
Efficient Statistical Asynchronous Verifiable Secret

Sharing and Multiparty Computation with Optimal

Resilience

Arpita Patra ∗ Ashish Choudhary † C. Pandu Rangan ‡

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai India 600036
Email:{ arpitapatra 10, partho 31 }@yahoo.co.in, prangan55@yahoo.com

Abstract

In this paper, we present a new statistical asynchronous verifiable secret sharing (AVSS) protocol
with optimal resilience; i.e. with n = 3t+1, where n is the total number of participating parties and t
is the maximum number of parties that can be under the control of a computationally unbounded active
adversary At. Our protocol privately communicates O((ℓn3 + n4κ)κ) bits and A-casts O(n3 log(n))
bits to simultaneously share ℓ ≥ 1 elements from a finite field F, where κ is the error parameter.
Here A-cast is an asynchronous broadcast primitive, which allows a party to send some information
identically to all other parties.

There are only two known statistical AVSS protocols with n = 3t+1 (i.e., with optimal resilience)
reported in [11] and [31]. The AVSS protocol of [11] requires a private communication of O(n9κ4) bits
and A-cast of O(n9κ2 log(n)) bits to share a single element from F. Thus our AVSS protocol shows
a significant improvement in communication complexity over the AVSS of [11]. The AVSS protocol
of [31] requires a private communication of O((ℓn3 + n4)κ) bits and A-cast of O((ℓn3 + n4)κ) bits to
share ℓ ≥ 1 elements. However, the shared element(s) may be NULL 6∈ F. Thus our AVSS is better
than the AVSS of [31] due to the following reasons:

1. The A-cast communication of our AVSS is independent of the number of secrets i.e. ℓ;

2. Our AVSS makes sure that the shared value(s) always belong to F.

Using our AVSS, we design a new primitive called Asynchronous Complete Secret Sharing (ACSS)
which is an essential building block of asynchronous multiparty computation (AMPC). Using our
ACSS scheme, we design a statistical AMPC with optimal resilience; i.e., with n = 3t + 1, that
privately communicates O(n5κ) bits per multiplication gate. This significantly improves the only
known statistical AMPC of [8] with n = 3t + 1, which privately communicates Ω(n11κ4) bits and
A-cast Ω(n11κ2 log(n)) bits per multiplication gate. Both our ACSS and AVSS employs several new
techniques, which are of independent interest.

Keywords: Asynchronous Networks, AVSS, Optimal Resilience, AMPC.

1 Introduction

A Verifiable Secret Sharing (VSS) [13] protocol is carried out among a set of n parties, say P =
{P1, . . . , Pn}, where every two parties are directly connected by a secure channel and t out of the n
parties can be under the influence of a computationally unbounded Byzantine (active) adversary, de-
noted as At. The Byzantine adversary At completely dictates the parties under its control and can
force them to deviate from a protocol, in any arbitrary manner. Any VSS scheme consists of a pair of
protocols (Sh, Rec). Protocol Sh allows a special party in P, called dealer (denoted as D), to share a
secret s ∈ F (an element from a finite field F) among all the parties in a way that allow for a unique
reconstruction of s by every body using protocol Rec. Moreover, if D is honest, then the secrecy of s
from At should be preserved till the end of Sh.

∗Financial Support from Microsoft Research India Acknowledged
†Financial Support from Infosys Technology India Acknowledged
‡Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Compu-

tation, Sponsored by Department of Information Technology, Govt. of India

1

VSS is one of the fundamental building blocks for many secure distributed computing tasks, such as
multiparty computation (MPC) [7, 35, 2, 15, 25, 3, 4, 5], Byzantine Agreement (BA) [20, 11, 29, 1, 31],
etc. Over the past three decades, the problem has been studied in different settings and computational
models (see [24, 7, 12, 19, 35, 15, 16, 23, 21, 28]). The VSS problem has been studied extensively over
synchronous networks, which assumes that there is a global clock and the delay of any message in the
network is bounded. However, VSS in asynchronous network has got comparatively less attention, due
to its inherent hardness. As asynchronous networks model real life networks like Internet more precisely,
it is important to investigate fundamental problem like VSS in asynchronous network.

1.1 Definitions

Asynchronous Networks: In an asynchronous network, the communication channels have arbitrary,
yet finite delay (i.e the messages are guaranteed to reach eventually). To model this, At is given the
power to schedule the delivery of all messages in the network. However, At can not access the messages
communicated between honest parties. Here the inherent difficulty in designing a protocol comes from
the fact that when a party does not receive an expected message then he cannot decide whether the
sender is corrupted (and did not send the message at all) or the message is just delayed. So it is impossible
to consider the values sent by all uncorrupted parties and hence the values of up to t (potentially honest)
parties may get ignored, as waiting for them could turn out to be endless. Due to this the protocols in
asynchronous network are generally involved in nature and require new set of primitives. For an excellent
introduction to asynchronous protocols, see [10].

We now give the definition of primitives which are used in this paper. For all these primitives, we
assume a finite field F = GF (2κ), where κ is the error parameter. Also without loss of generality, we
assume n = poly(κ). Thus each field element can be represented by O(κ) bits.

Definition 1 (Statistical Asynchronous Weak Secret Sharing (AWSS) [31]) Let (Sh, Rec) be
a pair of protocols in which a dealer D ∈ P shares a secret s ∈ F using Sh. We say that (Sh, Rec) is a
t-resilient statistically secure AWSS scheme if all the following hold:

• Termination: With probability at least 1 − 2−Ω(κ), all the following holds:

1. If D is honest then each honest party will eventually terminate protocol Sh.

2. If some honest party has terminated protocol Sh, then irrespective of the behavior of D, each
honest party will eventually terminate Sh.

3. If all the honest parties have terminated Sh and if all the honest parties invoke protocol Rec,
then each honest party will eventually terminate Rec.

• Correctness: With probability at least 1 − 2−Ω(κ), all the following holds:

1. If D is honest then each honest party upon completing Rec outputs s.

2. If D is corrupted and some honest party has terminated Sh, then there exists a fixed s ∈
F∪{NULL}, such that each honest party upon completing Rec, will output either s or NULL.

• Secrecy: If D is honest and no honest party has begun Rec, then At has no information about s.

Definition 2 (Statistical Asynchronous Verifiable Secret Sharing (AVSS) [6, 10]) It is same
as AWSS except that Correctness 2 property is strengthened as follows:

• Correctness 2: If D is corrupted and some honest party has terminated Sh, then there exists a
fixed s ∈ F, such that each honest party upon completing Rec, will output only s.

Definition 3 (t-sharing [3, 5]) A value s ∈ F is said to be t-shared among the parties in P if there
exists a random degree-t polynomial f(x) over F, with f(0) = s such that each (honest) party Pi ∈ P
holds his share si = f(i) of secret s. The vector of shares of s corresponding to the honest parties is
called t-sharing of s and is denoted by [s]t.

2

Typically, VSS is used as a tool for generating t-sharing of secret. That is, at the end of sharing phase,
each honest party holds his share of the secret such that shares of all honest parties constitute distinct
points of a degree-t polynomial. For example, see [7, 28]. On the other hand, there do exists VSS scheme
which do not generate t-sharing of secret. They only ensure that a unique secret is shared (committed)
which will be uniquely reconstructed during reconstruction phase. Such schemes are presented in [21, 30].
So we call a VSS scheme as Complete Secret Sharing (CSS) scheme if it generates t-sharing of secret.
More formally, we have the following definition:

Definition 4 (Statistical Asynchronous Complete Secret Sharing (ACSS)) The termination,
correctness and secrecy property of ACSS are same as in AVSS. In addition, ACSS requires the fol-
lowing completeness property to hold at the end of Sh with probability at least 1 − 2−Ω(κ):

• Completeness: at the end of Sh, there exists a random degree-t polynomial f(x) over F, with
f(0) = s such that each (honest) party Pi ∈ P holds his share si = f(i) of secret s. Moreover, if
D is honest, then s = s.

Remark 1 (AWSS, AVSS and ACSS with Private Reconstruction) The definitions of AWSS,
AVSS and ACSS as given above consider ”public reconstruction”, where all parties publicly reconstruct
the secret in Rec. A common variant of these definitions consider ”private reconstruction”, where only
some specific party, say Pα ∈ P, is allowed to reconstruct the secret in Rec. As per our requirement in
this paper, we present our AWSS and AVSS protocols with only private reconstruction. However, the
public reconstruction for these protocols can be obtained by doing slight modification.

In our protocols, we also use A-cast primitive, which is formally defined as follows:

Definition 5 (A-cast [11, 10]) It is an asynchronous broadcast primitive, which allows a special party
in P (called sender) to identically distribute a message among all parties in P. It was introduced and
elegantly implemented by Bracha [9] with n = 3t + 1. Let Π be an asynchronous protocol initiated by
a special party (called the sender), having input m (the message to be broadcast). We say that Π is a
t-resilient A-cast protocol if the following hold, for every possible At:

• Termination:

1. If the sender is honest and all the honest parties participate in the protocol, then each honest
party will eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any honest party terminates the protocol then
each honest party will eventually terminate the protocol.

• Correctness: If the honest parties terminate the protocol then they do so with a common output
m∗. Furthermore, if the sender is honest then m∗ = m.

The A-cast protocol of [9] requires a private communication of O(n2b) bits to A-cast a b bit message.

1.2 Existing Results for Statistical AVSS with Optimal Resilience

Statistical AVSS tolerating At is possible iff n ≥ 3t+1 [11]. Any statistical AVSS with n = 3t+1 is said
to have optimal resilience. The only known statistical AVSS with optimal resilience are due to [11] and
[31], which are used in designing Asynchronous Byzantine Agreement (ABA) schemes. In the following,
we summarize these two AVSS schemes.

1. The authors of [11] have presented a series of protocols for designing their AVSS scheme. They
first designed a tool called Information Checking Protocol (ICP) which is used as a black box
for another primitive Asynchronous Recoverable Sharing (A-RS). Subsequently, using A-RS, the
authors have designed an AWSS scheme, which is further used to design a variation of AWSS
called Two & Sum AWSS. Finally using their Two & Sum AWSS, an AVSS scheme was presented.
Pictorially, the route taken by AVSS scheme of [11] is as follows: ICP → A-RS → AWSS →
Two & Sum AWSS → AVSS. Since the AVSS scheme is designed on top of so many sub-protocols,
it becomes highly communication intensive as well as very much involved. The scheme requires a

3

private communication of O(n9κ4) bits and A-cast O(n9κ2 log(n)) bits to share a single element
from F. However, the AVSS scheme of [11] fails to generate t-sharing of the secret. That is, the
AVSS scheme of [11] is not an ACSS scheme and hence is not suitable for AMPC. More detailed
discussion on this point will appear in Section 9.

2. Pictorially, the authors in [31] used the following simpler route to design their AVSS scheme:
ICP → AWSS → AVSS. Moreover, the authors in [31] significantly improved each of the underlying
building blocks, namely ICP and AWSS, by employing new design approaches. The AVSS protocol
of [31] requires a private communication of O((ℓn3 + n4)κ) bits and A-cast of O((ℓn3 + n4)κ) bits
to share ℓ ≥ 1 elements. However, the AVSS scheme of [31] has the following shortcomings:

(a) The AVSS scheme of [31] is not an ACSS scheme and hence is not suitable for AMPC. More
detailed discussion on this point will appear in Section 9.

(b) In AVSS of [31], a corrupted D may choose secrets from F ∪ {NULL} instead of only F.

1.3 Our Contribution

We present a new statistical AVSS with optimal resilience by following the simple route of [31]. In the
following table, we compare the communication complexity of our AVSS with the AVSS of [11, 31]. The
table also shows the communication complexity (CC) after simulating A-cast using the protocol of [9].

Ref. CC in bits CC in bits using A-cast of [9] # Secrets

[11] Private– O(n9κ4) private– O(n9κ4 + n11κ2 log n) 1
A-cast– O(n9κ2 log(n))

[31] Private– O((ℓn3 + n4)κ) private– O((ℓn5 + n6)κ) ℓ
A-cast– O((ℓn3 + n4)κ)

This Private– O((ℓn3 + n4κ)κ) private– O((ℓn3 + n4κ)κ + n5 log n) ℓ
Article A-cast– O(n3 log(n))

As shown in the table, our AVSS attains significantly better communication complexity than the AVSS
of [11] and [31] for any value of ℓ. As mentioned in the previous section, the AVSS of [31] has a weaker
property than the AVSS of this article and [11]: A corrupted D may choose secrets from F ∪ {NULL}.
Such an AVSS is sufficient for designing ABA protocols. However, to be applicable for AMPC, we
require that AVSS should allow to share secret(s) only from F [8]. Our AVSS achieves this crucial
property at a lesser communication cost. Using our AVSS, we design a new ACSS scheme, which is an
essential component of asynchronous multiparty computation (AMPC) [8]. Though there exists CSS in
synchronous settings, our ACSS scheme is first of its kind in asynchronous settings with n = 3t + 1.
In fact, using our ACSS, we can design an efficient statistical AMPC with optimal resilience; i.e., with
n = 3t + 1, which privately communicates O(n5κ) bits per multiplication gate. This will be a significant
improvement over the only known statistical AMPC of [8] with n = 3t+1, which privately communicates
Ω(n11κ4) bits and A-cast Ω(n11κ2 log(n)) bits per multiplication gate.

In order to design AVSS, we first propose a new ICP which significantly improves the communication
complexity of the ICP of [31]. Using our ICP, we design an AWSS which is inspired by AWSS of [31].
Finally our new AWSS is used in designing our new AVSS protocol. The design approach of our AVSS
and ACSS are novel and first of their kind.

1.4 Organization of the Paper

For ease of presentation, we divide the paper into two parts. The first part, consisting of Section 2 upto
Section 8 deals with the design of our AVSS and ACSS scheme. The second part consisting of Section 9
and subsequent sections deals with the design of our AMPC protocol.

2 Information Checking Protocol and IC Signature

Information Checking Protocol (ICP) is a tool for authenticating messages in the presence of compu-
tationally unbounded At. The notion of ICP was first introduced by Rabin et.al [35, 34]. The ICP of
Rabin et. al. was also used as a tool by Canetti et. al. [11] for designing ABA with optimal resilience
(i.e n = 3t + 1). Here we present an ICP, called A-ICP(D, INT,P, S) in asynchronous settings.

4

As in [31], A-ICP is executed among three entities: the dealer D ∈ P, an intermediary INT ∈ P and
entire set P acting as verifiers. The dealer D hands a secret s to INT . At a later stage, INT is has
to hand over s to the verifiers in P and convince them that s is indeed the value which INT received
from D. We may also run A-ICP to concurrently work on multiple secrets, denoted by S containing
ℓ ≥ 1 secrets. So, instead of repeating multiple instances of ICP dealing with single secret, we can run a
single instance of our A-ICP dealing with multiple secrets concurrently, leading to significant reduction in
communication complexity. We use A-ICP in our AWSS scheme, where it is required to execute instances
of A-ICP dealing with multiple secrets concurrently.

For ℓ secrets, the A-ICP of [31] incurs a private communication of O((ℓ + n)κ) bits and A-cast of
O((ℓ + n)κ) bits. On the other hand, our A-ICP incurs only private communication of O((ℓ + nκ)κ) bits
(and no A-cast). As in [11, 31], our A-ICP is also structured into sequence of following three phases:

1. Generation Phase: This is initiated D. Here D hands over the secret S, containing ℓ elements
from F along with some authentication information to intermediary INT and some verification
information to individual verifiers in P.

2. Verification Phase: is carried out by INT and the set of verifiers P. Here INT decides whether
to continue or abort the protocol depending upon the prediction whether in Revelation Phase,
the secret S held by INT will be (eventually) accepted/will be considered as valid by the honest
verifier(s) in P. INT achieves this by setting a boolean variable Ver = 0/1, where Ver = 0 (resp.
1) implies abortion (resp. continuation) of the protocol. If Ver = 1, then the authentication
information, along with S, held by INT at the end of Verification Phase is called D’s IC
signature on S. We denote it by ICSig(D, INT,P, S).

3. Revelation Phase: is carried out by INT and the verifiers in P. Revelation Phase can be
presented in two flavors:

(a) Public Revelation of ICSig(D, INT,P, S) to all the verifiers in P where all the verifiers can
publicly verify whether INT indeed received IC signature on S from D.

(b) Pα-private-revelation of ICSig(D, INT,P, S): Here INT privately reveals ICSig(D, INT,P, S)
to only Pα. After doing some checking, if Pα believes that INT indeed received IC signature
on S from D then Pα sets Revealα = S. Otherwise Pα sets Revealα = NULL.

Protocol A-ICP satisfies the following properties (assuming Public Revelation in Revelation Phase):

1. If D and INT are honest, then S will be accepted in Revelation phase by each honest verifier.

2. If INT is honest and Ver =1, then S held by INT will be accepted in Revelation phase by each
honest verifier, except with probability 2−Ω(κ).

3. If D is honest, then during Revelation phase, with probability at least 1− 2−Ω(κ), every S′ 6= S
produced by a corrupted INT will be not be accepted by any honest verifier.

4. If D and INT are honest and INT has not started Revelation phase, then S will be information
theoretically secure.

For protocol A-ICP with Pα-private-revelation in Revelation Phase, the above properties are modified
by replacing ”every/any honest verifier” with ”honest Pα”.

Notice that unlike other asynchronous primitives (e.g. AWSS, AVSS), we do not concentrate on
defining termination property for A-ICP. The reason is that A-ICP will never be executed as a stand
alone application. Rather, A-ICP will act as a tool to design AWSS, which has its own termination
properties. This is in line with [11, 31], where ICP is defined without termination property and is used
as a tool in AWSS/AVSS protocol. In the sequel, we present protocol A-ICP. As in our of AWSS we
require only Pα-private-revelation of ICSig(D, INT,P, S), we present only that (though we have an
implementation for public revelation of ICSig(D, INT,P, S)).

5

Protocol A-ICP(D, INT,P, S)

Generation Phase: Gen(D, INT,P , S)

1. The dealer D, on having secret S = (s1, . . . , sℓ), selects a random ℓ + tκ degree polynomial f(x) whose lower
order ℓ coefficients are in S. D also picks nκ random non-zero elements from F, denoted by αi

1, . . . , α
i
κ, for

i = 1, . . . , n.

2. For i = 1, . . . , n, D sends f(x) to INT and the verification tags zi
1 = (αi

1, a
i
1), . . . , z

i
κ = (αi

κ, ai
κ) to party Pi,

where ai
j = f(αi

j), for j = 1, . . . , κ.

Verification Phase: Ver(D, INT,P , S)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets Ii and Ii of equal size and sends
Ii and zi

j for all j ∈ Ii to INT .

2. For every verifier Pi from which INT has received values, INT checks whether for every j ∈ Ii, f(αi
j)

?
= ai

j .

3. (a) If for at least 2t + 1 verifiers, the above condition is satisfied, then INT sets Ver = 1. If Ver = 1, then
the information held by INT is denoted by ICSig(D, INT,P , S).

(b) If for at least t + 1 verifiers, the above condition is not satisfied, then INT sets Ver = 0.

Revelation Phase: Reveal-Private(D, INT,P , S, Pα): Pα-private-revelation of ICSig(D, INT,P , S)

1. To party Pα, INT sends f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that j ∈ Ii.

3. Upon receiving the values from verifier Pi, party Pα checks whether for some j ∈ Ii, f(αi
j)

?
= ai

j .

(a) If for at least t + 1 verifiers the condition is satisfied, then Pα sets Revealα = S, where S is lower order ℓ
coefficients of f(x). In this case, we say that INT is ’successful’ in producing ICSig(D, INT,P , S) to
Pα.

(b) If for at least 2t + 1 verifiers the above condition is not satisfied, then Pα sets Revealα = NULL. In this
case, we say that INT ’fails’ in producing ICSig(D, INT,P , S) to Pα.

We now prove the properties of protocol A-ICP.

Lemma 1 If D, INT and Pα are honest, then S will be accepted by Pα.

Proof: If D is honest then he will honestly deliver f(x) to INT and its value at κ points to individual
verifiers. So eventually, the condition stated in step 3(a) of Verification Phase will be satisfied and
hence INT , who is honest in this case will set Ver = 1. Let V be the set of these 2t + 1 verifiers. The
set V will contain at least t + 1 honest verifiers. Let H be the set of honest verifiers in V. Now it is easy
to see that the condition stated in step 3(a) will be eventually satisfied, corresponding to the verifiers in
H. Hence Pα, who is honest in this case will eventually output Revealα = S at the end of Revelation
phase. 2

Lemma 2 If INT is honest and Ver =1, then S held by INT will be accepted in Reveal-Private by honest
Pα, except with probability 2−Ω(κ).

Proof: We have to consider the case when D is corrupted. Since INT is honest and Ver = 1 at the
end of Verification phase, INT has ensured that for at least 2t + 1 verifiers the condition specified
in step 2 of Verification phase has been satisfied. Let H be the set of honest verifiers among these
2t + 1 verifiers. Note that |H| ≥ t + 1. To prove the lemma, we prove that corresponding to each verifier
in H, the condition stated in step 3 of Reveal-Private will be satisfied with very high probability. Note
that corresponding to a verifier Pi in H, the condition stated in step 3 of Reveal-Private will fail if for
all j ∈ Ii, f(αi

j) 6= ai
j . This implies that (corrupted) D must have distributed f(x) (to INT) and zi

j (to

Pi) inconsistently for all j ∈ Ii and it so happens that Pi has partitioned {1, . . . , κ} into Ii and Ii such
that Ii contains only inconsistent tuples (zi

j ’s). Thus corresponding to a verifier Pi ∈ H, the probability
that the condition stated in step 3 of Reveal-Private fails is same as the probability of Pi selecting all
consistent (inconsistent) tuples in Ii (Ii), which is 1

(κ
κ/2)

≈ 2−Ω(κ). 2

Lemma 3 If D is honest, then in Reveal-Private, with probability 1 − 2−Ω(κ), every S′ 6= S produced by
a corrupted INT will be rejected by honest Pα.

Proof: It is easy to see that S′ 6= S produced by a corrupted INT will be accepted by an honest Pα, if
the condition stated in step 3 of Reveal-Private gets satisfied corresponding to at least one honest verifier

6

(for t corrupted verifiers, the condition may always satisfy). However, the condition will be satisfied
corresponding to an honest verifier Pi if INT can correctly guess a verification tag zj

i for at least one

j ∈ Ii, which he can do with probability 2−Ω(κ). 2

Lemma 4 If D and INT are honest and INT has not started Reveal-Private, then S is information
theoretically secure from At.

Proof: The adversary will know tκ points on f(x). Since f(x) is a polynomial of degree ℓ + tκ, S will
remain information theoretically secure. 2

Lemma 5 Protocol Gen, Ver and Reveal-Private privately communicate O((ℓ + nκ)κ) bits each.

Notation 1 (Notation for Using A-ICP) Recall that D and INT can be any party from P. In the
sequel we use the following convention: We say that:

1. ”Pi sends ICSig(Pi, Pj ,P, S) to Pj” to mean that Pi acting as dealer D executes Gen(Pi, Pj ,P, S);

2. ”Pi receives ICSig(Pj , Pi,P, S) from Pj” to mean that Pi as INT has successfully completed
Ver(Pj , Pi,P, S) with Ver = 1 with the help of the verifiers in P;

3. ”Pi reveals ICSig(Pj , Pi,P, S) to Pα” to mean Pi as INT executes Reveal-Private(Pj , Pi,P, S, Pα)
along with the participation of the verifiers in P;

4. ”Pα completes revelation ICSig(Pj , Pi,P, S) with Revealα = S ” to mean that Pα has successfully
completed Reveal-Private(Pj , Pi,P, S, Pα) with Revealα = S.

3 AWSS Scheme for Sharing a Single Secret

We now present an AWSS scheme called AWSS-SS with n = 3t + 1. AWSS-SS consists of two protocols
AWSS-SS-Share and AWSS-SS-Rec-Private. While AWSS-SS-Share allows D to share a single secret s
among P, AWSS-SS-Rec-Private enables private reconstruction of s or NULL by a specific party, say
Pα ∈ P. We call the private reconstruction as Pα-weak-private-reconstruction. In AWSS-SS-Share, a
corrupted D may commit to s = NULL instead of an element from F (the meaning of it will be clear in
the sequel).

Our AWSS-SS-Share is inspired by the sharing phase of AWSS-Single-Secret given in [31]. However,
instead of using the A-ICP of [31], we use our A-ICP in AWSS-SS-Share, which leads to better commu-
nication complexity. The high level idea of AWSS-SS-Share is as follows: we follow the general idea
of [7, 15, 23, 21] in synchronous settings for sharing the secret s with a degree-t symmetric bivariate
polynomial F (x, y), where each party Pi gets the univariate polynomial fi(x) = F (x, i). D first hands
over n points on fi(x) to Pi, with his IC signature on these values. Then D, in conjunction with all other
parties, perform a sequences of communications and computations. As a result of this, at the end of
the sharing phase, every honest party agrees on a set of 2t + 1 parties, called WCORE, such that every
party Pj ∈ WCORE is confirmed by a set of 2t+1 parties, called as OKSetPj . A party Pk ∈ OKSetPj

provides the confirmation to Pj , only when it possesses proper IC signature of D on fk(j) (jth point on
polynomial fk(x), which Pk is entitled to receive from D) as well as IC signature of Pj on the point fj(k)
(kth point on polynomial fj(x), which Pj is entitled to receive from D), such that fj(k) = fk(j) holds
(which should ideally hold due to the selection and distribution of symmetric bivariate polynomial). In
some sense, we may view these checkings as every Pj ∈ WCORE is attempting to commit to his received
(from D) polynomial fj(x) among the parties in OKSetPj (by giving his IC Signature on one point of
fj(x) to each party) and the parties in OKSetPj allowing him to do so after verifying that they have
got D’s IC signature on the same value of fj(x). We will refer this commitment as Pj ’s IC-Commitment
on fj(x) and hence on fj(0).

Achieving the agreement (among the honest parties) on WCORE and corresponding OKSets is a bit
tricky in asynchronous network. Even though the confirmations are A-casted by parties, parties may end
up with different versions of WCORE and OKSet’s while attempting to generate them locally, due to
the asynchronous nature of the network. We solve this problem by asking D to first construct WCORE
and OKSets after receiving confirmations and ask D to A-cast the same. After receiving WCORE and

7

OKSets from the A-cast of D, individual parties ensure the validity of (verifies) these sets by receiving
the same confirmations from the parties in the received OKSets. A similar approach was used in [1].

Protocol AWSS-SS(D,P, s)
AWSS-SS-Share(D,P , s)

Distribution: Code for D – Only D executes this code.

1. Select a random, symmetric bivariate polynomial F (x, y) over F of degree-t in x and y, such that
F (0, 0) = s. For i = 1, . . . , n, let fi(x) = F (x, i).

2. For i = 1, . . . , n, send ICSig(D,Pi,P , fi(j)) to Pi for each j = 1, . . . , n.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P , fi(j)) for each j = 1, . . . , n from D.

2. Check if (fi(1), . . . , fi(n)) defines degree-t polynomial. If yes then send ICSig(Pi, Pj ,P , fi(j)) to Pj for
all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P , fj(i)) is received from Pj and if fi(j) = fj(i), then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj = {Pi|D receives OK(Pi, Pj) from the A-cast of Pi}. When |OKPj | =
2t + 1, then Pj ’s IC-Commitment on fj(0) is over (or we may say that Pj is IC-committed to fj(0)) and
add Pj in WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for all Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s A-cast, such that |WCORE| = 2t+1
and |OKPj | = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After receiving all these OKs, accept
the WCORE and OKPj ’s received from D and terminate AWSS-SS-Share.

AWSS-SS-Rec-Private(D,P , s, Pα): Pα-weak-private-reconstruction of s:

Signature Revelation: Code for Pi

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal ICSig(D, Pi,P , fi(j)) and
ICSig(Pj, Pi,P , fj(i)) to Pα.

Local Computation: Code for Pα

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment, say fj(0) as follows:

(a) Construct a set V alidPj = ∅.

(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D, Pk,P , fk(j)) and ICSig(Pj, Pk,P , fj(k)) are completed with Revealα =
fk(j) and Revealα = fj(k); and

ii. fk(j) = fj(k).

(c) Wait until |V alidPj | = t + 1. Construct a polynomial fj(x) passing through the points (k, fj(k))
where Pk ∈ V alidPj . Associate fj(0) with Pj ∈ WCORE.

2. Wait for fj(0) to be reconstructed for every Pj in WCORE.

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie on a unique degree-t polynomial f0(x). If yes,
then set s = f0(0) and terminate AWSS-SS-Rec-Private. Else set s = NULL and terminate AWSS-SS-
Rec-Private.

In AWSS-SS-Rec-Private, the parties in WCORE and corresponding OKSet’s enables Pα to privately
reconstruct the secret. Precisely, Pj ’s IC-Commitment on fj(x) and hence on fj(0) is revealed to Pα by
reconstructing it with the help of the parties in OKSetPj , for every Pj ∈ WCORE. Then fj(0)’s are
used to interpolate the degree-t univariate polynomial (if possible) f0(x) = F (x, 0) and hence the secret
s = f0(0) = F (0, 0) that is committed by D during sharing phase. Since fj(x) is a degree-t polynomial,
any t + 1 points on it are enough to interpolate fj(x). The points on fj(x) are obtained by requesting
each party Pk in OKSetPj to reveal IC signature of D on fk(j) and IC signature of Pj on fj(k) such that
fj(k) = fk(j) holds. Asking Pk ∈ OKSetPj to reveal D’s signature ensures that when D is honest, then
even for a corrupted Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same as the one handed
over by D to Pj in sharing phase. This helps our AWSS protocol to satisfy Correctness 1 property of
AWSS. Now asking Pk in OKSetPj to reveal Pj ’s signature ensures that even if D is corrupted, for an
honest Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same as the one received by Pj from

8

D in the sharing phase. This ensure correctness 2 property. Summing up, when at least one of D and
Pj is honest, Pj ’s IC-Commitment on fj(x) and hence fj(0) is revealed properly. But when both D and

Pj are corrupted, Pj ’s IC-Commitment on fj(0) can be revealed as any fj(0) 6= fj(0). It is the later
property that makes our protocol to qualify as an AWSS protocol instead of AVSS.

Remark 2 (D’s Commitment in AWSS-SS-Share) We say that D is committed to a secret s ∈ F

in AWSS-SS-Share if there is a unique degree-t univariate polynomial f(x) such that f(0) = s and every
honest Pi in WCORE receives f(i) from D. Otherwise, we say that D is committed to NULL. An honest
D is always committed to s ∈ F, as in this case f(x) = f0(x) = F (x, 0) and f(i) = f0(i) = fi(0) = F (0, i)
where F (x, y) is the symmetric degree-t bivariate polynomial chosen by honest D. But AWSS-SS-Share

can not ensure that corrupted D also commits s ∈ F.

Notation 2 (Notation for Using AWSS-SS-Share) In subsequent sections, we will invoke AWSS-SS-

Share as AWSS-SS-Share(D,P, f(x)) to mean that D commits to f(x) in AWSS-SS-Share. Essentially here
D is asked to choose a symmetric bivariate polynomial F (x, y) of degree-t in x and y, where F (x, 0) =
f(x) holds. D then tries to give F (x, i) and hence F (0, i) = f(i) to party Pi. Similarly, AWSS-SS-

Rec-Private will be invoked as AWSS-SS-Rec-Private(D,P, f(x), Pα) for Pα-weak-private-reconstruction
of f(x). 2

The proof of the properties of AWSS-SS follows using similar arguments as in AWSS-Single-Secret [31].
However, for the sake of completeness we prove them here.

Lemma 6 AWSS-SS satisfies termination property of Definition 1.

Proof:

• Termination 1: When D is honest, then every honest Pj will eventually complete its IC-
Commitment on fj(0) with at least 2t + 1 honest parties in OKPj . Hence, D will eventually
include 2t + 1 parties in WCORE (of which at least t + 1 are honest) and A-cast the same. Now
by the property of A-cast, each honest party will eventually listen WCORE from the A-cast of D.
Finally, since honest D had included Pj in WCORE after listening the OK signals from the parties
in OKPj’s, each honest party will also listen them and will terminate AWSS-SS-Share.

• Termination 2: If an honest Pi has terminated AWSS-SS-Share, then he must have listened
WCORE and OKPj’s from the A-cast of D and verified their validity. By properties of A-cast,
each honest party will also listen the same and will eventually terminate AWSS-SS-Share.

• Termination 3: By Lemma 2, if Pi (acting as INT) is honest and Ver = 1 at the end of
Verification Phase, then IC signature produced by Pi during Reveal-Private will be accepted by
an honest Pα, except with probability 2−Ω(κ). Since for every Pj ∈ WCORE, |OKPj | = 2t + 1,
there are at least t + 1 honest parties in OKPj who will be present in V alidPj with very high
probability. Hence for every Pj ∈ WCORE, Pj ’s IC-Commitment will be reconstructed. Thus with
very high probability, an honest Pα will terminate AWSS-SS-Rec-Private after executing remaining
steps of [Local Computation]. 2

Lemma 7 AWSS-SS satisfies secrecy property of Definition 1.

proof: Follows from the secrecy of A-ICP and properties of symmetric bivariate polynomial of degree-t
in x and y. 2

Lemma 8 AWSS-SS satisfies correctness property of Definition 1.

Proof:

• Correctness 1: Here we have to consider the case when D is honest. We first prove that if D
is honest, then except with probability 2−Ω(κ), for each Pj ∈ WCORE, the value fj(0) which is
reconstructed by Pα, is same as fj(0) that was selected by D. From the property of A-ICP, for
an honest Pj ∈ WCORE, a corrupted Pk ∈ OKPj can produce Pj ’s valid signature on incorrect

fj(k) 6= fj(k) with negligible probability (see Lemma 3). Hence with very high probability fj(k) is

9

same as fj(k) for all Pk ∈ V alidPj . Thus the polynomial fj(x) reconstructed by Pα corresponding
to an honest Pj in WCORE is same as fj(x) that was selected by honest D. On the other hand,
for a corrupted Pj ∈ WCORE, a corrupted Pk ∈ OKPj can produce Pj ’s valid signature on any

fj(k) 6= fj(k) but Pk will fail to produce honest D’s signature on fk(j) = fj(k), with very high
probability. Hence Pk will not be included in V alidPj . Thus again the reconstructed polynomial

fj(x) corresponding to a corrupted Pj in WCORE is same as fj(x). So Pα will correctly reconstruct
f0(x) = F (x, 0) and hence the secret s = f0(0) with very high probability.

• Correctness 2: Here we have to consider the case, when D is corrupted. Since in AWSS-SS-
Share, every honest party agrees on WCORE and OKPj for Pj ∈ WCORE, a unique secret
s′ ∈ F∪{NULL} is defined by (at least t+1) honest parties in WCORE at the end of sharing phase.
The committed secret s′ is the constant term of the polynomial passing through points (j, fj(0))’s,
corresponding to honest Pj ’s in WCORE. If the points (j, fj(0)) corresponding to honest Pj ’s in
WCORE define a unique degree-t polynomial, say f0(x), then we say that D’s committed secret
is s′ = f0(0). Otherwise, we say that D’s committed secret is s′ = NULL. Whatever may be case,
we show that with very high probability, an honest Pα will either reconstruct s′ or NULL.

– We consider the first case when s′ = f0(0). This implies that the points (j, fj(0)) correspond-
ing to honest Pj ’s in WCORE define a unique degree-t polynomial f0(x). We now claim that

with very high probability, the value fj(0) (hence the polynomial fj(x)) corresponding to an
honest Pj ∈ WCORE, as reconstructed by Pα, is same as fj(x) that Pj received in sharing
phase. This claim follows from the argument given in Correctness 1. We next claim that
the value fj(0) (hence the polynomial fj(x)) corresponding to a corrupted Pj ∈ WCORE,
as reconstructed by Pα can be any value. This is because for a corrupted Pj in WCORE,

a corrupted Pk ∈ OKPj can produce a valid signature of Pj on any fj(k) as well as a valid

signature of D (who is corrupted as well) on fk(j). Also adversary can delay the messages
such that the values (along with the signatures) of all corrupted Pk ∈ OKPj are revealed to

Pα before the values of honest parties in OKPj . Thus the reconstructed polynomial fj(x)
can be any t-degree polynomial according to the choice of At. Now there are two possibili-
ties: if the points (j, fj(0)) corresponding to honest Pj ’s in WCORE, along with the points

(j, fj(0)) corresponding to corrupted Pj ’s in WCORE lie on f0(x), then s′ will be recon-
structed. Otherwise NULL will be reconstructed. Notice that since for all honest Pj ’s in

WCORE, fj(0) = fj(0), no other secret (other than s′) can be reconstructed with very high
probability.

– We next consider the second case when D’s committed secret is NULL. This implies that
the points (j, fj(0)) corresponding to honest Pj ’s in WCORE do not define a unique degree-t
polynomial. It is easy to see that in this case, irrespective of the behavior of the corrupted
parties NULL will be reconstructed. This is because the points fj(0) corresponding to each
honest Pj ∈ WCORE will be reconstructed correctly with very high probability. 2

Lemma 9 Protocol AWSS-SS-Share incurs a private communication of O(n3κ2) bits and A-cast of
O(n2 log(n)) bits. Protocol AWSS-SS-Rec-Private privately communicates O(n3κ2) bits.

Proof: In AWSS-SS-Share, there are O(n2) instances of A-ICP, each dealing with ℓ = 1 value. Moreover,
there are A-cast of O(n2) OK signals. In addition, there is A-cast of WCORE containing the identity
of 2t + 1 parties and OKSets corresponding to each party in WCORE, where each OKSet contains
the identity of 2t + 1 parties. Now the identity of a party can be represented by O(log(n)) bits. So in
total, AWSS-SS-Share incurs a private communication of O(n3κ2) bits and A-cast of O(n2 log(n)) bits. In
AWSS-SS-Rec-Private, there are O(n2) instances of private revelation of A-ICP, each dealing with ℓ = 1
value. This requires a private communication of O(n3κ2) bits.

Theorem 1 Protocols (AWSS-SS-Share, AWSS-SS-Rec-Private) constitutes a valid statistical AWSS scheme
with n = 3t + 1 with private reconstruction.

Proof: The proof follows from Lemma 6, Lemma 7 and Lemma 8.

10

4 AWSS Scheme for Sharing Multiple Secrets

We now extend AWSS-SS to AWSS-MS, which consists of protocols AWSS-MS-Share and AWSS-MS-
Rec-Private. Protocol AWSS-MS-Share allows D ∈ P to concurrently share a secret S = (s1 . . . sℓ),
containing ℓ elements. On the other hand, protocol AWSS-MS-Rec-Private allows a specific party Pα ∈ P
to reconstruct either S or NULL.

Notice that we could have executed protocol AWSS-SS-Share ℓ times parallely, each sharing individual
elements of S. However, from Lemma 9 this would incur a private communication of O(ℓn3κ2) bits and
A-cast of O(ℓn2 log(n)) bits. However, instead of sharing each individual element, AWSS-MS-Share shares
all elements of S concurrently, requiring a private communication of O((ℓn2 + n3κ)κ) bits and A-cast of
O(n2 log n) bits. Thus the private communication of AWSS-MS-Share is less than what would have been
required by ℓ parallel executions of AWSS-SS-Share. Moreover, the A-cast communication of AWSS-MS-
Share is independent of the number of secrets; i.e., ℓ. The properties of AWSS-MS will follow from the
properties of AWSS-SS in a straight forward manner.

Protocol AWSS-MS(D,P, S = (s1 . . . sℓ))
AWSS-MS-Share(D,P , S)

Distribution: Code for D – Only D executes this code.

1. Select ℓ random, symmetric bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) of degree-t in x and y over F,
such that for l = 1, . . . , ℓ, F l(0, 0) = sl.

2. For i = 1, . . . , n, send ICSig(D,Pi,P , (f1
i (j), . . . , f ℓ

i (j)) to Pi, for each j = 1, . . . , n. Here f l
i (x) =

F l(x, i), for l = 1, . . . , ℓ.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P , (f1
i (j), . . . , f ℓ

i (j)) for j = 1, . . . , n from D.

2. Check if (f l
i (1), . . . , f

l
i (n)) defines degree-t polynomial for every l = 1, . . . , ℓ. If yes then send

ICSig(Pi, Pj ,P , (f1
i (j), . . . , f ℓ

i (j))) to Pj for all j = 1, . . . , n.

3. If ICSig(Pj, Pi,P , (f1
j (i), . . . , f ℓ

j (i))) is received from Pj and if f l
j(i) = f l

i (j) for all l = 1, . . . , ℓ, then
A-cast OK(Pi, Pj).

[WCORE Construction] and [WCORE Verification & Agreement on WCORE] are same as in AWSS-SS-
Share.

AWSS-MS-Rec-Private(D,P , S, Pα): Pα-weak-private-reconstruction of S: This is very straight forward extension of

AWSS-SS-Rec-Private. Here either S = (s1, . . . , sℓ) or NULL (if corresponding to one secret NULL is reconstructed,
then overall NULL is reconstructed) is reconstructed.

Theorem 2 (AWSS-MS-Share, AWSS-MS-Rec-Private) constitutes a valid statistical AWSS scheme with
private reconstruction, which shares ℓ secrets. AWSS-MS-Share privately communicates O((ℓn2 + n3κ)κ)
bits and A-casts O(n2 log n) bits. AWSS-MS-Rec-Private privately communicates O((ℓn2 + n3κ)κ) bits.

Proof: In AWSS-MS-Share, n2 instances of A-ICP are executed. In addition, there are n2 A-cast of OK(*,
*) signals. So AWSS-MS-Share involves a private communication of O((ℓn2 + n3κ)κ) bits and A-casts
O(n2 log n) bits. 2

Remark 3 As in the case of AWSS-SS, a corrupted D may commit ℓ NULL values in AWSS-MS instead
of committing ℓ elements from F.

Notation 3 (Notation for Using AWSS-MS) As in AWSS-SS, we will invoke AWSS-MS-Share as
AWSS-MS-Share(D,P, (f1(x), . . . , f ℓ(x))) where D is asked to choose symmetric bivariate polynomi-
als F 1(x, y), . . . , F ℓ(x, y) such that F l(x, 0) = f l(x) holds for l = 1, . . . , ℓ. Similarly, AWSS-SS-Rec-

Private will be invoked as AWSS-SS-Rec-Private(D,P, (f1(x), . . . , f ℓ(x)), Pα) to enable Pα-weak-private-
reconstruction of (f1(x), . . . , f ℓ(x)). This may lead to the private reconstruction of either (f1(x), . . . , f ℓ(x))
or NULL.

5 AVSS Protocol for Sharing a Single Secret

We now present an AVSS scheme called AVSS-SS, consisting of sub-protocols AVSS-SS-Share and AVSS-
SS-Rec-Private. AVSS-SS-Share allows D to share a single secret from F. Notice that unlike AWSS-SS-

Share (presented in Section 3), AVSS-SS-Share ensures that a corrupted D always commits to a secret from

11

F. Protocol AVSS-SS-Rec-Private allows a specific party, say Pα, to privately reconstruct D’s committed
secret. We call the private reconstruction as Pα-private-reconstruction. While Pα-private-reconstruction
can always ensure that Pα reconstructs D’s committed secret with high probability, Pα-weak-private-
reconstruction (introduced in Section 3) could only ensure that Pα reconstructs either D’s committed
secret or NULL. Structurally, we divide AVSS-SS-Share into a sequence of following three phases. Each
of the phases will be eventually completed by every honest party when D is honest.

1. Commitment by D: Here D on having a secret s, commits the secret by transferring information
to individual parties and by executing several instances of AWSS-SS-Share protocol.

2. Verification of D’s commitment: Here the parties verify whether indeed D has committed a
secret from F.

3. Re-commitment by Individual Parties: If the parties are convinced in previous phase, then
they together re-commit D’s committed secret using instances of AWSS-SS-Share protocol.

While first two phases of AVSS-SS-Share are enough to ensure that D has committed a secret from F,
the sole purpose of third phase is to enable robust reconstruction of D’s committed secret in AVSS-SS-
Rec-Private. That is if protocol AVSS-SS-Share stops after the second phase, then we may only ensure
that either D’s committed secret or NULL will be reconstructed in AVSS-SS-Rec-Private. This would
violate the claim that AVSS-SS is an AVSS scheme.

5.1 Commitment by D Phase

In this phase, D on having a secret s, selects a random bivariate polynomial F (x, y) of degree-(t, t)
(i.e degree-t in both x and y) such that F (0, 0) = s. Now to party Pi, D passes fi(x) = F (x, i)
and gi(y) = F (i, y). We refer fi(x) polynomials as row polynomials and gi(y) polynomials as column
polynomials. Now D commits f1(x), . . . , fn(x) using n distinct invocations of AWSS-SS-Share protocol
(see Notation 2 in Section 3 for the interpretation of committing polynomial using AWSS-SS-Share).
During the course of executing these n instances of AWSS-SS-Share, a party Pi receives ith point on the
polynomials f1(x), . . . , fn(x), namely f1(i), . . . , fn(i) which should be n distinct points on gi(y). So Pi

checks whether gi(j) = fj(i) for all j = 1, . . . , n and informs this by A-casting a signal. While executing
the n instances of AWSS-SS-Share, D employ a trick to guarantee that all the n instances of AWSS-SS-
Share terminate with a common WCORE. Once WCORE is agreed among all the honest parties in P,
Commitment by D Phase ends. The code for this phase is presented in Figure 1 on next page. We
now prove the properties of Commitment by D Phase.

Lemma 10 In the code for Commitment by D Phase:

1. If D is honest then eventually he will generate a common WCORE of size 2t + 1 for all the n
AWSS-SS-Share. Moreover, each honest party will eventually agree on the common WCORE.

2. If D is corrupted and some honest party has accepted the WCORE and OKPjs received from the
A-cast of D, then every other honest party will also eventually accept the same.

Proof: In the code for Commitment by D Phase, D keeps on adding new parties in each WCOREi

even after WCOREi becomes of size 2t + 1. In addition, D also keeps on adding new parties in each
OKP i

j even after OKP i
j becomes of size 2t + 1. So if D is honest, then eventually all the 2t + 1 honest

parties will be added in each WCOREi and OKP i
j . Moreover, each honest Pi will eventually A-cast

Matched-Column signal, as fj(i) = gi(j) will hold for all j = 1, . . . , n for an honest D. However, some
corrupted parties may also be present in WCOREi’s and OKP i

j ’s. Moreover, these corrupted parties
may also A-cast Matched-Column signal. But what ever may be the case, if D is honest then eventually
he will find a common set 2t + 1 parties in the WCORE of all the n instances of AWSS-SS-Share, who
have A-cast Matched-Column signal. This common set of 2t + 1 parties will form the common WCORE
which D will A-cast. Similarly, corresponding to each Pj ∈ WCORE, the honest D will eventually find
a common set of 2t + 1 parties in OKP 1

j , . . . , OKPn
j . This common set of 2t + 1 parties will constitute

OKPj which D will A-cast. Now from the property of A-cast, each honest party will eventually receive
a common WCORE of size 2t + 1 and OKPj of size 2t + 1 for each Pj ∈ WCORE from the A-cast of

12

D. Now it is easy to see that each honest party will accept this common WCORE and OKPj for each
Pj ∈ WCORE, after executing the steps in [wcore verification and agreement]. This proves the
first part.

If D is corrupted and some honest party, say Pi has accepted the WCORE and OKPj ’s received
from the A-cast of D then it implies the following: Pi has received OK(Pk, Pj) from the A-cast of Pk

for every Pk ∈ OKPj and every Pj ∈ WCORE for all the n executions of AWSS-SS-Share. Moreover,
Pi has also received Matched-Column from A-cast of every Pj ∈ WCORE. Now from the property of
A-cast, every other honest party Pj will also eventually receive the same OKs and Matched-Column and
hence will accept the same WCORE and OKPj for each Pj ∈ WCORE.

Code Commitment(D,P, s)

i. Distribution by D: – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For i = 1, . . . , n, send row polynomial fi(x) = F (x, i) and column polynomial gi(y) = F (i, y) to Pi.

3. For i = 1, . . . , n, initiate AWSS-SS-Share(D,P , fi(x)) for sharing fi(x).

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive fi(x) and gi(y) from D.

2. Participate in AWSS-SS-Share(D,P , fj(x)) by executing steps in [Verification: Code for Pi] (of AWSS-SS-
Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the n invocations of AWSS-SS-Share,
check whether gi(j) = fj(i) holds for all j = 1, . . . , n. Here fj(i) is obtained by Pi from D during the
execution of first step of [Verification: Code for Pi] of AWSS-SS-Share(D,P , fj(x)). If yes then A-cast
Matched-Column and execute the rest of the steps of AWSS-SS-Share(D,P , fj(x)).

iii. WCORE Construction: Code for D – Only D executes this code.

1. Construct WCORE and corresponding OKPj ’s for each AWSS-SS-Share(D,P , fi(x)) following the steps in
[WCORE Construction] (of AWSS-SS-Share). Denote them by WCOREi and OKP i

j ’s.

2. Keep updating WCOREi’s and corresponding OKP i
j ’s.

3. Wait to obtain WCORE = ∩n
i=1WCOREi of size at least 2t + 1 and for every Pj ∈ WCORE, OKPj =

∩n
i=1OKP i

j of size at least 2t + 1 such that Matched-Column is received from A-cast of every Pj ∈ WCORE .

4. A-cast WCORE and OKPj for every Pj ∈ WCORE.

iv. WCORE verification & Agreement: Code for Pi

1. Wait to receive WCORE and OKPj for every Pj ∈ WCORE from A-cast of D, such that |WCORE| = 2t+1
and each |OKPj | = 2t + 1.

2. Wait to receive OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every Pj ∈ WCORE for all the
n executions of AWSS-SS-Share.

3. Wait to receive Matched-Column from A-cast of every Pj ∈ WCORE.

4. After receiving all desired OKs and Matched-Column signals, accept WCORE and OKPj for every Pj ∈
WCORE received from A-cast of D and proceed to the next phase (Verification Phase).

Figure 1: Code for Commitment by D Phase

5.2 Verification of D’s Commitment Phase

After agreeing on WCORE and corresponding OKPj ’s, in this phase, the parties verifies whether indeed
D has committed a secret from F. For this, we try to check whether there exists a set of honest parties of
size at least t + 1, such that for every two parties Pi, Pj in this set, fi(j) = gj(i) holds. If we can ensure
the availability of such a set then it implies that the row and column polynomials of the parties in this
set define a unique bivariate polynomial of degree-(t, t) and the constant term of the polynomial is D’s
committed secret. Checking for the availability of such a set is quiet easy in synchronous settings, where
the parties can simply pair-wise exchange their common values on their row and column polynomial,
as done in several synchronous VSS protocols [7, 23, 21, 28, 30]. However, doing the same is not so
straightforward in asynchronous settings with n = 3t + 1.

To check the availability of the set of parties described above, we proceed as follows: recall that in the
Commitment by D phase, D is committed to f1(x), . . . , fn(x). So we execute AWSS-SS-Rec-Private

13

(D,P, fj(x), Pj) for enabling Pj-weak-private-reconstruction of fj(x). If Pj has reconstructed fj(x) from
the execution of AWSS-SS-Rec-Private and fj(x) is same as fj(x) received from D in the previous phase,
then Pj informs this to everyone by A-casting Matched-Row signal. This is a public indication by Pj that
fj(x) which is committed by D to the parties in WCORE is same as the one which Pj has privately
received from D. Now if at least 2t + 1 parties, say R, A-cast Matched-Row, then it implies that D is
committed to a unique degree-(t, t) bivariate polynomial, say F (x, y) (hence a unique secret s = F (0, 0))
such that for every honest Pi ∈ R, the row polynomial fi(x) held by Pi satisfies F (x, i) = fi(x) and for
every honest Pj ∈ WCORE, the column polynomial gi(y) held by Pj satisfies F (j, y) = gj(y) (For proof
see Lemma 11). The code for implementing this phase is very easy and is given in Figure 2.

Code Verification(D,P, s)

Pj-Weak-Private-Reconstruction of fj(x) for j = 1, . . . , n:

i. Code for Pi – Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj ’s, participate in AWSS-SS-Rec-Private(D,P , fj(x), Pj),
for j = 1, . . . , n, to enable Pj-weak-private-reconstruction of fj(x). Notice that the common WCORE acts as
WCORE in each AWSS-SS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n

2. At the completion of AWSS-SS-Rec-Private(D,P , fi(x), Pi), obtain either degree-t polynomial fi(x) or NULL.

3. If fi(x) = fi(x), then A-cast Matched-Row.

4. If Matched-Row is received from A-cast of at least 2t + 1 parties then proceed to third phase.

Figure 2: Code for Verification of D’s Commitment Phase

Lemma 11 In code Verification, if Matched-Row is received from the A-cast of at least 2t + 1 parties,
say R, then in code Commitment, D is committed to a unique degree-(t, t) bivariate polynomial F (x, y)
such that the row polynomial fi(x) held by every honest Pi ∈ R satisfies F (x, i) = fi(x) and the column
polynomial gj(y) held by every honest Pj ∈ WCORE satisfies F (j, y) = gj(y). Moreover if D is honest
then F (x, y) = F (x, y).

Proof: Let l and m be the number of honest parties in R and WCORE respectively. As |WCORE| ≥
2t + 1 and |R| ≥ 2t + 1, both l ≥ t + 1 and m ≥ t + 1. For convenience, we assume P1, . . . , Pl and
respectively P1, . . . , Pm are the set of honest parties in R and WCORE. Now for every (Pi, Pj) with
Pi ∈ {P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm}, fi(j) = gj(i) holds. This is due to the fact that Pi has checked
that D is indeed committed to fi(x) (by checking fi(x) = fi(x), where fi(x) is obtained from Pi-weak-
private-reconstruction and fi(x) is obtained from D in Commitment). The above implies that honest
Pj ∈ WCORE has received fi(j) from D and checked gj(i) = fi(j) during the execution of Commitment.
We now claim that if fi(j) = gj(i) holds for every (Pi, Pj) with Pi ∈ {P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm}
then there exists a unique bivariate polynomial F (x, y) of degree-(t, t) over F, such that for i = 1, . . . , l,
we have F (x, i) = fi(x) and for j = 1, . . . ,m, we have F (j, y) = pj(y). The proof completely follow from
the proof of Lemma 4.26 of [10].

Specifically, let V (k) denote k × k Vandermonde matrix, where ith column is [i0, . . . , ik−1]T , for
i = 1, . . . , k. Now consider the row polynomials f1(x), . . . , ft+1(x) and let E be the (t + 1) × (t + 1)
matrix, where Eij is the coefficient of xj in fi(x), for i = 1, . . . , t + 1 and j = 0, . . . , t. Thus for
i = 1, . . . , t + 1 and j = 1, . . . , t + 1, the (i, j)th entry in E · V (t+1) is fi(j).

Let H = ((V (t+1))T)
−1

· E be a (t + 1) × (t + 1) matrix. Let for i = 0, . . . , t, the (i + 1)th column of
H be [ri0, ri1, . . . , rit]

T . Now we define a degree-(t, t) bivariate polynomial F (x, y) =
∑i=t

i=0

∑j=t
j=0 rijx

iyj.
Then from properties of bivariate polynomial, for i = 1, . . . , t + 1 and j = 1, . . . , t + 1, we have

F (j, i) = (V (t+1))T · H · V (t+1) = E · V (t+1) = fi(j) = gj(i)

This implies that for i = 1, . . . , t+1, the polynomials F (x, i) and fi(x) have same value at t+1 values of x.
But since degree of F (x, i) and fi(x) is t, this implies that F (x, i) = fi(x). Similarly, for j = 1, . . . , t+1,
we have F (j, y) = gj(y).

Next, we will show that for any t + 1 < i ≤ l, the polynomial fi(x) also lies on F (x, y). In other
words, F (x, i) = fi(x), for t + 1 < i ≤ l. This is easy to show because according to theorem statement,
fi(j) = gj(i), for j = 1, . . . , t + 1 and g1(i), . . . , gt+1(i) lie on F (x, i) and uniquely defines F (x, i). Since

14

both fi(x) and F (x, i) are of degree t, this implies that F (x, i) = fi(x), for t + 1 < i ≤ l. Similarly, we
can show that F (j, y) = gj(y), for t + 1 < j ≤ n. The second part of the lemma is trivially true. 2

Lemma 12 In Verification, if D is honest then all the honest parties will eventually proceed to third
phase. Moreover, if D is corrupted and some honest party proceeds to the third phase, then all other
honest party will also eventually proceed to the third phase.

Proof: If D is honest then every honest party will eventually A-cast Matched-Row signal. However,
some corrupted parties may also A-cast Matched-Row signal. But what ever may be the case, eventually
there will be a set of 2t + 1 parties, say R, who will A-cast Matched-Row signal. So every honest party
will eventually receive 2t + 1 Matched-Row signal and will proceed to the third phase.

If D is corrupted and some honest party Pi proceeds to the third phase, then it implies that Pi has
received Matched-Row signal from 2t + 1 parties. So eventually all other honest parties will also receive
these Matched-Row signals and will proceed to the third phase. 2

From Lemma 11, if an honest party, say Pi, receives A-cast of Matched-Row signal during Verification
from at least 2t+1 parties, say R, then he is sure that D is committed to a unique bivariate polynomial
and thus a unique secret. Now the question is: If Pi stops protocol AVSS-SS-Share here after finding such
a set R, then is there any possible way of robustly reconstructing D’s secret in reconstruction phase? Here
we stop a moment and try to find the possibilities for the above question. Our effort in this direction
would also motivate the need of the third phase of AVSS-SS-Share which is actually required to enable
robust reconstruction of D’s committed secret in the reconstruction phase i.e in AVSS-SS-Rec-Private.

One possible way to reconstruct D’s committed secret s is to execute AWSS-SS-Rec-Private(D,P, fj(x), ∗)
corresponding to every Pj ∈ R, which may disclose fj(x) polynomials and using those polynomial the
bivariate polynomial and thus the secret s may be reconstructed. But this does not work, because for
a corrupted D, all instances of AWSS-SS-Rec-Private may output NULL. So it seems that most likely
there is no way to robustly reconstruct D’s committed secret s in protocol AVSS-SS-Rec-Private, if AVSS-
SS-Share stops after current phase. Hence, we require the third phase which is described in the sequel.
Before we formally describe the next phase, we would like to give the following remark.

Remark 4 In the code Commitment, D executed n instances of AWSS-SS-Share for individually com-
mitting to each fi(x). This later allowed fi(x) to be privately reconstructed only by Pi during the code
for Verification. If D executes a single instance of AWSS-MS-Share for concurrently committing to
f1(x), . . . , fn(x), instead of n instances of AWSS-SS-Share, then later in the code for Verification, we
could not enable P1 to privately reconstruct f1(x), P2 to privately reconstruct f2(x) and so on. This is
because AWSS-MS-Rec-Private is designed in such a way that it will allow Pα to privately reconstruct
back all the n polynomials. This would clearly breach the secrecy property of AVSS as every party will
now come to know all the n row polynomials.

5.3 Re-commitment by Individual Parties

The outline for this phase is as follows: If Pi A-casts Matched-Row in Verification, then Pi acts as a
dealer to re commit his row polynomial fi(x) by initiating an instance of AWSS-SS-Share. It is also
enforced that if Pi attempts to re-commit f ′

i(x) 6= fi(x), then his re-commitment will not be terminated.
Moreover, when D is honest then an honest Pi will always be able to successfully re commit fi(x). Now
AVSS-SS-Share terminates only when all the honest parties in P agree upon a set of at least 2t + 1
parties, say V CORE, who have successfully re-committed their polynomials. Now clearly, if AVSS-SS-
Share terminates, then the robust reconstruction of D′s committed secret s is guaranteed with very high
probability later in reconstruction phase. This is because, the AWSS-SS-Rec-private instance of an honest
Pi ∈ V CORE will always reconstruct back fi(x). On the other hand, AWSS-SS-Rec-private instance of
a corrupted Pi ∈ V CORE will output either fi(x) or NULL. This guarantees the reconstruction of at
least t + 1 fi(x) polynomials which are enough to reconstruct D’s committed bivariate polynomial and
hence the s. The protocol for this phase is given in next page.

Lemma 13 If D is honest then D will eventually generate V CORE of size 2t+1 and each honest party
will agree on this V CORE. If D is corrupted and some honest party has accepted V CORE received
from D, then every other honest party will also eventually do the same.

15

Proof: If D is honest, then every honest Pi will eventually successfully complete AWSS-SS-Share(Pi,P, fi(x))
as a dealer and thus will successfully re-commit fi(x). In addition, some corrupted Pi’s may also success-
fully re-commit fi(x) as a dealer. But what ever may be the case, D will eventually find a set of 2t + 1
Pi’s for which the conditions stated in step 1 of [vcore construction] will be eventually satisfied.
Hence D will add all these 2t + 1 Pi’s in V CORE and A-cast the same. Now it is easy to see that
every honest party will agree on this V CORE after performing the steps in [vcore verification and
agreement on vcore].

If D is corrupted and some honest party Pi has accepted V CORE received from D, then it implies
that Pi has checked the validity of received V CORE by performing the steps in [vcore verification
and agreement on vcore]. Now it is easy to see that all other honest parties will also eventually do
the same and hence will accept V CORE. 2

Code Re-commitment(D,P, s)
i. Code for Pi:

1. If you have A-casted Matched-Row in Verification then as a dealer, initiate AWSS-SS-Share(Pi,P , fi(x)) to re
commit fi(x).

2. If Pj has A-casted Matched-Row in Verification, then participate in AWSS-SS-Share(Pj ,P , fj(x)) by executing
steps in [Verification: Code for Pi] (of AWSS-SS-Share) in the following way:

After the completion of step 1 of [Verification: Code for Pi], check whether gi(j) = fj(i) holds, where
fj(i) is obtained from the execution of AWSS-SS-Share(Pj ,P , fj(x)) and gi(y) was obtained from D during
commitment by D phase. If yes then participate in the remaining steps in [Verification: Code for Pi]
corresponding to AWSS-SS-Share(Pj ,P , fj(x)).

3. WCOREPi Construction for AWSS-SS-Share(Pi,P , fi(x)): If Pi as a dealer initiated
AWSS-SS-Share(Pi,P , fi(x)) to re commit fi(x), then Pi as a dealer, constructs WCORE and corre-
sponding OKPjs for AWSS-SS-Share(Pi,P , fi(x)) in a slightly different way than what is described in
AWSS-SS-Share (these steps also ensure that a corrupted Pi will not be able to re-commit fi(x) 6= fi(x)).

(a) Construct a set ProbCOREPi (= ∅ initially). Include Pj in ProbCOREPi and A-cast
(Pj , P robCOREPi) if at least 2t + 1 A-casts of the form OK(., Pj) are heard in the instance
AWSS-SS-Share(Pi,P , fi(x)).

(b) Construct WCOREPi . Add Pj in WCOREPi if both the following holds:

(A) Pj ∈ ProbCOREPi and

(B) for at least 2t + 1 Pk’s who are re-committing their corresponding fk(x)’s, (Pj , P robCOREPk) is
received from their A-cast.

(c) A-cast WCOREPi and OKPj for every Pj ∈ WCOREPi when |WCOREPi | = 2t + 1.

ii. VCORE Construction: Code for D

1. If WCOREPi and OKPj for every Pj ∈ WCOREPi are received from the A-cast of Pi, then add Pi to
V CORE after performing the following:

(a) Wait to receive (Pj , P robCOREPi) for every Pj ∈ WCOREPi from the A-cast of Pi.

(b) Wait to receive (Pj , P robCOREPk) for every Pj ∈ WCOREPi from A-cast of at least 2t + 1 Pk’s who
are re-committing their corresponding fk(x)’s.

(c) Wait to receive OK(Pj , Pk) for every Pk ∈ OKPj in execution AWSS-SS-Share(Pi,P , fi(x)).

2. A-cast V CORE when |V CORE| = 2t + 1.

iii. VCORE Verification & Agreement on VCORE: Code for Pi

1. Wait to receive V CORE from the A-cast of D.

2. For every Pi ∈ V CORE, wait to receive WCOREPi and OKPj for every Pj ∈ WCOREPi from the A-cast of
Pi.

3. Once received, check the validity of received WCOREPi ’s and OKPj ’s for every Pj ∈ WCOREPi by following
the same steps as in ii-1(a), ii-1(b) and ii-1(c).

4. After checking the validity, accept (i) V CORE; (ii) WCOREPi and corresponding OKPj ’s for every Pi ∈
V CORE which are received in previous two steps and terminate AVSS-SS-Share.

Lemma 14 If V CORE is generated, then there exists a unique degree-(t, t) bivariate polynomial F (x, y)
such that every Pi ∈ V CORE is re-committed to fi(x) = F (x, i). Moreover, if D is honest then
F (x, y) = F (x, y).

Proof: By Lemma 11, there is a unique degree-(t, t) bivariate polynomial F (x, y) such that the row poly-
nomial of every honest Pi who has A-casted Matched-Row, satisfies fi(x) = F (x, i). Since an honest party

16

Pi who has re-committed his row polynomial fi(x) in Re-Commitment, has also A-casted Matched-Row in
Verification, fi(x) = F (x, i) satisfies for every honest Pi in V CORE. Now we show that even a corrupted
Pi ∈ V CORE has re-committed fi(x) satisfying fi(x) = F (x, i).

We prove this by showing that every honest Pj ∈ WCOREPi has received fi(j) from Pi during
AWSS-SS-Share(Pi,P, fi(x)) (and hence honest Pj is IC-Committed to fi(j)). An honest Pj belongs to
WCOREPi implies that Pj belongs to ProbCORE of at least 2t + 1 parties out of which at least t + 1
are honest. Let H be the set of these (t + 1) honest parties. So Pj ’s column polynomial gj(y) satisfies
gj(k) = fk(j) for every Pk ∈ H (see step i-(2) in Re-Commitment). This implies that gj(y) = F (j, y).
Now honest Pj ∈ WCOREPi implies that Pj belongs to ProbCORE of Pi as well which means Pj has
ensured gj(i) = fi(j) (see step i-(2)) in Re-Commitment.

Now the second part of the lemma is trivially true. 2

5.4 Protocol AVSS-SS

Now the protocol for our AVSS scheme is as follows:

Protocol AVSS-SS(D,P , s)

AVSS-SS-Share(D,P , S)

1. Replicate Code Commitment(D,P , s), Code Verification(D,P , s) and Code Re-commitment(D,P , s).

AVSS-SS-Rec-Private(D,P , s, Pα): Private reconstruction of s by party Pα:

Pα-weak-private-reconstruction of fj(x) for every Pj ∈ V CORE: (Code for Pi)

1. Participate in AWSS-SS-Rec-Private(Pj ,P , fj(x), Pα) for every Pj ∈ V CORE.

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either fj(x) or NULL from Pα-weak-private-reconstruction. Add
Pj ∈ V CORE to REC if fj(x) is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial F (x, y) such that F (x, j) = fj(x) for every
Pj ∈ REC. Compute s = F (0, 0) and terminate.

We now prove the properties of our AVSS scheme.

Lemma 15 AVSS-SS satisfies termination property of Definition 2.

Proof: Termination 1 and Termination 2 property follows from Lemma 10, Lemma 12 and Lemma
13. Termination 3 property is proved as follows: By Termination 3 and Correctness 1 of AWSS-
SS (see Lemma 6 and Lemma 8), AWSS-SS-Share(Pi,P, fi(x)) initiated by an honest Pi in V CORE
during Re-Commitment, will reconstruct fi(x) in its reconstruction phase with high probability. But
AWSS-SS-Share(Pi,P, fi(x)) initiated by a corrupted Pi in V CORE, may lead to the reconstruction of
NULL in its reconstruction phase. Since |V CORE| = 2t + 1, for at least t + 1 honest parties from
V CORE, reconstruction of fi(x)’s will be successful. This is enough to reconstruct the secret s. Hence
if all honest parties terminate AVSS-SS-Share and every (honest) party starts AVSS-SS-Rec-Private, then
an honest Pα will eventually terminate AVSS-SS-Rec-Private. 2

Lemma 16 AVSS-SS satisfies secrecy property of Definition 2.

Proof: We have to consider the case when D is honest. Throughout AVSS-SS-Share, essentially the
parties only exchange common values on their row and column polynomials. Hence by the property of
bivariate polynomial of degree-(t, t), the constant term of it is always secure. The rest follows from the
secrecy of AWSS-SS-Share. 2

Lemma 17 AVSS-SS satisfies correctness property of Definition 2.

Proof: By Lemma 14, there is a unique degree-(t, t) bivariate polynomial F (x, y) such that every
Pi ∈ V CORE has re-committed fi(x) = F (x, i). Moreover, if D is honest then F (x, y) = F (x, y).
Now by Lemma 8, in AWSS-SS-Rec-Private(Pi,P, fi(x), Pα), with very high probability the following will
happen:

1. For every honest Pi ∈ V CORE, fi(x) will be reconstructed;

17

2. For every corrupted Pi ∈ V CORE, fi(x) or NULL will be reconstructed.

As |V CORE| = 2t + 1, for at least t + 1 honest parties, fi(x) will be reconstructed. Using those
polynomials F (x, y) and s = F (0, 0) will be reconstructed. Moreover, s = s = F (0, 0) if D is honest. 2

Lemma 18 AVSS-SS incurs private communication of O((n4κ)κ) bits and A-cast of O(n3 log(n)) bits.

Proof: The communication complexity follows from the fact that in the protocol, O(n) instances of
AWSS scheme are executed, dealing with a single secret. 2

Theorem 3 Protocols (AVSS-SS-Share, AVSS-SS-Rec-Private) constitutes a valid statistical AVSS scheme.

Proof: The proof follows from Lemma 15, Lemma 16 and Lemma 17. 2

6 AVSS for Sharing Multiple Secrets

We now present a statistical AVSS scheme AVSS-MS, consisting of sub-protocols AVSS-MS-Share and
AVSS-MS-Rec-Private. Protocol AVSS-MS-Share allows D to share a secret S = (s1, . . . , sℓ), consisting of
ℓ > 1 elements from F. While using ℓ executions of AVSS-SS-Share, one for each sl ∈ S, D can share S
with a private communication of O((ℓn4κ)κ) and A-cast of O(ℓn3 log(n)) bits, protocol AVSS-MS-Share
achieves the same task with a private communication of O((ℓn3 + n4κ)κ) and A-cast of O(n3 log(n))
(independent of ℓ) bits. This shows that executing a single instance of AVSS-MS dealing with multiple
secrets concurrently is advantageous over executing multiple instances of AVSS-SS dealing with single
secret.

The structure of AVSS-MS-Share is divided into same three phases as in AVSS-SS-Share. The cor-
responding protocols are Commitment-MS, Verification-MS and Re-commitment-MS. They are simple
extension of the corresponding protocols in AVSS-SS-Share and are presented below.

Code Commitment-MS(D,P, S)

i. Distribution by D: Code for D — Only D executes this code

1. Select ℓ random degree-(t, t) bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such that F l(0, 0) = sl for l = 1, . . . , ℓ.

2. Send f l
i (x) = F l(x, i) and gl

i(y) = F l(i, y) for l = 1, . . . , ℓ to Pi.

3. For i = 1, . . . , n, initiate AWSS-MS-Share(D,P , (f1
i (x), . . . , f ℓ

i (x))) for sharing (f1
i (x), . . . , f ℓ

i (x)).

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive f l
i (x) and gl

i(y) for l = 1, . . . , ℓ from D.

2. Participate in AWSS-MS-Share(D,P , (f1
j (x), . . . , f ℓ

j (x))) by executing steps in [Verification: Code for Pi]
(of AWSS-MS-Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the n invocations of AWSS-MS-Share,
check whether gl

i(j) = f l
j(i) holds for all j = 1, . . . , n and l = 1, . . . , ℓ, where f l

j(i) is obtained from the
execution of AWSS-MS-Share(D,P , (f1

j (x), . . . , f ℓ
j (x))). If yes then A-cast Matched-Column.

Rest of the steps are same as in Commitment.

Code Verification-MS(D,P, S)

Pj-Weak-Private-Reconstruction of (f1
j (x), . . . , f ℓ

j (x)) for j = 1, . . . , n:

i. Code for Pi — Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj ’s, participate in
AWSS-MS-Rec-Private(D,P , (f1

j (x), . . . , f ℓ
j (x)), Pj), for j = 1, . . . , n, to enable Pj-weak-private-

reconstruction of (f1
j (x), . . . , f ℓ

j (x)). Notice that the common WCORE acts as WCORE in each
AWSS-SS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n

2. At the completion of AWSS-MS-Rec-Private(D,P , (f1
i (x), . . . , f ℓ

i (x)), Pi), obtain either degree-t polynomials

f1
i (x), . . . , fℓ

i (x) or NULL.

3. If f l
i (x) = f l

i (x) for all l = 1, . . . , ℓ, then A-cast Matched-Row.

4. If Matched-Row is received from A-cast of at least 2t + 1 parties then proceed to Re-Commitment-MS phase.

18

Code Re-commitment-MS(D,P, S)

i. Code for Pi:
1. If you have A-casted Matched-Row in Verification-MS then initiate AWSS-MS-Share(Pi,P , (f1

i (x), . . . , f ℓ
i (x)) to

recommit (f1
i (x), . . . , f ℓ

i (x)).

2. For each j, such that Pj has A-casted Matched-Row in Verification-MS, participate in
AWSS-MS-Share(Pj ,P , (f1

j (x), . . . , f ℓ
j (x)) by executing steps in [Verification: Code for Pi] (of

AWSS-MS-Share) in the following way:

After the completion of step 1 of [Verification: Code for Pi], check whether gl
i(j) = f l

j(i) for l = 1, . . . , ℓ
holds, where (f1

j (i), . . . , f ℓ
j (i)) are obtained from the execution of AWSS-SS-Share(Pj ,P , (f1

j (x), . . . , f ℓ
j (x)) and

(g1
i (y), . . . , gℓ

i (y)) was obtained from D in protocol Commitment-MS. If yes then participate in the next steps
in [Verification: Code for Pi] corresponding to AWSS-MS-Share(Pj ,P , (f1

j (x), . . . , f ℓ
j (x)).

Rest of the steps are same as in Re-commitment except that at every place AWSS-SS-Share(Pi,P , fi(x))
is replaced by AWSS-MS-Share(Pi,P , (f l

i (x), . . . , f ℓ
i (x))).

Now protocol AVSS-MS-Share(D,P, S) consists of the code presented in Code Commitment-MS(D,P, S),
Code Verification-MS(D,P, S) and Code Re-commitment-MS(D,P, S) in this order. Protocol AVSS-MS-

Rec-Private(D,P, S, Pα) is very straight forward extension of AVSS-SS-Rec-Private. Here S = (s1, . . . , sℓ)
is reconstructed. The proofs for the properties of the protocols dealing with multiple secrets will be
similar to the proofs of the protocols dealing with single secret.

Theorem 4 Protocols (AVSS-MS-Share, AVSS-MS-Rec-Private) constitutes a valid statistical AVSS scheme
with private reconstruction, which privately communicates O((ℓn3 +n4κ)κ) and A-cast O(n3 log(n)) bits.

Remark 5 (D’s Commitment in AVSS-MS-Share) We say that D has committed secret S ∈ F
ℓ

in AVSS-MS-Share if there are ℓ degree-t univariate polynomials, f1(x), . . . , f ℓ(x), such that f l(0) = sl

for l = 1, . . . , ℓ and every honest Pi in V CORE receives (f1(i), . . . , f ℓ(i)) from D and commits to

(f1(i), . . . , f ℓ(i)) using AWSS-MS-Share. In protocol AVSS-MS-Share, f l(x) = f l
0(x) = F l(x, 0) for every

l = 1, . . . , ℓ, where F 1(x, y), . . . , F ℓ(x, y) are D’s committed bivariate polynomial. When D is honest,

F l(x, y) = F l(x, y).

Notation 4 (Notation for Using AVSS-MS-Share) In the subsequent sections, we will invoke AVSS-

MS-Share as AVSS-MS-Share (D,P, (f1(x), . . . , f ℓ(x))) to mean that D commits f1(x), . . . , f ℓ(x) in
AVSS-MS-Share. Essentially here D is asked to choose bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such
that F l(x, 0) = f l(x) holds for l = 1, . . . , ℓ. Similarly, AVSS-SS-Rec-Private will be invoked as AVSS-SS-

Rec-Private(D,P, (f1(x), . . . , f ℓ(x)), Pα) to enable Pα-private-reconstruction of (f1(x), . . . , f ℓ(x)).

7 ACSS for Sharing a Single Secret

Though AVSS-SS is an AVSS scheme, it is not an ACSS scheme because it fails to achieve completeness
property. This is because in AVSS-SS-Share, only the honest parties in V CORE receive their respective
shares of the committed secret. But it may happen that potentially t honest parties are not present in
V CORE. So we now present a statistical ACSS scheme called ACSS-SS, which consists of sub-protocols
ACSS-SS-Share, ACSS-SS-Rec-Private and ACSS-SS-Rec-Public. Protocol ACSS-SS-Share allows D to
generate t-sharing of a secret s ∈ F. Given t-sharing of secret s, protocol ACSS-SS-Rec-Private allows a
specific party in P, say Pα, to privately reconstruct s. On the other hand, ACSS-SS-Rec-Public allows
every party in P to reconstruct D’s committed secret s. Protocol ACSS-SS-Rec-Public will be used in
our AMPC protocol.

The high level idea of ACSS-SS-Share is similar as that of AVSS-SS-Share with the following difference:
in AVSS-SS-Share, we used AWSS-SS-Share as a black-box. So if D is corrupted and even if it is ensured
that D is committed to a unique bi-variate polynomial F (x, y) during Verification Phase, we could
only ensure that every honest Pi who A-cast Matched-Row signal, holds the corresponding row polynomial
fi(x) = F (x, i) and hence his share fi(0) of the secret s = F (0, 0). It may happen that there are potential
t honest Pi’s who have not A-cast Matched-Row signal and who do not hold their corresponding F (x, i)’s,
as Pi-weak-private-reconstruction of fi(x)’s corresponding to these parties would have reconstructed
NULL during Verification Phase.

On the other hand, we use AVSS-SS-Share as a black-box in ACSS-SS-Share. This avoids the above
problem because now D would AVSS-Share each fi(x), instead of AWSS-Share. So once it is ensured

19

that D is committed to a unique bi-variate polynomial F (x, y), by the property of AVSS-SS-Rec-Private,
each honest Pi ∈ P would successfully reconstruct fi(x) = F (x, i) and hence his share fi(0) of the secret
s = F (0, 0).

Protocol ACSS-SS-Rec-Private and ACSS-SS-Rec-Public uses the properties of Online Error Correction
(OEC) [10]. Informally, given a t-sharing of s which is t-shared using degree-t polynomial f(x), OEC
allows to reconstruct f(x) and hence s = f(0) in an on-line fashion in asynchronous settings by using
the properties of Reed-Solomon error correcting codes.

Protocol ACSS-SS(D,P, s)
ACSS-SS-Share(D,P , s)
i. Distribution by D: Code for D – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.

2. Send gi(y) = F (i, y) to party Pi. We call gi(y) as ith column polynomial.

3. For i = 1, . . . , n, initiate AVSS-SS-Share(D,P , fi(x)) for sharing fi(x), where fi(x) = F (x, i). We call fi(x) as
ith row polynomial.

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive gi(y) from D.

2. Participate in AVSS-SS-Share(D,P , fj(x)) for all j = 1, . . . , n.

3. If fj(i) is received from D during AVSS-SS-Share(D,P , fj(x)) then check whether gi(j) = fj(i). When the test
passes for all j = 1, . . . , n, then A-cast Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for AVSS-SS-Share(D,P , fi(x)). Denote it by V COREi.

2. Keep updating V COREi. Wait to obtain CCORE = ∩n
i=1V COREi of size at least 2t + 1 such that

Matched-Column is received from A-cast of every Pj ∈ CCORE .

3. A-cast CCORE.

iv. CCORE verification & Agreement: Code for Pi — Every party including D will execute this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for AVSS-SS-Share(D,P , fj(x)) for every j = 1, . . . , n (by following
the steps 2-4 as specified under [VCORE Verification & Agreement on VCORE: Code for Pi] in code
Re-commitment of AVSS-SS-Share).

v. Pj-private-reconstruction of fj(x) for j = 1, . . . , n: Code for Pi – Every party in P executes this code.

1. If CCORE is a valid V CORE for AVSS-SS-Share(D,P , fj(x)) for every j = 1, . . . , n, then participate in
AVSS-SS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n, to enable Pj-private-reconstruction of fj(x). Notice
that CCORE is used as VCORE in each AVSS-SS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n.

2. At the completion of AVSS-SS-Rec-Private(D,P , fi(x), Pi), obtain degree-t polynomial fi(x).

3. Output fi(0) as ith share of s and terminate ACSS-SS-Share.

ACSS-SS-Rec-Private(D,P , s, Pα): Pα-private-reconstruction of s:

i. Code for Pi – Every party in P executes this code.

1. Privately send si, the ith share of s to Pα.

ii. Code for Pα – Only Pα ∈ P executes this code.

1. Apply OEC on received shares of s to reconstruct s and terminate ACSS-SS-Rec-Private.

ACSS-SS-Rec-Public(D,P , s): Public reconstruction of s:

i. Code for Pi – Every party in P executes this code.

1. Privately send si, the ith share of s to every party Pj ∈ P .

2. Apply OEC on received shares of s to reconstruct s and terminate ACSS-SS-Rec.

We now prove the properties of ACSS-SS.

Lemma 19 In protocol ACSS-SS-Share:

1. If D is honest then eventually he will generate a common CCORE of size 2t + 1 for all the n
instances of AVSS-SS-Share. Moreover, each honest party will eventually agree on the common
CCORE.

20

2. If D is corrupted and some honest party has accepted the CCORE received from the A-cast of D,
then every other honest party will also eventually accept the same.

Proof: The proof follows using similar argument as in Lemma 10. 2

Lemma 20 In ACSS-SS-Share, if the honest parties agree on a common CCORE, then it implies that
D is committed to a unique degree-(t, t) bivariate polynomial F (x, y) such that each row polynomial
fi(x) committed by D in AVSS-SS-Share(D,P, fi(x)) satisfies F (x, i) = fi(x) and the column polynomial
gj(y) held by every honest Pj ∈ CCORE satisfies F (j, y) = gj(y). Moreover if D is honest then
F (x, y) = F (x, y).

Proof: The proof follows using similar argument as in Lemma 11. 2

Lemma 21 In ACSS-SS-Share, if the honest parties agree on a common CCORE, then eventually every
honest party will get his share of D’s committed secret with very high probability.

Proof: From the previous lemma, if the honest parties agree on a common CCORE then it implies
that D is committed to a unique degree-(t, t) bivariate polynomial F (x, y) such that each row polynomial
fi(x) committed by D in AVSS-SS-Share(D,P, fi(x)) satisfies F (x, i) = fi(x). So from the properties
of AVSS-SS-Rec-Private, Pi-private-reconstruction of fi(x) will result in every honest Pi reconstructing
fi(x) and hence his share fi(0) of the secret with very high probability. 2

Lemma 22 In ACSS-SS-Share, if D is honest then At will have no information about secret s.

Proof: In ACSS-SS-Share, the parties essentially privately exchange their common values on their
row and column polynomials. The proof now follows from the properties of bi-variate polynomial of
degree-(t, t) and secrecy property of AVSS-SS-Share. 2

Lemma 23 In ACSS-SS-Share:

1. If D is honest, then at the end of ACSS-SS-Share, every honest party will hold his share corre-
sponding to t-sharing of s with high probability. Moreover, every honest party will output s at the
end of ACSS-SS-Rec-Public.

2. If D is corrupted and some honest party has terminated ACSS-SS-Share, then there exists a unique
s ∈ F, such that each honest party will eventually hold his share corresponding to t-sharing of s
with high probability. Moreover, every honest party will output s at the end of ACSS-SS-Rec-Public.

Proof: The lemma follows from Lemma 19, Lemma 20, Lemma 21 and properties of OEC. If D is
honest then s will be t-shared using degree-t polynomial f0(x) = F (x, 0), where F (x, y) is the bivariate
polynomial selected by D. On the other hand, if D is corrupted, then s will be t-shared using degree-t
polynomial f0(x) = F (x, 0), where F (x, y) is the bivariate polynomial committed by D. 2

Lemma 24 Protocol ACSS-SS-Share privately communicates O(n5κ2) bits and A-casts O(n4 log n) bits.
Protocol ACSS-SS-Rec-Private and ACSS-SS-Rec-Public incurs a private communication of O(nκ) and
O(n2κ) bits respectively.

Proof: The communication complexity of ACSS-SS-Share follows from the fact that in ACSS-SS-Share,
there are n executions of AVSS-SS-Share. In ACSS-SS-Rec-Private, each party sends his share to Pα,
incurring a communication cost of O(nκ) bits. In ACSS-SS-Rec, each party sends his share to every
other party, incurring a communication cost of O(n2κ) bits. 2

8 ACSS for Sharing Multiple Secrets

We now present a statistical ACSS scheme ACSS-MS, consisting of sub-protocols ACSS-MS-Share,
ACSS-MS-Rec-Private and ACSS-MS-Rec-Public. Protocol ACSS-MS-Share allows D to generate t-sharing
of secret S = (s1, . . . , sℓ), consisting of ℓ > 1 elements from F. While using ℓ executions of ACSS-SS-
Share, one for each sl ∈ S, D can ACSS-share S with a private communication of O((ℓn5κ)κ) and A-cast
of O(ℓn4 log(n)) bits, protocol ACSS-MS-Share achieves the same task with a private communication of

21

O((ℓn4 + n5κ)κ) and A-cast of O(n4 log(n)) (independent of ℓ) bits. This shows that executing a single
instance of ACSS-MS dealing with multiple secrets concurrently is advantageous over executing multiple
instances of ACSS-SS dealing with single secret. The proof of the properties of ACSS-MS follows in a
straight forward manner from the proof of the properties of ACSS-SS.

Theorem 5 Protocols (ACSS-MS-Share, ACSS-MS-Rec-Public) constitutes a valid statistical ACSS scheme
with public reconstruction. Protocol ACSS-MS-Share privately communicates O((ℓn4 + n5κ)κ) bits and
A-casts O(n4 log n) bits. Protocol ACSS-MS-Rec-Private and ACSS-MS-Rec-Public incurs a private com-
munication of O(ℓnκ) and O(ℓn2κ) bits respectively.

Protocol ACSS-MS(D,P, S)
ACSS-MS-Share(D,P , S)
i. Distribution by D: Code for D – Only D executes this code

1. Select ℓ random degree-(t, t) bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such that F l(0, 0) = sl for l = 1, . . . , ℓ.

2. For i = 1, . . . , n, send gl
i(y) = F l(i, y) for l = 1, . . . , ℓ to Pi. We call polynomials g1

i (y), . . . , gℓ
i (y) as ith column

polynomials.

3. For i = 1, . . . , n, initiate AVSS-MS-Share(D,P , (f1
i (x), . . . , f ℓ

i (x))) for sharing (f1
i (x), . . . , f ℓ

i (x)), where f l
i (x) =

F l(x, i). We call polynomials f1
i (x), . . . , f ℓ

i (x) as ith row polynomials.

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive gl
i(y) for l = 1, . . . , ℓ from D.

2. Participate in AVSS-MS-Share(D,P , (f1
j (x), . . . , f ℓ

j (x))) for all j = 1, . . . , n.

3. If (f1
j (i), . . . , f ℓ

j (i)) is received from D during AVSS-MS-Share(D,P , (f1
j (x), . . . , f ℓ

j (x))) then check whether
gl

i(j) = f l
j(i) holds for all l = 1, . . . , ℓ. When the test passes for all j = 1, . . . , n, then A-cast Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for AVSS-MS-Share(D,P , (f1
i (x), . . . , f ℓ

i (x))). Denote it by V COREi.

2. Keep updating V COREi. Wait to obtain CCORE = ∩n
i=1V COREi of size at least 2t + 1 such that

Matched-Column is received from A-cast of every Pj ∈ CCORE .

3. A-cast CCORE.

iv. CCORE verification & Agreement: Code for Pi – Every party including D will execute this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for AVSS-MS-Share(D,P , (f1
j (x), . . . , f ℓ

j (x))) for every j = 1, . . . , n
(by following the steps 2-4 as specified under [VCORE Verification & Agreement on VCORE: Code
for Pi] in protocol Re-commitment-MS).

v. Pj-private-reconstruction of (f1
j (x), . . . , f ℓ(x)) for j = 1, . . . , n: Code for Pi

1. If CCORE is a valid V CORE for AVSS-MS-Share(D,P , (f1
j (x), . . . , f ℓ

j (x))) for every j = 1, . . . , n,
then participate in AVSS-MS-Rec-Private(D,P , (f1

j (x), . . . , f ℓ
j (x)), Pj), for j = 1, . . . , n, to enable Pj-

private-reconstruction of (f1
j (x), . . . , f ℓ

j (x)). Notice that CCORE is used as VCORE in each
AVSS-MS-Rec-Private(D,P , (f1

j (x), . . . , f ℓ
j (x)), Pj), for j = 1, . . . , n.

2. At the completion of AVSS-MS-Rec-Private(D,P , (f1
i (x), . . . , f ℓ

i (x)), Pi), obtain degree-t polynomials
(f1

i (x), . . . , f ℓ
i (x)).

3. Output (f1
i (0), . . . , f ℓ

i (0)) as ith share of (s1, . . . , sℓ) and terminate ACSS-MS-Share.

ACSS-MS-Rec-Private(D,P , S, Pα): Pα-private-reconstruction of S:

i. Code for Pi – Every party in P executes this code.

1. Privately send s1
i , . . . , s

ℓ
i , the ith share of s1, . . . , sℓ to party Pα ∈ P .

ii. Code for Pα – Only Pα ∈ P executes this code.

1. For l = 1, . . . , ℓ, apply OEC on received shares of sl to reconstruct sl and terminate ACSS-MS-Rec-Private.

ACSS-MS-Rec-Public(D,P , S): Public reconstruction of S:

i. Code for Pi – Every party in P executes this code.

1. Privately send s1
i , . . . , s

ℓ
i , the ith share of s1, . . . , sℓ to every party Pj ∈ P .

2. For l = 1, . . . , ℓ, apply OEC on received shares of sl to reconstruct sl and terminate ACSS-MS-Rec-Public.

Notation 5 (Notation for Using ACSS-MS) In the subsequent sections, we will invoke ACSS-MS-

Share as ACSS-MS-Share (D,P, (f1(x), . . . , f ℓ(x))) to mean that D commits to f1(x), . . . , f ℓ(x) in ACSS-

MS-Share. Essentially here D is asked to choose bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such that

22

F l(x, 0) = f l(x) holds for l = 1, . . . , ℓ. As a result of this execution, each honest party Pi will get the
shares f1(i), . . . , f ℓ(i). Similarly, ACSS-MS-Rec-Private will be invoked as ACSS-MS-Rec-Private(D,P, (f1(x),
. . . , f ℓ(x)), Pα) to enable Pα ∈ P to privately reconstruct (f1(x), . . . , f ℓ(x)). Similarly, ACSS-MS-Rec-

Public will be invoked as ACSS-MS-Rec-Public(D,P, (f1(x), . . . , f ℓ(x))) to enable each party in P to
reconstruct (f1(x), . . . , f ℓ(x)).

9 Statistical Asynchronous Multiparty Computation with Optimal
Resilience

We now show how to use our proposed ACSS scheme to design an efficient statistical asynchronous
multiparty computation (AMPC) protocol with optimal resilience; i.e., with n = 3t + 1.

9.1 Multiparty Computation

A Multiparty Computation (MPC) [36, 12, 7, 35] protocol allows the parties in P to securely compute
an agreed function f , even in the presence of At. More specifically, assume that the agreed function
f can be expressed as f : F

n → F
n and party Pi has input xi ∈ F. At the end of the computation

of f , each honest Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of At

(correctness). Moreover, At should not get any information about the input and output of the honest
parties, other than what can be inferred from the input and output of the corrupted parties (secrecy).
In any general MPC protocol, the function f is specified by an arithmetic circuit over F, consisting of
input, linear (e.g. addition), multiplication, random and output gates. We denote the number of gates
of these types in the circuit by cI , cA, cM , cR and cO respectively. Among all the different type of gates,
evaluation of a multiplication gate requires the most communication complexity. So the communication
complexity of any general MPC protocol is usually given in terms of the communication complexity per
multiplication gate [5, 4, 3, 17, 27].

The MPC problem has been studied extensively over synchronous networks. However, MPC in asyn-
chronous network has got comparatively less attention, due to its inherent hardness. As asynchronous
networks model real life networks like Internet more appropriately than synchronous networks, funda-
mental problems like MPC is worthy of deep investigation over asynchronous networks.

9.2 Asynchronous Multiparty Computation (AMPC)

Any asynchronous MPC (AMPC) protocol should satisfy termination condition, in addition to cor-
rectness and secrecy condition (specified earlier). According to the termination condition, every honest
party should eventually terminate the protocol. There are mainly two types of AMPC protocols:

1. A perfectly secure AMPC protocol satisfies all the properties of AMPC without any error;

2. A statistically secure (statistical in short) AMPC protocol involves a negligible error probability of
2−Ω(κ) in correctness and/or termination, for an error parameter κ. However, note that there
is no compromise in secrecy property.

From [6], perfectly secure AMPC is possible iff n ≥ 4t+1. On the other hand, statistically secure AMPC
is possible iff n ≥ 3t + 1 [8]. In this paper, we concentrate on statistically secure AMPC with optimal
resilience; i.e., with n = 3t + 1. The communication complexity per multiplication gate of existing
statistically secure AMPC protocols are as follows:

Reference Resilience Communication Complexity in bits

[8] t < n/3 (optimal) private– Ω(cMn11κ4); A-cast– Ω(cMn11κ2 log(n))

[33] t < n/4 (non-optimal) private– O(cMn4κ)

[32] t < n/4 (non-optimal) private–O(cMn2κ)

From the table, we find that the only known statistically secure AMPC with optimal resilience (i.e.,
with n = 3t + 1), involves very high communication complexity (the communication complexity analysis
of the AMPC of [8] was not done earlier and for the sake of completeness, we carry out the same in
APPENDIX A). Recently [18] presented an efficient MPC protocol over networks that has a synchro-
nization point (the network is asynchronous before and after the synchronization point) and hence we do

23

not compare it with our AMPC protocol, which is designed over completely asynchronous settings. Also
we do not compare our protocol with the known cryptographically secure AMPC (where the adversary
has bounded computing power) protocols presented in [26] and [27].

9.3 Our New Statistical AMPC Protocol with n = 3t + 1

We design a statistically secure AMPC protocol with n = 3t + 1 which privately communicates O(n5κ)
bits per multiplication gate. Thus our AMPC protocol significantly improves the communication com-
plexity of only known optimally resilient statistically secure AMPC protocol of [8]. For designing our
AMPC protocol, we use our proposed ACSS scheme.

9.4 The Approach Used in the AMPC of [8] and Current Article

1. AMPC of [8]: The AMPC protocol of [8] consists of input phase and computation phase. In input
phase every party shares (or commits to) his input xi. All the parties then decide on a common
set of n − t parties (using ACS) who have done proper sharing of their input. Once this is done,
in the computation phase the arithmetic circuit representing f is computed gate by gate, such
that the intermediate gate outputs are always kept as secret and are properly shared/ distributed
among the parties, using the approach of [7]. Now for sharing/committing inputs, a natural choice
is to use AVSS protocol which can be treated as a form of commitment, where the commitment
is held in a distributed fashion among the parties. Before [8], the only known AVSS scheme with
n = 3t + 1 was due to [11]. But it is shown in [8] that the use of the AVSS protocol of [11] for
committing inputs (secrets), does not allow to compute the circuit robustly in a straight-forward
way. This is because for robust computation of the circuit, it is to be ensured that at the end of
AVSS sharing phase, every honest party should have access to share of the secret. Unfortunately
the AVSS of [11] does not guarantee the above property, which we may refer as ultimate property.
This very reason motivated Ben-Or et. al [8] to introduce a new asynchronous primitive called
Ultimate Secret Sharing (USS) which not only ensures that every honest party has access to his
share of the secret, but also offers all the properties of AVSS. Thus [8] presents an USS scheme with
n = 3t + 1 using the AVSS protocol of [11] as a building block. Essentially, in the USS protocol
of [8], every share of the secret is committed using AVSS of [11] which ensures that each honest
party Pi can have an access to the ith share of secret by means of private reconstruction of AVSS.
A secret s that is shared using USS is called ultimately shared. Now in the input phase of AMPC
in [8], parties ultimately share their inputs. Then in the computation phase, for every gate (except
output gate), ultimate sharing of the output is computed from the ultimate sharing of the inputs,
following the approach of [7, 35].

2. AMPC of Current Article: Our AMPC protocol is presented in preprocessing model of [2] and
proceeds in a sequence of three phases: preparation phase, input phase and computation phase.
Every honest party will eventually complete each phase with very high probability. We call a triple
(a, b, c) as a random multiplication triple if a, b are random and c = ab. In the preparation phase,
sharing of cM + cR random multiplication triples are generated. Each multiplication and random
gate of the circuit is associated with a multiplication triple. In the input phase the parties share
(commit to) their inputs and agree on a common subset of n− t parties (using ACS) who correctly
shared their inputs. In the computation phase, the actual circuit will be computed gate by gate,
based on the inputs of the parties in common set. Due to the linearity of the used secret-sharing, the
linear gates can be computed locally. Each multiplication gate will be evaluated using the circuit
randomization technique of [2] with the help of the associated multiplication triple (generated in
preparation phase).

For committing/sharing secrets, we use our ACSS scheme. There is a slight definitional difference
between the USS of [8] and our ACSS, though both of them offer all the properties of AVSS. While
USS of [8] ensures that every honest party has access to share of secret (but may not hold the share
directly), our ACSS ensures that every honest party holds his share of secret. This property of
ACSS is called completeness property as mentioned in the definition of ACSS. The advantages of
ACSS over USS are as follows:

24

(a) It makes the computation of the gates very simple;

(b) Reconstruction phase of ACSS is very simple, efficient and can be achieved using on-line error
correction of [10].

Apart from these advantages, our ACSS is strikingly better than USS of [8] in terms of commu-
nication complexity. While sharing phase of our ACSS privately communicates O((ℓn4 + n5κ)κ)
bits and A-casts O(n4 log n) bits to share ℓ secrets concurrently, the sharing phase of USS in [8]
privately communicates Ω(n10κ4) bits and A-casts Ω(n10κ2 log(n)) bits to share only one secret.

9.5 Primitives Used in Our AMPC Protocol

In addition to the ACSS scheme proposed by us, our AMPC protocol also uses a well known primitive
called Agreement on Common Subset (ACS) [4, 8]. It is an asynchronous primitive presented in [6, 8].
It outputs a common set, containing at least n − t parties, who correctly shared their values (using
ACSS). Moreover, each honest party will eventually get a share, corresponding to each value, shared by
the parties in the common set. ACS requires private communication of O(poly(n, κ)) bits.

In addition to the ACS protocol, we also use another protocol, which allows the parties in P to jointly
generate a random, non-zero element r ∈ F. The protocol works as follows: each Pi ∈ P shares a random
non-zero ri ∈ F using ACSS-SS-Share. The parties then run ACS to agree on a common set, say C of
at least 2t + 1 parties who did proper sharing of their ri’s. Once C is agreed upon, ACSS-SS-Rec-Public
is executed for every Pi ∈ C in order to reconstruct back Pi’s committed secret. Now every party in P
locally add the committed secret of every Pi ∈ C. Now it is easy to see that the sum value is random.
We call this protocol as RNG, which privately communicates O(n6κ2) bits and A-cast O(n5 log(n)) bits.

10 Generating t-2D-Sharing

For generating multiplication triples, we need to generate t-2D-sharing of secret(s) where t-2D-sharing
is defined as follows:

Definition 6 (t-2D-sharing [3]) : A value s is t-2D-shared among the parties in P if there exist
degree-t polynomials f(x), f1(x), . . . , fn(x) with f(0) = s and for i = 1, . . . , n, f i(0) = f(i) and every
(honest) party Pi ∈ P holds a share si = f(i) of s, the polynomial f i(x) for sharing si and a share-share
sji = f j(i) of the share sj of every party Pj ∈ P. We denote t-2D-sharing of s as [[s]]t.

The t-2D-sharing of s implies that s as well as it’s shares are individually t-shared. Now we present
a protocol t-2D-Share which allows D to simultaneously generate t-2D-sharing of ℓ ≥ 1 elements from
F, namely s1, . . . , sℓ. If D is honest, then every honest party will eventually terminate t-2D-Share, and
if some honest party has terminated t-2D-Share, then all the honest parties will eventually terminate
t-2D-Share. The high level idea of the protocol is as follows: D selects a random value s0 ∈ F and
hides each si in the constant term of a random degree-t polynomial qi(x). D then t-shares the secret
S0 = (s0, . . . , sℓ), as well as their ith shares Si = (q0(i), . . . , qℓ(i)). The parties then jointly employ a
verification technique to ensure that D indeed t-shared Si for i = 1, . . . , n which defines S0. A similar
verification technique was used in [3] in synchronous settings. The secret s0 is used to ensure the secrecy
of s1, . . . , sℓ during the verification process. After verification, the polynomials used for t-sharing Si are
privately reconstructed by Pi, thus completing the t-2D-sharing of s1, . . . , sℓ.

Lemma 25 In protocol t-2D-Share, if D is honest, then each honest party will eventually terminate with
correct t-2D-sharing. Moreover, s1, . . . , sℓ will remain secure. If D is corrupted, then with very high
probability, the honest parties will terminate only if D has done correct t-2D-sharing.

Proof: The first part is easy to proof. For the second part, we consider the case when D is corrupted.
For i = 0, . . . , n, ACSS-MS-Sharei ensures that D has correctly t-shared some Si. But it may happen
that some Si which is t-shared by D does not contain the correct ith shares of S0. Assume that D has
t-shared Sj 6= Sj in ACSS-MS-Sharej. This implies that in ACSS-MS-Sharej , D has used polynomials
q(0,j)(x), . . . , q(ℓ,j)(x) to share Sj , such that for at least one l ∈ {0, . . . , ℓ}, q(l,j)(0) 6= ql(j) = sl

j. That

is, q(l,j)(0) = sl
j 6= sl

j . Now consider q∗j (0) = s0
j + rs1

j + . . . + rlsl
j + . . . + rℓsℓ

j. We claim that with

25

very high probability q∗(j) 6= q∗j (0). The probability that q∗(j) = q∗j (0) is same as the probability that

two different ℓ degree polynomials with coefficients (s0
j , . . . , s

l
j, . . . , s

ℓ
j) and (s0

j , . . . , s
l
j , . . . , s

ℓ
j) intersect

at a random value r. Since any two ℓ degree polynomial can intersect each other at most at ℓ values,
r has to be one of the ℓ values. But r is chosen randomly after the completion of all ACSS-MS-Sharej

for j = 0, . . . , n (so during executions of ACSS-MS-Sharei’s D is unaware of r). So the above event can
happen with probability at most ℓ

|F| ≈ 2−Ω(κ). Thus with probability at least 1 − 2−Ω(κ), q∗(j) 6= q∗j (0)
and thus no honest party will terminate the protocol. 2

Protocol t-2D-Share(D,P , S)

Sharing by D: Code for D

1. Select s0 ∈R F and ℓ + 1 degree-t random polynomials q0(x), . . . , qℓ(x) such that for l = 0, . . . , ℓ, ql(0) = sl.
Let sl

i = ql(i) and Si = (q0(i), . . . , qℓ(i)) for i = 0, . . . , n. So S0 = (s0, . . . , sℓ) and Si = (s0
i , . . . , s

ℓ
i).

2. For l = 0, . . . , ℓ and i = 1, . . . , n, select random degree-t polynomials q(l,i)(x), such that q(l,i)(0) = ql(i) = sl
i.

Let Sij = (q(0,i)(j), q(1,i)(j), . . . , q(ℓ,i)(j)) = (s0
ij , s

1
ij , . . . , s

ℓ
ij).

3. Invoke ACSS-MS-Share(D,P , (q0(x), q1(x), . . . , qℓ(x))) for generating t-sharing of S0 where Pj receives the
shares Sj . Denote this instance of ACSS-MS-Share by ACSS-MS-Share0.

4. For i = 1, . . . , n, invoke ACSS-MS-Share(D,P , (q(0,i)(x), q(1,i)(x), . . . , q(ℓ,i)(x))) for generating t-sharing of Si

where Pj receives the share-shares Sij . Denote this instance of ACSS-MS-Share by ACSS-MS-Sharei.

Verification: Code for Pi

1. Upon completion of ACSS-MS-Sharej for all j ∈ {0, . . . , n}, participate in protocol RNG to generate random
r ∈ F.

2. Once r is generated, locally compute s∗i =
Pℓ

l=0 rlsl
i which is the ith share of s∗ =

Pℓ
l=0 rlsl. In addition, for

j = 1, . . . , n, locally compute s∗ji =
Pℓ

l=0 rlsl
ji which is the ith share-share of s∗j .

3. Participate in ACSS-MS-Rec-Public(D,P , (s∗, s∗1, . . . , s
∗
n)) to reconstruct s∗, s∗1, . . . , s

∗
n. This results in every

party reconstructing q∗(x) and q∗1(x), . . . , q∗n(x) with q∗(0) = s∗ and q∗i (0) = s∗i .

4. Check whether for i = 1, . . . , n, q∗(i)
?
= q∗i (0). If yes proceed to the next step assuming that D has done proper

t-sharing of Sj for j = 0, . . . , n.

Pj-Private Reconstruction of polynomials used for sharing Sj: (Code for Pi):

1. For j = 1, . . . , n, participate in ACSS-MS-Rec-Private(D,P , Sj , Pj) for enabling Pj to privately reconstruct the
polynomials q(0,j)(x), . . . , q(ℓ,j)(x) which were used by D to share Sj .

2. Wait to privately reconstruct q(0,i)(x), . . . , q(ℓ,i)(x) from ACSS-MS-Rec-Private(D,P , Si, Pi) and terminate.

Theorem 6 t-2D-Share privately communicates O((ℓn5 + n6κ)κ) bits and A-cast O(n5 log(n)) bits.

Proof: Follows from the fact that there are n + 1 instances of ACSS-MS-Share, one instance of RNG,
one instance of ACSS-MS-Rec-Public and n instances of ACSS-MS-Rec-Private. 2

11 Preparation Phase

Here we generate t-sharing of cM + cR secret random multiplication triples (ak, bk, ck), such that for k =
1, . . . , cM +cR, ck = akbk. For this we first generate t-2D-sharing of secret random doubles ([[ak]]t, [[b

k]]t)
for k = 1, . . . , cM + cR. Given these random doubles, we generate t-sharing of ck, for k = 1, . . . , cM + cR,
by adapting a technique from [15] which was given for synchronous settings.

11.1 Generating Secret and Random t-2D-Sharing

In section 10, we have presented a protocol called t-2D-Share which allows a D ∈ P to generate t-2D-
sharing of ℓ secrets. We now present a protocol called Random-t-2D-Share which allows all the parties
in P to jointly generate random t-2D-sharing of ℓ secrets, unknown to At. Random-t-2D-Share asks
individual party to act as dealer and t-2D-Share ℓ

n−2t
random secrets. Then we run ACS protocol to

agree on a core set of n − t parties who have correctly t-2D-shared ℓ
n−2t

random secrets. Now out of
these n − t parties, at least n − 2t are honest. Hence the secrets that are t-2D-shared by these n − 2t
honest parties are truly random and unknown to At. So if we consider the ℓ

n−2t
t-2D-sharing done by

only the honest parties in core set, then we will get ℓ
n−2t

∗ (n−2t) = ℓ random t-2D-sharing. For this, we
use Vandermonde Matrix [17] and its ability to extract randomness which has been exploited by [17, 4].

26

Vandermonde Matrix and Randomness Extraction [17]: Let β1, . . . , βc be distinct elements
from F. We denote an (r × c) Vandermonde matrix by V (r,c), where for 1 ≤ i ≤ c, the ith column
of V (r,c) is (β0

i , . . . , βr−1
i)T . The idea behind extracting randomness using Vandermonde matrix is as

follows: without loss of generality, assume that r > c. Moreover, let (x1, . . . , xr) be generated by picking
up c elements from F uniformly at random and then picking the remaining r − c elements from F

with an arbitrary distribution, independent of the first c elements. Now if we compute (y1, . . . , yc) =
(x1, . . . , xr)V , then (y1, . . . , yc) is an uniformly random vector of length c, extracted from (x1, . . . , xr).
For proof of this, see [17, 4].

Protocol Random-t-2D-Share(P , ℓ)

Code for Pi:

1. Select L = ℓ
n−2t

random secret elements (s(i,1), . . . , s(i,L)). As a dealer, invoke t-2D-Share(Pi,P , Si) to generate

t-2D-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in t-2D-Share(Pj,P , Sj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating t-2D-Share(Pj,P , Sj), include Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of Random t-2D-sharing: Code for Pi:

1. Wait until ACS completes with output C containing n − t parties. For every Pj ∈ C, obtain the ith shares

s
(j,1)
i , . . . , s

(j,L)
i of Sj and ith share-share s

(j,1)
ki , . . . , s

(j,L)
ki of shares s

(j,1)
k , . . . , s

(j,L)
k , corresponding to each Pk,

for k = 1, . . . , n. Without loss of generality, let C = {P1, . . . , Pn−t}.

2. Let V denotes a (n − t) × (n − 2t) publicly known Vandermonde Matrix [17] over F.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith share of r(1,k), . . . , r(n−2t,k) as (r
(1,k)
i , . . . , r

(n−2t,k)
i) = (s

(1,k)
i , . . . , s

(n−t,k)
i)V .

(c) For each 1 ≤ j ≤ n, locally compute the ith share-share of share (r
(1,k)
j , . . . , r

(n−2t,k)
j) as

(r
(1,k)
ji , . . . , r

(n−2t,k)
ji) = (s

(1,k)
ji , . . . , s

(n−t,k)
ji)V and terminate.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denotes the ℓ random secrets which are t-2D-shared.

Lemma 26 Random-t-2D-Share (eventually) terminates with very high probability for every honest party.
It outputs t-2D-sharings of ℓ random secret values, unknown to At. The protocol privately communicates
O((ℓn5 + n7κ)κ) bits, A-cast O(n6 log(n)) bits and requires one invocation of ACS.

Proof: The termination property is easy to verify. The communication complexity follows from the
fact that n instances of t-2D-Share, dealing with ℓ

n−2t
= ℓ

Θ(n) values are executed. 2

11.2 Proving c = ab

Consider the following problem: let D ∈ P has t-shared ℓ pair of values (a1, b1), . . . , (aℓ, bℓ). Now D
wants to t-share c1, . . . , cℓ where cl = albl without leaking any additional information about al, bl and cl.
We propose a protocol ProveCeqAB to achieve this task in asynchronous settings, following a technique
proposed in [15] for synchronous settings. The idea of the protocol for a single pair (a, b) is as follows. D
selects a random non-zero β ∈ F and generates t-sharing of c, β and βb. Then all the parties in P jointly
generate a random value r. Each party locally computes the sharing of p = ra+β and then p is publicly
reconstructed. Then each party locally computes the sharing of q = pb−bβ−rc = (ra+β)b−bβ−rc and
then q is publicly reconstructed. If q = 0, then each party believes that with very high probability, D has
indeed t-shared c = ab. Moreover, if D is honest then a, b and c will remain information theoretic secure.
For the proof of correctness and secrecy, see [15]. If D is honest, then every honest party will eventually
complete ProveCeqAB, and if some honest party has completed ProveCeqAB, then all the honest parties
will eventually complete ProveCeqAB.

The error probability of the protocol is negligible because of the random r which is jointly generated
by all the parties after c, β and bβ is t-shared by D. Specifically, a corrupted D might have shared
βb 6= βb or c 6= c but still q can be zero and this will happen iff βb+ rc = βb+ rc. However this equation
is satisfied by only one value of r. Since r is randomly generated, independent of D, the probability that
the equality will hold is 1

|F| which is negligibly small. The secrecy follows from the fact that p and q are

independent of a, b and c. Now we can extend the above idea parallely for each of the ℓ pairs (a(l), b(l)).

27

Protocol ProveCeqAB(D,P , [a1]t, . . . , [a
ℓ]t, [b

1]t, . . . , [b
ℓ]t)

Sharing by D:

1. Code for D: (a) Select ℓ non-zero random elements β1, . . . , βℓ from F. For 1 ≤ l ≤ ℓ, let cl = albl and
dl = blβl. Let B = (β1, . . . , βℓ), C = (c1, . . . , cℓ) and Λ = (d1, . . . , dℓ).

(b) Invoke ACSS-MS-Share(D,P ,B), ACSS-MS-Share(D,P , C) and ACSS-MS-Share(D,P , Λ).

2. Code for Pi: Participate in the ACSS-MS-Share protocols initiated by D to obtain the ith share (β1
i , . . . , βℓ

i),
(c1

i , . . . , c
ℓ
i) and (d1

i , . . . , d
ℓ
i) of B, C and Λ respectively.

Verifying whether cl = al.bl: Code for Pi

1. Once the three instances of ACSS-MS-Share initiated by D are terminated, participate in protocol RNG to
jointly generate a random non-zero value r ∈ F.

2. For l = 1, . . . , ℓ, locally compute pl
i = ral

i + βl
i, the ith share pl = ral + βl. Participate in ACSS-MS-Rec-

Public(D,P , (p1, . . . , pℓ),P) to publicly reconstruct pl for l = 1, . . . , ℓ.

3. Upon reconstruction of pl’s, locally compute ql
i = plbl

i − dl
i − rcl

i for 1 ≤ l ≤ ℓ, to get the ith share of
ql = plbl − dl − rcl. Participate in ACSS-MS-Rec-Public(D,P , (q1, . . . , qℓ)) to publicly reconstruct ql for
l = 1, . . . , ℓ.

4. Upon reconstruction of ql’s, locally check whether for l = 1, . . . , ℓ, ql ?
= 0. If yes then terminate.

Lemma 27 ProveCeqAB privately communicates O((ℓn4 +n5κ)κ) bits and A-casts O(n4 log(n)) bits. If
an honest party terminates, then with high probability, D has t-1D-shared cl = albl, for 1 ≤ l ≤ ℓ.

11.3 Generating Multiplication Triples: The Preparation Phase Main Protocol

We now outline protocol PreparationPhase which generates t-sharing of cM +cR multiplication triples. We
explain the idea for a single triplet (a, b, c). First, Random-t-2D-Share is invoked to generate t-2D-sharing
of (a, b) which results in Pi holding ith share of a and b, namely ai and bi respectively. Now if each Pi

locally computes ei = aibi, then this results in 2t-sharing of c. But we want each (honest) Pi to hold
ci, where (c1, . . . , cn) is the t-sharing of c. For this we adapt a technique given in [22] for synchronous
settings: Each Pi invokes ProveCeqAB to t-share ei. Now an instance of ACS will be executed to agree
on a common set of n − t = 2t + 1 parties whose instances of ProveCeqAB has been terminated. For
simplicity let this set contains P1, . . . , P2t+1. Since e1, . . . , e2t+1 are 2t + 1 distinct points on a 2t degree
polynomial, say C(x) where C(0) = c, by Lagrange interpolation formula [14], c can be computed as
c =

∑n−t
i=1 riei where ri =

∏2t+1
j=1,j 6=i

x−j
i−j

. The vector (r1, . . . , r2t+1) is called recombination vector [14]

and is known publicly. Now to get t-sharing of c, Pj locally computes cj =
∑2t+1

i=1 rieij where eij is jth

share of ei. By the properties of ProveCeqAB, each Pi in core set has indeed shared ei = aibi with very
high probability. So by performing the above computation, correct t-sharing of c = ab will be generated
with very high probability. Moreover, a, b and c will remain information theoretically secure.

Protocol PreparationPhase(P)

Code for Pi:

1. Participate in two instances of Random-t-2D-Share(P , cM + cR) to generate t-2D-sharing of
a1, . . . , acM+cR and b1, . . . , bcM+cR . Obtain the ith shares a1

i , . . . , a
cM+cR

i , b1
i , . . . , b

cM +cR

i and share-shares
a1

ji, . . . , a
cM+cR

ji , b1
ji, . . . , b

cM +cR

ji .

2. For 1 ≤ k ≤ cM + cR, let ck = akbk. Upon termination of both the instances of Random-t-2D-Share, invoke
ProveCeqAB(Pi,P , [a1

i]t, . . . , [a
cM +cR

i]t, [b
1
i]t, . . . , [b

cM +cR

i]t) as a dealer, to generate t-sharing of c1
i , . . . , c

cM +cR

i ,
where ck

i is the ith share of ck.

3. For j = 1, . . . , n, participate in ProveCeqAB(Pj ,P , [a1
j]t, . . . , [a

cM +cR

j]t, [b
1
j]t, . . . , [b

cM +cR

j]t).

Agreement on a Common-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon completing ProveCeqAB(Pj ,P , [a1
j]t, . . . , [a

cM +cR

j]t, [b
1
j]t, . . . , [b

cM +cR

j]t)

with dealer Pj , add Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of t-sharing of c1, . . . , ccM +cR : Code for Pi

1. Wait until ACS completes with output C containing 2t + 1 parties. For simplicity, assume that C =
{P1, . . . , P2t+1}.

2. For k = 1, . . . , cM + cR, locally compute ck
i =

P2t+1
j=1 rjc

k
ji the ith share of ck = r1c

k
1 + . . . + r2t+1c

k
2t+1, where

(r1, . . . , r2t+1) is the publicly known recombination vector.

28

Lemma 28 Each honest party eventually terminates PreparationPhase with very high probability. The
protocol privately communicates O(((cM +cR)n5+n7κ)κ) bits, A-cast O(n6 log(n)) bits and requires three
invocations of ACS.

12 Input Phase

In protocol InputPhase, each Pi acts as a dealer to t-share his input Xi containing ci values. So cI =∑n
i=1 ci. The parties then agree on a set of at least n − t parties (whose inputs will be taken into

consideration for computation), by executing an ACS.

Protocol InputPhase(P)

Secret Sharing: Code for Pi

1. On input Xi, invoke ACSS-MS-Share(Pi,P , Xi) to generate t-sharing of Xi.

2. For every j = 1, . . . , n, participate in ACSS-MS-Share(Pj,P , Xj).

Agreement on a Common-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon completing ACSS-MS-Share(Pj,P , Xj) with dealer Pj , add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

3. Output common set C containing 2t + 1 parties and local shares of all inputs corresponding to parties in C.

Lemma 29 Each honest party will eventually terminate InputPhase and outputs t-sharing of inputs of
the parties in agreed common set C with very high probability. The protocol privately communicates
O((cIn

4 + n6κ)κ) bits, A-casts O(n5 log(n)) bits and requires one invocation of ACS.

13 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated gate by gate, where all
inputs and intermediate values are t-shared among the parties. As soon as a party holds his shares of
the input values of a gate, he joins the computation of the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be computed locally by applying the
linear function to the shares, i.e. for any linear function c = f(a, b), the sharing [c]t is computed by letting
every party Pi to compute ci = f(ai, bi), where ai, bi and ci are the ith shares of a, b and c respectively.
With every random gate, one random triple (from the preparation phase) is associated, whose first
component is directly used as outcome of the random gate. With every multiplication gate, one random
triple (from the preparation phase) is associated, which is then used to compute t-sharing of the product,
following the circuit randomization technique of Beaver [2]. Given a preprocessed random multiplication
triple, which is already correctly t-shared, Circuit Randomization [2] allows to evaluate a multiplication
gate at the cost of two public reconstructions. Let z = xy, where x, y are the inputs of the multiplication
gate. Now z can be expressed as z = ((x−a)+a)((y−b)+b) = (α+a)(β +b), where (a, b, c) is a random
multiplication triple. So given ([a]t, [b]t, [c]t), [z]t can be computed as [z]t = αβ + α[b]t + β[a]t + [c]t
after reconstructing α and β publicly. The security follows from the fact that α and β are random, for
a random (a, b, c).

29

Protocol ComputationPhase(P)

For every gate in the circuit: Code for Pi

Wait until the ith share of each of the inputs of the gate is available. Now depending on the type of the gate, proceed
as follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .),
where xi, yi, . . . denotes ith share of x, y,

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, ([a
k]t, [b

k]t, [c
k]t)):

(a) Let ([ak]t, [b
k]t, [c

k]t) be the random triple associated with the multiplication gate.

(b) Compute αi = xi − ai and βi = yi − bi, the ith share of α = (x − a) and β = (y − b) respectively.

(c) Participate in ACSS-SS-Rec-Public to reconstruct α and β.

(d) Upon reconstructing α and β, compute zi = αβ+αbi+βai+ci, the ith share of z = αβ+αb+βa+c = xy.

4. Random Gate: [r]t = RGate([ak]t, [b
k]t, [c

k]t): Let ([ak]t, [b
k]t, [c

k]t) be the random triple associated with
the random gate. Compute ri = ak

i as the ith share of r.

5. Output Gate: x = OGate([x]t): Participate in ACSS-SS-Rec-Public to reconstruct x.

Lemma 30 Every honest party eventually terminates ComputationPhase with very high probability.
Given t-sharing of cM +cR secret random triples, the protocol computes the outputs of the circuit correctly
and privately, by privately communicating O(n2(cM + cO)κ) bits.

14 The New AMPC Protocol with Optimal Resilience

Now our new AMPC protocol AMPC for evaluating function f which is represented by a circuit con-
taining cI , cL, cM , cR and cO input, linear, multiplication, random and output gates, is: (1). Invoke
PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 7 For every coalition of up to t < n/3 bad parties, the protocol AMPC securely computes
the circuit representing function f and eventually terminates with very high probability for all the honest
parties. AMPC privately communicates O((cIn

4+cMn5+cRn5+cOn2+n7κ)κ) bits, A-Cast O(n6 log(n))
bits and requires 4 invocations to ACS.

15 Conclusion and Open Problems

In this paper, we have presented a new statistical AVSS scheme with optimal resilience (i.e., n = 3t+1),
which significantly improves the communication complexity of only known statistical AVSS of [11] and
[31]. Moreover, our AVSS achieves stronger properties than the AVSS of [31] with less communication
complexity. Furthermore, using our AVSS scheme, we designed a new ACSS scheme which is an essential
building block of statistical AMPC protocol with optimal resilience (i.e., with n = 3t + 1). In fact, our
ACSS scheme is the first ACSS scheme in the literature (in asynchronous settings). Our ACSS when
employed for designing AMPC results in significant improvement over the only known statistical AMPC
protocol of [8] (which does not employ any ACSS). The design approach of our AVSS and ACSS are novel
and first of their kind. It is an interesting problem to further reduce the communication complexity of
our AVSS and hence ACSS scheme. This will lead to further reduction in the communication complexity
of AMPC.

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almost surely terminating polynomial protocol for
asynchronous Byzantine Agreement with optimal resilience. In PODC, pages 311–322, 2008.

[2] D. Beaver. Efficient multiparty protocols using circuit randomization. In Proc. of CRYPTO 1991,
volume 576 of LNCS, pages 420–432. Springer Verlag, 1991.

[3] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In
Proc. of TCC, pages 305–328, 2006.

30

[4] Z. Beerliová-Trub́ıniová and M. Hirt. Simple and efficient perfectly-secure asynchronous MPC. In
ASIACRYPT, pages 376–392, 2007.

[5] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity.
In TCC, pages 213–230, 2008.

[6] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In STOC, pages
52–61, 1993.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In STOC, pages 1–10, 1988.

[8] M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience.
In PODC, pages 183–192, 1994.

[9] G. Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient consensus protocol. In 3rd ACM PODC, pages
154 – 162, 1984.

[10] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute, Israel, 1995.

[11] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal resilience. In Proc.
of STOC 1993, pages 42–51. ACM, 1993.

[12] D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended
abstract). In Proc. of FOCS 1988, pages 11–19, 1988.

[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving si-
multaneity in the presence of faults (extended abstract). In Proc. of STOC 1985, pages 383–395,
1985.

[14] R. Cramer and I. Damg̊ard. Multiparty Computation, an Introduction. Contemporary Cryptography.
Birkhuser Basel, 2005.

[15] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of LNCS, pages
311–326. Springer Verlag, 1999.

[16] R. Cramer, I. Damg̊ard, and U. M. Maurer. General secure multi-party computation from any linear
secret-sharing scheme. In EUROCRYPT, pages 316–334, 2000.

[17] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In
CRYPTO, pages 572–590, 2007.

[18] I. Damgrd, M. Geisler, M. Krigaard, and J. Buus Nielsen. Asynchronous multiparty computation:
Theory and implementation. Cryptology ePrint Archive, Report 2008/415, 2008.

[19] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. JACM,
40(1):17–47, 1993.

[20] P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine agreemet. In Proc. of
STOC 1988, pages 639–648. ACM, 1988.

[21] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and efficient
verifiable secret sharing. In Proc. of TCC 2006, volume 3876 of LNCS, pages 329–342. Springer
Verlag, 2006.

[22] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty computations
with applications to threshold cryptography. In PODC, pages 101–111, 1998.

[23] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable
secret sharing and secure multicast. In STOC, pages 580–589, 2001.

31

[24] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. of 19th ACM
STOC, pages 218–229, 1987.

[25] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multiparty computation. In Proc. of
ASIACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer Verlag, 2000.

[26] M. Hirt, J. B Nielsen, and B. Przydatek. Cryptographic asynchronous multi-party computation
with optimal resilience (extended abstract). In EUROCRYPT, pages 322–340, 2005.

[27] M. Hirt, J. B Nielsen, and B. Przydatek. Asynchronous multi-party computation with quadratic
communication. In ICALP (2), pages 473–485, 2008.

[28] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of vss in point-to-point
networks. In ICALP(2), pages 499–510, 2008.

[29] J. Katz and C. Y. Koo. On expected constant round protocols for Byzantine Agreement. In
CRYPTO, pages 445–462, 2006.

[30] A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The round complexity of verifiable secret
sharing re-visited. In CRYPTO, pages 487–504, 2009.

[31] A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and efficient asynchronous Byzantine
Agreement with optimal resilience. In PODC, pages 92–101, 2009.

[32] A. Patra, A. Choudhary, and C. Pandu Rangan. Unconditionally Secure Asynchronous Multiparty
Computation with Quadratic Communication Per Multiplication Gate. Cryptology ePrint Archive,
Report 2009/087, 2009.

[33] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in unconditional
multiparty computation. In SCN, pages 342–353, 2002.

[34] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J. ACM, 41(6):1089–1109,
1994.

[35] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[36] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164, 1982.

APPENDIX A: Communication Complexity of the AMPC of [8]

Here we carry out the communication complexity analysis for the AMPC of [8]. Recently, in [31], the
authors have analyzed that for a single secret, the sharing phase of the AVSS scheme of [11] involves
a private communication of Ω(n9κ4) bits and A-cast of Ω(n9κ2 log(n)) bits. As the sharing phase of
the USS scheme of [8] requires n invocations to the sharing phase of AVSS of [11], it incurs a private
communication of Ω(n10κ4) bits and A-cast of Ω(n10κ2 log(n)) bits at least. Finally in the AMPC
protocol, each multiplication requires n invocations to the sharing phase of USS. So evaluation of each
multiplication gate incurs a private communication of Ω(n11κ4) and A-cast of Ω(n11κ2 log(n)) bits.

32

