
Practical Private Set Intersection Protocols with
Linear Computational and Bandwidth Complexity∗

Emiliano De Cristofaro and Gene Tsudik

University of California, Irvine

Abstract. Increasing dependence on anytime-anywhere availability of data and the commensurately increasing fear
of losing privacy motivate the need for privacy-preserving techniques. One interesting and common problem occurs
when two parties need to privately compute an intersection of their respective sets of data. In doing so, one or both
parties must obtain the intersection (if one exists), while neither should learn anything about other set. Although
prior work has yielded a number of effective and elegant Private Set Intersection (PSI) techniques, the quest for
efficiency is still underway. This paper explores some PSI variations and constructs several secure protocols that
are appreciably more efficient than the state-of-the-art.

1 Introduction

In today’s increasingly electronic world, privacy is an elusive and precious commodity. There are many realistic mod-
ern scenarios where private data must be shared among mutually suspicious entities. Consider the following examples:

1. A government agency needs to make sure that employees of its industrial contractor have no criminal records.
Neither the agency nor the contractor are willing to disclose their respective data-sets (list of convicted felons and
employees, respectively) but both would like to know the intersection, if any.

2. Two national law enforcement bodies (e.g., USA’s FBI and UK’s MI5) want to compare their respective databases
of terrorist suspects. National privacy laws prevent them from revealing bulk data, however, by treaty, they are
allowed to share information on suspects of common interest.

3. Two real estate companies would like to identify customers (e.g., homeowners) who are double-dealing, i.e., have
signed exclusive contracts with both companies to assist them in selling their properties.

4. Federal tax authority wants to learn whether any suspected tax evaders have accounts with a certain foreign bank
and, if so, obtain their account records. The bank’s domicile forbids wholesale disclosure of account holders and
the tax authority clearly can not reveal its list of suspects.

5. Department of homeland security (DHS) wants to check its list of terrorist suspects against the passenger manifest
of a flight operated by a foreign airline. Neither party is willing to reveal its information, however, if there is a
(non-empty) intersection, DHS will not give the flight permission to land.

These example motivate the need for privacy-preserving set operations, in particular, set intersection protocols. Such
protocols are especially useful whenever one or both parties (who do not fully trust each other) must compute an
intersection of their respective sets (or some function thereof). As discussed in Section 4 below, prior work has yielded
a number of interesting techniques. As usually happens in applied cryptography, the next step (and the current quest)
is to improve efficiency. To this end, this paper’s main goal is to consider several flavors of Private Set Intersection
(PSI) and construct provably secure protocols that are more efficient than the state-of-the-art.

The rest of the paper is structured as follows. Section 2 discusses Private Set Intersection (PSI) with its several
different flavors. After summarizing our work in Section 3, we overview prior PSI techniques in Section 4. Then, we
present and evaluate our protocols in Section 5 and conclude in Section 6.

∗An earlier version of this paper appeared in the Proceedings of Financial Cryptography and Data Security 2010.

2 PSI Flavors

Generally speaking, Private Set Intersection (PSI) is a cryptographic protocol that involves two players, Alice and
Bob, each with a private set. Their goal is to compute the intersection of their respective sets, such that minimal
information is revealed in the process. In other words, Alice and Bob should learn the elements (if any) common to
both sets and nothing (or as little as possible) else. This can be a mutual process where, ideally, neither party has
any advantage over the other. Examples 1-3 above require mutual PSI. In a one-way version of PSI, Alice learns the
intersection the two sets, however, Bob learns (close to) nothing. Examples 4 and 5 correspond to one-way PSI.

Since mutual PSI can be easily obtained by two instantiations of one-way PSI (assuming that neither player aborts
the protocol prematurely), in the remainder of this paper we focus on the latter. Hereafter, the term PSI denotes the
one-way version and, instead of proverbial Alice and Bob, we use the terms client (C, i.e., the entity that learn the
intersection) and server (S) to refer to the protocol participants.

One natural PSI extension is what we call PSI with Data Transfer or PSI-DT. In it, one or both parties have data
associated with each element in the set, e.g., a database record. Data associated with each element in the intersection
must be transferred to the client. It is also easy to see that PSI-DT is quite appealing in terms of actual database (rather
than plain set) applications.

Another twist on PSI is the authorized version – APSI – where each element in the client set must be authorized
(signed) by some recognized and mutually trusted authority. This requirement could be applicable to Examples 2 and
4. In the former, one or both agencies might want to make sure that names of terrorist suspects held by its counterpart
are duly authorized by the country’s top judiciary. In example 4, the bank could demand that each suspected tax cheat
be pre-vetted by some international body, e.g., Interpol. In general, the main difference between PSI and APSI is that,
in the former, the inputs of one or both parties might be arbitrarily chosen, i.e., frivolous.

Clearly, other more interesting or more exotic variations are possible, e.g., the notion of group PSI with its many
types of possible outputs. However, we limit the scope of this paper to the PSI flavors described above.

3 Roadmap

In contrast to prior work, we do not start with constructing PSI protocols and piling on extra features later. Instead,
somewhat counter-intuitively, we begin with prior work on a specific type of protocols – called Privacy-preserving
Policy-based Information Transfer (PPIT) – that provide APSI-DT (one-way authorized private set intersection with
data transfer) for the case where one party (client) has a set of size one. PPIT matches a typical database query scenario
where client has a single keyword or a record identifier and server has a database.

We start by seeing how some previously-proposed PPIT protocols can be trivially extended into inefficient PSI
and APSI protocols, with and without data transfer. We then construct several efficient (and less trivial) provably
secure PSI and APSI protocols that incur linear computation and communication overhead. Our work makes several
contributions:

1. We evaluate and compare existing PSI and APSI protocols in terms of efficiency (computation and communication
overhead), security model (random oracle vs standard) and adversary type (honest-but-curious vs malicious).

2. We investigate whether APSI protocols can yield (efficient) PSI counterparts.
3. We present an APSI protocol and its PSI version. Both are appreciably more efficient that current state-of-the-art.
4. We construct another, even more efficient PSI protocol geared for scenarios where the server can perform some

pre-computation and/or the client is computationally weak.

4 Prior Work

This section overviews relevant prior results, which fall into several categories: (1) PSI protocols, (2) OPRF constructs,
and (3) APSI variations. We also note that most PSI variations can be realized via general secure multi-party tech-
niques. However, it is usually far more efficient to design special-purpose protocols. This is the direction we pursue in
this paper.

2

PSI Protocols. The work by Freedman, et al. (FNP) [15] obtained private set intersection by means of Oblivious
Polynomial Evaluation (OPE). The main idea is to represent of a set as a polynomial, and the elements of the set as
its roots. Specifically, a client C represents elements in its private set, C = (c1, · · · , cv), as the roots of a v-degree
polynomial over a ringR, i.e. f =

∏v
i=1(t−ci) =

∑k
i=0 αit

i. Then, assuming pkC is C’s public key of any additively
homomorphic cryptosystem (such as Paillier [23]), C encrypts the coefficients with pkC , and sends them to server S,
whose private set is S = (s1, · · · , sw). S evaluates f at each sj ∈ S homomorphically. Note that f(sj) = 0 if and
only if sj ∈ C∩S . Hence S, for each sj ∈ S = (s1, · · · , sw) returns uj = E(rjf(sj)+sj) toC (where rj is chosen at
random). If sj ∈ C ∩S then C learns sj upon decrypting. If sj /∈ C ∩S then uj decrypts to a random value. Therefore,
the number of server’s operations is related to the evaluation of client’s encrypted polynomial, with v coefficients,
on w points in S. Using Horner’s rule (and assuming Paillier encryption) this costs O(vw) of m-bit mod 2048-bit
exponentiations, where m is the number of bits needed for representing each entry. On the other hand, the number of
client operations is O(v + w), i.e., 1024-bit exponentiations mod 2048 bits. However, certain optimizations can be
applied to reduce the total number of server’s exponentiations to O(w log(log(v))). Such protocol is proved secure
against an Honest-but-Curious (HbC) adversary in the standard model, and can be extended for malicious adversaries
in the Random Oracle Model (ROM), with an increased cost.

Subsequently, the work by Kissner and Song (KS) [21] has proposed OPE-based protocols that apply to several set
operations (e.g., union, intersection, etc.) and may involve more than two players. [21] contributes constructions secure
in the standard model against HbC (with similar complexity to [15]) and also malicious adversaries. The latter incurs
into quadratic computation overhead, i.e., O(wv), and involves expensive zero-knowledge proofs. A more efficient
construction has been recently proposed in [10]. It reduced communication cost to O(wk2 log2(v)) and computation
to O(wvk log(v) + wk2 log2(v)), where k is the security parameter.

Protocols based on Oblivious Pseudo Random Functions. Other constructs rely on so-called Oblivious Pseudo-
Random Functions (OPRFs), introduced in [14]. An OPRF is a two-party protocol that securely computes a pseudo-
random function fk(·) on key k contributed by the sender and input x contributed by the receiver, such that the former
learns nothing from the interaction and the latter learns only the value fk(x).

OPRF-based PSI protocols work as follows: Server S holds a secret random key k. For each sj ∈ S (of size w),
S precomputes uj = fk(sj), and publishes (sends to client) the set U = {u1, · · · , uw}. Then, C and S engage in an
OPRF computation of fk(ci) for each ci ∈ C (of size v), such that S learns nothing about C (except the size) and C
learns fk(ci). Finally, C learns that ci ∈ C ∩ S if and only if fk(ci) ∈ U .

The idea of using OPRFs for PSI protocols is due to Hazay and Lindell [17]. Their protocol is secure in the
standard model in the presence of a malicious server and an HbC client. It has been since improved by Jarecki and
Liu [19], who proposed a protocol secure in the standard model against both malicious parties, based on the Decisional
q-Diffie-Hellman Inversion assumption, in the Common Reference String (CRS) model, Encryption operations are
performed using an additively homomorphic encryption scheme, such as the Camenisch-Shoup (CS) [7]. As pointed
out in [19], this solution can be further optimized, leading to the recent work by Belenkiy, et al. [1]. In fact, the OPRF
construction could work in groups with a 160-bit prime order, instead of the more expensive composite order groups.
Assuming such improved construction, [19] incurs the following computational complexity: S needs to performO(w)
PRF evaluations, specifically O(w) modular exponentiations of m-bit exponents mod n2—where m is the number
of bits needed to represent each entry and n2 is typically 2048 bits. C needs to compute O(v) CS encryptions—i.e.,
O(v) m-bit exponentiations mod 2048 bits, plus O(v) 1024-bit exponentiations mod 1024 bits. Finally, S computes
online O(v) CS decryptions—i.e., O(v) 1024-bit exponentiations mod 2048 bits. As discussed in [19], complexity in
the malicious model grows by a factor of 2.

Finally, [20] leverages a similar concept—Unpredictable Functions (UPFs). A specific UPF, fk(x) = (H(x))k, is
used as a basis for two-party computation (in ROM), with S contributing the key k and C the argument x. C picks a
random exponent α and sends y = (H(x))α to S, that replies with z = yk, so that C recovers fk(x) = z1/α. Note
that random exponents, given that the hash functions are carefully chosen, can be taken from a subgroup (e.g., they can
be 160-bits long). Similarly to OPRF-based solutions, the UPF can then be used to implement secure computation of
Adaptive Set Intersection, under the One-More-Gap-DH assumption in ROM [2]. We note that this solution is similar
to prior techniques in [18] and [13]. The computational complexity of the UPF-based PSI (in presence of honest-but-

3

curious adversaries) amounts to O(w + v) exponentiations with short exponents at server’s side and O(v) at client’s
side.

APSI Protocols. Recently, a new PSI-related concept was introduced, called Privacy-preserving Policy-based Infor-
mation Transfer (PPIT) [12]. It is targeted for scenarios where a client holding an authorization (i.e., a signature by
a trusted authority) on some identifier needs to retrieve information matching that identifier from a server, such that:
(1) the client only gets the information it is entitled to, and (2) the server knows that the client is duly authorized to
obtain information but does not learn what information is retrieved. Besides requiring the client to be authorized, PPIT
is focused on the situation where the client holds a single identifier, i..e, PPIT offers APSI where Alice (client) has a
set of size one. [12] describes three PPIT protocols, based respectively on: RSA [24], Schnorr [25], and Identity-based
Encryption (IBE) [4]. In this paper, we only discuss RSA-PPIT since it serves as a starting point for our paper. In RSA-
PPIT, client’s authorizations are essentially RSA signatures on a set of record identifiers. As shown in [12], it is easy
to extend PPIT to support the case of the client holding multiple authorizations and thus obtain a full-blown APSI pro-
tocol. The result is also secure in ROM for honest-but-curious parties. However, the complexity (both communication
and computation) becomes quadratic. We will review such construction in Section 5.3.

Other related constructs. Another recent result [6] has addressed a problem similar to PPIT, by means of an IBE-
based technique inspired by Public-Key Encryption with Keyword Search (PEKS) [3]. It enhances PEKS by introduc-
ing a Committed Blind Anonymous IBE scheme. In this scheme, the client privately obtains trapdoors from the CA, not
revealing anything about its inputs (unlike PPIT). Nevertheless, the client commits to the inputs, so that the CA can
later ask the client to prove statements on them. Although this scheme does not require the Random Oracle Model, its
efficiency is much lower than that of PPIT. First, whereas IBE-PPIT uses Boneh-Franklin IBE [4], the underlying IBE
scheme is a modification of Boyen-Waters (BW) IBE [5] which is less time and space efficient. The server has to com-
pute O(w) BW encryptions (each requiring 6 exponentiations and a representation of 6 group elements). Furthermore,
the client has to test each of the O(w) PEKS against its O(v) trapdoors, hence performing O(vw) BW decryptions
(each requiring 5 bilinear maps).

Finally, Camenisch and Zaverucha [8] introduced the notion of Certified Sets. This construct allows a trusted third
party to ensure that all protocol inputs are valid and bound to each protocol participant. The proposed protocol builds
upon oblivious polynomial evaluation and achieves asymptotic computation (quadratic) and communication overhead
similar to that of FNP [15] and KS [21].

5 Towards Efficient PSI and APSI Protocols

In this section, we explore the design of efficient PSI and APSI. Before proceeding to the actual protocols, we provide
some definitions and assumptions.

5.1 Preliminaries
Recall that PSI involves two parties: client and server.
Definition 1. PSI consists of two algorithms: {Setup, Interaction}. Setup: a process wherein all global/public
parameters are selected. Interaction: a protocol between client and server that results in the client obtaining the
intersection of two sets.

APSI involves three parties: client, server and (off-line) CA.
Definition 2. APSI is a tuple of three algorithms: {Setup,Authorize, Interaction}. Setup: a process wherein all
global/public parameters are selected. Authorize : a protocol between client and CA resulting in client committing
to its input set and CA issuing authorizations (signatures), one for each element of the set. Interaction: a protocol
between client and server that results in the client obtaining the intersection of two sets.

The following assumptions are made throughout. In APSI, we assume that CA does not behave maliciously. Also,
server is honest-but-curious, however, client might not have authorizations for all elements in its set. Finally, in PSI we
assume that both client and server are honest-but-curious, leaving modified constructions and proofs in the malicious
model as part of future work.

4

Table 1. Notation
a← A variable a is chosen uniformly at random from set A

τ security parameter
n, e, d RSA modulus, public and private exponents

g group generator; exact group depends on context
p, q large primes, where q = k(p− 1) for some integer k
H() cryptographic hash function, codomain depends on context
H ′() cryptographic hash function H ′ : {0, 1}∗ → {0, 1}τ
C,S client’s and server’s sets, respectively
v, w sizes of C and S, respectively

i ∈ [1, v], j ∈ [1, w] indices of elements of C and S, respectively
ci, sj i-th and j-th elements of C and S, respectively

hci, hsj H(ci) and H(sj), respectively
Rc:i, Rs:j i-th and j-th random value generated by client and server, respectively

5.2 Security Properties

We now informally describe security requirements for PSI and APSI.
Correctness. A PSI scheme is correct if, at the end of Interaction, client outputs the exact (possibly empty) inter-
section of the two respective sets.
Server Privacy. Informally, a PSI scheme is server-private if the client learns no information (except the upper bound
on size) about the subset of elements on the server that are NOT in the intersection of their respective sets.
Client Privacy. Informally, client privacy (in either PSI or APSI) means that no information is leaked about client’s
set elements to a malicious server, except the upper bound on the client’s set size.
Client Unlinkability (optional). Informally, client unlinkability means that a malicious server cannot tell if any two
instances of Interaction are related, i.e., executed on the same inputs by the client.
Server Unlinkability (optional). Informally, server unlinkability means that a malicious client cannot tell if any two
instances of Interaction are related, i.e., executed on the same inputs by the server.
For APSI, the Correctness and Server Privacy requirements are amended as follows:
Correctness (APSI). An APSI scheme is correct if, at the end of Interaction, client outputs the exact (possibly
empty) intersection of the two respective sets and each element in that intersection has been previously authorized by
CA via Authorize.
Server Privacy (APSI). Informally, an APSI scheme is server-private if the client learns no information (except the
upper bound on size) about the subset of elements on the server that are NOT in the intersection of their respective sets
(where client’s set contains only authorizations obtained via Authorize).

5.3 Baseline: APSI from RSA-PPIT

The starting point for our design is an APSI protocol derived from RSA-PPIT [12]. This protocol is only sketched
out in [12]; since our new protocols are loosely based on it, we specify it in Fig.1. Actually, the protocol in [12]
is APSI-DT; however, for ease of illustration we omit the data transfer component at this point. Also, all PSI and
APSI protocols in this paper include only the Interaction component; Setup and Authorize (if applicable) are both
intuitive and trivial. Our notation is reflected in Table 1. It is easy to see that this protocol is correct, since: for any
(σi, ci) held by the client and sj held by the server, if: (1) σi is a genuine CA’s signature on ci, and (2) ci = sj (hence,
hci = hsj):

Kc:i = (Z)Rc:i = geRs· Rc:i

Ks:i,j = (µi)
eRs · (hsj)−2Rs = (σ2

i · gRc:i)eRs · (hsj)−2Rs = hc2Rs
i · geRs· Rc:i · hs−2Rs

j = geRs· Rc:i

We point out that the protocol in Fig.1 incurs in quadratic computation overhead by the server and quadratic commu-
nication.
It is possible to reduce the number of on-line exponentiations on the server to O(v) by precomputing all values
(hsj)−2Rs in Step 3. Nonetheless, the number of multiplications needed to compute all Ks:i,j would still remain
quadratic, i.e., O(vw), as would the communication overhead.

5

– Common input: n, g, e,H(), H ′()
– H() is a Full-Domain Hash H : {0, 1}∗ → Z∗n, g generates QRn
– Client’s input: C = {(hci, σ1), · · · , (hcv, σv)}, where hci = H(ci) and (σi)

e = hci mod n
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sJ)

1. Client:
– ∀i, Rc:i ← Zn/4,
– ∀i, µi = σ2

i · gRc:i mod n

2. Client - Server: {µ1, .., µv}
3. Server:

– Rs ← Zn/4 and Z = geRs mod n
– ∀i,∀j, compute: Ks:i,j = (µi)

eRs · (hsj)−2Rs mod n, and ti,j = H ′(Ks:i,j)

4. Server - Client: Z, {t1,1, .., tv,w}
5. Client:

– ∀i,Kc:i = (Z)Rc:i mod n, and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1,1, .., tv,w}

Fig. 1. APSI Protocol derived from RSA-PPIT

5.4 APSI with Linear Costs

Although the trivial realization of APSI obtained from RSA-PPIT is relatively inefficient, we now show how to use it
to derive an efficient protocol, shown in Fig.2.

– Common input: n, g, e,H(), H ′()
– H() is a Full-Domain Hash H : {0, 1}∗ → Z∗n, g generates QRn
– Client’s input: C = {(hci, σ1), · · · , (hcv, σv)}, where: hci = H(ci) and (σi)

e = hci mod n
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– PCH =

Qv
i=1 hci and PCH∗ =

Qv
i=1(σi) =

Qv
i=1(hci

d)
– Rc ← Zn/4 and X = (PCH∗)2 · (gRc)
– ∀i, PCH∗i = PCH∗/σi, and Rc:i ← Zn/4, yi = (PCH∗i)

2 · (gRc:i)

2. Client - Server: X, {y1, .., yv}
3. Server:

– Rs ← Z∗n and Z = geRs mod n
– ∀ j, compute: Ks:j = (Xe/hsj

2)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′i = (yi)

eRs

4. Server - Client: Z, {y′1, ..., y′v}, {t1, .., tw}
5. Client:

– ∀i,Kc:i = y′i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 2. APSI Protocol with linear complexity

This protocol incurs linear computation (for both parties) and communication complexity. Specifically, the client
performs O(v) exponentiations and the server – O(v+w). Communication is dominated by server’s reply in Step 4 –
O(v+w). To see that the protocol is correct, observe that, for any (σi, ci) held by the client and sj held by the server,
if: (1) σi is a genuine CA’s signature on ci, and (2) ci = sj , and so hci = hsj , we obtain:

Ks:j = (Xe/hsj
2)Rs = [(PCH∗2 · gRc)e/hsj

2]Rs = (PCH2/hsj
2 · geRc)Rs = (PCHi)

2Rs · geRcRs

Kc:i = y′i · ZRc · Z−Rc:i = (PCH∗i)
2eRs · gRc:ieRs · geRsRc · g−eRsRc:i = (PCHi)

2Rs · geRcRs

6

Note that: (PCH∗)e =
∏v
i=1(σ

e
i) = PCH and: (PCH∗i)

e = PCHi .

We claim that the APSI Protocol in Fig. 2 is a: (1) Server-Private (APSI), (2) Client-Private, (3) Client-Unlinkable,
and (4) Server-Unlinkable APSI. (See Appendix B.1).

5.5 Deriving Efficient PSI

We now convert the above APSI protocol into a PSI variant, shown in Fig.3. In doing so, the main change is the
obviated need for the RSA setting. Instead, the protocol operates in Zp where p is a large prime and q is a large divisor
of p− 1. This change makes the protocol more efficient, especially, because of smaller (|q|-size) exponents. Nonethe-
less, the basic complexity remains the same: linear communication overhead – O(v + w), and linear computation –
O(v + w) for the server and O(v) for the client. However, we note that, in Step 3b, the server can precompute all
values of the form: (hsj)−Rs . Thus, the cost of computing all Ks:j values can be reduced to O(w) multiplications
(from O(w) exponentiations). In fact, the same optimization applies to the protocol in Fig.2.

– Common input: p, q, g,H(), H ′(), where q|p− 1 but q2 does not divide p− 1
– g generates a subgroup in Z∗p of order q, H : {0, 1}∗ → Z∗q
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– PCH =

Qv
i=1 hci

– Rc ← Z∗q and X = PCH · gRc

– ∀i, PCHi = PCH/hci, and Rc:i ← Z∗q , yi = PCHi · gRc:i

2. Client - Server: X, {y1, .., yv}
3. Server:

– Rs ← Z∗q and Z = gRs

– ∀ j, compute: Ks:j = (X/hsj)
Rs , and tj = H ′(Ks:j)

– ∀ i, compute: y′i = (yi)
Rs

4. Server - Client: Z, {y′1, ..., y′v}, {t1, .., tw}
5. Client:

– ∀i,Kc:i = y′i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 3. PSI Protocol with linear complexity

To see that the protocol is correct, observe that, for any ci held by the client and sj held by the server, if ci = sj ,
and so hci = hsj , we obtain:

Ks:j = (X/hsj)
Rs = [(PCH · gRc)/hsj]

Rs = (PCHi)
Rs · geRcRs

Kc:i = y′i · ZRc · Z−Rc:i = (PCHi)
Rs · gRc:iRs · gRsRc · g−RsRc:i = (PCHi)

Rs · geRcRs

We show that the resulting protocol in Fig. 4 is a: (1) Server-Private, (2) Client-Private, (3) Client-Unlinkable PSI,
and (4) Server-Unlinkable PSI (see Appendix B.2).

Note that the our work-in-progress proofs against fully malicious players for protocols in Figures 2 and 3 seem
to depend on the product of hashes, i.e., the PCH structure. However, for HbC adversaries these protocols can be
described in a simplified version reported in Appendix C.1 and C.2, for the sake of completeness.

7

5.6 More Efficient PSI

Although efficient in principle, the PSI protocol in Fig.3 is sub-optimal for application scenarios where the client is a
resource-poor device, e.g., a PDA or a cell-phone. In other words, O(v) exponentiations might still represent a fairly
heavy burden. Also, if the server’s set is very large, overhead incurred by O(w) modular multiplications might be
substantial.

To this end, we present an even more efficient PSI protocol (see Fig. 4) where the client does not perform any
modular exponentiations on-line. Instead, it only needs O(v) on-line modular multiplications (Step 7). Also, server’s
on-line computation overhead is reduced to O(v) exponentiations in Step 5. Server precomputation in Step 1 amounts
to w exponentiations – RSA signatures. Client precomputation in Step 2 involves O(v) multiplications, since, as is
well-known that, e can be a small integer.

– Common input: n, e,H(), H ′()
– H() is a Full-Domain Hash H : {0, 1}∗ → Z∗n
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: d,S = {hs1, · · · , hsw}, where: hsj = H(sj)

OFF-LINE:

1. Server:
– ∀j, compute: Ks:j = (hsj)

d mod n and tj = H ′(Ks:j)
2. Client:

– ∀ i, compute: Rc:i ← Z∗n and yi = hci · (Rc:i)e mod n

ON-LINE:

3. Client - Server: {y1, .., yv}
4. Server:

– ∀ i, compute: y′i = (yi)
d mod n

5. Server - Client: {y′1, ..., y′v}, {t1, .., tw}
6. Client:

– ∀i, compute: Kc:i = y′i/Rc:i and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 4. Blind RSA-based PSI Protocol with linear complexity

The main idea behind this protocol comes from the Ogata and Kurosawa’s adaptive Oblivious Keyword Search [22].
However, we adapt it for the PSI scenario: instead of encrypting a string of 0’s the server reveals the key as the hash
of the signature for all elements in her set. We show that the resulting protocol in Fig. 4 is a: (1) Server-Private, (2)
Client-Private, and (3) Client-Unlinkable PSI (see Appendix B.3).

Although this protocol uses the RSA setting, RSA parameters are initialized a priori by the server. This is in
contrast to the protocol in Fig.2 where the CA sets up RSA parameters. To see that the present protocol is correct,
consider that: Ks:j = (hsj)d in Step 1, and, in Step 6:

Kc:i = y′i/Rc:i = (hci · (Rc:i)e)d/Rc:i = (hci)
d =⇒ Kc:i = Ks:j iff hci = hsj

Drawbacks: although very efficient, this PSI protocol has some issues. First, it is unclear how to convert it into an
APSI version. Second, if precomputation is somehow impossible, its performance becomes worse than that of the PSI
protocol in Fig.3, since the latter uses much shorter exponents at the server side. Privacy features of this protocol also
differ from others discussed above. In particular, it lacks server unlinkability. (Recall that this feature is relevant only
if the protocol is run multiple times.) We note that, in Step 1 the server computes tags of the form tj = H ′(hsj)d.
Consequently, running the protocol twice allows the client to observe any and all changes in the server’s set.

8

There are several ways of patching the protocol to provide this missing feature. One is for the server to select a
new set of RSA parameters for each protocol instance. This would be a time-consuming extra step at the start of the
protocol; albeit, with precomputation, no extra on-line work would be required from the server. On the other hand,
the client would need to be informed of the new RSA public key (e, n) before Step 2, which means that, at the very
least (using e = 3), v multiplications in Step 2 would have to be done on-line. Also, two additional initial messages
would be necessary: one from the client – to “wake up” the server, and the other – from the server to the client bearing
the new RSA public key and (perhaps) {t1, .., tw}, thus saving space in the last message. Another simple way of
providing server unlinkability is to change the hash function H() for the server each protocol instance. If we assume
that the client and server maintain either a common protocol counter (monotonically increasing and non-wrapping) or
sufficiently synchronized clocks, it is easy to select/index a distinct hash function based on such unique and common
values. One advantage of this approach is that we no longer need the two extra initial messages.

5.7 From PSI (APSI) to PSI-DT (APSI-DT)

It is easy to add data transfer functionality to the protocols in Fig. 1, 2, 3 and 4, and provide APSI-DT and PSI-
DT. Following the approach outlined in [12], we assume that an additional secure cryptographic hash function H ′′ :
{0, 1}∗ → {0, 1}τ is chosen during setup. In all aforementioned protocols, we then use H ′′ to derive a symmetric
key for a CPA-secure symmetric cipher, such as AES [11] used in the appropriate operation mode. For every j, server
computes ks:j = H ′′(Ks:j) and encrypts associated data using a distinct key ks:j . For its part, the client, for every
i, computes kc:i = H ′′(Kc:i) and decrypts ciphertexts corresponding to the matching tag. (Note that ks:j = kc:i iff
sj = ci and so tj = ti). As long as the underlying encryption scheme is semantically secure, this extension does not
affect the security or privacy arguments for any protocol discussed thus far.

5.8 Evaluation

We now highlight the differences between existing PSI techniques and protocols proposed in this paper. We focus on
performance in terms of server and client computation and communication complexities. We use w and v to denote
the number of elements in the server’s and client’s sets, respectively. Let m be the number of bits needed to represent
each element. We count only the number of online operations. The results are summarized in Table 2 and compared
choosing parameters that achieve similar degrees of security. The Table also includes communication overhead, for
completeness.

Table 2. Performance Comparison of PSI and APSI protocols.

Protocol Model Adv Commun. Server Prec Server Ops Client Ops Mod Bits
APSI [6] Std Mal O(w) - O(w) encrs in [5] O(vw) decrs in [5]

APSI Fig.1 ROM HbC O(vw) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024-bit exps 1024
O(vw) mults

APSI Fig.2 ROM HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024-bit exps 1024

PSI [15] Std HbC O(v+w) - O(vw)m-bit exps O(v + w) 1024-bit exps 2048
PSI [19] Std HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024 mod 1024-bit 1024/

mod 1024 exps mod 2048 exps m-bit mod 2048-bit exps 2048
PSI [20] ROM HbC O(v+w) O(w) 160-bit exps O(v) 160-bit exps O(v) 160-bit exps 1024
PSI Fig.3 ROM HbC O(v+w) O(w) 160-bit exps O(v) 160-bit exps O(v) 160-bit exps 1024

O(w) mults
PSI Fig.4 ROM HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v)1024-bit mults 1024

We remark that: (1), each encryption in [5] (i.e., Boyen-Waters’ IBE) requires 6 exponentiations and a representation
of 6 group elements, and each decryption requires 5 bilinear map operations, and (2), the complexity for the PSI
solution against Malicious model in [19] and [20] grows by a factor of 2. All protocols proposed in this paper have been

9

implemented in ANSI C (using the well-known OpenSSL library) and tested on a Dell Precision PC on a 2.33GHz CPU
and 8GB RAM. The prototype’s code is available upon request. To confirm the claimed efficiency of our protocols, we
compared on-line run-times of our protocols to those of prior work. In case a solution provides security both against
HbC and malicious adversary, we implement the former. We omit run-times for operations that can be precomputed.
We also do not measure all prior techniques discussed in Section 4, whereas we pick only the three that offer the best
performance: the APSI adaptation of RSA-PPIT [12] in Fig.1, and PSI’s from [19] and [20]. We remark that since
the efficiency of [19] is influenced by records’ length, we assume a conservative stance and we choose items to be
160-bits long, similar to the output of a hash function.

Table 3. On-line computation overhead (in ms)

Player Server Client Server Client Server Client
Set size 5,000 1 1 5,000 5,000 5,000

APSI Fig.1 20 5 12,710 24,407 99,118 24,159
APSI Fig.2 23 10 12,228 25,769 12,037 25,959

PSI [19] 5 24 27,654 118,676 27,862 118,947
PSI [20] 0 1 2,029 4,227 2,108 4,249
PSI Fig.3 19 1 2,145 5,502 2,072 5,344
PSI Fig.4 1 0 4,651 1,407 4,662 1,422

Measured online computation overhead for the tested protocols is reflected in Table 3. As the results illustrate,
among APSI protocols, the one in Fig.2 performs noticeably better than its PPIT-based counterpart from [12] when
both server and client have sets of size 5, 000 (and this advantage accelerates for larger set sizes). Looking at PSI
protocols, the toss-up is between protocols in Fig. 3 and 4; the choice of one or the other depends on whether client
or server overhead is more important. If client is a weak device, the blind-RSA-based protocol in Fig.4 is a better bet.
Otherwise, if server burden must be minimized, we opt for the protocol of Fig.3.

6 Conclusions

In this paper, we proposed efficient protocols for plain and authorized private set intersection (PSI and APSI). Pro-
posed protocols offer appreciably better efficiency than prior results. The choice between them depends on whether
there is a need for client authorization and/or server unlinkability, as well as on server’s ability to engage in precom-
putation. Our efficiency claims are supported by experiments with prototype implementations. Future work includes
analysis of our protocols against malicious parties, as well as extensions to a group setting.

Acknowledgements. This research was supported by the U.S. Intelligence Advanced Research Projects Activity
(IARPA) under grant #: FA8750-09-2-0071. We would also like to thank Nikita Borisov, Stanislaw Jarecki, Xiaomin
Liu, Markulf Kohlweiss, and Jihye Kim for the helpful discussion in the early stage of protocol design.

References

1. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable Proofs and Delegatable
Anonymous Credentials. In CRYPTO’09, 2009.

2. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and the security of
Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, 2008.

3. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key Encryption with Keyword Search. In Eurocrypt’04,
pages 506–522, 2004.

4. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. SIAM Journal of Computing, 32(3):586–615,
2003.

10

5. X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In Crypto’06, pages
290–307, 2006.

6. J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and Anonymous Identity-Based Encryption and Authorised Private
Searches on Public Key Encrypted Data. In PKC’09, pages 196–214, 2009.

7. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In CRYPTO’03, pages
126–144, 2003.

8. J. Camenisch and G. Zaverucha. Private intersection of certified sets. In Financial Cryptography and Data Security’09, 2009.
9. D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology: Proceedings of Crypto, volume 82, pages

199–203, 1983.
10. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient Robust Private Set Intersection. In ACNS’09, pages

125–142. Springer, 2009.
11. J. Daeman and V. Rijmen. AES proposal: Rijndael. 1999.
12. E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Privacy-Preserving Policy-Based Information Transfer. In PETS’09, pages

164–183, 2009.
13. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In PODS’03, pages

211–222, 2003.
14. M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom functions. In TCC’05, pages

303–324, 2005.
15. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In Eurocrypt’04, pages 1–19, 2004.
16. D. Freeman. Pairing-based identification schemes. Arxiv preprint cs/0509056, 2005.
17. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security against malicious and covert

adversaries. In TCC’08, pages 155–175, 2008.
18. B. Huberman, M. Franklin, and T. Hogg. Enhancing privacy and trust in electronic communities. In ACM Conference on

Electronic Commerce, pages 78–86, 1999.
19. S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation

of Set Intersection. In TCC, pages 577–594, 2009.
20. S. Jarecki and X. Liu. Fast Secure Computation of Set Intersection. Manuscript available from the authors, 2009.
21. L. Kissner and D. Song. Privacy-preserving set operations. In CRYPTO’05, pages 241–257, 2005.
22. W. Ogata and K. Kurosawa. Oblivious keyword search. Journal of Complexity, 20(2-3):356–371, 2004.
23. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt’99, pages 223–238, 1999.
24. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communica-

tions of the ACM, 21(2):120–126, 1978.
25. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.

APPENDIX

A Cryptographic Assumptions

RSA assumption. Let RSASetup(τ) be an algorithm that outputs so-called RSA instances, i.e., pairs (N, e) where N = pq,
e is a small prime that satisfies gcd(e, φ(N)) = 1, and p, q are randomly generated τ -bit primes. We say that the RSA problem is
(τ, t)-hard on τ -bit RSA moduli, if for every algorithm A that runs in time t we have:

Pr[(N, e)← RSASetup(τ), α← Z∗N : A(n, e, α) = β s.t. βe = α (mod N)] ≤ τ

One-More-Gap-DH assumption. Informally, the One-More-Gap-DH assumption [16] indicates that the DH problem is hard
even if the adversary is given access to a DH oracle, while DDH problem is easy. Formally, let (G, q, g) ← KeyGen(τ) the
Key-Generation algorithm outputting a multiplicative group of order q and assume z ← Z∗q . We say that the One-More-Gap-DH
problem is (τ, t)-hard if for every algorithm A that runs in time t we have

Pr
h
{(gi, (gi)z)}i=1,···v+1 ← ADHz(·),DDH(·,·,·,·)(g1, · · · , gch)

i
≤ τ

where A made at most v queries to the DHz(·) oracle.

11

One-More-RSA assumption. Informally, the One-More-RSA assumption [2] indicates that the RSA problem is hard even if
the adversary is given access to an RSA oracle. Formally, let (N, e, d)← KeyGen(τ) the RSA Key-Generation algorithm, and let
αj ← Z∗N (for j = 1, · · · , ch), we say that the One-More-RSA problem is (τ, t)-hard on τ -bit RSA moduli, if for every algorithm
A that runs in time t we have

Pr
h
{(αi, (αi)d)}i=1,···v+1 ← A(·)d mod N

(N, e, τ, α1, · · · , αch)
i
≤ τ

where A made at most v queries to the RSA oracle (·)d mod N .

B Proofs

B.1 Proofs of APSI protocol in Fig. 2

We now consider security and privacy properties of the protocol in Fig. 2.
Client and Sever Unlinkability. We argue that the use of different randomness across multiple interactions (Rs at the server and
Rc and Rci’s at client) yields server and client unlinkability. We defer the formal proofs of unlinkability to a future extension of
the paper.
Client Privacy. Recall that APSI is client-private if no information is leaked to the server about client’s private inputs. In the
following description, we useU ≈S V to denote that distributionU is statistically close to V in the sense that the difference between
these distributions is at mostO(2τ). It is easy to show that, given that, in Step 1, the client selects all values uniformly and at random,
i.e., [Rc, {Rc:1, ..., Rc:v}] ← Zn/4, g generates QRn, and Zn/4 ≈S Zp′q′ , it holds that {X = (PCH∗)2 · gRc} ≈S QRn and
{yi = (PCH∗i)

2 · gRc:i} ≈ QRn, for all i = 1, . . . , v.
Server privacy. To claim server privacy, we need to show that no efficient A has a non-negligible advantage over 1/2 against a
challenger Ch in the following game. Our proof works in the random oracle model (ROM) under the RSA assumption (presented
in Appendix A).

1. Ch executes (PK,SK)← Setup(1τ) and gives PK to A.
2. A invokes Authorize on ci of its choice and obtains the corresponding signature σi.
3. A generates elements c∗0, c∗1 different from every ci mentioned above.
4. A participates in the protocol as the client with messages X∗ and y∗0 , y∗1 .
5. Ch picks one record pair by selecting a random bit b and executes the server’s part of the interaction on public input PK and

private input (c∗b) with message (Z, y′, t) as described in the protocol.
6. A outputs b′ and wins if b = b′.

Let HQuery be an event that A ever queried H ′ on input K∗, where K∗ is defined (as the combination of message X∗ sent by A
and message Z sent by Ch), as follows:K∗ = (X∗)eRs · (h∗)−2Rs mod N , where Z = (g)eRs and h∗ = H(c∗). In other words,
HQuery is an event thatA computes (and invoked hash function H ′ on input of) the key-material K∗ for the challenging protocol.

Unless HQuery happens, A’s view of interaction with Ch on bit b = 0 is indistinguishable from A’s view of the interaction
with Ch on bit b = 1.

Since the distribution of Z = geRs is independent from (cb), it reveals no information about which cb is related in the protocol.
Also, since y∗0 , y∗1 are not related to H(c0)

d nor H(c1)
d, y′ = (yb)

eRs reveals no information about which cb is related in the
protocol (y′ is similar to an RSA encryption). Finally, assuming that H ′ is modeled as a random oracle, the distribution with b = 0
is indistinguishable from that with b = 1, unless A computes k∗ = H ′(K∗), in the random oracle model, by querying H ′, i.e.,
HQuery happens.

If event HQuery happens with non-negligible probability, then A can be used to violate the RSA assumption.
We construct a reduction algorithm called RCh using a modified challenger algorithm. Given the RSA challenge (N, e, α),

RCh simulates signatures on each ci by assigning H(ci) as σei mod N for some random value σi. This way, RCh can present
the authorization on ci as σi. RCh embeds α to each H query, by setting H(ci) = α(ai)

e for random ai ∈ ZN . Note that, given
(H(ci))

d for any ci, the simulator can extract αd = (H(ci))
d/ai.

RCh responds toA and computes (H(ci))
d (for some ci) as follows: OnA’s input message X∗, y∗0 , y∗1 , RCh picks a random

m ← Zn/4, computes Z = g(1+em), and sends Z and y′ = (yb)
1+em. We see that g1+em = ge(d+m). On the HQuery event,

RCh gets K∗ = (X∗)e(d+m)(h∗)−2(d+m) from A. Since RCh knows X∗, h∗, e, and m, it can compute (h∗)d.

12

B.2 Proofs of PSI protocol in Fig. 3

We now consider privacy properties of the protocol in Figure 3.
Client and Sever Unlinkability. We argue that the use of different randomness across multiple interactions (Rs at the server and
Rc and Rci’s at client) yields server and client unlinkability. We defer the formal proofs of unlinkability to a future extension of
the paper.
Client Privacy. Recall that a PSI protocol is client-private if no information is leaked to the server about client’s private inputs.

It is easy to show that, given that, in Step 1, the client selects all values uniformly and at random, i.e., [Rc, {Rc:1, ..., Rc:v}]←
Z∗q , it holds that {X = PCH · gRc} and {yi = PCHi · gRc:i} (for all i = 1, . . . , v) are uniformly random in Z∗q , hence no
information is leaked about client’s inputs.
Server Privacy. We present a concise construction of an ideal (adaptive) world SIMc from a honest-but-curious real-world client
C∗, and show that the views ofC∗ in the real game with the real world server and in the interaction with SIMc are indistinguishable,
under the One-More Gap Diffie-Hellman assumption (presented in Appendix A) in the random oracle model.

First, SIMc picks a random Rs ∈ Z∗q and prepares a set of random values T = {t1, · · · , tw}. SIMc models the hash function
H and H ′ as random oracles. A query to H is recorded as (q, h = H(q)), a query to H ′ is recorded as (k, h′ = H ′(k)), where
q and h′ are random values. We describe below the details on SIMc’s answers to H ′ queries. Finally, SIMc creates two empty sets
A,B.

During the interaction, SIMc stores the incoming value X , and, for every yi ∈ {y1, · · · , yv} received from C∗, SIMc answers
with y′i = (yi)

Rs .
We now describe how SIMc answers to queries to H ′. On query k to H ′, SIMc checks if it had recorded a value h, s.t.

k = (X/h)Rs :

– If not, SIMc answers a random value h′ and record (k, h′) as mentioned above.
– If yes, SIMc can recover the q s.t. h = H(q) and k = (X/h)Rs

Then, SIMc checks if it had been previously queried on the value k:
• If yes, check if q ∈ A.
∗ If q /∈ A, it means that C∗ queried q to H (which returned h), and also made an independent query k to H ′ s.t.
k = (X/h)Rs . In this case SIMc aborts the protocol. However, it easy to see that this happens with negligible
probability.

∗ If q ∈ A, SIMc returns the value h′ previously stored for k.
• If not, this means that SIMc is learning one of C∗’s outputs. Hence, A = A ∪ {q}.

Then, SIMc checks if |A| > v.
∗ If |A| <= v, then SIMc checks if q ∈ C ∩ S by playing the role of the client with the real world server.

· If q ∈ C ∩ S, SIMc answers to the query on k with a value tj ∈ T\B, records the answer (k, tj) and sets
B = B ∪ {tj}.
· If q /∈ C ∩ S, SIMc answers with a random value h′ and records the answer.

∗ If |A| > v, then a reduction Red that breaks the One-More-Gap-DH assumption can be constructed.

The reduction Red can be constructed as follows. Red answers to C∗’s queries to H with the inverse of the One-More-DH
challenges (1/g1, · · · , 1/gch). During interaction, on C∗’s messages yi ∈ {y1, · · · , yv},Red answers y′i = (yi)

z by querying the
DHz oracle. When SIMc (on query k to H ′) checks if there exists a recorded value h, s.t. k = (X/h)z , Red queries the DLz(·, ·)
oracle on (X/h, k), hence the need for the Gap DH assumption. Finally, if the case depicted above happens, it means that at the
end of the protocol the set B will contain at least (v + 1) elements (where v is the number of One-More-DH challenges), that are
in the form (h = 1/g, k = (X/h)z). Thus, it is possible to extract at least v + 1 pairs (g, gz) thus breaking the One-More-DH
assumption in the weaker assumption that the Red is given access to an additional DHz oracle query to query X and obtain Xz .
How to improve the above proof to avoid the additional oracle query is an ongoing research effort.

As a result, we have shown that the views of C∗ in the real game with the real world server and in the interaction with SIMc

are indistinguishable.

B.3 Proofs of PSI Protocol in Fig. 4

We now consider privacy properties of the protocol in Fig. 4.
Client Unlinkability. We argue that the use of different randomness across multiple interactions (Rci’s at client) yields client
unlinkability. We defer the formal proofs of unlinkability to a future extension of the paper.
Client Privacy. We claim it is easy to show that client’s inputs to the protocol are statistically close to random distribution. We
defer formal proof for future extension of the paper, as it directly derives from the security argument of blind RSA signatures [9].

13

Server Privacy. We present a concise construction of an ideal (adaptive) world SIMc from a honest-but-curious real-world client
C∗, and show that the views ofC∗ in the real game with the real world server and in the interaction with SIMc are indistinguishable,
under the One-More-RSA assumption (presented in Appendix A) in the random oracle model.

First, SIMc runs (N, e, d) ← RSA-Keygen(τ) and gives (N, e) to C∗. SIMc models the hash function H and H ′ as random
oracles. A query to H is recorded as (q, h = H(q)), a query to H ′ as (k, h′ = H ′(k)), where q and h′ are random values. Finally,
SIMc creates two empty sets A,B. During interaction, SIMc publishes the set T = {t1, · · · , tw}, where tj is taken at random.
Also, for every yi ∈ {y1, · · · , yv} received from C∗ (recall that yi = H(ci) · (Rc:i)e), SIMc answers according to the protocol
with (yi)

d.
We now describe how SIMc answers to queries to H ′. On query k to H ′, SIMc checks whether it has recorded a value h s.t.

h = ke (i.e., hd = k).
If !∃h s.t. h = ke, SIMc answers a random value h′ and record (k, h′) as mentioned above.
If ∃h s.t. h = ke, SIMc can recover the q s.t. h = H(q) and h = ke. Then, it checks whether it has previously been queried on the
value k.

If ∃k s.t. k has already been queried, then SIMc checks whether q ∈ A. If q /∈ A, it means that C∗ queried q to H (which
returned h), and also made an independent query k to H ′ s.t. h = ke. In this case SIMc aborts the protocol. However, it easy to see
that this happens with negligible probability. Instead, if q ∈ A, SIMc returns the value h′ previously stored for k.

If !∃k s.t. k has already been queried, this means that SIMc is learning one of C∗’s outputs. Hence, A = A ∪ {q}. Then, SIMc

checks if |A| > v.
If |A| <= v, then SIMc checks if q ∈ C ∩ S by playing the role of the client with the real world server. If q ∈ C ∩ S, SIMc

answers to the query on k with a value tj ∈ T\B, records the answer (k, tj) and sets B = B ∪ {tj}. If q /∈ C ∩ S, SIMc answers
with a random value h′ and records the answer.

If |A| > v, then we can construct a reduction Red breaking the One-More-RSA assumption.
The reduction Red can be constructed as follows. Red answers to C∗’s queries to H with RSA challenges (α1, · · · , αch). During
interaction, on C∗’s messages yi ∈ {y1, · · · , yv}, Red answers (yi)

d by querying the RSA Oracle. Finally, if the case depicted
above happens, it means that at the end of the protocol the set B will contain at least (v + 1) elements, where v is the number of
RSA challenges, thus breaking the One-More-RSA assumption. As a result, we have shown that the views of C∗ in the real game
with the real world server and in the interaction with SIMc are indistinguishable.

We remark that the structure of the above proof resembles the one of UPF-based protocol, secure under the One-More-Gap-DH
assumption from [20], as well as the notion of adaptiveness for PSI. Adaptiveness allows the client to adaptively make queries,
i.e., she does not need to specify all her inputs at once. In fact, the signing algorithm of unique signature is indeed an unpredictable
function, hence its hash in the random oracle model yields a PRF.

14

C Simplified Descriptions

C.1 APSI in Fig. 2

– Common input: n, g, e,H(), H ′()
– H() is a Full-Domain Hash H : {0, 1}∗ → Z∗n, g generates QRn
– Client’s input: C = {(hci, σ1), · · · , (hcv, σv)}, where: (σi)

e = hci mod n, and hci =
H(ci)

– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– Rc ← Zn/4 and X = gRc

– ∀i, Rc:i ← Zn/4, yi = σi
2 · gRc:i

2. Client - Server: X, {y1, .., yv}
3. Server:

– Rs ← Z∗q and Z = geRs

– ∀ j, compute: Ks:j = (Xe · hsj2)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′i = (yi)

eRs

4. Server - Client: Z, {y′1, ..., y′v}, {t1, .., tw}
5. Client:

– ∀i,Kc:i = y′i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 5. Simplified APSI Protocol with linear complexity

C.2 PSI in Fig. 3

– Common input: p, q, g,H(), H ′(), where q|p− 1 but q2 does not divide p− 1
– g generates a subgroup in Z∗p of order q, H : {0, 1}∗ → Z∗q
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– Rc ← Z∗q and X = gRc

– ∀i, Rc:i ← Z∗q , yi = hci · gRc:i

2. Client - Server: X, {y1, .., yv}
3. Server:

– Rs ← Z∗q and Z = gRs

– ∀ j, compute: Ks:j = (X · hsj)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′i = (yi)

Rs

4. Server - Client: Z, {y′1, ..., y′v}, {t1, .., tw}
5. Client:

– ∀i,Kc:i = y′i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 6. Simplified PSI Protocol with linear complexity

15

