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Abstract. In this paper, we define an underlying computational prob-
lem and its decisional problem. As an application of their problems, we
propose a designated verifier signature (DVS) scheme without random
oracles (related to symmetric pairings), which is most efficient in DVS
schemes without random oracles. We formally redefine the private of sig-
nature’s identity, and prove our DVS scheme satisfying security based
on the difficulty of the problems. Also we prove that the difficulty of the
computational problem is tightly equivalent to the Strong Unforgeability
of our proposed conventional signature scheme (without random oracles)
related to asymmetric pairings.

Keywords: Designated verifier signatures, Digital signatures, Standard
model

1 Introduction

Security of cryptographic protocols and schemes in public-key infrastructure is
usually reduced problems which everyone believes difficult to solve. For example,
the Strong Unforgeabilty of the Waters conventional signature scheme [15] is
based on the difficulty of the Computational Diffie–Hellman (CDH) problem.

In this paper, we define an underlying computational problem and its deci-
sional problem, which are stronger than the CDH problem. As an application of
our problems, we propose a designated verifier signature (DVS) scheme without
random oracles (related to symmetric pairings). DVSes, introduced by [5], are
signatures that will be only convinced by a (specific) designated verifier whether
valid or invalid. The verifier cannot transfer the signature to a third party.

Our scheme is more efficient than DVS schemes [16, 9] whose security can
be proven without random oracles. Our scheme satisfies the following security:
Correctness, Strong Unforgeability, Non-Transferability, and Privacy of Signa-
ture’s Identity. The security is based on the difficulty of our proposed problems.
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Our scheme is delegatable, so the signer can delegate the third party a right of
signer’s signing.

From the delegatability, for example our DVS scheme is suitable for the
following two cases. The first case is that a signer does not want to delegate
such as an authentication associated with a payment. The second case is that a
designated verifier allows for the signer to delegate such as an e-ticket for some
service. However, our scheme is not suitable for an e-election since the signer is
able to sell his own suffrage to a third party.

On the other hand, it is known that the difficulty of solving the RSA problem
is tightly equivalent to be the difficulty that ciphertexts of the RSA cryptosystem
are perfectively broken against chosen ciphertext attacks. Also the difficulty of
solving the CDH problem is tightly equivalent to be the difficulty that agreement
keys of the primitive Diffie–Hellman key agreement [3] are perfectively broken
against passive adversary attacks.

In this paper, we prove that the difficulty of our computational problem is
tightly equivalent to Strong Unforgeability of our proposed conventional signa-
ture scheme. Unfortunately, this scheme is not enough to be efficient since the
scheme is constructed based on asymmetric pairings. However, we believe that
the result is important to justify our proposed problem. More detailed descrip-
tion is in Section 3.1.

The paper is organized in the following way. In Section 2, we prepare for the
construction of our proposals. In Section 3, we will provide three proposals: a
computational problem, a decisional problem and a DVS scheme. We describe
security and efficiency of our DVS scheme in Section 4. In Section 5, we propose a
conventional signature scheme and describe its security. We provide conclusions
in Section 6.

2 Preliminaries

In this section, we state the definition of a symmetric pairing (bilinear map).
This definition is due to [2].

We assume that

– G and GT are multiplicative cyclic groups of prime order p;
– e : G × G → GT is the cryptographic symmetric pairing satisfying the

following properties:
Bilinearity: e(ua, vb) = e(u, v)ab for any u, v ∈ G and any a, b ∈ Z.
Non-degenerate: e(g1, g2) 6= 1GT for 〈g1〉 = 〈g2〉 = G.
Computable: There is an efficient algorithm to compute e(u, v) for any
u, v ∈ G.

3 Our Proposals

In this section, we define an underlying computational problem and its decisional
problem, and propose a DVS scheme without random oracles.



3

3.1 Proposed Computational Problem

We provide Assumption 1 related to the Computational Diffie–Hellman (CDH)
Assumption. Here we say that the (t, ε)-CDH Assumption in G holds if for any
adversary A running in time t and an advantage ε, we have that

Pr
[
A(g, ga, gb) = gab

]
< ε

where the probability is over the choice of a random generator g ∈R G, random
numbers a, b ∈R Z∗

p and the random bits of A.

The problem is defined as follows. Given(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2

∣∣∣ i = 1, . . . , q
)

(1)

as input for random generators g1, g2 ∈R G and random numbers x, r1, . . . , rq ∈R

Z∗
p, compute

(
gr∗
2 , g

x+1/r∗
2

)
for some r∗ ∈ Z∗

p and r∗ /∈ {r1, . . . , rq}. Note that
the index x + 1/ri means x + (1/ri). We say that algorithm A has an advantage
ε in solving the problem if

Pr
[
A

(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2

∣∣∣ i = 1, . . . , q
)

=
(
gr∗
2 , g

x+1/r∗
2

) ∣∣∣ r∗ ∈ Z∗
p ,

r∗ /∈ {r1, . . . , rq}

]
≥ ε ,

where the probability is over the choice g1, g2 ∈R G, x, r1, . . . , rq ∈R Z∗
p and the

random bits of A.

Assumption 1 A (q, t, ε)-Computational Assumption I holds in G if no t-time
adversary has an advantage of at least ε in solving the problem in G.

Our problem is similar to those of [12] and [13]. However, security of all
schemes in [12] and [13] is based on the problems with asymmetric pairings
ê : G1×G2 → GT . In particular, concerning how to compare signature lengths of
the ID-based signature scheme [13], it assume that the representation of elements
in G1, G2 and Zp takes the same length, which is actually not true for asymmetric
pairings. In general, |Zp| ≤ |G1| and |G2| ≥ 2|G1|. Then, in the best case,
|Zp| = |G1| and |G2| = 2|G1|, so we can use as unit |Zp|. Then, a signature in
the scheme consists of 4 elements in G2 and 1 element in G1, amounting then
to 9 such units. Now, if we use the generic construction from [4], applied to the
DLP-based strong one-time signature in Appendix A of [1] and the ID-based
signature (IBS) scheme in [10], we obtain a strongly unforgeable IBS consisting
of 6 elements in G1 and 2 elements in Zp, and a computational cost dominated
by 3 pairings, while relying on better computational assumptions than the IBS
scheme [13].

On the other hand, our proposed problem is based on symmetric pairings
e : G×G → GT . Then we will construct an efficient designated verifier signature
scheme. It is not easy to compare the problems either on asymmetric pairings
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or on symmetric ones. Our definition is profitable to propose many efficient
cryptographic schemes.

Difficulty of solving our problem (based on symmetric pairings) is equivalent
to be strongly unforgeable for a proposed DVS scheme. This is part of security in
the DVS scheme. If the problem is based on asymmetric pairings, the problem
is equivalent to be strong unforgeable for a proposed scheme. This is a main
security of the conventional signature scheme.

3.2 Proposed Decisional Problem

The following problem is a decisional one of the above computational problem.
Given (

g1, g2, g
x
1 , gri

2 , g
x+1/ri

2 , gr∗
2 , R

∣∣∣ i = 1, . . . , q
)

(2)

as input for random generators g1, g2 ∈R G and random numbers x, r1, . . . , rq ∈R

Z∗
p, r∗ ∈ Z∗

p, r∗ /∈ {r1, . . . , rq} and R ∈ G, output 1 if R = g
x+1/r∗
2 and output 0

otherwise. We say that algorithm A has an advantage ε in solving the problem
if ∣∣∣ Pr

[
A

(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2 , gr∗
2 , R

∣∣∣ i = 1, . . . , q
)

= 1
]

−Pr
[
A

(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2 , gr∗
2 , g

x+1/r∗
2

∣∣∣ i = 1, . . . , q
)

= 1
] ∣∣∣ ≥ ε ,

where the probability is over the choice g1, g2, R ∈R G, x, r1, . . . , rq ∈R Z∗
p,

r∗ ∈ Z∗
p, r∗ 6∈ {r1, . . . , rq} and the random bits of A.

Assumption 2 A (q, t, ε)-Decisional Assumption II holds in G if no t-time
adversary has an advantage of at least ε in solving the problem in G.

3.3 A Designated Verifier Signature Scheme DVS

We give a designated verifier signature (DVS) scheme with four phases: DVS.Setup,
DVS.SKeyGen, DVS.VKeyGen, DVS.Sign, and DVS.Verify. Definition of the
DVS scheme is based on [8]. For the moment we shall assume that the signature
message M is an element in Zp, but the domain can be extended to all of {0, 1}∗
using a collision-resistant hash function H : {0, 1}∗ → Zp.

DVS.Setup: Choose multiplicative cyclic groups G and GT of sufficiently large
prime order p. Assume that e : G × G → GT is a symmetric pairing. The
public key is generated as follows. Choose a random generator, g1 ∈ G. Public
parameters are

params := (G, GT , p, e, g1) .
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DVS.SKeyGen: A signer S generates (x, y) ∈R (Z∗
p)

2, and calculate (X,Y ) :=
(gx

1 , gy
1 ) ∈ G2. The public and private keys of S are:

PKS := (X,Y ) and SKS := (x, y) ,

respectively.

DVS.VKeyGen: A designated verifier D generates g2 := gd
1 ∈ G from d ∈R Z∗

p,
sets z := e(g1, g2), and sends (g2, z) to the signer. The public and private keys
of D are:

PKD := (g2, z) and SKD := d ,

respectively.

DVS.Sign: Let M be an n-bit message. A designated signature of M is gen-
erated as follows. First, a random r ∈ Z∗

p is chosen. The designated signature is
then constructed as:

σ :=
(
gr
2, g

x+My+1/r
2

)
∈ G2 . (3)

DVS.Verify: Suppose we wish to check if σ = (σ1, σ2) is a designated signature
for a message M . The designated verifier verifies

e
(
X−1 · Y −M · σ1/d

2 , σ1

)
= z .

If the equality holds the result is valid; otherwise the result is invalid.

4 Security and Efficiency of Our DVS Scheme

In this section, we prove that our proposed DVS scheme in Section 3.3 satisfies
security: the Correctness, Strong Unforgeability, Non-Transferability, Privacy
of Signer’s Identity, and Delegability. Also, we describe efficiency of our DVS
scheme that is most efficient in DVS schemes without random oracles.

4.1 Correctness

If a signer S with the public key PKS constructs a signature σ on a message
M as described in the DVS.Sign phase above, it is easy to see that σ will be
accepted by a designated verifier D:

e
(
X−1 · Y −M · σ1/d

2 , σ1

)
= e

(
(gx

1 )−1 · (gy
1 )−M ·

(
g

x+My+1/r
2

)1/d

, gr
2

)
= e

(
g−x
1 · g−My

1 · gx+My+1/r
1 , gr

2

)
= e

(
g
1/r
1 , gr

2

)
= e(g1, g2) .
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Thus the scheme is correct.

4.2 Strong Unforgeability

Definition of Strong Unforgeability for DVS is based on the Unforgeability in
[9], by changing the third requirement in the Output phase to the signature is
not output as a response to a Query phase.

Theorem 1. Suppose that the (q0, t0, ε0)-Computational Assumption I holds
in G. Then the proposed designated verifier signature scheme DVS is (q, t, ε)-
strongly unforgeable, provided that q ≤ q0, t ≤ t0 −O(qT ) and ε ≥ 2ε0, where T
is the maximum time for an exponentiation in G.

An outline of the proof is as follows. Suppose that there exists an adversary,
A, who breaks the Strong Unforgeability for DVS, and a challenger, B, takes
the Assumption I challenge. After A and B execute the strongly unforgeable
game, A outputs a valid tuple for a message and a signature. Then B replies the
Assumption I response with non-negligible probability. This is a contradiction
to hold the Assumption I .

Although we can prove that DVS is strongly unforgeable if and only if the
Assumption I holds in G. However the Strong Unforgeability is part of security
in the DVS scheme, so we will omit to prove it in this paper.

Proof. Suppose that there exists an adversary, A, who breaks the (q, t, ε)-Strong
Unforgeability (SUF) of our DVS scheme DVS:

Pr [A breaks (q, t, ε)-SUF of DVS] ≥ ε . (4)

We construct a simulator, B, to play the Computational Assumption I game. The
simulator B will take the Assumption I challenge (1) for x, ri ∈R Z∗

p (i = 1, . . . , q)
and run A executing the following steps.

Simulator Description
Setup: The simulator B sends

params = (G, GT , p, e, g1)

to the adversary A. B generates gy
1 ∈ G from y ∈R Z∗

p. He generates b ∈R {0, 1},
and sends to A either{

(4.2.1-1) PKS = (gx
1 , gy

1 ) if b = 0 , or
(4.2.1-2) PKS = (gy

1 , gx
1 ) if b = 1 .

The adversary A cannot know whether the received parameter is in the cases
(4.2.1-1) or (4.2.1-2). Also B sends

PKD = (g2, z)
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to the adversary A, where z = e(g1, g2).

Signature Queries: The adversary A issues signature queries M1, . . . ,Mq.
These queries may be asked adaptively so that each query Mi may depend on
the replies to M1, . . . ,Mi−1.

In the case (4.2.1-1), the simulator B generates the signature

(σi,1, σi,2) :=
(
gri
2 ,

(
g

x+1/ri

2

)
· (gy

2 )Mi

)(
=

(
gri
2 , g

x+Miy+1/ri

2

))
,

and sends it to A. In the case (4.2.1-2) and Mi 6= 0, B generates

(σi,1, σi,2) :=
(

(gri
2 )1/Mi ,

(
g

x+1/ri

2

)Mi

· gy
2

) (
=

(
g

ri/Mi

2 , g
y+Mix+Mi/ri

2

))
,

and sends it to A. In the case (4.2.1-2) and Mi = 0, B generates (σi,1, σi,2) :=(
g

r′
i

2 , g
y+1/r′

i
2

)
for r′i ∈R Z∗

p, and sends it to A.

Output: The adversary A outputs (M∗, σ∗) such that σ∗ = (σ∗,1, σ∗,2) ∈ G2 is a
valid signature of M∗, and (M∗, σ∗,1, σ∗,2) /∈ {(M1, σ1,1, σ1,2), . . . , (Mq, σq,1, σq,2)} .

Analysis
The signature σ∗ is valid. In the case (4.2.1-1), assume that (σ∗,1, σ∗,2) :=(
gr∗
2 , g

x+M∗y+1/r∗
2

)
for r∗ ∈ Z∗

p and

(M∗, r∗) 6= (Mi, ri) (5)

for i = 1, . . . , q (i.e. (M∗, r∗) /∈ {(M1, r1), . . . , (Mq, rq)}). Also, in the case (4.2.1-

2), assume that (σ∗,1, σ∗,2) :=
(
gr∗
2 , g

y+M∗x+1/r∗
2

)
for r∗ ∈ Z∗

p and

(M∗, r∗) 6≡
{

(Mi, ri/Mi) (mod p) for Mi 6= 0 ,
(0, r′i) (mod p) for Mi = 0

for i = 1, . . . , q.

(4.2.2-1.1) If r∗ /∈ {r1, . . . , rq} in the case (4.2.1-1), the simulator B calculates(
gr∗
2 , g

x+1/r∗
2

)
=

(
σ∗,1, σ∗,2 · (gy

2 )−M∗
)

which is a valid output for the Assump-
tion I game.

(4.2.2-1.2) Otherwise in the case (4.2.1-1), assume that r∗ = rj (1 ≤ j ≤ q).
Then we have M∗ 6= Mj from (9). Though the simulator B can calculate gy

2 =
(σ∗,2/σj,2)

1/(M∗−Mj) from the only (M∗, σ∗,2) and (Mj , σj,2), he does not seem
to propose a valid output for the Assumption I game. However, notice that A
does not know whether B simulates (4.2.2-1.2) or the following (4.2.2-2.1).

(4.2.2-2.1) In the case (4.2.1-2), if there exists an index j (1 ≤ j ≤ q) such
that

r∗ ≡
{

rj/Mj for M∗ 6= Mj and Mj 6= 0 ,
r′j for M∗ 6= 0 and Mj = 0 ,
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the simulator B can calculate gx
2 such as (4.2.2-1.2). He can generate

(
g

r′
∗

2 , g
x+1/r′

∗
2

)
for r′∗ /∈ {r1, . . . , rq}, which is a valid output for the Assumption I game.

(4.2.2-2.2) Otherwise in the case (4.2.1-2), assume that r∗ 6≡ ri/Mi for Mi 6= 0,
and assume that r∗ 6= r′i for Mi = 0. Since B cannot obtain new information of
solving the Assumption I game from A at the simulator description in Section
4.2.1, it seems that B cannot propose a valid output for the game.

Let Pr [B breaks (q0, t0, ε0)-Assumption I ] be the probability that B gener-
ates a valid output for the Assumption I game.

Lemma 1.
1
2

Pr [A breaks (q, t, ε)-SUF of DVS] ≤ Pr [B breaks (q0, t0, ε0)-Assumption I ] .

Proof of this lemma is proposed in Appendix A. From the assumption in Theorem
1,

Pr [B breaks (q0, t0, ε0)-Assumption I ] < ε0 . (6)

From (4), (10) and Lemma 1, we have

ε

2
≤ 1

2
Pr [A breaks (q, t, ε)-SUF of DVS]

≤ Pr [B breaks (q0, t0, ε0)-Assumption I ] < ε0 ,

which is a contradiction to the assumption ε/2 ≥ ε0 in Theorem 1.
Therefore, we have Pr [A breaks (q, t, ε)-SUF of DVS] < ε. ut

4.3 Non-Transferability

Definition of Non-Transferability is based on [14]. We show that, if designated
signatures can be simulated by the verifier himself then a designated signature
adds no computational ability to the verifier.

From verifier’s secret d, the verifier generates(
(gr

1)
d
,
(
gx
1 · (gy

1 )M · g1/r
1

)d
)

,

which is equal to (3). Therefore the proposed DVS scheme satisfies the Non-
Transferability.

4.4 Privacy of Signature’s Identity

The Privacy of Signature’s Identity (PSID) is given in [7] as follows. Given a
message M and a designated verifier signature σ of this message, it is compu-
tationally infeasible, without the knowledge of the private key of the designated
verifier or the one of the signer, to determine which pair of signing keys was used
to generate σ.

We formally define (q, t, ε)-PSID as follows. This security is defined using the
following game between a challenger B and an adversary A:
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Setup: The challenger B takes a security parameter k and runs the DVS.Setup
phase of the DVS scheme. It gives the adversary A the resulting system pa-
rameters params. B runs the DVS.SKeyGen phase, and sends A the resulting
public keys of signers S0 and S1. Also B runs the DVS.VKeyGen phase, and
sends A the resulting a public key of a designated verifier D. It keeps the
private keys of S0, S1, D to itself.

Queries 1: Signature queries (b1,M1), . . . , (bq1 ,Mq1) are issued by A. Here each
bi ∈ {0, 1} (i = 1, . . . , q1) means the index of either S0 or S1. To each query
Mj the challenger B responds by running DVS.Sign to generate a signature
σi of Mi respecting to the private key SKi of Si, and sending σi to A. These
queries may be asked adaptively such that each query Mi may depend on
the replies to M1, . . . ,Mi−1.

Challenge: The adversary A submits a plaintext M∗ ∈ M for M∗ 6∈ {M1, . . . ,Mq1}.
The challenger selects random bit b ∈R {0, 1}, sets σ∗ = DVS.Sign(params, SKb,Mb),
and sends σ∗ to the adversary as its challenge designated signature.

Queries 2: This is a identical to Queries 1 for i = q1 + 1, . . . , q, except that A
may not request the signature of M∗

Guess: The adversary submits a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We define AdvPSIDA to be the probability that A wins the above game, taken
over the coin tosses made by B and A:

AdvPSIDA =| Pr[(b = b′)] − 1/2 |

Definition 1. An adversary A (q, t, ε)-breaks a designated verifier signature
(DVS) scheme if A runs in a time of at most t, A makes at most q Queries,
and AdvPSIDA is at least ε. A DVS scheme is the (q, t, ε)-Privacy of Signature’s
Identity (or PSID), if no adversary (q, t, ε)-breaks it.

Theorem 2. Suppose that the (q0, t0, ε0)-Decisional Assumption II holds in G.
Then the proposed designated verifier signature scheme DVS satisfies the (q, t, ε)-
Privacy of Signature’s Identity, provided that q ≤ q0, t ≤ t0−O(qT ) and ε ≥ ε0,
where T is the maximum time for an exponentiation in G.

Proof of this theorem is proposed in Appendix B, such as that of Theorem
1. An outline of the proof is as follows. Suppose that there exists an adversary,
A, who breaks PSID for DVS, and a challenger, B, takes the Assumption II
challenge. After A and B execute PSID game, A outputs a bit to indicate which
the private key of the signers is used. Then B replies the Assumption II response
with non-negligible probability. This is a contradiction to hold the Assumption
II .

If σ′ ∈ G2 is a valid designated verifier signature of S1, then it is an invalid
one of S0. Therefore it is computationally infeasible, without the knowledge of
the private key of the designated verifier or the one of the signers, to determine
whether valid or invalid at signatures of signers.
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Table 1. Security of DVS schemes

ZJ [16] LJ [9] Our Proposal

Correctness Yes Yes Yes

UF / SUF – UF SUF

Non-Transferability Yes Yes Yes

PSID No No Yes

Table 2. Efficiency of DVS schemes

ZJ [16] LJ [9] Our Proposal

Signature lengths 3 3 2

Pairings 2 2 1

4.5 Delegatability

The Delegatability is that the signer can delegate her signing ability – with
respect to a fixed designated verifier – to a third party, without revealing her
private key or making it possible for the third party to sign with respect to other
designated verifiers. Our scheme is delegatable if the signer sends the third party
A a pair (gx

2 , gy
2 ) for x, y ∈ Z∗

p. Then A can generate a valid designated signature:

σ = (σ1, σ2) :=
(
gr
2, g

x+My+1/r
2

)
for r ∈R Z∗

p.

4.6 Security Comparison of DVS schemes

Table 1 shows the security of DVS schemes without random oracles, by com-
paring the Correctness, Unforgeability (UF)/Strong Unforgeability (SUF), Non-
Transferability, and Privacy of Signature’s Identity (PSID). Only our scheme
satisfies the PSID in this table. Notice that security of the DVS scheme [9] relies
on the strange looking knowledge-of-exponent assumption [6, 9], which is non-
black box in that security reductions from this assumption entail some kind of
access to the internal state of the adversary. Our scheme does not rely on this
assumption.

4.7 Efficiency Comparison of DVS schemes

Table 2 shows the efficiency of DVS schemes without random oracles, by com-
paring signature lengths as unit |Zp| = |G|, and by the number of pairings during
one iteration of verification. Our scheme is the most efficient within the scope in
these schemes.
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5 Our Computational problem and a Signature Scheme

The aim of this section is to justify our proposed computational problem. We pro-
pose a conventional signature scheme S, which gives the result that the difficulty
of the computational problem (the Assumption I) is equivalent to be strongly
unforgeable for S. Unfortunately, the scheme is based on the asymmetric pair-
ings ê : G1×G2 → GT , so a signature in the scheme consists of 4 elements in G2

and 1 element in G1, amounting then to 9 units as unit |Zp| = |G1| = |G2|/2.

5.1 A Conventional Signature Scheme S

We give a conventional signature scheme with three phases: S.KeyGen, S.Sign,
and S.Verify. For the moment we shall assume that the signature message M
is an element in Zp, but the domain can be extended to all of {0, 1}∗ using a
collision-resistant hash function H : {0, 1}∗ → Zp.

S.KeyGen: Choose multiplicative cyclic groups G1, G2 and GT of sufficiently
large prime order p, random generators g2 of G2, the one-way isomorphism4

f : G2 → G1 with a generator g1 := f(g2) ∈ G1, the asymmetric pairing
ê : G1 × G2 → GT . The public key is generated as follows. Generate a private
key SK := (gx

2 , gy
2 ) ∈ G2

2 from secrets x, y ∈R Z∗
p, and calculate (X,Y ) :=

(f(gx
2 ), f(gy

2 )) (= (gx
1 , gy

1 ) ∈ G2
1).(

Z∗
p

)2 −→ G2
2

f−→ G2
1

(x, y) 7−→ SK := (gx
2 , gy

2 ) 7−→ (X,Y ) := (f(gx
2 ), f(gy

2 )) (= (gx
1 , gy

1 ))

Assume that z := ê(g1, g2) ∈ GT . The public and private keys are:

PK := (G1, G2, GT , p, e, f, g1, g2, X, Y, z) and SK := (gx
2 , gy

2 ) ,

respectively.

S.Sign: Let M be an n-bit message. A signature of M is generated as follows.
First, a random r ∈ Z∗

p is chosen. The signature is then constructed as:

σ :=
(
gr
2, g

x+My+1/r
2

)
.

S.Verify: Suppose we wish to check if σ = (σ1, σ2) is a signature for a message
M . Verify

ê
(
X−1 · Y −M · f(σ2), σ1

)
= z .

If the equality holds the result is valid; otherwise the result is invalid.

It is easy to see that σ will be accepted by a verifier. Thus the scheme is
correct.
4 Saito–Hoshino–Uchiyama–Kobayashi [11] proposed one-way isomorphisms {f} on

multiplicative cyclic groups constructed on non-supersingular elliptic curves.
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5.2 The Computational Problem and Strong Unforgeability

Theorem 3. Assume that g1 = f(g2) ∈ G1 for the one-way isomorphism f : G2 →
G1 and the random generator g2 ∈R G2. That the conventional signature scheme
S is strongly unforgeable is almost equivalent to that the Computational Assump-
tion I holds in (G1, G2). More correctly,
(T3-1) Suppose that the (q0, t0, ε0)-Computational Assumption I holds in (G1, G2)

with g1 = f(g2). Then the signature scheme S is (q, t, ε)-strongly unforge-
able, provided that q ≤ q0, t ≤ t0 − O(qT ) and ε ≥ 2ε0, where T is the
maximum time for an exponentiation in G2.

(T3-2) Assume that the signature scheme S is (q1, t1, ε1)-strongly unforgeable.
Then the (q, t, ε)-Computational Assumption I holds in (G1, G2) with g1 =
f(g2), provided that q ≤ q1, t ≤ t1 and ε ≥ ε1.

Proof of (T3-1) in Theorem 3 is proposed in Appendix C, such as that of
Theorem 1. An outline of the proof is as follows. Suppose that there exists
an adversary, A, who breaks the Strong Unforgeability (SUF) of our signature
scheme S in Section 5.1, and a challenger, B, takes the Assumption I challenge.
After A and B execute the strongly unforgeable game, A outputs a valid tuple
for a message and a signature. Then B replies the Assumption I response with
non-negligible probability. This is a contradiction to hold the Assumption I.

Proof (of (T3-2) in Theorem 3). The challenger generates a public pair (PK,SK),
and sends the private key SK to the adversary. The adversary generates mes-
sages Mi (i = 1, . . . , q) which are M1 = · · · = Mq, and sends M1, . . . ,Mq to the
challenger. For each message Mi (i = 1, . . . , q), The challenger generates

σi =
(
gri
2 , g

x+Miy+1/ri

2

)
,

and sends it to the adversary. Then the challenger performs the Assumption I
game for input(

g1, g2, g
x
1 · (gy

1 )Mi , gri
2 , g

x+Miy+1/ri

2

∣∣∣ i = 1, . . . q
)

,

and receives a valid output

σ∗ =
(
gr∗
2 , g

x+M∗y+1/r∗
2

)
for r∗ 6∈ {r1, . . . , rq} and M∗ = M1 = · · · = Mq. This output is valid with a
probability greater than ε. The adversary outputs (M∗, σ∗), which is valid in the
strongly unforgeable game with a probability greater than ε. This is a contradict
to the assumption of the theorem. We have proven (T3-2) of Theorem 3.

6 Conclusions

In this paper, we defined an underlying computational problem and its decisional
problem. As an application of their problems, we proposed a DVS scheme with-
out random oracles, which was most efficient in DVS schemes without random
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oracles. We proved our DVS scheme satisfying security based on the difficulty of
the problems. Also we proved that the difficulty of the computational problem
was tightly reduced to the Strong Unforgeability of our proposed conventional
signature scheme related to asymmetric pairings. We believe that our underlying
problems are profitable to propose many efficient cryptographic schemes.
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A Security Proof of Lemma 1 (SUF for DVS)

Proof (Proof of Lemma 1). Let εi,j (i, j = 1, 2) be the probability in (4.2.2-i, j)
that B can generate a valid output for the Assumption I game after he receive
the valid output of the simulator description from A. Let ε′1,2 be the probability
that B can generate gy

2 from only (M∗, σ∗,2) and (Mj , σj,2) in (4.2.2-1.2).
Since ε′1,2 = ε2,1 and ε1,1 + ε′1,2 = 1, we have

Pr [B breaks (q0, t0, ε0)-Assumption I ]

=
1
2
(ε1,1 + ε1,2 + ε2,1 + ε2,2) Pr [A breaks (q, t, ε)-SUF of DVS]

≥ 1
2
(ε1,1 + ε′1,2) Pr [A breaks (q, t, ε)-SUF of DVS]

=
1
2

Pr [A breaks (q, t, ε)-SUF of DVS] . ut

B Security Proof of Theorem 2 (PSID for DVS)

Proof. Suppose that there exists an adversary, A, who breaks the (q, t, ε)-Privacy
of Signature’s Identity (PSID) of our DVS scheme DVS:∣∣∣∣Pr [A breaks (q, t, ε)-SUF of DVS] − 1

2

∣∣∣∣ ≥ ε . (7)

We construct a simulator, B, to play the Decisional Assumption II game. The
simulator B will take the Decisional Assumption II challenge (2) for x, r∗ ∈R Z∗

p

and run A executing the following steps.

B.1 Simulator Description

Setup: The simulator B sends

params = (G, GT , p, e, g1)

to the adversary A. B generates gy
1 , (gx

1 )s, gt
1 ∈ G from y, s, t ∈R Z∗

p. He generates
b ∈R {0, 1}, and sends

PKS0 = (gx
1 , gy

1 ) and PKS1 = (gxs
1 , gt

1)

to A. Also B sends

PKD = (g2, z)

to the adversary A, where z = e(g1, g2).

Queries 1: The adversary A issues (b1,M1), . . . , (bq1 ,Mq1) where bi ∈ {0, 1}
(i = 1, . . . , q1) means the index of either S0 or S1. These queries may be asked
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adaptively such that each query Mi may depend on the replies to M1, . . . ,Mi−1.
In the case bi = 0, the simulator B generates the signature for S0:

σi :=
(
gri
2 , g

x+1/ri

2 · gMiy
2

)
,

and sends it to A. In the case bi = 1, B generates the signature for S1:

σi :=
(
(gri

2 )1/s
,
(
g

x+1/ri

2

)s

· gMit
2

)
,

and sends it to A.

Challenge: The adversary A submits a message M∗ ∈ M for M∗ 6∈ {M1, . . . ,Mq1}.
The simulator B selects random bit b ∈R {0, 1}. In the case b = 0, the simulator
B generates the signature for S0:

σ∗ :=
(
gr∗
2 , R · gM∗y

2

)(
=

(
gr∗
2 , g

x+M∗y+1/r∗
2

)
if R = g

x+1/r∗
2

)
,

and sends it to A. In the case b = 1, B generates the signature for S1:

σ∗ :=
(
(gr∗

2 )1/s
, Rs · gM∗t

2

) (
=

(
g

r∗/s
2 , g

xs+M∗t+s/r∗
2

)
if R = g

x+1/r∗
2

)
,

and sends it to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}. If b′ = b then B outputs
a guess of R = 1 (indicating that R = g

x+1/r∗
2 ); otherwise, it outputs R = 0.

B.2 Analysis

If R = g
x+1/r∗
2 , then the simulation is perfect, and A will guess the bit b cor-

rectly with probability 1/2 + ε′. Otherwise, R is uniformly random, and thus
σ∗ is uniformly random and independent, and can not impart no information
regarding the bit b. From (7), we have that∣∣∣ Pr

[
A

(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2 , gr∗
2 , R

∣∣∣ i = 1, . . . , q
)

= 1
]

−Pr
[
A

(
g1, g2, g

x
1 , gri

2 , g
x+1/ri

2 , gr∗
2 , g

x+1/r∗
2

∣∣∣ i = 1, . . . , q
)

= 1
] ∣∣∣

≥
∣∣∣∣12 − Pr [A breaks (q, t, ε)-PSID of DVS]

∣∣∣∣ ≥ ε

for x, ri ∈R Z∗
p, r∗ ∈ Z∗

p, r∗ 6∈ {r1, . . . , rq} and R ∈R G, which is a contradiction
to the assumption ε ≥ ε0 in Theorem 2. We have proven the theorem. ut

C Security Proof of (T3-1) in Theorem 3 (SUF for S)

Proof (of (T3-1) in Theorem 3). Suppose that there exists an adversary, A, who
breaks (q, t, ε)-SUF of our signature scheme S:

Pr [A breaks (q, t, ε)-SUF of S] ≥ ε . (8)
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We construct a simulator, B, to play the Assumption I game. The simulator B
will take the Assumption I challenge (1) for x, ri ∈R Z∗

p (i = 1, . . . , q) and run
A executing the following steps.

C.1 Simulator Description

Setup: The simulator B generates gy
1 ∈ G1 from y ∈R Z∗

p. He generates b ∈R

{0, 1}, and sends to the adversary A either{
(C.1-1) (G1, G2, GT , p, ê, f, g1, g2, g

x
1 , gy

1 ) if b = 0 , or
(C.1-2) (G1, G2, GT , p, ê, f, g1, g2, g

y
1 , gx

1 ) if b = 1 .

The adversary A cannot know whether the received parameter is in the cases
(C.1-1) or (C.1-2).

Signature Queries: The adversary A issues signature queries M1, . . . ,Mq.
These queries may be asked adaptively so that each query Mi may depend on
the replies to M1, . . . ,Mi−1.

In the case (C.1-1), the simulator B generates the signature

(σi,1, σi,2) :=
(
gri
2 ,

(
g

x+1/ri

2

)
· (gy

2 )Mi

)(
=

(
gri
2 , g

x+Miy+1/ri

2

))
,

and sends it to A. In the case (C.1-2) and Mi 6= 0, B generates

(σi,1, σi,2) :=
(

(gri
2 )1/Mi ,

(
g

x+1/ri

2

)Mi

· gy
2

) (
=

(
g

ri/Mi

2 , g
y+Mix+Mi/ri

2

))
,

and sends it to A. In the case (C.1-2) and Mi = 0, B generates (σi,1, σi,2) :=(
g

r′
i

2 , g
y+1/r′

i
2

)
for r′i ∈R Z∗

p, and sends it to A.

Output: The adversary A outputs (M∗, σ∗) such that σ∗ = (σ∗,1, σ∗,2) ∈ G2
2 is a

valid signature of M∗, and (M∗, σ∗,1, σ∗,2) /∈ {(M1, σ1,1, σ1,2), . . . , (Mq, σq,1, σq,2)} .

C.2 Analysis

The signature σ∗ is valid. In the case (C.1-1), assume that (σ∗,1, σ∗,2) :=
(
gr∗
2 , g

x+M∗y+1/r∗
2

)
for r∗ ∈ Z∗

p and

(M∗, r∗) 6= (Mi, ri) (9)

for i = 1, . . . , q (i.e. (M∗, r∗) /∈ {(M1, r1), . . . , (Mq, rq)}). Also, in the case (C.1-

2), assume that (σ∗,1, σ∗,2) :=
(
gr∗
2 , g

y+M∗x+1/r∗
2

)
for r∗ ∈ Z∗

p and

(M∗, r∗) 6≡
{

(Mi, ri/Mi) (mod p) for Mi 6= 0 ,
(0, r′i) (mod p) for Mi = 0
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for i = 1, . . . , q.

(C.2-1.1) If r∗ /∈ {r1, . . . , rq} in the case (C.1-1), the simulator B calculates(
gr∗
2 , g

x+1/r∗
2

)
=

(
σ∗,1, σ∗,2 · (gy

2 )−M∗
)

which is a valid output for the Assump-
tion I game.

(C.2-1.2) Otherwise in the case (C.1-1), assume that r∗ = rj (1 ≤ j ≤ q).
Then we have M∗ 6= Mj from (9). Though the simulator B can calculate gy

2 =
(σ∗,2/σj,2)

1/(M∗−Mj) from the only (M∗, σ∗,2) and (Mj , σj,2), he does not seem
to propose a valid output for the Assumption I game. However, notice that A
does not know whether B simulates (C.2-1.2) or the following (C.2-2.1).

(C.2-2.1) In the case (C.1-2), if there exists an index j (1 ≤ j ≤ q) such that

r∗ ≡
{

rj/Mj for M∗ 6= Mj and Mj 6= 0 ,
r′j for M∗ 6= 0 and Mj = 0 ,

the simulator B can calculate gx
2 such as (C.2-1.2). He can generate

(
g

r′
∗

2 , g
x+1/r′

∗
2

)
for r′∗ /∈ {r1, . . . , rq}, which is a valid output for the Assumption I game.

(C.2-2.2) Otherwise in the case (C.1-2), assume that r∗ 6≡ ri/Mi for Mi 6= 0,
and assume that r∗ 6= r′i for Mi = 0. Since B cannot obtain new information of
solving the Assumption I game from A at the simulator description in Section
C.1, it seems that B cannot propose a valid output for the game.

Let Pr [B breaks (q0, t0, ε0)-Assumption I ] be the probability that B gener-
ates a valid output for the Assumption I game.

Lemma 2.

1
2

Pr [A breaks (q, t, ε)-SUF of S] ≤ Pr [B breaks (q0, t0, ε0)-Assumption I ] .

Proof (Proof of Lemma 2). Let εi,j (i, j = 1, 2) be the probability in (C.2-i, j)
that B can generate a valid output for the Assumption I game after he receive
the valid output of the simulator description from A. Let ε′1,2 be the probability
that B can generate gy

2 from only (M∗, σ∗,2) and (Mj , σj,2) in (C.2-1.2).
Since ε′1,2 = ε2,1 and ε1,1 + ε′1,2 = 1, we have

Pr [B breaks (q0, t0, ε0)-Assumption I ]

=
1
2
(ε1,1 + ε1,2 + ε2,1 + ε2,2) Pr [A breaks (q, t, ε)-SUF of S]

≥ 1
2
(ε1,1 + ε′1,2) Pr [A breaks (q, t, ε)-SUF of S]

=
1
2

Pr [A breaks (q, t, ε)-SUF of S] .

ut
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From the assumption in Theorem 3,

Pr [B breaks (q0, t0, ε0)-Assumption I ] < ε0 . (10)

From (8), (10) and Lemma 2, we have

ε

2
≤ 1

2
Pr [A breaks (q, t, ε)-SUF of S]

≤ Pr [B breaks (q0, t0, ε0)-Assumption I ] < ε0 ,

which is a contradiction to the assumption ε/2 ≥ ε0 in Theorem 3.
Therefore, we have Pr [A breaks (q, t, ε)-SUF of S] < ε. ut


