
Key Recovery Attack on QuiSci

by

Nils Reimers
Rnils@web.de

October 11, 2009

1 Introduction

QUISCI(quick stream cipher) is a stream cipher designed by Stefan Müller (FGAN-FHR,
a German research institute) in 2001. The base algorithm is very compact and simple.
The main loop of algorithm simply consists of 6 operations:

Step Operation
1. i := i + S[j]
2. if i == 0 else
3. i := not(S[j]) k := i XOR S[j]
4. S[j] := k S[j] := i
5. j := i
6. C := C XOR i C := C XOR k

Table 1: Main loop of QuiSci

QuiSci is incredible fast, faster than most other ciphers. On modern CPUs it needs only
arround 1 clock cycle per byte, so it is 10 times fast than most other well-known algorithm.

On the website of QuiSci [1] it is claimed that this algorithm is secure. With this paper I
like to show a key recovery attack on QuiSci, exploiting the weak key setup.

When you are able to guess the beginning of the plaintext, its takes only a very small
amount of time (less than a second) to decipher the whole message. You can find a
implementation for this attack on [2].

1

2 Description of QuiSci

The base algorithm consists of these 6 operations [1]:

Step Operation
1. i := i + S[j]
2. if i == 0 else
3. i := not(S[j]) k := i XOR S[j]
4. S[j] := k S[j] := i
5. j := i
6. C := C XOR i C := C XOR k

Table 2: Encryption/Decryption with QuiSci

i, j are n-bit integers, S is an array of n-bit integers. The reference algorithm of QuiSci
uses 64-bit integers and S with 256 entries. So to calculate the new index j, i have to by
shifted by 56: j := i >> 56.

QuiSci can be run with various bit words/integers and various sizes of S. Also QuiSci has
two modes of operations: The N mode, the internal state is not influcend by the plaintext,
and the D mode, the internal state depends on the key and on the plaintext.

In this paper I will focus on the N mode, with 64 bit integers and an internale state with
256 words. But it is easy to map this attack against other QuiSci implements with other
word or internale state sizes. It should also be easy to map this attack against the D mode
of QuSci.

The following C# Code implements QuiSci. You can find the reference C code at http://quisci.awardspace.com/.

public class QuiSci
{

private const int BOX SIZE = 256 ;
public const ulong INIT NUMBER = 0 x630b25afbfad135f ;
private const int INDEX SHIFT = 56 ;

public ulong [] S I n i t ; // c a l l e d ’ b o x In i t ’ in the r e f e r ence c
code

private ulong [] S ; // c a l l e d ’ box ’ in the r e f e r ence c code
private ulong i ; // c a l l e d ’ index ’ in the r e f e r ence c code
private ulong j ; // c a l l e d ’ curren t ’ in the r e f e r ence c code
private ulong k ; // c a l l e d ’ xor ’ in the r e f e r ence c code

// I n i t i a l i z e the QuiSci box : b o x In i t
public QuiSci ()
{

S I n i t = new ulong [BOX SIZE] ;
for (int l = 0 ; l < BOX SIZE ; l++)

S I n i t [l] = INIT NUMBER;

i = 0 ;
j = 0 ;

2

for (ulong l = 0 ; l < BOX SIZE ; l++)
{

i += S I n i t [j] + INIT NUMBER ∗ l ;
S I n i t [j] = i ;
j = i >> INDEX SHIFT ;

}
}

// Set up the key
public void I n i t (byte [] key)
{

this . S = (ulong []) S I n i t . Clone () ;
this . k = INIT NUMBER;

for (int l = 0 ; l < key . Length ; l++)
{

this . k += key [l] ;
this . S [l] = this . k ;

}

this . k ∗= INIT NUMBER;
this . i = this . k ;
this . j = this . i >> INDEX SHIFT ;
this . S [this . j] = this . k ;

}

//Encrypt 1 word wi th QuiSci
public ulong Encrypt (ulong data)
{

this . i += this . S [this . j] ;

i f (this . i == 0)
{

this . i = ˜ this . S [j] ;
this . S [j] = this . k ;
data ˆ= i ;

}
else
{

this . k = i ˆ this . S [j] ;
this . S [j] = i ;
this . j = i >> INDEX SHIFT ;
data ˆ= k ;

}

return data ;
}

}

3

3 Key Recovery Attack

(⊕ denotes exclusive or (XOR) and all additions are modulo 264, because of the usage of
64 bit integers.)

The main attack is against the key setup (Init in the C# Code) of QuiSci.

In this QuiSci implementation, index is a 64 bit integer, so that the if statement ’index ==
0’ is in nearly all cases false. Because of that, it’s okay just to focus on the else statement
in the Encrypt-Methode (the chance that index is equal to 0 is 1 to 264 − 1).

So the n− th1 call of this encryption function can be written as (compare Table 2):

in+1 := in + S[jn]
kn+1 := in+1 ⊕ S[jn]
S[jn] := in+1

jn+1 := (in+1 >> 56)
Cn := Pn ⊕ kn+1

The values of i0, j0 are generated during the key setup (Init).

During the key setup (Init), you add all key bytes and save them in the variable k. So at
the end of the loop k (called k0) is equal to:

k0 := INIT NUMBER + key[0] + key[1] + key[2] + ... + key[m− 1]

This result is multiplied by INIT NUMBER, so you get the final k0:

k0 := (INIT NUMBER + key[0] + ... + key[m− 1]) · INIT NUMBER

This k0 is the first value of i and k >> 56 is the first value of j (called i0 and j0).
Additional, the j0 entry of the S-array is replaced by k0 = i0.

i0 := k0 j0 := k0 >> 56 S[j0] := i0 = k0 (1)

If you now encrypt the first plaintext, P0, the resulting ciphertext is:

C0 := P0 ⊕ k1

k1 is equal i1 ⊕ S[j0], so if you replace k1 with this you get:

C0 = P0 ⊕ k1 = P0 ⊕ (i1 ⊕ S[j0])

The i1 value is the addition of i0 and S[j0] so you get:

C0 = P0 ⊕ k1 = P0 ⊕ (i1 ⊕ S[j0]) = P0 ⊕ ((i0 + S[j0])⊕ S[j0])

We know (see (1)) that i0 = k0 and S[j0] = i0 = k0. When you now replace the variable
of i0 and S[j0] with k0 you get:

C0 = P0 ⊕ ((i0 + S[j0])⊕ S[j0]) = P0 ⊕ ((k0 + k0)⊕ k0) (2)
⇒ C0 ⊕ P0 = (k0 + k0)⊕ k0 (3)

k0 + k0 is equal to k0 << 1, so you know that the least significant bit of k0 + k0 have to
be a 0.

1beginning with 0

4

3.1 Known Plaintext Attack to get k0

When you know the value of P0, you can exploit equation (3) to get the value of k0.

Be x0, x1, ..., xn−1 the bits of k0 and y0, ..., yn−1 the bits of C0 ⊕ P0. Equation (3) can be
written as:

xn−2 xn−3 ... x2 x1 x0 0
⊕ xn−1 xn−2 ... x3 x2 x1 x0

yn−1 yn−2 ... y3 y2 y1 y0

Because you know the value of y0 you can caculate x0 (x0 = y0). After that, you can
caculate x1 (x1 = x0 ⊕ y1) and so on. At the end you can get the value of k0.

This results into many attacks you can run against QuiSci.

3.1.1 Getting the digit sum of the key

As soon as you have calculated the value of k0, you can get the digit sum (key[0]+key[1]+
...+key[m− 1]) of the key, because k0 is equal to the digit sum of key plus and multiplied
by the INIT NUMBER:

k0 = (INIT NUMBER + key[0] + ... + key[m− 1]) · INIT NUMBER

If you use a key with length of m bytes, there are 255 · m + 1 possible digit sums. For
example, for a 128 bit key, there are just 4081 possible digit sums. So just check all possible
digit sum:

// ulong k0 : Use the above a t t a c k to ge t k0 .
ulong keyLength = 16 ; //Length o f the key in by t e s
ulong tmp = 0 ;
int digitSum ;
for (ulong i = 0 ; i <= (255 ∗ keyLength) ; i++)
{

tmp = (i+INIT NUMBER) ∗INIT NUMBER;
i f (tmp == k0)
{

digitSum = i ;
break ;

}
}

Listing 1: Caculates the digit sum of the key

There are just C(s, m) possible keys with a digit sum of s and a key length of m bytes:

C(s, m) :=
l∑

k=0

(−1)k ·
(

m

k

)
·
(

s− 256k + nm− 1
m− 1

)

with l := min
(
m,
⌊

s
256

⌋)

5

C := (s ,m) −> sum((−1)ˆk∗binomial (m, k) ∗binomial (s−256∗k+m−1, m
−1) , k =0. . min (m, f l o o r (s /256))) ;

Listing 2: C(s,m) for Maple

Digit sum Possible Keys
100 261

1000 2109

2000 2118

3000 2110

Table 3: Possible keys with 128 bits

For an 128 bit key, the peak of C(s, m) is at 2118, so this attack reduces the key space to
a maximum of 2118 keys. This is 1000 times faster than brute force.

But this isn’t fast enough for a real key recovery attack against QuiSci.

3.2 Recovering the Internale State S

The security of a stream cipher is based on the internale state. If you are able to recover
the internale state, you can break the cipher.

QuiSci uses a very weak key setup, so it is easy to recover the whole internale state:

// Set up the key
public void I n i t (byte [] key)
{

this . S = (ulong []) S I n i t . Clone () ;
this . k = INIT NUMBER;

for (int l = 0 ; l < key . Length ; l++)
{

this . k += key [l] ;
this . S [l] = this . k ;

}

this . k ∗= INIT NUMBER;
this . i = this . k ;
this . j = this . i >> INDEX SHIFT ;
this . S [this . j] = this . k ;

}
Listing 3: Key Setup of QuiSci

A key with a length of m bytes just affects the first m values of our internale state S. The
default internale state has 256 entries, so if you uses only a 16 bytes key (128 bit), just
the first 16 entries of the S-Array are unknown. All other entries are equal to the initial
values of S.

We know the value of k0, i0, j0 and S[j0] so we can compute i1 := i0 + S[j0] and j1 :=
i1 >> 56. If j1 ≥ m, we know also the value of S[j1], because our m-byte key has just

6

affected the first m entries of S. With the value of k0, you can decipher all blocks until
jn < m. With a 128 bits key you can on average break the next 14 cipher blocks (112
bytes of data), without any knowledge of them. Using just a 80 bits key increases the
range to 40 cipher blocks (320 bytes of data).

// ulong [] c : An array wi th the c i p h e r t e x t
// ulong k0 : The va lue o f k0

//The array wi th the decryp ted c i p h e r t e x t
ulong [] r e s = new ulong [c . Length] ;

ulong i , k , j ;
ulong [] S = (ulong) QuiSci . S I n i t . Clone () ; //The i n i t va lue o f S

// Ca l cu l a t e i1 , j1
k = k0 ;
i = k0 ;
j = i >> 56 ;
S [j] = i ;

for (int r = 0 ; r < c . Length ; r++)
{

i += S [j] ;

i f (i == 0)
{

i = ˜S [j] ;
S [j] = k ;
r e s [r] = c [r] ˆ i ;

}
else
{

k = i ˆ S [j] ;
S [j] = i ;
j = i >> 56 ;
r e s [r] = c [r] ˆ k ;

}

//The va lue S [j] had been changed by the key
i f (j < keyLength)

break ;
}

Listing 4: Decrypt parts of the ciphertext without knowing the key

In the case of jn < m, we do not know the value of S[jn]. But that isn’t such a problem.
The value of S[jn] is:

S[jn] = INIT NUMBER + key[0] + key[1] + ... + key[jn]

This value of S[jn] is easy to brute force, because there are maximally (jn+1) ·255 possible
values. When we know, or can guess, the value of Pn, the recovery of S[jn] is trivial.

7

4 Summary

If an attacker is able to guess the first word of the plaintext, he is able to decipher huge
parts of the ciphertext. With a very small amount of time he is able to recover the whole
internale state of QuiSci.

This paper shows a primitive known plaintext attack and a upper bound for the remaining
key space can be found in Table 4. For this attack the attacker only knows, or can guess,
the first N plaintexts. The further plaintexts are considered to be random, so an attacker
cannot use them to extend the attack 2.
This attack also works if you have to guess the values of the plaintext, because for a 16
bytes key you need only to guess maybe 25 plaintexts (some to verify your guess was right).
The plaintext value of a cipher text is only needed if jn < m. So it possible to know even
less plaintexts.

Remaining Key Space
N 128 bit key 256 bit key
50 294 2206

100 274 2174

150 257 2144

250 235 299

350 223 270

500 214 238

750 26 214

Table 4: Estimated key space for 128 and 256 bit keys

5 Conclusion

With this key setup, it is possible to decipher huge amounts of the ciphertext, only by
knowing (or guessing) the first ciphertext. This attack shows, that QuiSci cannot be
treated as secure algorithm. Instead, it is recommended to use other, well analysed algo-
rithm like AES in a stream cipher mode or ISAAC.

References

[1] http://quisci.awardspace.com/ current page of QUISCI, last update Mar 24, 2009
(accessed: Mar, 27 2009)

[2] www.php-einfach.de/crypt/quisci.php C# implementation to attack QuiSci

2truly random plaintext is really unrealistic, you can’t even break a caesar cipher.

8

