will be the
real security game. The next game, GameRestricted, will be like the real security game except
that the attacker cannot ask for keys for identities which are equal to the challenge identity
modulo p2. This is a stronger restriction than the real security game, where the identities must
be unequal modulo n. We will retain this stronger restriction throughout the subsequent games.
The reason for it will be explained in the proof. We let q denote the number of key queries the
attacker makes. For k from 0 to q, we define Gamek as:

Gamek This is like the restricted security game, except that the ciphertext given to the
attacker is semi-functional and the first k keys are semi-functional. The rest of the keys are
normal.

In Game0, all the keys are normal and the ciphertext is semi-functional. In Gameq, the
ciphertext and all of the keys are semi-functional. Our last game is GameFinal, which is the
same as Gameq except that the ciphertext is a semi-functional encryption of a random message,
not one of the two messages requested by the attacker. We will prove that each of these games
is indistinguishable in the following four lemmas.

Lemma 5 Suppose there exists an algorithm A such that GameRealAdvA−GameRestrictedAdvA =
ε. Then we can build an algorithm B with advantage ≥ ε

2 in breaking either Assumption 1 or
Assumption 2.

Proof. Given g,X3, B can simulate GameReal with A. With probability ε, A produces identities
ID and ID∗ such that ID 6= ID∗ modulo n and p2 divides ID − ID∗. B uses these identities
to produce a nontrivial factor of n by computing a = gcd(ID− ID∗, n). We set b = n

a . We note
that p2 divides a and n = ab = p1p2p3. We consider two cases:

1. p1 divides b

2. a = p1p2 and b = p3.

At least one of these cases must occur with probability ≥ ε
2 . In case 1, B will break

Assumption 1. Given g,X3, T , B can determine that p1 divides b by verifying that gb is the
identity and will then test whether T b is the identity. If it is, then T ∈ Gp1 . If it is not,
T ∈ Gp1 ×Gp2 .

In case 2, B will break Assumption 2. Given g,X1X2, X3, Y2Y3, B can determine that
a = p1p2 by verifying that (X1X2)a is the identity and will then test whether e((Y2Y3)b, T ) is
the identity. If it is, then T ∈ Gp1 ×Gp3 . If it is not, then T ∈ Gp1 ×Gp2 ×Gp3 . �

Lemma 6 Suppose there exists an algorithm A such that GameRestrictedAdvA−Game0AdvA =
ε. Then we can build an algorithm B with advantage ε in breaking Assumption 1.

8



Proof. B first receives g,X3, T . It simulates GameRestricted or Game0 with A. It sets the public
parameters as follows. It chooses random exponents α, a, b and sets g = g, u = ga, h = gb. It
sends these public parameters {u, g, h, e(g, g)α} to A. Each time B is asked to provide a key for
an identity IDi, it chooses random exponents ri, ti, and wi and sets:

K1 = griXti
3 ,K2 = gα(uIDih)riXwi

3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B chooses β ∈ {0, 1}
randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T aID+b, C2 = T.

(This implicitly sets gs equal to the Gp1 component of T .) If T ∈ Gp1 × Gp2 , then this is a
semi-functional ciphertext with zc = aID + b. We note that the value of zc modulo p2 is not
correlated with the values of a and b modulo p1, so this is properly distributed. If T ∈ Gp1 ,
this is a normal ciphertext. Hence, B can use the output of A to distinguish between these
possibilities for T . �

Lemma 7 Suppose there exists an algorithm A such that Gamek−1AdvA − GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . B picks random exponents a, b, α and sets the
public parameters as: g = g, u = ga, h = gb, e(g, g)α. It sends these to A. When A requests the
ith key for IDi when i < k, B creates a semi-functional key. It does this by choosing random
exponents ri, zi, ti, wi and setting:

K1 = gri(Y2Y3)ti ,K2 = gα(uIDih)ri(Y2Y3)ziXwi
3 .

This is a properly distributed semi-functional key with gγ2 = Y ti
2 .

For i > k, B generates normal keys by using random exponents ri, ti, wi and setting:

K1 = griXti
3 ,K2 = gα(uIDih)riXwi

3 .

To create the kth requested key, B lets zk = aIDk + b, chooses and random exponent wk,
and sets:

K1 = T,K2 = gαT zkXwk
3 .

At some point, A sends B two messages, M0 and M1, and a challenge identity, ID. B sets
β ∈ {0, 1} randomly. The challenge ciphertext is formed as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)aID+b, C2 = X1X2.

We note that this sets gs = X1 and zc = aID + b. Since f(ID) = aID + b is a pairwise
independent function modulo p2, as long as IDk 6= ID(mod p2), zk and zc will seem randomly
distributed to A (again, we note that the values of a and b modulo p2 are uncorrelated with
their values modulo p1). If IDk ≡ ID(mod p2), then A has made an invalid key request. This
is where we use our additional modular restriction.

Though it is hidden from A, this relationship between zc and zk is crucial: if B attempts to
test itself whether key k is semi-functional by creating a semi-functional ciphertext for IDk and
trying to decrypt, then decryption will work whether key k is semi-functional or not, because
zc = zk. In other words, the simulator B can only make a nominally semi-functional key k.

If T ∈ Gp1 ×Gp3 , then B has properly simulated Gamek−1. If T ∈ Gp1 ×Gp2 ×Gp3 , then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish between these
possibilities for T . �

9



Lemma 8 Suppose there exists an algorithm A such that GameqAdvA −GameFinalAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2Z3, T . B chooses random exponents a, b and sets

the public parameters as g = g, u = ga, h = gb, e(g, g)α = e(gαX2, g). It sends these to A. When
A requests a key for identity IDi, B generates a semi-functional key. It does this by choosing
random exponents ri, ti, wi, γi and setting:

K1 = gri(Z2Z3)γiXti
3 ,K2 = gαX2(uIDih)riXwi

3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B sets β ∈ {0, 1}
randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)aID+b, C2 = gsY2.

This sets zc = aID + b. We note that the value of zc only matters modulo p2, whereas u = ga

and h = gb are elements of Gp1 , so when a and b are chosen randomly modulo N , there is no
correlation between the values of a and b modulo p1 and the value zc = aID + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext with message
Mβ. If T is a random element of GT , then this is a semi-functional ciphertext with a random
message. Hence, B can use the output of A to distinguish between these possibilities for T . �

We have now proven the following theorem:

Theorem 9 If Assumptions 1, 2, and 3 hold, then our IBE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lemmas that the
real security game is indistinguishable from GameFinal, in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker can attain no advantage in breaking
the IBE system. �

4 Our HIBE System

We build upon our IBE system and extend our techniques to give an HIBE system with short
ciphertexts. The absence of tags allows us to compress the ciphertext into a constant number of
group elements and also to rerandomize keys fully upon delegation. This dramatically simplifies
our proof of security. Our construction again uses composite order groups of order n = p1p2p3,
and looks almost exactly like the Boneh-Boyen-Goh HIBE system with keys additionally ran-
domized in subgroup Gp3 . Gp2 will be our semi-functional space, which is not used in the real
system.

4.1 Construction

Setup The setup algorithm chooses a bilinear group G or order N = p1p2p3. We let ` denote
the maximum depth of the HIBE. The setup algorithm chooses g, h, u1, . . . , u` ∈ Gp1 , X3 ∈ Gp3 ,
and α ∈ ZN . The public parameters are published as:

PK = {g, h, u1, . . . , u`, X3, e(g, g)α}.

The secret parameter is α.

10



Encrypt(M, (ID1, . . . , IDj)) The encryption algorithm chooses s ∈ ZN randomly. It sets:

C0 = Me(g, g)αs, C1 =
(
uID1

1 · · ·uIDj

j h
)s
, C2 = gs.

KeyGen(MSK, (ID1, . . . , IDj)) The key generation algorithm chooses r ∈ ZN randomly and
also chooses random elements R3, R

′
3, Rj+1, . . . , R` of Gp3 . It sets:

K1 = grR3,K2 = gα
(
uID1

1 · · ·uIDj

j h
)r
R′3, Ej+1 = urj+1Rj+1, . . . , E` = ur`R`.

Delegate Given a key K ′1,K
′
2, E

′
j+1, . . . , E

′
` for (ID1, . . . , IDj), the delegation algorithm cre-

ates a key for (ID1, . . . , IDj+1) as follows. It chooses a random r′ ∈ ZN and random elements
of Gp3 denoted, e.g., by R̃3. (These can be obtained by taking X3 from the public parameters
and raising it to random exponents.) The new key is set as:

K1 = K ′1g
r′R̃3,

K2 = K ′2

(
uID1

1 · · ·uIDj

j h
)r′

(E′j+1)IDj+1u
r′IDj+1

j+1 R̃′3,

Ej+2 = E′j+2u
r′
j+2R̃j+2, . . . , E` = E′`u

r′
` R̃`.

We note that this new key is fully rerandomized: its only tie to the previous key is in the values
ID1, . . . , IDj .

Decrypt The decryption algorithm assumes that the key and ciphertext both correspond
to the same identity (ID1, . . . , IDj). If the key identity is a prefix of this instead, then the
decryption algorithm starts by running the key delegation algorithm to create a key with identity
matching the ciphertext identity exactly. The decryption algorithm then computes the blinding
factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uID1

1 · · ·uIDj

j h, g)rs

e(g, uID1
1 · · ·uIDj

j h)rs
= e(g, g)αs.

4.2 Security

To prove security of our HIBE system, we again rely on the static Assumptions 1, 2, and 3.
We first define two additional structures: semi-functional ciphertexts and semi-functional keys.
These will not be used in the real system, but will be used in our proof.

Semi-functional Ciphertext We let g2 denote a generator of Gp2 . A semi-functional cipher-
text is created as follows: first, we use the encryption algorithm to form a normal ciphertext
C ′0, C

′
1, C

′
2. We choose random exponents x, zc. We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .

Semi-functional Keys To create a semi-functional key, we first create a normal key K ′1, K ′2,
E′j+1, . . ., E′` using the key generation algorithm. We choose random exponents γ, zk, zj+1, . . . , z`.
We set:

K1 = K ′1g
γ
2 ,K2 = K ′2g

γzk
2 , Ej+1 = E′j+1g

γzj+1

2 , . . . , E` = E′`g
γz`
2 .

We note that when a semi-functional key is used to decrypt a semi-functional ciphertext,
the decryption algorithm will compute the blinding factor multiplied by the additional term

11



e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work. In this case, the key is nominally
semi-functional.

Our proof of security will again be structured as a hybrid argument over a sequence of
games. The first game, GameReal, is the real HIBE security game. The next game, GameReal′ ,
is the same as the real game except that all key queries will be answered by fresh calls to the
key generation algorithm (the challenger will not be asked to delegate keys in a particular way).
The next game, GameRestricted is the same as GameReal′ except that the attacker cannot ask
for keys for identities which are prefixes of the challenge identity modulo p2. We will retain
this restriction in all subsequent games. We let q denote the number of key queries the attacker
makes. For k from 0 to q, we define Gamek as:

Gamek This is like GameRestricted, except that the ciphertext given to the attacker is semi-
functional and the first k keys are semi-functional. The rest of the keys are normal.

In Game0, only the challenge ciphertext is semi-functional. In Gameq, the challenge cipher-
text and all of the keys are semi-functional. We define GameFinal to be like Gameq, except
that the challenge ciphertext is a semi-functional encryption of a random message, not one of
the messages provided by the attacker. We will show these games are indistinguishable in the
following five lemmas. The proofs are very similar to the proofs for our IBE system, and can
be found in Appendix B.

Lemma 10 For any algorithm A, GameRealAdvA = GameReal′AdvA.

Lemma 11 Suppose there exists an algorithm A such that GameReal′AdvA−GameRestrictedAdvA =
ε. Then we can build an algorithm B with advantage ≥ ε

2 in breaking either Assumption 1 or
Assumption 2.

Lemma 12 Suppose there exists an algorithm A such that GameRestrictedAdvA−Game0AdvA =
ε. Then we can build an algorithm B with advantage ε in breaking Assumption 1.

Lemma 13 Suppose there exists an algorithm A such that Gamek−1AdvA −GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Lemma 14 Suppose there exists an algorithm A such that GameqAdvA−GameFinalAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 3.

5 Moving to Prime Order Groups

In Appendix C we show an analog of our previous construction in prime order groups. The
prime order group construction we give takes advantage of asymmetric groups where there is
a pairing function e : G1 × G2 → GT , but there is not believed to be an efficient isomorphism
from either G1 to G2 or G2 to G1.

Our prime construction can be viewed as an analog of the composite order one where we
“emulate” the three subgroups with multiple group elements to create three subspaces. Our
“emulation” technique uses some ideas from the Waters [19] prime order group realization;
however, we are able to “squeeze” things down by using asymmetric groups.

A potential future direction is be to realize our methods in prime order groups without
relying on the lack of isomorphism for security. A natural approach would be to use an “un-
squeezed” version of our techniques. It is possible that this approach might give a reduction
with more cancellations that in turn provides security from even simpler assumptions.

12



6 Conclusions and Open Directions

We have given the first HIBE system with constant size ciphertext that is fully secure in the
standard model from simple assumptions. In doing so, we discovered that instantiations of the
selectively secure Boneh-Boyen IBE and Boneh-Boyen-Goh HIBE schemes in composite order
bilinear groups can be proved to be fully secure using the dual encryption technique of Waters.
We overcame the initial challenges introduced by the use of tags in the original Waters IBE and
HIBE systems by introducing the concept of nominally semi-functional keys. Our work further
demonstrates the power and versatility of the dual encryption technique, which we believe will
have many future applications.

We leave it as an open problem to transfer our IBE and HIBE systems into prime order
groups with security proven from standard assumptions such as the decisional Linear assumption
and d − BDH. This kind of translation was previously achieved by Waters [19] for his IBE
and HIBE systems, which were originally constructed in composite order groups.

References

[1] D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption without
random oracles. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of LNCS,
pages 223 – 238. Springer, 2004.

[2] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In
Advances in Cryptology - CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer,
2004.

[3] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant
size ciphertext. In Advances in Cryptology - EUROCRYPT 2005, volume 3493 of LNCS,
pages 440–456. Springer, 2005.

[4] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In Advances
in Cryptology - CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, 2001.

[5] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In Theory of
Cryptography, volume 3378 of LNCS, pages 325–342. Springer, 2005.

[6] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In Ad-
vances in Cryptology - EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer,
2003.

[7] C. Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings
of the 8th IMA International Conference on Cryptography and Coding, pages 26–28, 2001.

[8] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In Pro-
ceedings of the Digital Rights Management Workshop 2002, volume 2696 of LNCS, pages
61–80. Springer, 2002.

[9] C. Gentry. Practical identity-based encryption without random oracles. In Advances in
Cryptology - EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464. Springer, 2006.

[10] C. Gentry and S. Halevi. Hierarchical identity based encryption with polynomially many
levels. In Theory of Cryptography, volume 5444 of LNCS, pages 437–456. Springer, 2009.

13



[11] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryp-
tographic constructions. In Proceedings of the 40th annual ACM Symposium on Theory of
Computing, pages 197–206. ACM, 2008.

[12] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Advances in Cryptology
- ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer, 2002.

[13] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2002, volume 2332 of LNCS, pages 466–481. Springer, 2002.

[14] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology - EUROCRYPT 2008, volume
4965 of LNCS, pages 146–162. Springer, 2008.

[15] D. Naor, M. Naor, and J. Lotspiech. In Advances in Cryptology - CRYPTO 2001, volume
2139 of LNCS, pages 41–62. Springer, 2001.

[16] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology
- CRYPTO 1984, volume 196 of LNCS, pages 47–53. Springer, 1984.

[17] E. Shi and B. Waters. Delegating capabilities in predicate encryption systems. In Automata,
Languages and Programming, volume 5126 of LNCS, pages 560–578. Springer, 2008.

[18] B. Waters. Efficient identity-based ecnryption without random oracles. In Advances in
Cryptology - EUROCRYPT 2005, volume 3493 of LNCS, pages 114–127. Springer, 2005.

[19] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In Advances in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages
619–636. Springer, 2009.

A Generic Security of Our Complexity Assumptions

We now prove our three complexity assumptions hold in the generic group model, as long as it is
hard to find a nontrivial factor of the group order, n. We adopt the notation of [14] to express
our assumptions. We fix generators gp1 , gp2 , gp3 of the subgroups Gp1 , Gp2 , Gp3 respectively.
Every element of G can then be expressed as ga1

p1 g
a2
p2 g

a3
p3 for some values of a1, a2, a3. We denote

an element of G by (a1, a2, a3). The element e(gp1 , gp1)a1e(gp2 , gp2)a2e(gp3 , gp3)a3 in GT will be
denoted by [a1, a2, a3]. We use capital letters to denote random variables, and we reuse random
variables to denote relationships between elements. For example, X = (X1, Y1, Z1) is a random
element of G, and Y = (X1, Y2, Z2) is another random element that shares the same component
in the Gp1 subgroup.

Given random variables X, {Ai} expressed in this form, we say that X is dependent on {Ai}
if there exists values λi ∈ Zn such that X =

∑
i λiAi as formal random variables. Otherwise,

we say that X is independent of {Ai}. We note the following two theorems from [14]:

Theorem 15 (Theorem A.1 of [14]) Let n =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai} be random variables over G, and let {Bi}, T0, T1 be random variables
over GT , where all random variables have degree at most t. Consider the following experiment
in the generic group model:

An algorithm is given n, {Ai}, and {Bi}. A random bit b is chosen, and the adversary is
given Tb. The algorithm outputs a bits b′, and succeeds if b′ = b. The algorithm’s advantage is
the absolute value of the difference between its success probability and 1

2 .

14



Say each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}. Then given any algorithm A
issuing at most q instructions and having advantage δ in the above experiment, A can be used to
find a nontrivial factor of n (in time polynomial in λ and the running time of A) with probability
at least δ −O(q2t/2λ).

Theorem 16 (Theorem A.2 of [14]) Let n =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai}, T0, T1 be random variables over G, and let {Bi} be random variables
over GT , where all random variables have degree at most t. Consider the same experiment as
in the theorem above.

Let S := {i|e(T0, Ai) 6= e(T1, Ai)} (where inequality refers to inequality as formal polyno-
mials). Say each of T0 and T1 is independent of {Ai}, and furthermore that for all k ∈ S
it holds that e(T0, Ak) is independent of {Bi} ∪ {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=k, and e(T1, Ak) is
independent of {Bi}∪{e(Ai, Aj)}∪{e(T1, Ai)}i 6=k. Then given any algorithm A issuing at most
q instructions and having advantage δ, the algorithm can be used to find a nontrivial factor of
n (in time polynomial in λ and the running time of A) with probability at least δ −O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic group
model.

Assumption 1 We apply Theorem 16. We can express this assumption as:

A1 = (1, 0, 0), A2 = (0, 0, 1),

T0 = (X1, X2, 0), T1 = (X1, 0, 0).

We note that S = ∅ in this case. It is clear that T0 and T1 are both independent of {A1, A2}
because X1 does not appear in A1 or A2. Thus, Assumption 1 is generically secure, assuming
it is hard to find a nontrivial factor of n.

Assumption 2 We apply Theorem 16. We can express this assumption as:

A1 = (1, 0, 0), A2 = (X1, 1, 0), A3 = (Y1, 0, 0), A4 = (0, X2, 1),

T0 = (Z1, Z2, Z3), T1 = (Z1, 0, Z3).

We note that S = {2, 4} in this case. It is clear that T0 and T1 are both independent of
{Ai} since Z1 does not appear in the Ai’s, for example. We see that e(T0, A2) is independent
of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=2 because it is impossible to obtain X1Z1 in the first coordinate
of a combination of elements of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=2. This also allows us to conclude
that e(T1, A2) is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=2. We similarly note that e(T0, A4)
is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=4 and e(T1, A4) is independent of {e(Ai, Aj)} ∪
{e(T1, Ai)}i 6=4 because we cannot obtain Z3 in the third coordinate. Thus, Assumption 2 is
generically secure, assuming it is hard to find a nontrivial factor of n.

Assumption 3 We apply Theorem 15. We can express this assumption as:

A1 = (1, 0, 0), A2 = (B, 1, 0), A3 = (0, 0, 1), A4 = (S,X2, 0), A5 = (0, Y2, Y3),

T0 = [BS, 0, 0], T2 = [Z1, Z2, Z3].

T1 is independent of {e(Ai, Aj)} because Z1, Z2, Z3 do not appear in {Ai}. T0 is independent
of {e(Ai, Aj)} because the only way to obtain BS in the first coordinate is to take e(A2, A4),
but then we are left with an X2 in the second coordinate that cannot be canceled. Thus,
Assumption 3 is generically secure, assuming it is hard to find a nontrivial factor of n.

15



B HIBE Security Proof

Lemma 17 For any algorithm A, GameRealAdvA = GameReal′AdvA.

Proof. We note that keys are identically distributed whether they are produced by the key
delegation algorithm from a previous key or from a fresh call to the key generation algorithm.
Thus, in the attacker’s view, there is no difference between these games. �

Lemma 18 Suppose there exists an algorithm A such that GameReal′AdvA−GameRestrictedAdvA =
ε. Then we can build an algorithm B with advantage ≥ ε

2 in breaking either Assumption 1 or
Assumption 2.

Proof. This proof is identical to the proof of Lemma 5. �

Lemma 19 Suppose there exists an algorithm A such that GameRestrictedAdvA−Game0AdvA =
ε. Then we can build an algorithm B with advantage ε in breaking Assumption 1.

Proof. B first receives g,X3, T . It simulates GameReal or Game0 with A. It sets the public
parameters as follows. It chooses random exponents α, a1, . . . , a`, b and sets g = g, ui = gai for
i from 1 to ` and h = gb. It sends these public parameters {g, u1, . . . , u`, h, e(g, g)α} to A. Each
time B is asked to provide a key for an identity (ID1, . . . , IDj), it chooses random exponents
r, t, w, vj1 , . . . , v` and sets:

K1 = grXt
3,K2 = gα(uID1

1 · uIDj

j h)rXw
3 , Ej+1 = urj+1X

vj+1

3 , . . . , E` = ur`X
v`
3 .

A sends B two messages, M0 and M1, and a challenge identity, (ID∗1, . . . , ID
∗
j ). B chooses

β ∈ {0, 1} randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T a1ID∗1+···ajID
∗
j +b, C2 = T.

(This implicitly sets gs equal to the Gp1 component of T .) If T =∈ Gp1 × Gp2 , then this is a
semi-functional ciphertext with zc = a1ID

∗
1 + · · · + ajID

∗
j + b. If T ∈ Gp1 , this is a normal

ciphertext. Hence, B can use the output of A to distinguish between these possibilities for T .
�

Lemma 20 Suppose there exists an algorithm A such that Gamek−1AdvA −GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . B picks random exponents a1, . . . , a`, b and sets
the public parameters as: g = g, ui = gai , h = gb, e(g, g)α. It sends these to A. When A
requests the ith key for (ID1, . . . , IDj) when i < k, B creates a semi-functional key. It does this
by choosing random exponents r, z, t, w, zj+1, . . . , z`, wj+1, . . . , w` and setting:

K1 = gr(Y2Y3)t,K2 = gα(uID1
1 · · ·uIDj

j h)r(Y2Y3)zXw
3 ,

Ej+1 = urj+1(Y2Y3)zj+1X
wj+1

3 , . . . , E` = ur`(Y2Y3)z`Xw`
3 .

This is a properly distributed semi-functional key with gγ2 = Y t
2 .

For i > k, B generates normal keys by calling the usual key generation algorithm.

16



To create the kth requested key for (ID1, . . . , IDj), B lets zk = a1ID1+· · · ajIDj+b, chooses
random exponents wk, wj+1, . . . , w`, and sets:

K1 = T,K2 = gαT zkXwk
3 ,

Ej+1 = T aj+1X
wj+1

3 , . . . , E` = T a`Xw`
3 .

If T ∈ Gp1 × Gp3 , this is a normal key with gr equal to the Gp1 component of T . If T ∈
Gp1 ×Gp2 ×Gp3 , this is a semi-functional key.

At some point, A sends B two messages, M0 andM1, and a challenge identity, (ID∗1, . . . , ID
∗
j ).

B sets β ∈ {0, 1} randomly. The challenge ciphertext is formed as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)a1ID∗1+···+ajID
∗
j +b, C2 = X1X2.

We note that this sets gs = X1 and zc = a1ID
∗
1 + · · · ajID∗j + b. Since the kth key is not a

prefix of the challenge key modulo p2, zk and zc will seem randomly distributed to A. Though
it is hidden from A, this relationship between zc and zk is crucial: if B attempts to test itself
whether key k is semi-functional by creating a semi-functional ciphertext for this identity and
trying to decrypt, then decryption will work whether key k is semi-functional or not, because
zc = zk. In other words, the simulator can only create a nominally semi-functional key k.

If T ∈ Gp1 ×Gp3 , then B has properly simulated Gamek−1. If T ∈ Gp1 ×Gp2 ×Gp3 , then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish between these
possibilities for T . �

Lemma 21 Suppose there exists an algorithm A such that GameqAdvA−GameFinalAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2Z3, T . B chooses random exponents a1, . . . , a`, b

and sets the public parameters as g = g, u1 = ga1 , . . . , u` = ga` , h = gb, e(g, g)α = e(gαX2, g).
It sends these to A. When A requests a key for identity (ID1, . . . , IDj), B generates a semi-
functional key. It does this by choosing random exponents r, t, w, z, zj+1, . . . , z`, wj+1, . . . , w`
and setting:

K1 = gr(Z2Z3)zXt
3,K2 = gαX2(uID1

1 · · ·uIDj

j h)rXw
3 ,

Ej+1 = urj+1(Z2Z3)zj+1X
wj+1

3 , . . . , E` = ur`(Z2Z3)z`Xw`
3 .

A sends B two messages, M0 and M1, and a challenge identity, (ID∗1, . . . , ID
∗
j ). B sets

β ∈ {0, 1} randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)a1ID∗1+···ajID
∗
j +b, C2 = gsY2.

This sets zc = a1ID
∗
1 + · · ·+ ajID

∗
j + b. We note that the value of zc only matters modulo p2,

whereas u1 = ga1 , . . . , u` = ga` , and h = gb are elements of Gp1 , so when a1, . . . , a` and b are
chosen randomly modulo N , there is no correlation between the values of a1, . . . , a`, b modulo
p1 and the value zc = a1ID

∗
1 + · · ·+ ajID

∗
j + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext with message
Mβ. If T is a random element of GT , then this is a semi-functional ciphertext with a random
message. Hence, B can use the output of A to distinguish between these possibilities for T .

�

We have now proven the following theorem:

17



Theorem 22 If Assumptions 1, 2, and 3 hold, then our HIBE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lemmas that the
real security game is indistinguishable from GameFinal, in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker can attain no advantage in breaking
the HIBE system. �

C IBE in Prime Order Groups

Our construction essentially replaces each single group element in our composite order construc-
tion with a 3-tuple of group elements. This 3-tuple is inspired by a simplification of the Waters
dual encryption IBE system [19]. We prove security under 3 new static assumptions. We leave
it as an open problem to obtain security from the decisional Linear and d-BDH assumptions.
One approach would be to use more of the Waters system (with less simplification).

C.1 Construction

For our construction, we employ prime order groups G1, G2, GT such that there is an efficient
bilinear map e : G1 × G2 → GT but no efficient isomorphism between G1 and G2. We use
subscripts to clarify which elements are in G1 and which are in G2, for example, g1 ∈ G1.

Setup Our setup algorithm chooses groups G1, G2, GT as above. It chooses g1, u1, h1 ∈
G1, g2 ∈ G2 randomly. It sets u2 and h2 so that the discrete log of u2, h2 base g2 is equal
to the discrete log of u1, h1 base g1 respectively. It chooses a, α ∈ Zp randomly. It chooses
v2, v

′
2, f2 ∈ G2 randomly and sets τ ∈ Zp to satisfy f τ2 = v2(v′2)a. It publishes the public

parameters as:
{g1, u1, h1, g

a
1 , u

a
1, h

a
1, g

τ
1 , u

τ
1 , h

τ
1 , e(g1, g2)α}.

The master secret key is g2, α, v2, v′2, u2, h2, f2.

Encrypt(M, ID) The encryption algorithm randomly chooses s ∈ Zp and creates the cipher-
text as:

C0 = Me(g1, g2)αs, C1,1 = (uID1 h1)s, C1,2 = (uID1 h)as, C1,3 = (uID1 h1)−sτ ,

C2,1 = gs1, C2,2 = gas1 , C2,3 = gτs1 .

KeyGen(ID,MSK) The key generation algorithm chooses random values y, c1, c2 ∈ Zp. It
creates the key as:

K1,1 = gy2v
c1
2 ,K1,2 = (v′2)c1 ,K1,3 = f c12 ,

K2,1 = gα2 (uID2 h2)yvc22 ,K2,2 = (v′2)c2 ,K2,3 = f c22 .

Decryption If the ID’s of the ciphertext and key are equal, the decryption algorithm com-
putes the blinding factor as:

e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)
e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3K1,3)

.

18



C.2 Complexity Assumptions

We state the assumptions we will rely on in our security proof. These are non-standard as-
sumptions, but we emphasize that they are static.

Assumption 1 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let a, b, s ∈ Zp be chosen
randomly. Given

{f1, f
bs
1 , f

s
1 , f

a
1 , f

ab2

1 , f b1 , f
b2

1 , f
as
1 , f b

2s
1 , f b

3

1 , f
b3s
1 , T ∈ G1, f2, f

b
2 ∈ G2},

it should be hard to distinguish T = fasb
2

1 from random.

Assumption 2 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c, x ∈ Zp be chosen
randomly. Given

{f1, f
d
1 , f

d2

1 , f bx1 , fdbx1 , fd
2x

1 ∈ G1, f2, f
d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2},

it should be hard to distinguish T = f bc2 from random.

Assumption 3 Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c ∈ Zp be chosen
randomly. Given

{f1, f
a
1 , f

b
1 , f

c
1 ∈ G1, f2, f

a
2 , f

b
2 , f

c
2 ∈ G2, T ∈ GT },

it should be hard to distinguish T = e(f1, f2)abc from random.

C.3 Security

We first define semi-functional keys and ciphertexts.

Semi-functional Ciphertext We let f1, v
′
1 denote elements of G1 such that the discrete

log of v′1 base f1 is the same as the discrete log of v′2 base f2. We let t, zc denote random
exponents in Zp. A semi-functional ciphertext is created as follows: first, a normal ciphertext
C ′0, C

′
1,1, C

′
1,2, C

′
1,3, C

′
2,1, C

′
2,2, C

′
2,3 is created. Then, C0 is set to be C ′0, C1,1 = C ′1,1, C1,2 =

C ′1,2f
tzc
1 , C1,3 = C ′1,3(v′1)−tzc , C2,1 = C ′2,1, C2,2 = C ′2,2f

t
1, C2,3 = C ′2,3(v′1)−t.

Semi-functional Key A semi-functional key is created as follows: a normal key K ′1,1, K ′1,2,
K ′1,3, K ′2,1,K

′
2,2,K

′
2,3 is generated. Random exponents w, zk are chosen. Then we set: K1,1 =

K ′1,1f
−aw
2 ,K1,2 = K ′1,2f

w
2 ,K1,3 = K ′1,3, K2,1 = K ′2,1f

−awzk
2 ,K2,2 = K ′2,2f

wzk
2 ,K2,3 = K ′2,3.

We note that when a semi-functional key is paired with a normal ciphertext or a normal
key is paired with a semi-functional ciphertext, decryption still works. When a semi-functional
key is paired with a semi-functional ciphertext, the blinding factor is obscured by an additional
term: e(f1, f2)tw(zk−zc). (When zk = zc, decryption will still work.)

We will prove security through a hybrid argument over a sequence of games. GameReal is
the real security game. Game0 is like the real security game, except with a semi-functional
ciphertext. Gamek for k from 1 to q (where q is the number of queries by the attacker) is
like Game0, except that the first k requested keys are semi-functional and the rest are normal.
In GameFinal, the semi-functional encryption is of a random message instead of one of the
requested messages. We will rely on Assumptions 1, 2, 3 as defined in the subsection above.
We prove security through the following 3 lemmas.

19



Lemma 23 Suppose there exists an algorithm A such that GameRealAdvA−Game0AdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 1.

Proof. B is given

{f1, f
bs
1 , f

s
1 , f

a
1 , f

ab2

1 , f b1 , f
b2

1 , f
as
1 , f b

2s
1 , f b

3

1 , f
b3s
1 , T ∈ G1, f2, f

b
2 ∈ G2}.

It chooses random exponents α,A,B, yg, yu, yh, y′v and sets the parameters as:

g1 = f b
2

1 f
yg

1 , u1 = (f b
2

1 )Afyu
1 , h1 = (f b

2

1 )Bfyh
1 , ga1 , u

a
1, h

a
1,

f2 = f2, v2 = f b2 , v
′
2 = f

y′v
2 , τ = b+ ay′v.

Here, a is from the assumption and ga1 , u
a
1, h

a
1 can be computed from fa1 and fab

2

1 . We note that
B can also compute gτ1 , uτ1 , and hτ1 using f b

3

1 , f b2a1 , fa1 , and f b1 . It can also compute e(g1, g2)α

using f b
2

1 , f
b
2 , and f b

3

1 .
To construct a normal key for ID, B chooses random exponents c′1, c

′
2, y and sets f c12 =

f
c′1
2 (f b2)−y and f c22 = f

c′2
2 (f b2)−yAID+B−α. Then the key can be formed as:

K1,1 = f
ygy
2 (f b2)c

′
1 ,K1,2 = (f c12 )y

′
v ,K1,3 = f c12 ,

K2,1 = f
αyg

2 (f b2)c
′
2f

y(yuID+yh)
2 ,K2,2 = (f c22 )y

′
v ,K2,3 = f c22 .

To construct the challenge ciphertext for Mβ and ID∗, B sets s = s from the assumption.
Then C1,1 and C2,1 can be computed from fs1 and f b

2s
1 . Next,

C1,2 = TAID+B(fas1 )yID+yh , C2,2 = T (fas1 )yg .

We can create C2,3 as:
C2,3 = f b

3s
1 (f bs1 )ygT y

′
v(fas1 )ygy′v .

C1,3 can similarly be constructed using T y
′
v(AID+B). We note that A,B are information-

theoretically hidden from the attacker.
�

Lemma 24 Suppose there exists an algorithm A such that Gamek−1AdvA −GamekAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 2.

Proof. B is given {f1, f
d
1 , f

d2
1 , f bx1 , fdbx1 , fd

2x
1 ∈ G1, f2, f

d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}. It chooses

random exponents α, a,A,B, yu, yh, yv ∈ Zp. It sets the parameters as follows:

g1 = fd1 , u1 = (fd1 )Afyu
1 , h1 = (fd1 )Bfyh

1 ,

ga1 , u
a
1, h

a
1, g2 = fd2 , u2 = (fd2 )Afyu

2 , h2 = (fd2 )Bfyh
2 ,

v′2 = f b2 , v2 = fd2 f
−ba
2 fyv

2 , f2 = f2.

This sets τ = d− ba+ yv +ab = d+ yv, so the simulator B can also compute gτ1 , u
τ
1 , h

τ
1 and send

all of the public parameters to A.
To make normal keys for key queries < k, B can choose y, c1, c2 randomly and generate

the keys from the MSK. To make semi-functional keys for key queries > k, B can choose
y, c1, c2, w, zk randomly to generate the semi-functional key.

20



To make the challenge key k for ID, B chooses y′, c′2 ∈ Zp randomly and implicitly sets
y = −c+ y′, c1 = c, c2 = c(AID +B) + c′2. The key can then be formed as:

K1,1 = (fd2 )y
′
T−a(f c2)yv ,K1,2 = T,K1,3 = f c2 ,

K2,1 = gα2 T
−a(AID+B)(f b2)−ac

′
2(fd2 )y

′(AID+B)+c′2(f c2)yuID+yh+yv(AID+B)f
y′(yuID+yh)+c′2yv

2 ,

K2,2 = TAID+B(f b2)c
′
2 ,K2,3 = (f c2)AID+Bf

c′2
2 .

We note that this sets zk = AID +B.
At some point, A sends two messages, M0,M1, to B along with a challenge identity ID∗.

B chooses β ∈ {0, 1} randomly and generates a semi-functional ciphertext for Mβ and ID∗

as follows. B chooses a random exponent s′ and implicitly sets s = bx + s′, t = −d2x. The
ciphertext is formed as follows:

C0 = Mβe(fdbx1 , fd2 )e(g1, g2)αs
′
,

C1,1 = (fdbx1 )AID
∗+B(f bx1 )yuID∗+B(uID

∗
1 h1)s

′
,

C1,2 = (fdbx1 )a(AID
∗+B)(fd

2x
1 )−(AID∗+B)(uID

∗
1 h1)as

′
,

C1,3 = (fdbx1 )−yv(AID∗+B)(fd
2

1 )−s
′(AID∗+B)(fd1 )−yvs′(AID∗+B),

C2,1 = fdbx1 (fd1 )s
′
, C2,2 = (fdbx1 )a(fd1 )s

′a(fd
2x

1 )−1,

C2,3 = (fdbx1 )−yv(fd
2

1 )−s
′
(fd1 )−yvs′ .

We note that zc = AID∗+B. Since A and B are information-theoretically hidden from the
attacker, this will seem properly distributed to the attacker. If T = f bc2 , then B has properly
simulated Gamek−1, and if T is random, then B has properly simulated Gamek. �

Lemma 25 Suppose there exists an algorithm A such that GameqAdvA−GameFinalAdvA = ε.
Then we can build an algorithm B with advantage ε in breaking Assumption 3.

Proof. B is given

{f1, f
d
1 , f

d2

1 , f bx1 , fdbx1 , fd
2x

1 ∈ G1, f2, f
d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}.

It will implicitly set α = ab, s = c, and a = a. B chooses random exponents yg, yu, yv, yv, y′v. It
sets the parameters as:

g1 = f
yg

1 , u1 = fyu
1 , h1 = fyh

1 , v2 = fyv
2 , v′2 = f

y′v
2 , g2 = f

yg

2

and sets τ = yv + ay′v. From this, it can calculate the rest of the public parameters as:

ga1 = (fa1 )yg , ua1 = (fa1 )yu , ha1 = (fa1 )yh , gτ1 = (ga1)y
′
vgyv

1 ,

uτ1 = (ua1)y
′
vuyv

1 , h
τ
1 = (ha1)y

′
vhyv

1 , e(g1, g2)α = e(fa1 , f
b
2)y

2
g .

To make semi-functional keys, B must cancel the term gα2 in K2,1 since this is unknown. To
do this, the simulator randomly chooses w, c1, c2, y, γ and implicitly sets wzk = b+ γ.

To make the challenge ciphertext for Mβ and ID∗, B sets s = c and chooses random values
δ, δ′. It implicitly sets ca+ t = δ and ca(yuID∗ + yh) + tzc = δ′ and acyg + t = δ.

C0 = MβT,C1,1 = (f c1)yuID∗+yh , C1,2 = f δ
′

1 , C1,3 = (f c1)−yv(yuID∗+yh)f
−y′vδ′
1 ,

C2,1 = (f c1)yg , C2,2 = f δ1 , C2,3 = (f c1)−yvyg(f δ1 )−y
′
v .

�

21


