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Abstract. In this paper, we consider the problem of predicate encryp-
tion and focus on the predicate for testing whether the hamming distance
between the attribute X of a data item and a target V is equal to (or less
than) a threshold t where X and V are of length m. Existing solutions
either do not provide attribute protection or produce a big ciphertext
of size O(m2m). For the equality version of the problem, we provide
a scheme which is match-concealing (MC) secure and the sizes of the
ciphertext and token are both O(m). For the inequality version of the
problem, we give two practical schemes. The first one, also achieving MC
security, produces ciphertext with size O(mtmax) if the maximum value
of t, tmax, is known in advance and is a constant. We also show how to
update the ciphertext if the user wants to increase tmax without con-
structing the ciphertext from scratch. On the other hand, in many real
applications, the security requirement can be lowered from MC to MR
(match-revealing). Our second scheme, which is MR secure, produces
ciphertext of size O(m) and token of size O((t + 1)m) only.

Key words: predicate encryption, anonymous fuzzy identity-based en-
cryption, inner-product encryption

1 Introduction

It is getting more popular for a data owner to take advantage of the storage
and computing resources of a data center to hold the data in encrypted form.
Users will be given a token (by the owner) to access the data so that only au-
thorized records can be retrieved and later be decrypted on the user site. Due
to the privacy and security concern, it is obvious that the data will not be de-
crypted at the data center and checked against the criteria one by one. Thus
computation is required to be carried out on encrypted data directly. Exam-
ples are retrieval of encrypted documents based on keyword matching, selection
of encrypted audit logs using multi-dimensional range query on authorized IP
addresses or port numbers, and hamming distance based similarity search on en-
crypted DNA sequence data. The problem, in fact, has received much attention
from both database community [16, 3, 17, 13, 18, 26] and cryptography commu-
nity [25, 4, 23, 10, 19].

In general, the problem can be stated as follows. For each data item M ,
there is an associated attribute value X (X may not be part of the record M)
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and let f : {0, 1}∗ → {0, 1} be a predicate which represents the computation we
want to carried out on ciphertexts such that the data item M can be successfully
decrypted if and only if f(X) = 1. Authorized users will obtain a token generated
by the owner in order to perform the predicate evaluation. The predicate can
take additional parameters, so a different token can be generated for a different
parameter value which increases the flexibility of the data owner to provide
different access power to different users. Here is an example. Each medicate
record (M) is encrypted along with a selected region of the DNA sequence (X)
of the person. When a research team is authorized to investigate the relationship
between a certain DNA sequence V with diseases, this team would acquire a
token which corresponds to the predicate f such that f(X) = 1 if and only if
HammingDist(X, V ) ≤ t, say t = 5. By using the token, the research team
would decrypt all medicate records for which the corresponding DNA sequence
is similar to V . In the above motivating example, it is obvious that the research
team should not infer any information on records for which the corresponding
attribute X which is far away from V (i.e. HammingDist(X, V ) > 5) since they
are not authorized to do so. And it is desirable that the ciphertext E(pk, I, M),
where pk is the public key generated by the data owner, is the same for different
V and t values such that the encryption of data items needs only to be done once.
This emerging branch of encryption schemes are referred as predicate encryption.

Here we focus on the predicate f that tests whether the hamming distance
between V and X is equal to (or less than) a certain threshold t, where V and
X can be assumed as bit vectors of equal length m. Similarity search based
on hamming distance1 is an important searching criterion for record retrieval.
This leads to many interesting applications in databases, bioinformatics, and
other areas. Note that V and t can vary and will be given to the owner for the
generation of a token independent of the ciphertext E(pk, I, M).

The security of predicate encryption [19] can be classified into (1) protect-
ing the data item only; and (2) protecting both the data item and attributes.
Attribute protection is usually referred as anonymous in general and can be fur-
ther classified into two levels: match-revealing (MR) [23] and match-concealing2

(MC) [10, 19]. The difference between MR and MC is that attributes will remain
hidden in MC level even if it satisfies the predicate. In our “medicate record” ex-
ample, we sometimes require the encryption scheme to be anonymous such that
the DNA sequence is protected. It depends on applications whether we require
MC or MR level of security. So far, the predicate encryption scheme supporting
this predicate is the one in [24], called “Fuzzy Identity-Based Encryption”. How-
ever, it does not provide the property of anonymity (i.e., attribute protection).
In this paper, we propose “anonymous fuzzy identity-based encryption” schemes
to handle both the equality threshold and the inequality threshold (less than or
equal to) versions of the predicate.

1 It is well known that hamming distance of two bit vectors can provide a good nec-
essary condition for the corresponding edit distance [11, 2] which would be useful in
many database applications

2 In [19], match-concealing is called attribute-hiding.
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It is not trivial how to make the scheme in [24] anonymous. On the other
hand, there is a straight-forward solution [10] (see Appendix B) that can support
the predicate we study with the property of anonymity and is MC secure. Their
scheme provides a general construction to support any polynomial computable
predicate. However, their scheme embeds (pre-computes for) every possible value
of V and t in the ciphertext even for the equality threshold version of the problem
(the same applies to the inequality version), thus the size of each ciphertext is
O(m2m) which is impractical even for moderate m although the token size is
constant.

1.1 Our contributions

For the equality threshold version, we provide an anonymous fuzzy identity-
based encryption scheme achieving the MC level of security with both the sizes
of ciphertext and token equal to O(m). The construction is based on an inner-
product encryption scheme in [19]. The core idea is to represent the hamming
distance computation as an inner product such that X and V can be separated
into the ciphertext and the token, respectively, so that V can be given only when
the token is needed to be generated.

For the inequality threshold version, we provide two practical schemes to solve
the problem. In many applications (e.g. in bioinformatics applications), t << m.
Even assuming that we know the maximum value of t (tmax) in advance and is
a constant, the size of the ciphertext produced by the solution based on [10] is
still O(2m). In our first scheme, also achieving the MC security level, the sizes
of ciphertext is only O(mtmax) (precisely,

∑tmax+1
i=0

(
m
i

)
) which is much smaller

than O(2m) if tmax << m. The core of this scheme is to come up with an inner
product expression with a total number of

∑t+1
i=0

(
m
i

)
terms to express whether

HammingDist(X, V ) ≤ t and modifying the scheme in [19] to a new primitive
to support our encryption scheme. We also show how to update the ciphertext
if the user wants to increase the value of tmax.

On the other hand, in many applications (in particular for those where the
attribute X is part of the data item M), we only require the schemes to be
MR secure. By lowering the security requirement to MR, we provide another
scheme in which the sizes of ciphertext and token are only O(m) and O((t+1)m,
respectively which is attractive for real applications.

1.2 Related Works

The predicate that was studied in the very beginning is “exact keyword match-
ing”. That is, whether the value hidden by the token is equal to the attribute
value hidden in the ciphertext. Schemes that only provide data item security
are basically “Identity-based encryption” [22, 6]. Schemes protecting both the
data item and the attributes were initialed by Song et al. [25] in the private-key
setting and by Boneh et al. [5] in the public-key setting. Relationship between
[5] and “Anonymous Identity-based encryption” [9, 14] was revisited in [1].
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Then, range query as the predicate was also considered. Boneh et al. devised
an Augmented Broadcast Encryption [8] which allows checking if the attribute
value falls within a range on encrypted data. Their scheme also provides attribute
protection. Then, Boneh and Waters [10] extended it to multi-dimensional range
query. Shi et al. [23] also devised another scheme for multi-dimensional range
query, but the scheme is MR secure.

The predicate investigated in this paper was initialed by [24] which only
protects the data item. This predicate is powerful and has many applications
other than those stated in [24]. However, there is no practical scheme supporting
this predicate with attribute protection in a public-key setting. Park et al. [21]
investigated this problem in the private-key setting and is IND2-CKA secure.
Liesdonk [20] also investigated this problem in his master thesis. His scheme is
in a public-key setting. However, the scheme requires the threshold value t to be
fixed in the setup time.

From the technical point of view, the most related work is [19]. They provided
schemes for handling predicates represented as inner products. As we will show,
their formulation of using inner products with bounded disjunction is powerful
and is used as the framework to build our encryption schemes for the hamming
distance similarity comparison predicate.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the frame-
work of the encryption scheme, the security models and the hard problem as-
sumption. Section 3 presents the scheme for the equality threshold version (i.e.,
HammingDist(V, X) = t) of the problem and Section 4 deals with the inequality
threshold version (i.e., HammingDist(V, X) ≤ t) of the problem. We conclude
the paper in Section 5.

2 Preliminaries

We assume that the attribute X is represented as a bit vector. The attribute V
(referred as the target attribute) provided by the user to generate the token is
also a bit vector of the same length as X . In the rest of the paper, for simplicity,
we focus on predicate-only encryption, that is, we assume that we only have X
without M . So, the scheme will output “1” to indicate the decryption is successful
(f(X) = 1) and “0” otherwise. Note that extending solutions for predicate-only
encryption to include the data item M can be done easily [19]. Also, there exist
applications that we only need to encrypt the attribute X and based on the
decryption result to retrieve the corresponding records separately.

2.1 Framework

An anonymous fuzzy identity-based encryption scheme Π consists of the follow-
ing four probabilistic polynomial-time (PPT) algorithms.
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– Setup(1n): On an unary string input 1n where n is a security parameter, it
produces the public-private key pair (pk, sk).

– Encrypt(pk, X): Taking the public key pk and the attribute vector X , it
outputs the ciphertext C.

– GenTK(pk, sk, V, t): The token generation algorithm takes the public key pk,
private key sk, outputs the token TK for the vector V and threshold t.

– Test(pk, TK, C): Given the ciphertext C, the token TK, and the public key
pk, it outputs “1” if the hamming distance between the vector X associated
with C and the vector V associated with TK is equal to t (is less than or
equal to t for the inequality version); “0” otherwise.

2.2 Security models

We define MR and MC security in the Selective-ID [12, 10, 23, 19] model as follow.

Definition 1. (Selective-ID secure in the match-concealing model) An anony-
mous fuzzy identity-based encryption scheme Π = (Setup, Encrypt, GenTK, Test)
is MC secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: Adversary A(1n) outputs two possible equal-length vectors X0 and X1 to
challenger C. The challenger C takes a security parameter n and runs Setup to
generate pk and sk. C sends pk to A.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A.
Phase 1: AdversaryA may adaptively request polynomially bounded numbers of
tokens (“TK”) for any (Vi, ti), with the restriction that ti = HammingDist(Vi, Xj)
for both j = 0, 1 or ti �= HammingDist(Vi, Xj) for both j = 0, 1 (for inequality
threshold, ti < HammingDist(Vi, Xj) for both j = 0, 1 or ti ≥ HammingDist(Vi,
Xj) for both j = 0, 1).
Guess: The adversary A output a guess bit b′. The advantage AdvMC

Π,A(n) of A
is defined as |Pr[b′ = b]− 1

2 |.
Definition 2. (Selective-ID secure in the match-revealing model) An anony-
mous fuzzy identity-based encryption scheme Π = (Setup, Encrypt, GenTK, Test)
is MR secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: Adversary A(1n) outputs two possible equal-length vectors X0 and X1.
The challenger C takes a security parameter n and runs Setup to generate pk
and sk.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns
C∗ ← Encrypt(pk, Xb) to adversary A.
Phase 1: Adversary A may adaptively request polynomially bounded number of
token (“TK”) for any (Vi, ti) with the restriction that ti �= HammingDist(Vi, Xj)
for both j = 0, 1 (for inequality threshold, ti < HammingDist(Vi, Xj) for both
j = 0, 1).
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Guess: The adversary A output a guess bit b′. The advantage AdvMR
Π,A(n) of A

is defined as |Pr[b′ = b]− 1
2 |.

2.3 The Hard Problem Assumption

The hard problem used in this paper is introduced by [19] and has been shown
to “hold in generic bilinear groups of composite order N = pqr as long as finding
a non-trivial factor of N is hard”.

Let G be a group generator which takes security parameter n as input and
(randomly) output the group we use (i.e. (p, q, r, G, GT , e)), where e : G ×G→
GT is a bilinear pairing which can be computed efficiently. We call the groups
G and GT bilinear groups. G and GT are cyclic and share the same composite
order N = pqr where p, q and r are three large primes. We define Assumption 1
as follows.

Definition 3. We say that G satisfies “Assumption 1” if for any probabilistic
polynomial-time Turing machine A, the advantage of A, |Pr[A(Z̄, T1 = gb2s

p R3) =
1]− Pr[A(Z̄, T2 = gb2s

p Q3R3) = 1]|, is negligible in security parameter n, where
Z̄ is defined as:

(p, q, r, G, GT , e) $← G(1n), N = pqr, gp
$← Gp, gq

$← Gq, gr
$← Gr

Q1, Q2, Q3
$← Gq, R1, R2, R3

$← Gr, a, b, s
$← Zp and outputs

Z̄ = {gp, gr, gqR1, hp = gb
p, kp = gb2

p , ga
pgq, g

ab
p Q1, g

s
p, g

bs
p Q2R2}

3 Scheme for Equality Threshold

In this section, we describe our scheme for handling the equality threshold version
of the hamming distance predicate. Recall that both the target attribute V and
the threshold t will only be known when the user wants to obtain a token from the
owner and can vary for different users. The core step is to represent the hamming
distance (see the following lemma) as an inner product so that the attribute of
the data item X and the target attribute V can be encrypted separately into
the ciphertext and token.

Lemma 1. Given two vectors X and V of equal length m, HammingDist(X, V )
equals

∑m
i=1 xi(1 − 2vi) + 1×∑m

i=1 vi, where X = x1 . . . xm and V = v1 . . . vm.

Based on [19], we can generate a ciphertext C based on X and a token TK
based on V such that given C and X , we can compute e(g, g)s[

∑ m
i=1 xivi], where

s is a random number, which gives 1GT only when
∑m

i=1 xivi = 0 (i.e., the
hamming distance is 0), or a random number otherwise. For evaluating whether
HammingDist(X, V ) = t, we can simply check if e(g, g)s[

∑
xi(1−2vi)+1×(

∑
vi−t)]

equals 1GT or not. The details of the scheme are as follow.

– Setup(1n). It first randomly selects {h1,i, h2,i}i∈[1,m], h3 and h4 from Gp, and
then randomly selects R, {R1,i, R2,i}i∈[1,m], R3 and R4 from Gr. It outputs
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pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,m],
H3 = h3R3, H4 = h4R4}

and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,m], h3, h4}

– Encrypt(pk, X = x1...xi...xm). The encryption algorithm first randomly se-
lects s, α, β from ZN and {R′

1,i, R
′
2,i}i∈[1,m], R

′
3, R

′
4 from Gr. Then, it outputs

the ciphertext C:

{C0 = gs
p, [C1,i = Hs

1,iQ
αxiR′

1,i, C2,i = Hs
2,iQ

βxiR′
2,i]i∈[1,m],

C3 = Hs
3QαR′

3, C4 = Hs
4QβR′

4}

– GenTK(pk, sk, V = v1...vi...vm, t). It randomly selects {r1,i, r2,i}i∈[1,m], r3, r4

and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′ from Gq and Gr

respectively. It outputs the token TK:

{K0 = Q′′R′′h−r3
3 h−r4

4

∏m
i=1 h

−r1,i

1,i h
−r2,i

2,i ,

[K1,i = g
r1,i
p g

f1(1−2vi)
q , K2,i = g

r2,i
p g

f2(1−2vi)
q ]i∈[1,m],

K3 = gr3
p g

f1(
∑

vi−t)
q , K4 = gr4

p g
f2(

∑
vi−t)

q }

– Test(pk, TK, C). It outputs 1 if r = 1GT and 0 otherwise, where r =
e(C3, K3)e(C4, K4)e(C0, K0)

∏m
i=1 e(C1,i, K1,i)e(C2,i, K2,i).

From above scheme, it is easily shown that the sizes of both ciphertext and
token are O(m).

Correctness analysis: Our construction is based on Lemma 1 to express
the hamming distance as an inner product and then uses the inner-product
encryption in [19], so the correctness can be guaranteed by the correctness of
the inner-product encryption. The details of the correctness proof can be found
in Appendix A.

Security analysis: Our encryption scheme can be proved to be MC secure
using a similar proof as in [19] (Interested reader may refer to Section 4.3 and 4.4
of [19] for more details). The proof is based on a reduction as follows. Assume that
there exits an adversary A1 that can win the MC game of our scheme with non-
negligible advantage, we can use A1 as a subroutine to construct an adversary A2

that can win the MC game of the scheme in [19] with non-negligible advantage.
The idea of the construction is as follows. Since HammingDist(X, V ) = t (or
�= t) is corresponding to

∑
xi(1− 2vi)+1×(

∑
vi−t) = 0 (or �= 0), A2 could call

A1 to generate two vectors to be challenged, then convert the vectors into inner-
products. Then, based on the tokens obtained by A1, A2 can easily transform it
to answer the challenger for the scheme in [19]. We omit the proof in this paper.
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4 Schemes for Inequality Threshold

Recall that there is a straight-forward solution for solving the case of inequality
threshold by using the idea from [10] which can be shown to be MC secure. The
details of this straight-forward solution are given in Appendix B. The ciphertext
of this solution is of size O(m2m) although the token size is constant which is
not practical. In the following, we provide two practical schemes to handle the
inequality threshold version.

4.1 Scheme with known tmax

If we can know the maximum value for the threshold t, tmax, in advance, we can
have a scheme which is better than the straight-forward solution. The sizes of the
ciphertext can be reduced to O(

∑tmax+1
i=0

(
m
i

)
). In some applications, tmax << m

and is a constant. In that case, the size becomes O(mtmax). The restriction on
setting tmax seems to be quite stringent. At the end of this section, we show the
how one can update the ciphertext if the user decides to increase tmax without
computing ciphertext from scratch. We first present the scheme for known tmax.

The idea behind our construction is based on the observation that Ham-
ming distance H ≤ t if and only if H(H − 1) · ... · (H − t) = 0. Therefore, we
try to design an encryption scheme whose decryption result is in the form of
e(g, g)sH(H−1)·...·(H−t) as what we have done (i.e. e(g, g)s(H−t)) in the scheme
for the equality threshold. We use the same technique to design this new scheme.
We also note that the result of the decryption only reveals the information of
whether H ≤ t which makes the scheme MC-secure.

Let H(H − 1) · ... · (H − t) = at+1H
t+1 + . . . + a1H assuming that all co-

efficients al can be determined. Hence, the problem becomes how to express
Hk using xi and vi. We notice that Hk = (

∑
xi(1− 2vi) +

∑
vi)k can be ex-

panded using Binomial theorem and therefore Hk =
(
k
0

)
(
∑

xi(1− 2vi))k + ... +(
k
j

)
(
∑

xi(1− 2vi))k−j(
∑

vi)j+...+
(
k
k

)
(
∑

vi)k. We also notice that (
∑

xi(1− 2vi))l

= (x1(1 − 2v1) + x2(1 − 2v2) + ... + xm(1 − 2vm))l which can be expanded by
Multinomial theorem. To sum them up, we have

H(H − 1)(H − 2) · ... · (H − t) =∑
k1+...+km=t+1 [ (t+1)!

k1!k2!...km!
(at+1

(
t+1
0

)
)(1 − 2v1)

k1(1 − 2v2)
k2 ...(1 − 2vm)km ]xk1

1 xk2
2 · · ·xkm

m +
...+∑

k1+...+km=l [ l!
k1!k2!...km!

(at+1

(
t+1

t+1−l

)
(
∑

vi)
t+1−l + ... + al

(
l
0

)
)(1 − 2v1)

k1 ...(1 − 2vm)km ]xk1
1 ...xkm

m +
...+∑

k1+...+km=2 [ 2!
k1!k2!...km!

(at+1

(
t+1
t−1

)
(
∑

vi)
t−1 + ... + a2

(
2
0

)
)(1 − 2v1)

k1 ...(1 − 2vm)km ]xk1
1 ...xkm

m +∑
k1+...+km=1 [(at+1

(
t+1

t

)
(
∑

vi)
t + ... + a1

(
1
0

)
)(1 − 2vi)]xi+

(at+1

(
t+1
t+1

)
(
∑

vi)
t+1 + ... + a1

(
1
1

) ∑
vi)

We note that xki

i = xi in the above formula because each xi ∈ {0, 1}. There-
fore, the number of terms in above formula can be future reduced because those
terms involving xki

i can be incorporated into corresponding term involving xi:
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H(H − 1)(H − 2) · ... · (H − t) = at+1(
∑

vi)
t+1 + at(

∑
vi)

t + ... + a1(
∑

vi)+∑
1≤j≤m (

∑
1≤k1≤t+1 bk1(1 − 2vj)

k1)xj+∑
1≤j1<j2≤m(

∑
k1+k2≤t+1;ki≥1

(k1+k2)!
k1!k2!

bk1+k2(1 − 2vj1 )k1(1 − 2vj2 )k2)xj1xj2+ ...+∑
1≤j1<...<jl≤m (

∑
k1+...+kl≤t+1;ki≥1

(k1+...+kl)!
k1!...kl!

bk1+...+kl
(1 − 2vj1 )k1 ...(1 − 2jl )

kl)xj1 ...xjl+

...+
∑

1≤j1<...<jt+1≤m ((t + 1)!bt+1(1 − 2vj1)...(1 − 2jl ))xj1 ...xjt+1

where bj = at+1

(
t+1

t+1−j

)
(
∑

vi)t+1 + ... + aj

(
j
0

)
in the above formula. The to-

tal number of different terms is
∑t+1

i=0

(
m
i

)
. We separate those elements involving

x1, x2, . . . , xm and v1, v2, . . . , vm into ciphertext and token, respectively.
Since the number of terms in the above expression is decided by the threshold

t ≤ tmax, the token size, therefore the decryption cost, can be reduced. The rea-
son is that when we generate the token, we know what t is, and therefore, accord-
ing to our explanation on computing H(H−1)...(H−t), only

∑t+1
i=0

(
m
i

)
terms of

token are needed, hence the token size can be reduced. To support our discussion
here, we describe a new encryption scheme Π2 = (Setup, Encrypt, GenTK, Test)
slightly different from [19].

– Setup(1n). It first randomly selects {h1,i, h2,i}i∈[1,lmax] from Gp, and then
randomly selects R, {R1,i, R2,i}i∈[1,lmax] from Gr. It outputs

pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,lmax]}
and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,lmax]}

– Encrypt(pk, X = x1...xi...xlmax). The encryption algorithm first randomly
selects s, α, β from ZN and {R′

1,i, R
′
2,i}i∈[1,lmax] from Gr. Then, it outputs

ciphertext C:

{C0 = gs
p, [C1,i = Hs

1,iQ
αxiR′

1,i, C2,i = Hs
2,iQ

βxiR′
2,i]i∈[1,lmax]}

– GenTK(pk, sk, V = v1...vi...vt). Note that t ≤ m. It randomly selects {r1,i, r2,i}i∈[1,t]

and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′ from Gq and Gr

respectively. It outputs token TK:

{K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i , [K1,i = g
r1,i
p gf1vi

q , K2,i = g
r2,i
p gf2vi

q ]i∈[1,t]}

– Test(pk, TK, C). It computes r = e(C0, K0)
∏t

i=1 e(C1,i, K1,i)e(C2,i, K2,i).
If r = 1GT , it will output 1; otherwise it outputs 0.

Based on this new encryption primitive and above inner-product expression
to test HammingDist(X, V ) ≤ t, we construct our encryption scheme as follows:

– Setup(1n): It first randomly selects {h1,l,i, h2,l,i}l∈[1,tmax+1],i∈[1,(m
l )] from Gp.

Then it randomly selects h3, h4 from Gp. It also randomly selects
R, {R1,l,i, R2,l,i}l∈[1,tmax+1],i∈[1,(m

l )], R3, R4 from Gr. It outputs
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pk = {gp, gr, Q = gqR, [H1,l,i = h1,l,iR1,l,i, H2,l,i =
h2,l,iR2,l,i]l∈[1,tmax+1],i∈[1,(m

l )], H3 = h3R3, H4 = h4R4}
and

sk = {p, q, r, gq, [h1,l,i, h2,l,i]l∈[1,tmax+1],i∈[1,(m
l )], h3, h4}

– Encrypt(pk, X = x1...xm): Encryption algorithm first randomly selects s, α, β
from ZN and {R′

1,l,i, R
′
2,l,i}l∈[1,tmax+1],i∈[1,(m

l )], R
′
3, R

′
4 from Gr. Then it out-

puts ciphertext C:

{C0 = gs
p, [C1,l,i = Hs

1,l,iQ
αxj1 ...xjl R′

1,l,i, C2,l,i =
Hs

2,l,iQ
βxj1 ...xjl R′

2,l,i]l∈{1...tmax+1};1≤j1<...<jl≤m,

C3 = Hs
3QαR′

3, C4 = Hs
4QβR′

4}

– GenTK(pk, sk, V = v1...vm, t): It randomly selects {r1,l,i, r2,l,i}l∈[1,t+1],i∈[1,(m
i )], r3, r4

and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′ from Gq and Gr

respectively. It outputs token TK:

{K0 = Q′′R′′h−r3
3 h−r4

4

∏t+1
l=1

∏(m
l )

i=1 h
−r1,l,i

1,l,i h
−r2,l,i

2,l,i⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1,i = g
r1,2,i
p g

f1[
∑

1≤k1≤t+1 bk1 (1−2vi)
k1 ]

q

K2,1,i = g
r2,2,i
p g

f2[
∑

1≤k1≤t+1 bk1 (1−2vi)
k1 ]

q

...

K1,l,i = g
r1,l,i
p g

f1[
∑

1≤k1+...+kl≤t+1;ki≥1
(k1+...+kl)!
k1!k2!...kl !

bk1+...+kl
(1−2vj1 )k1 ...(1−2vjl

)kl ]
q

K2,l,i = g
r2,l,i
p g

f2[
∑

1≤k1+...+kl≤t+1;ki≥1
(k1+...+kl)!
k1!k2!...kl !

bk1+...+kl
(1−2vj1 )k1 ...(1−2vjl

)kl ]

q

...

K1,t+1,i = g
r1,t+1,i
p g

f1[(t+1)!bt+1(1−2vj1 )...(1−2vjt+1)]
q

K2,t+1,i = g
r2,t+1,i
p g

f2[(t+1)!bt+1(1−2vj1 )...(1−2vjt+1)]
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i∈[1,(m
l )]

,

K3 = gr3
p g

f1(at+1(
∑

vi)
t+1+at(

∑
vi)

t)+...+a1(
∑

vi)
q ,

K4 = gr4
p g

f2(at+1(
∑

vi)
t+1+at(

∑
vi)

t)+...+a1(
∑

vi)
q }

– Test(pk, sk, TK, C) : It outputs 1 if r = 1GT and 0 otherwise, where r =

e(K0, C0)e(K3, C3)e(K4, C4)
∏t+1

l=1

∏(m
l )

i=1 e(K1,l,i, C1,l,i)e(K2,l,i, C2,l,i).

Size of ciphertext in above scheme is O(
∑tmax

l=0

(
m
l

)
) and size of token is

O(
∑t+1

l=0

(
m
l

)
) for threshold t. It can be shown that r = e(gq, gq)(αf1+βf2)H(H−1)(H−2)...(H−t),

the correctness follows. The security of the scheme is stated in Theorem 1 and
proved in appendix C.

Theorem 1. Our construction Π1 in Section 4.1 is Selective-ID secure in the
math-concealing model under Assumption 1.
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Lastly, to show that it is feasible to compute the coefficients al, we have
implemented an algorithm to calculate al. In fact, it can automatically calculate
the coefficient appeared on the exponent of gq for each term of token. It is written
in C++. For example, with input m = 100 and t = 3, it took about 16 seconds to
calculate all coefficients on an Intel Core 2 Due E6750 2.66GHz CPU platform.

Increasing tmax: It may be possible that the user wants to increase tmax to
T ′, the following shows the idea of how to update the ciphertext to support T ′

provided the values α, β and s which are generated in the Encrypt procedure
are kept without generating the ciphertext from scratch. The idea is based on
the observation that the ciphertext only involves x1, x2, ..., xm. More specifically,
ciphertext contains xi = xj1 , xj1xj2 , . . . , xj1xj2 . . . xjtmax+1 where 1 ≤ j1 < . . . <
j� ≤ m, � = 1, . . . , tmax +1. Therefore, when we want to support T ′, we can just
compute the additional terms involving xj1xj2 . . . xjtmax +2, xj1xj2 . . . xjtmax +3

etc. This update procedure can be shown to be MC-secure. Roughly speaking,
once xj1 is fixed, all terms including the one to be generated due to the increase
in tmax have been fixed although they are not computed yet. In other words,
an adaptive attack will not work since the attacker has no way to modify how
the missing terms are generated no matter what T ′ it provides. Therefore, if the
scheme for tmax is secure, the the update procedure is also secure. The proof
and the details of how to perform this update can be found in Appendix E.

Note that in the worst case, tmax = m, the size of the ciphertext (and token)
becomes O(2m). Although it is better than O(m2m) for the solution in Appendix
B, it is not practical. So, this scheme should be used when tmax is small.

4.2 Scheme for Inequality Threshold with MR security

In this section, we consider another practical situation in which a lower security
level (the MR security) is required. For many real applications, especially for
those where the attribute X is part of the data item M , MR security is reason-
able. Based on this security level, we present a practical scheme in which the
size of the ciphertext is only O(m) and the size of the token is only O((t+1)m).

The idea behind our construction is simple. In MR security, as long as
HammingDist(X, V ) ≤ t, we allow the user to have full information about
HammingDist(X, V ). So, we can make use of the scheme for the equality
version presented in Section 3 and generate tokens for each j = 0, 1, . . . , t.
Then, check if HammingDist(X, V ) = j for each j. Denote the scheme in
Section 3 as Π1 = (Setup′, Encrypt′, GenTK′, Test′), we describe our scheme,
Π = (Setup = Setup′, Encrypt = Encrypt′, GenTK′, Test′), with MR security as
follows.

– GenTK(pk, sk, V ) : For each j ∈ {0, ..., t}, it runs TKj = GenTK′(pk, sk, V, j)
and returns TK = (TK0, ..., TKt).

– Test(pk, TK, C) : For each TKj in TK, it runs Test′(pk, TKj, C) and checks
if any of the results for any j is 1GT , it returns 1, otherwise it returns 0
indicating that HammingDist(X, V ) > t.
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It easily see that size of ciphertext in above scheme is O(m) and size of token
for threshold t is O((t+1)m).The correctness of the scheme follows directly from
the correctness of the scheme in Section 3. The security of the scheme is given in
the following theorem. The proof can be found in Appendix D based on a simple
reduction. Recall that the scheme in section 3 is MC secure under Assumption
1.

Theorem 2. Scheme in Section 4.2 is selective-ID secure in match-revealing
model if scheme in Section 3 is selective-ID secure in match-concealing model.

5 Conclusion

In this paper, we investigated the problem of predicate encryption with attribute
protection and focus on a hamming distance similarity comparison predicate. We
consider both the equality and inequality versions on a user-specific threshold
t.For the equality version, we provide a MC-secure scheme with both the sizes
of ciphertext and token equal to O(m) where m is the length of the attribute
vector. For the inequality version, we provide two practical schemes, one works
for the situation when the maximum value of t (tmax) is known and is MC secure.
The other works for applications which require only MR security. The schemes
provided in the paper should be applicable to real applications thus allowing
the application communities to perform more useful computation on encrypted
data.

The sizes of the ciphertext in our MC-secure scheme for the inequality thresh-
old is

∑tmax+1
i=0

(
m
i

)
. We leave it as an open problem whether it could be improved

to O((t + 1)m) as in the MR-secure scheme.
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Appendix

A Correctness analysis of the scheme for equality
threshold

One key property behind the scheme in [19] is that if two elements a and b
come from two different (prime) subgroups of G, then e(a, b) = 1GT . To simplify
our correctness analysis, since the token of encryption scheme in Section 3 only
involves elements from Gp and Gq, we investigate consider the value of r =
Test(pk, TK, C) in subgroup Gp and Gq respectively only.

rq =
e(gα

q , g
−f1(

∑
vi−t)

q )e(gβ
q , g

−f2(
∑

vi−t)
q ) · 1 ·∏ e(gαxi

q , g
f1(1−2vi)
q )e(gβxi

q , g
f2(1−2vi)
q )

= e(gq, gq)(αf1+βf2)(
∑

vi−t+
∑

(1−2vi)xi)

= e(gq, gq)(αf1+βf2)(HammingDist(x1...xi...xm,v1...vi...vm)−t)

and

rp = e(hs
3, g

r3
p )e(hs

4, g
r4
p )e(gs

p, h
−r3
3 )e(gs

p, h
−r4
4 )

∏
e(gs

p, h
−r1,i

1,i )e(gs
p, h

−r2,i

2,i )·∏
e(hs

1,i, g
r1,i
p )e(hs

2,i, g
r2,i
p ) = 1

B A baseline construction from [10]

The main idea of this baseline construction is that we generate a ciphertext
(C0, C2, ...Ctmax) for each possible V ∈ {0, 1}m where we assume that the vector
size is m. For each j ∈ Ztmax+1, if HammingDist(X, V ) ≤ j, then Cj will be an
encrypted message for “true” based on an IND-CPA secure encryption scheme;
otherwise, Cj will be an encrypted message for “false”. When we Test() for
a certain (V, t), we can simply find the ciphertext for V and decrypt the t-th
element Ct in that ciphertext. If HammingDist(X, V ) ≤ t, the decryption result
should be 1. More specifically, we define the encryption scheme as follows. Let
(G, E, D) be an IND-CPA secure encryption scheme.

– Setup(1n) : Run G(1n) for (tmax+1)2m times to generate (pkl,j , skl,j){l∈{0,1}m,j∈Ztmax+1}.
Return {pkl,j}{l∈{0,1}m,j∈Ztmax+1} as the public-key pk and {skl,j}{l∈{0,1}m,j∈Ztmax+1}
as the secret key sk.

– Encrypt(pk, X = x1...xm) : For each l ∈ {0, 1}m, return (C0, C1, ..., Ctmax)l

where

Cj =
{
Epkl,j

(“true′′) if HammingDist(X, l) ≤ j;
Epkl,j

(“false′′) otherwise.

– GenTK(pk, sk, V, t): Return skV,t as the token.
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– Test(pk, TK, C): It first finds (C0, C1, ..., Cm)V and computes r = DTK(Ct).
If r is equal to “true” then return 1; otherwise return 0.

The security of above solution comes from the IND-CPA secure encryption
scheme we used 3, see appendix A of [10] for more details. We can rearrange the
ciphertexts so that Cl,j in our solution is corresponding to C(tmax+1)l+j in [10]’s
proof and the rest of the proof is the same. We should also note that (tmax+1)2m

should be ≤ poly(n) in security parameter n because all algorithms given above
should be polynomial-time.

C Proof of Theorem 1

Definition 4. The encryption scheme Π2 = (Setup, Encrypt, GenTK, Test) de-
fined in Section 4.1 is MC secure if for all probabilistic polynomial-time Turing
machine (adversary) A, the advantage of A in the following game is negligible.

Setup: The adversaryA(1n) outputs two possible equal-length (lmax-length) vec-
tors X0 and X1 to the challenger C. The challenger C takes a security parameter
n and runs Setup to generate pk and sk. C sends pk to A.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A.
Phase 1: The adversary A may adaptively request polynomially bounded num-
bers of tokens (“TK”) for any Vi = vi,1...vi,ti where ti ≤ lmax, subject to the
restriction that 0 =

∑ti

k=1 xj,kvi,k for both j = 1 or 0 or 0 �= ∑ti

k=1 xj,kvi,k for
both j = 0, 1.
Guess: The adversary A outputs a guess bit b′. The advantage AdvMC

Π2,A(n) of
A is defined as |Pr[b′ = b]− 1

2 |.

Lemma 2. Our construction Π1 in Section 4.1 is Selective-ID secure in the
math-concealing model if Π2 = (Setup, Encrypt, GenTK, Test) in Section 4.1 is
secure under definition 4.

Proof. This proof is by contradiction. We will show that if there exist Adversary
A1 with non-negligible adversary ε with our construction Π1, then we can con-
struct an Adversary A2 also with non-negligible with scheme Π2 under definition
4.
Setup: The adversary A2(1n) runs A1(1n). A1 outputs two equal-length vector
X0 = x0,1...x0,k...x0,m and X1 = x1,1...x1,k...x1,m. A1 passes X0 and X1 to A2.
A1 also submits tmax ≤ m to A2.

The adversary A2 calculates X̃j = (1, xj,1, xj,2, ..., xj,m,
xj,1xj,2, ..., xj,s1xj,s2 , ..., xj,m−1xj,m, ..., xj,1xj,2...xj,l, ..., xj,s1xj,s2 ...xj,sl

, ..., xm−l+1...xm,
..., xj,1xj,2...xj,tmax+1, ..., xj,s1xj,s2 ...xj,stmax+1 , ..., xj,m−tmaxxj,m−tmax+1...xm) for

3 The main idea is that we cannot distinguish E(pki, “true”) from E(pki, “false”) in
the case of HammingDist(X0, V ) ≤ t but HammingDist(X1, V ) > t.
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both j = 0, 1. Then, A2 submits X̃0 and X̃1 to challenger C. Note that lmax =∑tmax+1
l=0

(
m
l

)
.

Challenge: The challenger C runs Setup(1n) to generate pk and sk; C sends pk to
adversary A2. A2 rearranges pk into pk′ according to the description of Setup()
in scheme Π1. A2 passes pk′ to A1.

The challenger picks a random bit b ∈ {0, 1}. C computes and returns C∗ $←
Encrypt(pk, X̃b) to A2. Adversary A2 rearranges C∗ and sends it to A1.
Phase 1: The adversary A1 may adaptively request polynomially bounded num-
ber of tokens for any (Vi, ti) subject to the restriction that ti < HammingDist(Vi, Xj)
for both j = 0, 1 or ti ≤ HammingDist(Vi, Xj) for both j = 0, 1. When receiv-
ing valid (V = v1...vm, t), A2 will calculate a t̃ =

∑t+1
l=0

(
m
l

)
-length vector Ṽ =

(at+1(
∑

vi)t+1+...+a1(
∑

vi), ...,
∑

1≤k1+...+kl≤t+1;ki≥1
(k1+...+kl)!

k1!...kl!
bk1+...+kl

(1− 2vs1)k1 ...(1 − 2vsl
)kl ,

..., (t+1)!bt+1(1−2vm−t)(1−2vm−t+1)...(1−2vm)) We note that HammingDist(V, Xj) ≤
t if and only if

∑t̃
k=1 X̃j,kṼk = 0 as we explained in Section 4.1. A2 submits Ṽ

to the challenger C to acquire a token TK. A2 rearranges TK and sends it to
A1.
Guess: A1 outputs a bit b′. And A2 passes b′ to the challenger as its output.

Recall that HammingDist(V, Xj) ≤ t if and only if
∑t̃

k=1 X̃j,kṼk = 0,
therefore valid token requests for Π1 are still valid in Π2. And AdvMC

Π2,A2
(n) =

AdvMC
Π1,A1

(n). That completes our proof.

Lemma 3. Π2 = (Setup, Encrypt, GenTK, Test) in Section 4.1 is secure under
Definition 4 under Assumption 1.

Proof. This proof is quite similar to the proof in [19]. For simplicity, we denote
T = lmax. Given two equal-length vector X = x1...xi...xT and Y = y1...yi...yT ,
loosely speaking, we try to prove (X, X)

c≡ (X, 0)
c≡ (X, Y )

c≡ (0, Y )
c≡ (Y, Y ) in

the game defined by Definition 1. Where 0 stands for a T -length vector (0, 0, ..., 0)
and

c≡ is “computationally indistinguishable”.
Let us prove (X, X)

c≡ (X, 0) first. Given {Z̄, T } where T may be equal to
T1 = gb2s

p R3 or T2 = gb2s
p Q3R3, the challenger C answers Setup(1n) as follow:

It randomly selects ω1,i and ω2,i from Zp. Then, it computes h1,i = hxi
p g

ω1,i
p =

g
bxi+ω1,i
p and h2,i = kxi

p g
ω2,i
p = g

b2xi+ω2,i
p for i = 1, ..., T . It outputs pk to

adversary A: where R1,i and R2,i are randomly selected from Zr.

pk = {gp, gr, Q = gpR1, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i=1,...,T }
The challenging ciphertext C∗ is generated as follow: challenger C first ran-

domly selects R′
1,i and R′

2,i from Gr.

C = {C0 = gs
p, [C1,i = (gbs

p Q2R2)xi(gs
p)

ω1,iR′
1,i, C2,i = (T )xi(gs

p)
ω2,iR′

2,i]i=1,...,T }

We note that C1,i = (gbs
p Q2R2)xi(gs

p)ω1,iR′
1,i = (gbxi+ω1,i

p )sQxi
2 Rxi

2 R′
1,i = hs

1,iQ
αxiRxi

2 R′
1,i.

where we denote Q2 = gα
q . And C2,i = (T )xi(gs

p)ω2,iR′
2,i = (gb2xi+ω2,i

p )sQβxiRxi
3 R′

2,i

= hs
2,iQ

βxiRxi
3 R′

2,i where β = 0 if T = T1 and β is random from ZN if T = T2.
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When receiving V = v1...vi...vt from adversary, challenger C generates cor-
responding token as follows: It firstly randomly selects f̃1 and f̃2 from ZN .
It also randomly chooses r′1,i and r′2,i form ZN . Then, it calculates K1,i =

(ga
pgq)f̃1vi(gab

p Q1)−f̃2vig
r′
1,i

p = g
af̃1vi−abf̃2vi+r′

1,i
p gf̃1vi−df̃2vi

q . (We denote Q1 = gd
q .)

We denote r1,i = af̃1vi − abf̃2vi + r′1,i and f1 = f̃1vi − df̃2vi.

It also calculates K2,i = (ga
pgq)f̃2vig

r′
2,i

p = g
af̃2vi+r′

2,i
p gf̃2vi

q where we denote
r2,i = af̃2vi + r′2,i and f2 = f̃2.

K0 is calculated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi−abf̃2vi+r′

1,i)
p g

−(b2xi+ω2,i)(af̃2vi+r′
2,i)

p

= QR
∏t

i=1 g
−(abf̃1xivi−ab2f̃2xivi+br′

1,ixi+af̃1ω1,ivi−abf̃2ω1,ivi+r′
1,iω1,i+ab2f̃2vixi+b2r′

2,ixi+af̃2ω2,ivi+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(f̃1ω1,ivi+f̃2ω2,ivi)−ab(f̃1xivi+f̃2ω1,ivi)−b(r′

1,ixi)−b2(r′
2,ixi)+ab2(−f̃2vixi+f̃2vixi)−(r′

1,iω1,i+r′
2,iω2,i)

p

= QR
∏t

i=1 [(ga
pgq)−(f̃1ω1,ivi+f̃2ω2,ivi)· (gab

p Q1)−(f̃1xivi+f̃2ω1,ivi)· h−(r′
1,ixi)

p · k−(r′
2,ixi)

p ·
g
−(r′

1,iω1,i+r′
2,iω2,i)

p ]
Now, let us prove (X, 0)

c≡ (X, Y ). The challenger C answers Setup(1n) as
follows: It first randomly selects ω1,i and ω2,i from Zp. It randomly selects R1,i

and R2,i from Gr Then, it calculates h1,i = hxi
p g

ω1,i
p = g

bxi+ω1,i
p and h2,i =

kyi
p g

ω2,i
p = g

b2yi+ω2,i
p . It outputs pk to adversary:

pk = {gp, gr, Q = gqR1, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i=1...T }
The challenging ciphertext C∗ is generated as follows: challenger C first ran-

domly select R′
1,i and R′

2,i from Zr.

C = {C0 = gs
p, [C1,i = (gbs

p Q2R2)xi(gs
p)

ω1,iR′
1,i, C2,i = (T )yi(gs

p)
ω2,iR′

2,i]i=1...T }

We note that C1,i = (gbxi+ω1,i
p )sQxi

2 Rxi
2 R′

1,i = hs
1,iQ

αxiRxi
2 R′

1,i And C2,i =

(gb2yi+ω2,i
p )sQyi

3 Ryi

3 R′
2,i = hs

2,iQ
βyiRyi

3 R′
2,i where we denote Q3 = gα

q . β = 0
if T = T1 and β is random number in ZN if T = T2.

When receiving V = v1...vi...vt from adversary A, the challenger C generates
corresponding token as follows. According to Definition 4, V should be subject
to (i)

∑t
i=1 yivi = 0 =

∑t
i=1 xivi or (ii)

∑t
i=1 yivi �= 0 and

∑t
i=1 xivi �= 0. We

handle token generation in this two conditions separately.

Case (i)
∑t

i=1 yivi = 0 =
∑t

i=1 xivi:

The challenger first randomly selects f̃1, f̃2 and r′1,i, r′2,i from ZN . Then, it

calculates K1,i = (ga
pgq)f̃1vig

r′
1,i

p = g
af̃1vi+r′

1,i
p gf̃1vi

q . We denote r1,i = af̃1vi + r′1,i

and f1 = f̃1. It also calculates K2,i = (ga
pgq)f̃2vig

r′
2,i

p = g
af̃2vi+r′

2,i
p gf̃2vi

q where we
denote r2,i = af̃2vi + r′2,i and f2 = f̃2.

K0 is calculated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi+r′

1,i)
p g

−(b2yi+ω2,i)(af̃2vi+r′
2,i)

p
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= QR
∏t

i=1 g
−(abf̃1xivi+br′

1,ixi+aω1,i f̃1vi+r′
1,iω1,i+ab2f̃2yivi+b2r′

2,iyi+af̃2ω2,ivi+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(ω1,if̃1vi+f̃2ω2,ivi)
p g

−b(r′
1,ixi)

p g
−b2(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p since

∑t
i=1 yivi =

0 =
∑t

i=1 xivi. Then, K0 = QR
∏t

i=1 (ga
pgq)−(ω1,i f̃1vi+f̃2ω2,ivi)h

−(r′
1,ixi)

p k
−(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p

Case (ii)
∑t

i=1 yivi = cy �= 0 and
∑t

i=1 xivi = cx �= 0:

The challenger firstly randomly chooses f̃1, f̃2 and r′1,i, r′2,i from ZN . Then, it cal-

culates K1,i = (ga
pgq)f̃1vi(gab

p Q1)−cy f̃2vig
r′
1,i

p = g
af̃1vi−abcy f̃2vi+r′

1,i
p g

f̃1vi−dcyf̃2vi
q

where we denote Q1 = gd
q . And we denote r1,i = af̃1vi − abcyf̃2vi + r′1,i and

f1 = f̃1 − dcy f̃2. It also calculates K2,i = (ga
pgq)cxf̃2vig

r′
2,i

p = g
acxf̃2vi+r′

2,i
p gcxf̃2vi

q .
Where we denote r2,i = acxf̃2vi + r′2,i and f2 = cxf̃2.

K0 is generated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi−abcy f̃2vi+r′

1,i)
p g

−(b2yi+ω2,i)(acxf̃2vi+r′
2,i)

p

= QR
∏t

i=1 g
−(abf̃1xivi−ab2cy f̃2xivi+br′

1,ixi+af̃1ω1,ivi−abcy f̃2ω1,ivi+r′
1,iω1,i+ab2cxf̃2yivi+b2r′

2,iyi+acxf̃2viω2,i+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(f̃1ω1,ivi+cxf̃2viω2,i)
p g

−ab(f̃1xivi−cy f̃2ω1,ivi)
p g

−b(r′
1,ixi)

p g
−b2(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p

= QR
∏t

i=1 (ga
pgq)−(f̃1ω1,ivi+cxf̃2viω2,i)(gab

p Q1)−(f̃1xivi−cyf̃2ω1,ivi)h
−(r′

1,ixi)
p k

−(r′
2,iyi)

p g
−(r′

1,iω1,i+r′
2,iω2,i)

p

According to the symmetric property of scheme Π2, (X, Y )
c≡ (0, Y ) and

(0, Y )
c≡ (Y, Y ) can be proved similarly.

D Proof of Theorem 2

Proof. We first assume that the above encryption scheme Π is not selective-ID
secure in the MR model. That is there exists an PPT Adversary A1 with non-
negligible advantage ε in the game of Definition 2. Now we construct a PPT
adversary A2 which acts as Challenger interacting with A1 and show that it can
win the game of Definition 1 also with non-negligible advantage with the scheme
Π1 = (Setup′, Encrypt′, GenTK′, Test′).
Setup: The adversary A2(1n) runs adversary A1(1n). Adversary A1 outputs two
possible equal-length vector X0 and X1 to adversary A2.

Adversary A2 passes X0 and X1 to the challenger C.
The challenger C takes a security parameter n and runs Setup to generate

pk and sk; C sends pk to adversary A2. A2 passes pk to A1.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A2. Adversary A2 passes it to adversary
A1.
Phase 1: The adversary A1 adaptively requests polynomially bounded tokens
for any (Vi, ti) subject to the restriction that ti < HammingDist(Vi, Xi) for
both j = 0, 1. When receiving the request (Vi, ti), adversary A2 generates ti
token requests to the challenger C that (Vi, 0), ..., (Vi, ti) and receives token
TK0, ..., TKti. Adversary A2 answers adversary A1 with (TK0, ..., TKti).
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Guess: Adversary A1 returns with the output bit b′. The adversary A2 passes b′

as its output to the challenger C.
Since we have the restriction in MR definition that ti < HammingDist(Vi, Xi)

for both j = 0, 1, j �= HammingDist(Vi, Xi) for each j ∈ {0, ..., ti}. And
therefore, A2’s token requests satisfy the requirement in MC definition that
ti = HammingDist(Vi, Xj) for both j = 0, 1 or ti �= HammingDist(Vi, Xj) for
both j = 0, 1.

The advantage A2 in the above MC game |Pr[b′ = b]− 1
2 | = AdvMR

Π,A1
(n) =

ε which is non-negligible in security parameter n. However, according to our
security analysis in Section 3, the non-negligible advantage is impossible. This
completes our security proof.

E Secure tmax update

To support tmax update, we need do some modifications on the scheme in Sec-
tion 4.1. The new encryption scheme allowing tmax update consists of five PPT
algorithms Π = (Setup, Encrypt, UpdateCipher, GenTK, Test):

– Setup(1n) : It first randomly selects {h1,l,i, h2,l,i} from Gp where l ∈ [1, m+1]
and i ∈ [1,

(
m
i

)
]. (So, the total number of terms is 2m) Then it randomly se-

lects h3, h4 from Gp. It also randomly selects R, {R1,l,i, R2,l,i}l∈[1,m+1],i∈[1,(m
i )], R3, R4

from Gr. It outputs

pk = {gp, gr, Q = gqR,
[H1,l,i = h1,l,iR1,l,i, H2,l,i = h2,l,iR2,l,i]l∈[1,m+1],i∈[1,(m

i )],
H3 = h3R3, H4 = h4R4}

and

sk = {p, q, r, gq, [h1,l,i, h2,l,i]l∈[1,m+1],i∈[1,(m
l )], h3, h4}

– Encrypt(pk, X): Rather than outputting ciphertext C, it also outputs state
S = {α, β, s} used.

– GenTK(pk, sk, V ) : The same as the original algorithm.
– UpdateCipher(pk, T ′, X, C, S) : It randomly selects {R′

1,l,i, R
′
2,l,i}l∈[tmax+2,T ′+1],i∈[1,(m

i )]
from Gr. Then, it outputs δ:

{[C1,l,i = Hs
1,l,iQ

αxj1 ...xjl R′
1,l,i, C1,l,i =

Hs
2,l,iQ

βxj1 ...xjl R′
2,l,i]{l∈{tmax+2,T ′+1},1≤j1<j2<...<jl≤m}}

– Test(pk, sk, TK, C) The same as the original algorithm.

Then, we also need to define a proper security definition concerning tmax

updates.

Definition 5. (Selective-ID secure in match-concealing mode with tmax update
capability) The encryption scheme Π = (Setup, Encrypt, UpdateCipher, GenTK, Test)
is MC secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.
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Setup: The adversary A(1n) outputs two possible equal-length (m-length where
2m = poly(n)) vectors X0 and X1 to the challenger C. The challenger C takes
a security parameter n and runs Setup to generate pk and sk. Adversary A is
given pk.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes (C∗, S∗) $←
Encrypt(pk, Xb). C returns C∗ to adversary A.
Phase 1: The adversaryAmay adaptively request polynomially bounded number
of queries. The types of queries allowed are described as below:

– GenTK: AdversaryA can request C to compute and return tokens of any (Vi =
vi,1...vi,m, ti) where ti ≤ tmax and Vi subject to the restriction that ti <
HammingDist(Vi, Xj) for both j = 0 and 1, or ti ≥ HammingDist(Vi, Xj)
for both j = 0 and 1.

– UpdateCipher: Adversary A outputs T ′ (tmax < T ′ ≤ m) to the challenger

C. The challenger C computes and returns δ
$← UpdateCipher(pk, T ′, Xb, C

∗, S∗)
to adversary A. The challenger also records T ′ as the new tmax.

Guess: Adversary A outputs a guess bit b′. The advantage of A is defined as
|Pr[b′ = b]− 1

2 |.
Theorem 3. The encryption scheme ΠH = (Setup, Encrypt, UpdateCipher, GenTK, Test)
defined here is Selective-ID secure in match-concealing mode with tmax update
capability.

Proof. The above theorem is proved in two steps. We first modify the inner-
product encryption defined in Section 4.1 to a scheme supporting ciphertext
updates. Similar wto the method in Lemma 2, we prove in Lemma 4 that if this
modified inner-product is Selective-ID secure in match-concealing mode with
tmax update capability, then, the encryption scheme Π = (Setup, Encrypt, UpdateCipher, GenTK, Test)
defined here is also Selective-ID secure in match-concealing mode with tmax up-
date capability.

The second step is that we prove this modified inner-product is Selective-ID
secure in match-concealing mode with tmax update if inner-product encryption
defined in Section 4.1 is MC secure (Definition 4). It is proved by Lemma 5.

To prove the first stage, we first describe the modified inner-product encryp-
tion scheme which is also consists of five PPT algorithms
Π = (Setup, Encrypt, UpdateCipher, GenTK,Test):

– Setup(1n). It first randomly selects {h1,i, h2,i}i∈[1,Lmax] from Gp, and then
randomly selects R, {R1,i, R2,i}i∈[1,Lmax] from Gr. It outputs Lmax along
with public key pk and secret key sk:

pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,Lmax]}
and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,Lmax]}
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– Encrypt(pk, X = x1...xi...xlmax): Rather than outputting ciphertext C, it
also outputs state S = {α, β, s} used.

– UpdateCipher(pk, X ′ = x′
1...x

′
|X′|, X, C, S): X ′ is decided by |X ′|, lmax and

X . It randomly selects {R′
1,i, R

′
2,i}i∈[1,|X′|] from Gr. Then, it outputs

δ = {C1,i+tmax = Hs
1,i+tmax

Qαx′
iR′

1,i, C2,i+tmax =
Hs

2,i+tmax
Qβx′

iR′
2,i}i∈[1,|X′|]

– GenTK(pk, sk, V = v1...vi...vt): The same as the original algorithm.
– Test(pk, TK, C): The same as the original algorithm.

We define its security definition as follows.

Definition 6. (Selective-ID secure in Match Concealing mode with tmax update
capability)

Setup: The adversaryA(1n) outputs two possible equal-length (lmax-length) vec-
tors X0 and X1. The challenger C takes a security parameter n and runs Setup
to generate pk and sk. C sends pk to A. Setup also outputs Lmax = poly(n).

Challenge: The challenger picks a random bit b ∈ {0, 1}, computes (C∗, S∗) $←
Encrypt(pk, Xb). C∗ is given to adversary A.
Phase 1: The adversaryAmay adaptively request polynomially bounded number
of queries. The types of queries allowed are described as below:

– GenTK: Adversary A may adaptively request challenger C of tokens for any
Vi = vi,1vi,2...vi,ti where ti ≤ lmax and Vi subject to the restriction that∑ti

k=1 xj,kvi,k = 0 for both j = 0 and 1 or
∑ti

k=1 xj,kvi,k �= 0 for both j = 0
and 1.

– UpdateCipher: Adversary A outputs two equal-length (L′-length) vectors
X ′

0 and X ′
1 where X ′

0 is determined by L′, lmax and X0 ; X ′
1 is determined

by L′, lmax and X1. And lmax + L′ <= Lmax where Tmax is decided at
Setup time. Adversary A sends X ′

0 and X ′
1 to challenger C. The challenger

C computes and returns δ
$← UpdateCipher(pk, X ′

b, Xb, C
∗, S∗) to adversary

A. C also record lmax + L′ as the new lmax.

Guess: The adversaryA outputs a bit b′ to guess b. The advantage ofA is defined
as |Pr[b′ = b]− 1

2 |.

Lemma 4. The Anonymous Fuzzy Identity-Based Encryption scheme allowing
tmax updates is secure under Definition 5 if Inner-product Encryption scheme
allowing tmax updates is secure under Definition 6.

Proof. We first assume that there exists an adversary A1 who wins Definition 5
with non-negligible advantage. Then, we try to construct an adversary A2 who
can win Definition 6 also with non-negligible.
Setup: Adversary A2(1n) runs A1(1n). A1(1n) outputs two possible equal-length
(m-length) vector X0 and X1 to A2.
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A2 calculates
∑tmax+1

i=0

(
m
i

)
-length vectors X̃0 and X̃1 to challenger C. The

Challenger C takes a security parameter n and runs Setup to generate pk and
sk. Set Lmax = 2m. C sends pk to adversary A2. A2 rearrange pk and send it to
A1.
Challenge: The challenger C picks a random bit b ∈ {0, }, computes (C∗, S∗) $←
Encrypt(pk, Xb). C sends C∗ to adversary A2. A2 rearranges C∗ and sends to it
A1.
Phase 1: Adversary A1 may adaptively request polynomially bounded GenTK
and UpdateCipher queries.

– GenTK: The adversary A1 requests tokens to A2 for any (Vi = vi,1...vi,m, ti)
where ti ≤ tmax and Vi subject to the restriction that ti < HammingDist(Vi, Xj)
for both j = 0 and 1 or HammingDist(Vi, Xj) ≤ ti for both j = 0 and 1.
When receiving (V, t), adversary A2 calculates Ṽ = ṽ1, ..., ṽ∑ t+1

i=0 (m
i ) such

that
∑

ṽi ˜xj,i = 1 if and only if HammingDist(V, Xj) ≤ t. A2 submits Ṽ to
challenger C and get token.
A2 rearranges the token and sends it to A1.

– UpdateCipher: The adversary A1 outputs m ≥ T ′ > tmax to A2. A2 based
on X0 and X1 and T ′ to calculate two equal-length (L′ =

∑T ′+1
i=tmax+2

(
m
i

)
-

length) vectors X ′
0 and X ′

1 (base on the inner-product formula in Section
4.1). Adversary A2 passes X ′

0 and X ′
1 to challenger C.

The challenger C returns δ
$← UpdateCipher(pk, X ′

b, Xb, C
∗, S∗) to adver-

sary A2. Challenger C also updates lmax as L′ + lmax. A2 rearranges δ and
sends to A1.

Guess: The adversary A1 outputs a bit b′ to guess b. A2 passes b′ to challenger
C as its output.

Then, we prove Lemma 5 to complete the proof for Theorem 3.

Lemma 5. The scheme Π = (Setup, Encrypt, UpdateCipher, GenTK, Test) is se-
cure under Definition 6 if Π = (Setup, Encrypt, GenTK, Test) is secure under
Definition 4.

Proof. This proof is by contradiction. We first assume that there exists an ad-
versary A1 who wins Selective-ID game in match-concealing mode with tmax

update capability with non-negligible advantage ε, then we can construct an
adversary A2 who wins Definition 4 also with non-negligible advantage ε.
Setup: The adversary A2(1n) runs A1(1n). A1(1n) outputs two possible equal-
length (lmax-length) vectors X0 and X1 to A2. Note that lmax ≤ Lmax.

The adversary A2 calculates and outputs two Lmax-length vectors X
(max)
0

and X
(max)
1 to challenger C where X

(max)
0 is decided by X0 and Lmax; X

(max)
1

is decided by X1 and Lmax.
The challenger C takes a security parameter n and runs Setup to generate

pk and sk (for Lmax-length). C returns pk to adversary A2(1n). The adversary
A2 passes pk to A1.
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Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, X
(max)
b ) to adversary A2.

The adversary A2 takes the first lmax components of ciphertext C∗ and
returns it (denoted as C∗

lmax
) to A1.

Phase 1: The adversary A1 may adaptively request polynomially-bounded num-
ber of GenTK and UpdateCipher queries.

– GenTK: The adversaryA1 may adaptively request tokens for any Vi = vi,1vi,2...vi,ti

where ti ≤ lmax and Vi subject to the restriction that
∑

k=1 tixj,kvi,k = 0
for both j = 0 and 1 or

∑
k=1 tixj,kvi,k �= 0 for both j = 0 and 1. A1 sends

these requests to A2.
The adversary A2 passes these requests to the challenger C. Note that ti ≤
lmax ≤ Lmax. The challenger generates tokens and adversaryA2 passes them
to A1.

– UpdateCipher: The adversary A1 outputs two equal-length (L′-length) vec-
tors X ′

0 and X ′
1 where X ′

0 is determined by L′,lmax and X0 ; X ′
1 is determined

by L′,lmax and X1. And lmax +L′ ≤ Lmax. The adversary A1 passes X ′
0 and

X ′
1 to A2.

The adversary A2 passes δ = C∗[lmax + 1, lmax + L′] to A1. The adversary
A2 also record lmax + L′ as the new lmax.

Guess: The adversary A1 outputs a bit b′ to A2. And A2 passes b′ to the chal-
lenger C as its output. Note that |Pr[b′ = b]− 1

2 | = ε. This completes our proof.


