
An Investigation of Enhanced Target Collision Resistance Property for
Hash Functions: Implications, Separations, and Domain Extension ?

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{rezar, wsusilo, ymu}@uow.edu.au

Abstract. In this paper we investigate the newly emerged security property called the enhanced target collision
resistance (eTCR) for hash functions. eTCR property was put forth by Halevi and Krawczyk in Crypto 2006, in
conjunction with the randomized hashing mode that is used to realize such a hash function family for strength-
ening digital signatures. eTCR is a strengthened variant of the well-known TCR (or UOWHF) property for a
hash function family (i.e. a dedicated-key hash function). Contributions of this paper are twofold. As our first
contribution, we compare the new eTCR property with all of the seven security properties for a hash function
formalized by Rogaway and Shrimpton in FSE 2004. We provide a full picture of relationships (i.e. implications
and separations) between eTCR and each of the seven properties, namely Collision Resistance (CR), three vari-
ants of Second Preimage Resistance (Sec, aSec, eSec) and three variants of Preimage Resistance (Pre, aPre, ePre)
where all these properties are considered for a dedicated-key hash function. One of the most interesting results
is that there is a separation between eTCR and CR, that is in general, the new eTCR property as required for
randomized hashing based signatures cannot be claimed to be weaker (or stronger) than CR property for an arbi-
trary dedicated-key hash function. As our second contribution, we analyze eTCR property preserving capabilities
of several hash domain extension transforms, including (Plain, Strengthened, and Prefix-free) Merkle-Damg̊ard,
Randomized Hashing (considered in dedicated-key hash setting), Shoup, Enveloped Shoup, XOR Linear Hash
(XLH), and Linear Hash (LH) methods. From this analysis it turns out that with the exception of a nested
variant of LH construction none of the remaining investigated iterative schemes are eTCR preserving.

Key words: Hash Functions, Security Property, eTCR, Domain Extension

1 Introduction

Cryptographic hash function are functions that can map variable length strings to fixed length strings while
providing some required security properties. They are used in a vast variety of cryptographic applications
and are indispensable part of digital signatures and message authentication codes (e.g. HMAC). Originally
designed to make digital signatures more efficient, application of hash functions in schemes following hash-
and-sign paradigm, like DSA, requires them to provide collision resistance (CR) property. Hash functions are
also asked to provide several different security properties depending on the specific security requirements
of the higher-level protocols utilizing them. Although CR is one of the most important and well-known
security properties for a hash function, they are often asked to provide many other security properties that,
depending on the requirements of the higher-level applications, may range from merely being a one-way
function (i.e. preimage resistance property) to acting as a truly random function (i.e. a random oracle).
Hence, unlike many other cryptographic primitives which are only aimed to fulfill a specific security notion,
hash functions as workhorses of cryptography are usually assumed to provide a wide application dependent
spectrum of security properties.

Despite existence of numerous works on design of hash functions and on attacking the hash functions,
the current literature contains many different informal and formal definitions for security properties of hash
functions and several hash constructions that fulfill (heuristically or provably) some security properties
? A preliminary version of this paper appeared in [20].



2 M. R. Reyhanitabar, W. Susilo and Y. Mu

but not the others. In regard to any newly introduced security property for hash functions, considering
two questions is of an essential theoretical interest, namely the formal relationships with previously known
properties and the problem of property preserving hash domain extension (or mode of operation).

Working out the relationships between a newly introduced security notion for hash functions and other
well-known and in-use security properties like CR is an essential step to clarify the position of the new
property among previously known ones. This should be done by showing implications or separations between
properties using formal proofs or counterexamples. There are few works in this line of research investigating
and clarifying formal relationships between numerous security notions for hash functions, e.g. [15, 26, 23].
The comprehensive work of Rogaway and Shrimpton in [22] provides formal definitions for seven security
notions, namely CR (denoted by ‘Coll’ in [22]), three variants of second preimage resistance (Sec, aSec, eSec)
and three variants of preimage resistance (Pre, aPre, ePre) as well as all relationships between these seven
basic properties.

The possibility of designing a ‘property preserving hash domain extension’ is another important issue to
be considered in regard to any new security property. The problem is that whether it is possible to construct
a full-fledged (i.e. arbitrary-input-length) hash function to achieve the target security property assuming that
one has a compression function (i.e. a fixed-input-length hash function) possessing that security property.
In the case of CR property, the seminal works of Merkle [14] and Damg̊ard [8] showed that Merkle-Damg̊ard
(MD) iteration with strengthening (length indicating) padding is a CR preserving domain extender. Analysis
and design of (multi-)property preserving domain extenders for hash function has been recently attracted
new attention in several works considering several different security properties, such as [5, 3, 2, 1].

In this paper we consider the above-mentioned two essential questions, namely investigation of formal
relationships and property preserving domain extension, in regard to the newly defined security property
of enhanced target collision resistance (eTCR). eTCR was put forth by Halevi and Krawczyk in Crypto
2006 [12] in conjunction with the randomized hashing mode that is used to realize such a hash function
family for strengthening digital signatures. This is motivated by the fact that CR property, despite being
a widely-desirable security property, has been shown to be a very strong and demanding property for hash
functions from theoretical viewpoint [25, 5, 19] as well as being a practically endangered property by the
recent advances in cryptanalysis of widely-used standard hash functions like MD5 [29] and SHA-1 [28, 9].
In response to these recent cryptanalytic results against most in-use standard hash functions, NIST created
a design competition for the next generation hash function standard which will be called SHA-3 [17]. It is
hoped that SHA-3 standard will be able to resist against all known attacks, especially the powerful statistical
methods like differential cryptanalysis which have been used to attack MD5, SHA-1 and many other hash
functions [29, 28, 27].

While looking forward to such a new SHA-3 standard, Halevi and Krawczyk’s approach in randomized
hashing mode aims at providing a “safety net” by relaxing the current complete reliance on CR property
without having to change the internals of an already implemented and in-use hash function like SHA-1.
In a nutshell, Randomized Hashing construction (see Fig. 1) which is proposed in [12] and announced by
NIST as Draft SP 800-106 [18] converts a keyless hash function H (e.g. SHA-1) to a dedicated-key hash
function H̃ defined as H̃K(M) = H(K||(M1⊕K)|| · · · ||(ML⊕K)), where H is an iterated Merkle-Damg̊ard
hash function based on a compression function h. (M1|| · · · ||ML is the padded message after applying
strengthening padding.)

Although the main motivation for the design of a randomized hashing mode in [12] was to free reliance on
strong collision resistance assumption on the underlying hash function (by making off-line attacks ineffective
by using anew and random key), in parallel to this aim, a new security property was also introduced and
defined for hash functions, namely the eTCR property. Having H̃ as the first example of a construction
for eTCR hash functions in hand, we also note that an eTCR hash function is an interesting and useful
new primitive. In [12], the security of the specific example function H̃ in eTCR sense is based on some
new assumptions (called c-SPR and e-SPR) about keyless compression function h. However, this example



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 3

h hh h

M2 ML

K

C2 C3 CL CL+1C1IV

K

K

K

M1

Fig. 1. Randomized Hashing construction

function H̃, may be threatened as a result of future cryptanalysis results, but the notion of eTCR hashing
will still remain useful independently from this specific function. By using an eTCR hash function family
{HK} in a hash-and-sign digital signature scheme, one does not need to sign the key K used for the hashing.
It is only required to sign HK(M) and the key K is sent in public to the verifier as part of the signed message
[12]. This is an improvement compared to using a TCR (UOWHF) hash function family where one needs to
sign HK(M)||K [5].

Contributions. Our aim in this paper is to investigate the eTCR hashing as a new and interesting notion.
As our first contribution, we provide a full picture of relationships between the eTCR property and all of
the seven security properties for a hash function formalized by Rogaway and Shrimpton in [22], namely
CR, Sec, aSec, eSec, Pre, aPre and ePre notions of security. This is done by working out all implications
and separations between eTCR and each of the seven properties by formal proofs or counterexamples. The
summary of results is shown in Fig. 1, where in conformance with [22] we have used following conventions
to represent relationships: a directed path from a notion x to a notion y shows that x implies y (dashed lines
represent “provisional implications” [22] in which the strength of the implications depends on the amount
of compression achieved by the hash function) and lack of any path between two notions shows that there
is a separation between the two notions.

One of the most interesting results among these relations is the separation between eTCR and CR (or
‘Coll’), that is in general, the new eTCR property cannot be claimed to be weaker (or stronger) than collision
resistance property when both notions are considered for an arbitrary dedicated-key hash function. At first
glance, this may seem to be discouraging for the applications of eTCR hashing, but we emphasize that
the separation results actually show the incomparability between two notions. For instance, the separation
between eTCR and CR in general does not necessarily imply that for any specific construction of a dedicated-
key hash function (say the Randomized Hashing construction), achieving the eTCR property will be harder
than CR. Although our separation results do not rule out the possibility of designing specific dedicated-key
hash functions in which eTCR might be easier to achieve compared to other notions, it emphasizes the point
that any such a construction should explicitly show that this is indeed the case.

As our second contribution, we consider the problem of eTCR preserving domain extension. We investi-
gate eight domain extension transforms for this purpose; namely Plain MD [14, 8], Strengthened MD [14, 8],
Prefix-free MD [7, 13], Randomized Hashing [12] (considered in dedicated-key hash setting), Shoup [24],
Enveloped Shoup [2], XOR Linear Hash (XLH) [5], and a variant of Linear Hash (LH) [5] methods. Inter-
estingly, we show that the only eTCR preserving method among these methods is a nested variant of LH
(defined based on a variant proposed in [5]) which has the drawback of having linear key expansion factor.
From this analysis, design of a new and more efficient eTCR preserving domain extender can be considered
as an interesting open problem for future research.

The overview of constructions and the properties they preserve are shown in Table 1. The symbol “X”
means that the notion is provably preserved by the construction; “×” means that it is not preserved.
Underlined entries related to eTCR property are the results shown in this paper.



4 M. R. Reyhanitabar, W. Susilo and Y. Mu

eTCR

New eTCR property introduced in
conjunction with Randomized Hashing
construction by Halevi and Krawczyk at
CRYPTO 2006

Coll

eSec

ePre

Pre

aPre

aSec

Sec

Seven security properties for hash
functions and their relationships:
investigated by Rogaway and Shrimpton
at FSE 2004 and recently revised in [22].

Fig. 2. Relationships between eTCR and the seven security notions for hash functions: a directed path shows an implication
(dashed lines represent “provisional implications” [22] in which the strength of the implications depends on the amount of
compression achieved by the hash function) and lack of a path shows a separation. Implications and separations between eTCR
and each of the seven properties are shown by formal proofs and counterexamples in Sec. 3 of this paper.

Scheme CR TCR eTCR

Plain MD × [14, 8] × [5] ×
Strengthened MD X[14, 8] × [5] ×
Prefix-free MD × [2] × [2] ×
Randomized Hashing X[1] × [1] ×
Shoup X[24] X[24] ×
Enveloped Shoup X[2] X[2] ×
XOR Linear Hash (XLH) X[1] X[5] ×
Nested Linear Hash (LH) X[5] X[5] X

Table 1. Overview of constructions and the properties they preserve.



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 5

2 Preliminaries

2.1 Notations

If A is a randomized algorithm then by y = A(x1, · · · , xn;R) it is meant that y is the output of A on inputs

x1, · · · , xn when it is provided with random coins (tape) R. By y
$← A(x1, · · · , xn) it is meant that the tape

R is chosen at random and y is set to be y = A(x1, · · · , xn;R). To show that an algorithm A is run without

any input (i.e. when the input is an empty string) we use the notation y
$← A(). By time complexity of an

algorithm we mean the running time, relative to some fixed model of computation (e.g. RAM) plus the size

of the description of the algorithm using some fixed encoding method. If X is a finite set, by x
$← X it is

meant that x is chosen from X uniformly at random. Let x||y denote the string obtained from concatenating
string y to string x. Let 1m and 0m, respectively, denote a string of m consecutive 1 and 0 bits, and 1m0n

denote the concatenation of 0n to 1m. By (x, y) we mean an injective encoding of two strings x and y, from
which one can efficiently recover x and y. For a binary string M , let M1...n denote the first n bits of M , |M |
denote its length in bits and |M |b , d|M |/be denote its length in b-bit blocks. Let val(.) be the function
that on input a binary string M , considered as an unsigned binary number (with some fixed bit position
numbering), returns its decimal value. For a positive integer m, let 〈m〉b denotes binary representation of
m by a string of length exactly b bits. If S is a finite set we denote size of S by |S|. The set of all binary
strings of length n bits (for some positive integer n) is denoted as {0, 1}n, the set of all binary strings whose
lengths are variable but upper-bounded by N is denoted by {0, 1}≤N and the set of all binary strings of
arbitrary length is denoted by {0, 1}∗.

2.2 Two Settings for Hash Functions

In a formal study of cryptographic hash functions and their security notions, two different but related settings
can be considered. The first setting is the traditional keyless hash function setting where a hash function
refers to a single function H (e.g. H=SHA-1) that maps variable length messages to fixed length output hash
value. In the second setting, by a hash function it is meant a family of hash functions H : K×M→ {0, 1}n,
also called a dedicated-key hash function [2], which is indexed by a key space K. A key K ∈ K acts as
an index to select a specific member function from the family and often the key argument is denoted as
a subscript, that is HK(M) = H(K, M), for all M ∈ M. For a formal treatment one should clarify the
target setting, namely whether keyless or dedicated-key setting is considered. This is worth emphasizing as
some security properties like TCR and eTCR are inherently defined and make sense for a dedicated-key
hash function [22, 12]. Regarding CR property there is a well-known foundational dilemma, namely CR can
only be formally defined for a dedicated-key hash function, but it has also been used widely as a security
assumption in the case of keyless hash functions like SHA-1. We will briefly review this formalization issue
for CR in Subsection 2.3 and for a detailed discussion we refer to [21].

2.3 Definition of Security Notions

In this section, we recall formal definitions of eight security notions for hash functions; namely, the seven
notions (Coll, Sec, aSec, eSec, Pre, aPre and ePre) formalized in [22] and the new eTCR notion introduced
in [12]. The eSec property in [22] is the same as the well known UOWHF or TCR property [16, 5] and
we will use CR to stand for Collision Resistance which is denoted by Coll in [22]. All definitions are for
a dedicated-key hash function H : K ×M → {0, 1}n, where the key space K is some nonempty set and
the message space M ⊆ {0, 1}∗ such that {0, 1}m ⊆ M for at least a positive integer m. The advantage
measures for an adversary A attacking H are defined in Fig. 3 for the eight security notions.

We say that H is (t, l, ε)-xxx, for xxx ∈ {Coll, Sec, aSec, eSec, Pre, aPre, ePre, eTCR}, if the advantage
of any adversary A with time complexity at most t and using messages of length at most l, is less than



6 M. R. Reyhanitabar, W. Susilo and Y. Mu

AdvCR
H (A) = Pr

[
K

$← K; (M,M ′) $← A(K) : M 6= M ′ ∧ HK(M) = HK(M ′)
]

AdvSec[m]
H (A) = Pr

[
K

$← K;M $← {0, 1}m ;

M ′ $← A(K, M) : M 6= M ′ ∧ HK(M) = HK(M ′)

]

AdvaSec[m]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}m ;

M ′ $← A2(M,State) : M 6= M ′ ∧ HK(M) = HK(M ′)



AdveSec[m]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

M ′ $← A2(K, State) : M 6= M ′ ∧ HK(M) = HK(M ′)


AdvPre[m]

H (A) = Pr

[
K

$← K;M $← {0, 1}m ;Y ← HK(M);

M ′ $← A(K, Y ) : HK(M ′) = Y

]

AdvaPre[m]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}m ;Y ← HK(M);

M ′ $← A2(Y, State) : HK(M ′) = Y


AdvePre

H (A) = Pr
[
(Y, State) $← A1();K

$← K;M ′ $← A2(K, State) : HK(M ′) = Y
]

AdveTCR[m]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

K ′,M ′ $← A2(K, State) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)



Fig. 3. Definitions of security notions for a hash function family H [22, 12]. In the case of eSec and eTCR notions the parameter
m is assumed to be the length of the first (i.e. target) message M output by the adversary in the first stage of attack, i.e. A1.

ε, in attacking H in xxx sense. Note that some of the notions (namely, Sec[m], aSec[m], eSec[m], Pre[m],
aPre[m] and eTCR[m]) are parameterized by m where {0, 1}m ⊆ M. In the case of eSec (i.e. TCR) and
eTCR notions the parameter m is implicit in the definitions and assumed to be the length of the first (i.e.
target) message M output by the adversary. If H is a compression function (i.e. an FIL hash function),
then parameter m and the resource parameter l for the adversary will be the same as the fixed input length
of the compression function and hence omitted from the notations. It is shown in [22] that the strength of
provisional implications between different notions depends on the relative size of m and the hash size n.

CR for a Keyless Hash Function. Collision resistance as a security property cannot be formally defined
for a keyless hash function H : M → {0, 1}n. Informally, one would say that it is “infeasible” to find
two distinct messages M and M ′ such that H(M) = H(M ′). But it is easy to see that if |M| > 2n (i.e.
if the function is compressing) then there are many colliding pairs and hence, trivially there exists an
efficient program that can always output a colliding pair M and M ′, namely a simple one with M and
M ′ included in its code. That is, infeasibility cannot be formalized by an statement like “there exists no
efficient adversary with non-negligible advantage” as clearly there are many such adversaries as mentioned
before. The point is that no human being knows such a program [21], but the latter concept cannot be
formalized mathematically. Therefore, in the context of keyless hash functions, CR can only be treated as
a strong assumption to be used in a constructive security reduction following human-ignorance framework
of [21]. We will call such a CR assumption about a keyless hash function as keyless-CR assumption to
distinguish it from formally definable CR notion for a dedicated-key hash function. We note that as a result
of recent collision finding attacks, it is shown that keyless-CR assumption is completely invalid for MD5 [29]
and theoretically endangered assumption for SHA-1 [28].



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 7

3 Relationships between eTCR and the Seven Security Notions

In this section we provide a full picture of relationships, i.e. implicatiosns or separations, between eTCR
security notion as defined in [12] as a new property for a hash function and all the seven notions of security
for hash functions in [22], namely CR, Sec, aSec, eSec (a.k.a. TCR), Pre, aPre, ePre. The relationships
between eTCR and three of these notions, namely eSec (TCR), Sec and Pre can be obtained by simply
considering the definitions of these notions and using the results of [22] about relationships among eSec, Sec
and Pre. Hence we will only briefly review the main ideas regarding these three notions. For the remaining
four notions, i.e. CR, aSec, aPre and ePre, we provide a full analysis of the relationships. Briefly saying, the
results are as follows:

– There is a separation between eTCR and each one of the CR, aSec, aPre and ePre notions, i.e. eTCR
neither implies any of these four notions nor is implied by any of these notions.

– eTCR implies Sec, eSec (TCR) and also (provisionally) Pre, but none of the Sec, eSec or Pre notions
implies eTCR (i.e. eTCR is a stronger security notion than these three notions).

In the sequel, we first provide our main results which are showing the separations between eTCR and
the four notions, namely CR, aSec, aPre, and ePre. Among these results, the separation between eTCR and
CR is of more theoretical and practical interest, as CR is one of the most in use and challenged properties
for a hash function as we discussed in Sec. 1 of this paper. The following four subsections provide separation
results, and then we will proceed to consider the implications.

3.1 eTCR Property vs. CR Property

We show that there is a separation between CR and eTCR, that is none of these two properties can be
claimed to be weaker or stronger than the other in general in dedicated-key hash function setting. We
emphasize that we consider relation between CR and eTCR as formally defined properties for a dedicated-
key hash function. In other words, we follow the comparison methodology in the dedicated-key hash function
setting as in [22]. The CR property considered in this section should not be mixed with the strong keyless-CR
assumption for a keyless hash function.

Theorem 1. There is a separation between eTCR and CR notions of security.

The proof for this separation result is obtained by combining the results of Lemma 1 and Lemma 2 as
follows.

We firstly want to show that the CR property does not imply the eTCR property (CR ; eTCR). That
is, eTCR as a security notion for a dedicated-key hash function is not weaker than the CR property. This
is done by showing as a counterexample, a dedicated-key hash function which is secure in CR sense but
completely insecure in eTCR sense.

Lemma 1 (CR does not imply eTCR). Assume that there exists a dedicated-key hash function H :
{0, 1}k × {0, 1}m → {0, 1}n which is (t, ε) − CR. Select (and fix) an arbitrary message M∗ ∈ {0, 1}m
and an arbitrary key K∗ ∈ {0, 1}k (e.g. M∗ = 1m and K∗ = 1k). The dedicated-key hash function G :
{0, 1}k × {0, 1}m → {0, 1}n shown in this lemma is (t′, ε′) − CR, where t′ = t − cTH and ε′ = ε + 2−k, but
it is completely insecure in eTCR sense. TH denotes the time for one computation of H and c is a small
constant.

GK(M) =


M∗

1···n if M = M∗ ∨
K = K∗ (1)

HK(M∗) if M 6= M∗ ∧
K 6= K∗ ∧

HK(M) = M∗
1···n (2)

HK(M) otherwise (3)



8 M. R. Reyhanitabar, W. Susilo and Y. Mu

Note that the condition in line (3) of definition of G (implicitly denoted as “otherwise”) actually can be
explicitly shown as: [if M 6= M∗ ∧

K 6= K∗ ∧
HK(M) 6= M∗

1···n]. It is easily seen that this condition and
the other two conditions in line (1) and (2) cover the all possibility for K and M in defining GK(M).

The proof is valid for any arbitrary selection of parameters M∗ ∈ {0, 1}m and K∗ ∈ {0, 1}k, and hence,
this construction actually shows 2m+k such counterexample functions, which are CR but not eTCR.

Proof. Let’s first demonstrate that G as a dedicated-key hash function is not secure in eTCR sense. This
can be shown by the following simple adversary A = (A1, A2) playing eTCR game against G. In the first
stage of eTCR attack, A1 outputs the target message as M = M∗. In the second stage of the attack,
A2, after receiving the first randomly selected key K (where K

$← {0, 1}k), outputs a different message
M ′ 6= M∗ and selects the second key as K ′ = K∗. It can be seen easily that the adversary A = (A1, A2)
wins the eTCR game, as M ′ 6= M∗ implies that (M∗,K) 6= (M ′,K∗) and by the construction of G we
have GK(M∗) = GK∗(M ′) = M∗

1···n; that is both of the conditions for winning eTCR game are satisfied.
Therefore, the hash function family G is completely insecure in eTCR sense.

To complete the proof, we need to show that the hash function family G inherits the CR property of
H. This is done by reducing CR security of G to that of H. Let A be an adversary that can win CR game
against G with probability ε′ using time complexity t′. We construct an adversary B against CR property of
H with success probability of at least ε = ε′ − 2−k (≈ ε′, for large k) and time t = t′ + cTH as stated in the
lemma. The construction of B is as follows (note that K is selected at random and given to the adversary
at the beginning of CR game):

Algorithm B(K)
10: if K = K∗ then return “Fail”

20: (M,M ′) $← A(K);
30: if [M = M∗ ∧

HK(M ′) = M∗
1···n] return (M,M ′)

40: if [M ′ = M∗ ∧
HK(M) = M∗

1···n] return (M,M ′)
50: if [M 6= M∗ ∧

HK(M) = M∗
1···n

∧
M ′ 6= M∗ ∧

HK(M ′) 6= M∗
1···n] return (M∗,M ′)

60: if [M ′ 6= M∗ ∧
HK(M ′) = M∗

1···n
∧

M 6= M∗ ∧
HK(M) 6= M∗

1···n] return (M,M∗)
70: else return (M,M ′)

Let Bad denote the event that in line 10 of algorithm B we have K = K∗. As K∗ is a fixed parameter and
the key K is selected uniformly at random from key space {0, 1}k and given to A, we have Pr[Bad] = 2−k.
Let Bad denote the complement event for Bad, i.e. K 6= K∗, so we have Pr[Bad] = 1−2−k. We claim that
unless Bad happens (in which case B will fail as specified in line 10 of its pseudocode), B will return a valid
collision for H whenever A is successful in returning a valid collision (M,M ′) for G. To prove this claim
first note that if Bad does not happen then algorithm B will return a message pair depending on which of
the conditions specified in lines 30-70 of its code are satisfied. Referring to the definition of hash function
family G, if A returns a valid collision (M,M ′) under GK , we can analyze all possible cases that this can
happen and show that in each case algorithm B also returns a collision for HK . Let (i)-(j) Coll mean that
the colliding messages M and M ′ output by A for GK , respectively, satisfy conditions in line (i) and line
(j) in definition of the function G. Then we have the following cases (remember that we assume Bad, that
is K 6= K∗ ):

1. (1)-(1) Coll, (1)-(3) Coll and (3)-(1) Coll are not possible. A (1)-(1) Coll implies that M = M ′

which is not possible as it is assumed that (M,M ′) is a valid collision for GK . Now, note that the
condition in line (3) of definition of G (implicitly denoted as “otherwise”) actually can be explicitly
shown as:



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 9

[if M 6= M∗ ∧
K 6= K∗ ∧

HK(M) 6= M∗
1···n]. Hence, the hash value computed on line (3) is always

different from M∗
1···n and therefore (1)-(3) Coll and (3)-(1) Coll are impossible.

2. (1)-(2) Coll: When adversary A outputs a valid (1)-(2) Coll for hash function G (i.e. M ′ 6= M ∧
GK(M ′) = GK(M)), referring to definition of G and remembering the assumption Bad : K 6= K∗, it can
be seen that M = M∗ and HK(M ′) = M∗

1···n because this is a (1)-(2) Coll and from GK(M ′) = GK(M)
we have HK(M∗) = M∗

1···n. In this case, the adversary B returns (M,M ′) in line 30 of its code as collision
for HK and wins because HK(M) = HK(M∗) = M∗

1···n = HK(M ′).
3. (2)-(1) Coll: The proof for this case is symmetric to the case of (1)-(2) Coll and this time adversary

B returns (M,M ′) in line 40 of its code as collision for HK .
4. (2)-(3) Coll: We show that in this case, the adversary B returns (M∗,M ′) as a collision for HK

in line 50 of its code and wins. It is easy to see as whenever the adversary A outputs a valid (2)-
(3) Coll for hash function G then (by referring to the definition of G, remembering the assumption
Bad : K 6= K∗ and considering the condition for line (3) of G explicitly,) it can be seen that M 6= M∗,
HK(M) = M∗

1···n, M ′ 6= M∗ and HK(M ′) 6= M∗
1···n. Hence, as (M,M ′) output by A is a valid collision

for G, i.e. GK(M ′) = GK(M), we have that HK(M ′) = HK(M∗) and therefor (M∗,M ′) returned by B
in line 50, is a valid collision for HK .

5. (3)-(2) Coll: The proof for this case is symmetric to the case of (2)-(3) Coll and this time the adversary
B returns (M,M∗) in line 60 of its code as collision for HK .

6. (2)-(2) Coll and (3)-(3) Coll: It can be seen that in these two cases the adversary B returns (M,M ′)
as a collision for HK in line 70 of its code. Referring to the definition of function G, it is seen that
whenever the adversary A outputs a valid collision (M,M ′) for GK as either a (2)-(2) Coll or (3)-(3)
Coll (that is, M 6= M ′ ∧GK(M) = GK(M ′) and both M and M ′ belong to the same sub-domain of G)
then (M,M ′) will also be a valid collision for HK . Note that GK(M) = GK(M ′) implies that in (2)-(2)
Coll case we have HK(M) = HK(M ′) = HK(M∗) and in (3)-(3) Coll case we have HK(M) = HK(M ′).

The above case analysis shows that when Bad does not happen (i.e. when K 6= K∗) then the adversary B
will be successful in finding a valid collision for HK if the adversary A can find a valid collision for GK . If Bad
happens then B will fail and return “Fail” in line 10 of its code. Therefore, we have ε = Pr[B succeeds] =
Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]− Pr[Bad] = ε′ − 2−k. ut

We now want to demonstrate that the eTCR property does not imply the CR property (eTCR ; CR).
That is, the CR property as a security notion for a dedicated-key hash function is not a weaker than the
eTCR property. This is done by showing as a counterexample, a dedicated-key hash function which is secure
in eTCR sense but completely insecure in CR sense.

Lemma 2 (eTCR does not imply CR). Assume that there exists a dedicated-key hash function H :
{0, 1}k × {0, 1}m → {0, 1}n, where m > k ≥ n, which is (t, ε) − eTCR. The dedicated-key hash function
G : {0, 1}k × {0, 1}m → {0, 1}n shown in this lemma is (t′, ε′)− eTCR, where t′ = t− c, ε′ = ε + 2−k+1, but
it is completely insecure in CR sense. (c is a small constant.)

GK(M) =
{

HK(0m−k||K) if M = 1m−k||K
HK(M) otherwise

Note that the structural assumption about H : {0, 1}k×{0, 1}m → {0, 1}n, namely that we have m > k ≥ n
is quite reasonable even for practical scenarios. For instance, in Randomized Hashing which should provide
a dedicated-key hash function with eTCR property, the key length k is fixed and equal to the block length
of the underlying keyless hash function (e.g using SHA-1 we have k = 512, n = 160) while message length
m can be very large (just less than 264).



10 M. R. Reyhanitabar, W. Susilo and Y. Mu

Proof. We firstly demonstrate that G as a dedicated-key hash function is not secure in CR sense. This can
be shown by the following simple adversary A that plays CR game against G. On receiving the key K, the
adversary A outputs two different messages as M = 1m−k||K and M ′ = 0m−k||K and wins the CR game as
we have GK(1m−k||K) = HK(0m−k||K) = GK(0m−k||K).

It remains to show that that G indeed is an eTCR secure hash function family. Let A = (A1, A2) be
an adversary which wins the eTCR game against G with probability ε′ and using time complexity t′. We
construct an adversary B = (B1, B2) which uses A as a subroutine and wins eTCR game against H with
success probability at least ε = ε′ − 2−k+1(≈ ε′, for large k) and spending time complexity t = t′ + c where
small constant c can be determined from the description of algorithm B. Algorithm B is as follows:

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if
[
M = 1m−k||K

∨
M = 0m−k||K

]
return ‘Fail’;

20: return (M,State); 40: (M ′,K ′) $← A2(K, M, State);
50: if M ′ = 1m−k||K then return (0m−k||K, K ′);
60: else return (M ′,K ′);

As it can be seen from B’s description, in the first stage of eTCR attack B1 just merely runs A1 and
returns whatever it returns as the first message(M) and any possible state information to be passed to the
second stage algorithm. In the second stage of the attack, let Bad be the event that [M = 1m−k||K

∨
M =

0m−k||K]. It can be observed that if Bad happens then algorithm B2 (and hence B) will fail in eTCR attack;
otherwise (i.e. if Bad happens) we show that B will be successful in eTCR attack against H assuming that
A is successful in eTCR attack against G.

Note that an adversary A against G is successful in eTCR attack whenever (M,K) 6= (M ′,K ′) and
GK(M) = GK′(M ′). Assuming that the event Bad happens; that is, [M 6= 1m−k||K

∧
M 6= 0m−k||K] and

referring to the description of function G in this lemma, it can be shown that if A succeeds then B also
succeeds as follows:

1. Case 1: M ′ = 1m−k||K. In this case from the success condition for A we have GK(M) = GK′(1m−k||K)
and according to the description of G this is translated to HK(M) = HK′(0m−k||K). Now it can be
shown that B becomes successful, by returning (0m−k||K, K ′) in (line 50 of its code in) the second stage,
as follows. We note that the event Bad implies that M 6= 0m−k||K and hence (M,K) 6= (0m−k||K, K ′).
So, the pairs (M,K) and (0m−k||K, K ′) output by B is a valid colliding pair for H according to winning
condition in eTCR game.

2. Case 2: M ′ 6= 1m−k||K. In this case (which is the complement of Case 1), B succeeds by just returning
(M ′,K ′) in (line 60 of its code in) the second stage, i.e. the same message and key pair as A returns in its
second stage. This is easy to verify as in this case from the description of G we have GK(M) = HK(M)
and GK′(M ′) = HK′(M ′), and so B wins against H if A wins against G.

Now note that Pr[Bad] = Pr[M = 1m−k||K] + Pr[M = 0m−k||K] = 2−k + 2−k = 2−k+1, as K is
selected uniformly at random just after the message M is fixed in the eTCR game. Hence, we have
ε = Pr[B succeeds] = Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]− Pr[Bad] = ε′ − 2−k+1.

ut

The Case for Randomized Hashing. Randomized Hashing method as shown in Fig. 1 is a simple method
to obtain a dedicated-key hash function H̃ : K×M → {0, 1}n from an iterated (keyless) hash function H as
H̃(K, M) , H

(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
, where K = {0, 1}b and H itself is constructed by iterating a

keyless compression function h : {0, 1}n+b → {0, 1}n and using a fixed initial chaining value IV. The analysis
in [12] reduces the security of H̃ in eTCR sense to some assumptions, called c-SPR and e-SPR, on the
keyless compression function h which are weaker than the keyless-CR assumption on h.



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 11

Here, we are interested in a somewhat different question, namely whether (formally definable) CR for
this specific design of dedicated-key hash function H̃ implies that it is eTCR or not. Interestingly, we can
gather a strong evidence that CR for H̃ implies that it is also eTCR, by the following argument. First,
from the construction of H̃ it can be seen that CR for H̃ implies keyless-CR for a hash function H∗ which
is identical to the H except that its initial chaining value is a random and known value IV ∗ = h(IV ||K)
instead of the prefixed IV (Note that K is selected at random and is provided to the adversary at the
start of CR game). This is easily proved, as any adversary that can find collisions for H∗ (i.e. breaks it in
keyless-CR sense) can be used to construct an adversary that can break H̃ in CR sense. Second, from recent
cryptanalysis methods which use differential attacks to find collisions [29, 28], we have a strong evidence
that finding collisions for H∗ under known IV ∗ would not be harder than finding collisions for H under IV ,
for a practical hash function like MD5 or SHA-1. That is, we argue that if H∗ is keyless-CR then H is also
keyless-CR. Finally, we note that keyless-CR assumption on H in turn implies that H̃ is eTCR as follows.
Consider a successful eTCR attack against H̃ where on finishing the attack we will have (K, M) 6= (K ′,M ′)
and H̃(K, M) = H̃(K ′,M ′), where M = M1|| · · · ||ML and M ′ = M ′

1|| · · · ||M ′
L. Referring to the construction

of H̃ this is translated to H
(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
= H

(
K||(M ′

1 ⊕K)|| · · · ||(M ′
L ⊕K)

)
and from

(K, M) 6= (K ′,M ′) we have that
(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
6=

(
K||(M ′

1 ⊕K)|| · · · ||(M ′
L ⊕K)

)
. Hence,

we have found a collision for H and this contradicts the assumption that H is keyless-CR. Therefore, for
the case of the specific dedicated-key hash function H̃ obtained via Randomized Hashing mode, it can be
argued that CR implies eTCR.

3.2 Relationships among eTCR, aSec and aPre

In this section we compare eTCR property with aSec and aPre properties. In both cases, we show a separa-
tion. That is, we show that eTCR neither implies any of these two notions nor is implied by any of these two
notions, when considering an arbitrary dedicated-key hash function. The results are stated in the following
two theorems.

Theorem 2. There is a separation between eTCR and aSec notions of security.

Theorem 3. There is a separation between eTCR and aPre notions of security.

The proofs for these two theorems (separation results) are obtained by combining the results of the
following three lemmas. In Lemma 3 we show that eTCR does not imply either of aSec or aPre properties.
Lemma 4 and 5 are easily deduced from the previously known relations in [22, 12], and respectively show
that aSec does not imply eTCR, and aPre does not imply eTCR. Hence, the proof of Theorem 2 (separation
between eTCR and aSec) is obtained by combining Lemma 3 (eTCR ; aSec) and Lemma 4 (aSec ; eTCR),
and that of Theorem 3 (separation between eTCR and aPre) is obtained from Lemma 3 (eTCR ; aPre)
and Lemma 5 (aPre ; eTCR).

Lemma 3 (eTCR property does not imply either of aSec or aPre properties). Assume that there
exists a dedicated-key hash function H : {0, 1}k ×{0, 1}m → {0, 1}n which is (t, ε)− eTCR. Select (and fix)
an arbitrary key K∗ ∈ {0, 1}k and an arbitrary hash value C∗ ∈ {0, 1}n (e.g. K∗ = 0k and C∗ = 0n). The
dedicated-key hash function G : {0, 1}k × {0, 1}m → {0, 1}n shown in this lemma is (t′, ε′) − eTCR, where
t′ = t − TH − c and ε′ = ε +

√
ε + 2−k+1, but it is completely insecure in both aSec and aPre senses. TH

denotes the time for one computation of H and c is a small constant.

GK(M) =


C∗ if K = K∗ (1)

HK(M) otherwise (2)



12 M. R. Reyhanitabar, W. Susilo and Y. Mu

The proof is valid for any arbitrary selection of parameters K∗ ∈ {0, 1}k and C∗ ∈ {0, 1}n, and hence,
this construction actually shows 2k+n such counterexample functions, which are eTCR secure but not aSec
or aPre secure.

Proof. Let’s first demonstrate that G as a dedicated-key hash function is not secure in either of aSec or
aPre senses.

– The case of aSec: Consider the following simple adversary A = (A1, A2) playing aSec game against G. In
the first stage of aSec attack, A1 chooses the key as K = K∗. In the second stage of the attack, A2, after
receiving the first randomly selected message M (where M

$← {0, 1}m), outputs any different message
M ′ 6= M . It can be seen easily that the adversary A = (A1, A2) wins the aSec game, as M ′ 6= M and
by the construction of G we have GK∗(M ′) = GK∗(M) = C∗. Therefore, the hash function family G is
completely insecure in aSec sense.

– The case of aPre: Consider the following simple attack. In the first stage of aPre attack, A1 chooses the
key as K = K∗. In the second stage of the attack, A2, after receiving the hash value Y = GK∗(M) = C∗,
outputs any arbitrary message M ′ ∈ {0, 1}m. It can be seen easily that the adversary A = (A1, A2) always
wins the aPre game as, according to the construction of the hash family G, we have GK∗(M ′) = C∗ for
any M∗ ∈ {0, 1}m. Therefore, the hash function family G is completely insecure in aPre sense.

To complete the proof of the lemma, we need to show that the hash function family G inherits the eTCR
property of H. Note that in construction of hash function G from H it is assumed that H is (t, ε)-eTCR,
i.e. the success probability of any adversary having time complexity t in attacking eTCR property of H is
upperbounded by ε. Let A = (A1, A2) be any adversary that can win eTCR game against G with success
probability ε′ and having time complexity at most t′. We want to show that ε′ ≤ ε +

√
ε + 2−k+1 as stated

in the lemma. Consider the following adversary B = (B1, B2) against eTCR property of H which uses A as
a subroutine:

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if [K = K∗ ∨
HK(M) = C∗] return ‘Fail’;

20: return (M,State); 40: (M ′,K ′) $← A2(K, M, State);
50: return (M ′,K ′);

As it can be seen from the description of algorithm B, in the first stage of eTCR attack B1 merely
runs A1 and returns whatever it returns as the first message(M) and any possible state information to
be passed to the second stage algorithm. In the second stage of the attack, let Bad be the event that
[K = K∗ ∨

HK(M) = C∗]. If Bad happens then algorithm B2 (and hence B) will fail in eTCR attack;
otherwise (i.e. if Bad happens) we show that B will be successful in eTCR attack against H assuming that
A is successful in eTCR attack against G.

Note that adversary A succeeds in eTCR attack against G whenever (M,K) 6= (M ′,K ′) and GK(M) =
GK′(M ′). Assuming that the event Bad happens; that is, [K 6= K∗ ∧

HK(M) 6= C∗] and referring to
the construction of the (counterexample) hash function G, it can be observed that in this case GK(M) =
GK′(M ′) will imply HK(M) = HK′(M ′), that is adversary B also succeeds in eTCR attack against H.
Hence we have: ε ≥ Pr[B succeeds] = Pr[A succeeds ∧ Bad] ≥ Pr[A succeeds] − Pr[Bad] = ε′ − Pr[Bad].
Rearranging the terms we have:

ε′ ≤ ε + Pr[Bad] (1)

Now we need to upperbound Pr[Bad] = Pr[K = K∗ ∨
HK(M) = C∗]. Using the union bound we have:



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 13

Pr[Bad] ≤ Pr[K = K∗] + Pr[HK(M) = C∗] = 2−k + Pr[HK(M) = C∗] (2)

It remains to upperbound P = Pr[HK(M) = C∗]. We claim that:

Claim. P = Pr[HK(M) = C∗] ≤ 2−k +
√

ε.

Before continuing to prove this claim, note that the inequalities (1), (2) and the above claim complete the
proof of the lemma, i.e. we get the target upperbound as ε′ ≤ ε+

√
ε+2−k+1. Clearly, the time complexity of

B (denote by t) is that of A (denote by t′) plus the the time for one computation of H and a small constant
time c, i.e. t = t′ + TH + c.

Now let’s proceed to prove the aforementioned claim.

Proof (Claim). We use a two step method. The first and main step is to express our problem in a format
which can be considered as an special case of Reset Lemma of [4] and then we can apply the probabilistic
analysis of the Reset Lemma.
Note that according to the description of adversary B = (B1, B2), this probability is taken over the random
coins used by algorithm A = (A1, A2) and the random selection of the first key K. Referring to the description
of B = (B1, B2) it can be seen that P equals to the probability that the following experiment returns 1:

Experiment I

(M,State) $← A();

K
$← {0, 1}k

If HK(M) = C∗ then return 1 else return 0;

Let R ∈ {0, 1}r denote the random tape (i.e. coins) used by the (randomized) algorithm A = (A1, A2).
Let Verify(M,K) be a predicate which is defined as follows:

Verify(M,K) =
{

1 if HK(M) = C∗

0 otherwise

Now, we can rewrite Experiment I (using our notations in subsection 2.1) as below, where ∅ means ‘no
input’:

Experiment I

R
$← {0, 1}r ; (M,State) = A(∅;R);

K
$← {0, 1}k ; d = Verify(M,K);

Return d

Let Q be the probability that the following (reset) experiment returns 1:

Experiment II (Reset Experiment)

R
$← {0, 1}r ; (M,State) = A(∅;R);

K1
$← {0, 1}k ; d1 = Verify(M,K1);

K2
$← {0, 1}k ; d2 = Verify(M,K2);

If (d1 = 1
∧

d2 = 1
∧

K1 6= K2) then return 1 else return 0

Proposition 1. Probability that Experiment I returns 1 (denoted by P ) is upperbounded by the square root
of the probability that Experiment B returns 1 plus inverse of the size of key space, i.e. P ≤

√
Q + 2−k.



14 M. R. Reyhanitabar, W. Susilo and Y. Mu

The proof of this proposition can be deduced as a special case of that of Reset Lemma in [4]. We provide the
proof here for completeness. For any R ∈ {0, 1}r, let MR denote the target message output by A on random
tape (coins) specified by R, that is, (MR, StateR) = A(∅;R). Define two functions X : {0, 1}r → [0, 1] and
Y : {0, 1}r → [0, 1] as follows:

X(R) , Pr[Verify(MR,K) = 1] (3)

where the probability is taken over random selection of K from the key space {0, 1}k, and

Y (R) , Pr[Verify(MR,K1) = 1
∧

Verify(MR,K2) = 1
∧

K1 6= K2] (4)

where the probability is taken over random and independent selection of K1 and K2 from the key space
{0, 1}k. By a simple argument, noting that K1 and K2 are chosen independently and using the fact that
Pr(E

∧
F ) ≥ Pr(E)− Pr(F ) for any two events E and F , we have:

Y (R) = Pr[Verify(MR,K1) = 1] . Pr[Verify(MR,K2) = 1
∧

K1 6= K2] ≥ X(R)[X(R)− 2−k] (5)

We can view functions X and Y as random variables over sample space {0, 1}r of random tape (coins) used
by probabilistic algorithm A. Now, note that the probabilities that Experiment I and Experiment II return
1 are, respectively, the expected values of the random variables X and Y with respect to R, i.e. P = E[X]
and Q = E[Y ]. Using the inequality (5) and letting c = 2−k we have:

Q = E[Y ] ≥ E[X(X − c)] = E[X2]− cE[X] ≥ E[X]2 − cE[X] = P 2 − cP

Using the above relation we have:

(P − c

2
)2 = P 2 − cP +

c2

4
≤ Q +

c2

4

and using the fact that
√

a + b ≤
√

a +
√

b for a, b ≥ 0 we have:

P − c

2
≤

√
Q +

c

2

that is, (remembering c = 2−k) we get the final result as P ≤
√

Q + 2−k.

Proposition 2. Probability that Experiment II returns 1 is upperbounded by the success probability of algo-
rithm A in eTCR attack against H, i.e. we have Q ≤ ε.

The proof is obtained by considering the condition that Experiment B returns 1, noting the definition of
eTCR attack game in Fig. 3 and definition of predicate Verify(., .). Note that Experiment II returns 1 if
(Verify(M,K1) = 1

∧
Verify(M,K2) = 1

∧
K1 6= K2), and from the definition of Verify(., .) this means

that (H(K1,M) = H(K2,M) = C∗ ∧
K1 6= K2). Hence whenever Experiment II returns 1 the pair

(K1,M) 6= (K2,M) and H(K1,M) = H(K2,M), i.e. A succeeds in eTCR attack against H.
ut

Lemma 4. aSec property does not imply eTCR property.

Proof. The proof is easily deduced from the following known relations:

– eTCR implies TCR (eTCR ⇒ TCR) [12]. (In other words, if a hash function is not TCR secure then it
cannot be eTCR secure either. )

– aSec does not imply TCR (aSec ; TCR), i.e. it is possible to construct (counterexample) dedicated-key
hash functions which are secure in aSec sense but completely insecure in TCR sense [22].



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 15

From the above two facts it is deduced that aSec does not imply eTCR (aSec ; eTCR) either. ut

Lemma 5. aPre property does not imply eTCR property.

Proof. The proof is easily obtained from the following facts:

– eTCR implies TCR (eTCR ⇒ TCR) [12].
– aPre does not imply TCR (aPre ; TCR) [22].

From the above two facts it is deduced that aPre does not imply eTCR (aPre ; eTCR) either. ut

3.3 eTCR Property vs. ePre Property

In this section we compare eTCR property with ePre property and show that there is a separation between
these two notions of security, that is, in general for an arbitrary dedicated-key hash function eTCR property
neither implies ePre property nor is implied by ePre property. The result is stated in the following theorem:

Theorem 4. There is a separation between eTCR and ePre notions of security.

The proof is obtained by combining Lemma 6 and Lemma 7 as follows.

Lemma 6 (eTCR property does not imply ePre property). Assume that there exists a dedicated-key
hash function H : {0, 1}k × {0, 1}m → {0, 1}n, where m ≥ k, which is (t, ε) − eTCR. Select (and fix) an
arbitrary hash value C∗ ∈ {0, 1}n (e.g. C∗ = 0n). The dedicated-key hash function G : {0, 1}k × {0, 1}m →
{0, 1}n shown in this lemma is (t′, ε′) − eTCR, where t′ = t − TH − c and ε′ = ε +

√
ε + 2−k+1, but it is

completely insecure in ePre sense. TH denotes the time for one computation of H, c is a small constant and
val(.) returns the decimal value of its binary string input.

GK(M) =


C∗ if val(K) = val(M)

HK(M) otherwise

Proof. Let’s first show that G as a dedicated-key hash function is not secure in ePre sense. Consider the
following adversary. In the first stage of ePre attack, A1 chooses the target hash value as Y = C∗. In the
second stage of the attack, A2, after receiving the random key K, outputs a message M ∈ {0, 1}m whose
decimal value equals to that of K, i.e. M = 〈val(K)〉m . Clearly, the adversary A = (A1, A2) always wins
the ePre game as, according to the construction of the hash family G, we have GK(M) = C∗ = Y for such a
message M and K (where val(K) = val(M)). Therefore, the hash function family G is completely insecure
in ePre sense. ut

To complete the proof of the Lemma 6, we need to show that hash function G indeed is an eTCR secure
function as stated in the lemma. The proof for this part is similar to that of Lemma 3 and is briefly provided
below for completeness.

Let A = (A1, A2) be any adversary that can win eTCR game against G with success probability ε′ and
having time complexity at most t′. We show that ε′ ≤ ε +

√
ε + 2−k+1 as stated in the lemma. Consider the

following adversary B = (B1, B2) against eTCR property of H which uses A as its subroutine:

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if [val(K) = val(M)
∨

HK(M) = C∗] return ‘Fail’;

20: return (M,State); 40: (M ′,K ′) $← A2(K, M, State);
50: return (M ′,K ′);



16 M. R. Reyhanitabar, W. Susilo and Y. Mu

As it can be seen from the description of algorithm B, unless a special event Bad happens B runs A
and returns whatever it returns. Here, Bad is the event that [val(K) = val(M)

∨
HK(M) = C∗] in the

second stage of eTCR attack (i.e. B2). If Bad happens then algorithm B will fail in its second phase;
otherwise (i.e. if Bad happens) we show that B will be successful in eTCR attack against H whenever A is
successful in eTCR attack against G.

Note that adversary A succeeds in eTCR attack against G whenever (M,K) 6= (M ′,K ′) and GK(M) =
GK′(M ′). Assuming that the event Bad happens; that is, [val(K) 6= val(M)

∧
HK(M) 6= C∗] and referring

to the construction of G, it can be seen that in this case GK(M) = GK′(M ′) will imply HK(M) = HK′(M ′),
that is B also succeeds in eTCR attack against H. Hence we have: ε ≥ Pr[B succeeds] = Pr[A succeeds ∧
Bad] ≥ Pr[A succeeds]− Pr[Bad] = ε′ − Pr[Bad]. Rearranging the terms we have:

ε′ ≤ ε + Pr[Bad] (6)

Now we need to upperbound Pr[Bad] = Pr[val(K) = val(M)
∨

HK(M) = C∗]. Using the union bound we
have:

Pr[Bad] ≤ Pr[val(K) = val(M)] + Pr[HK(M) = C∗] ≤ 2−k + Pr[HK(M) = C∗] (7)

It remains to upperbound P = Pr[HK(M) = C∗]. We claim that P = Pr[HK(M) = C∗] ≤ 2−k +
√

ε. The
proof for this claim is the same as provided in proof of Lemma 3. Now, from the inequalities (6), (7) and
the above claim complete the proof of the lemma, i.e. we get the target upperbound as ε′ ≤ ε +

√
ε + 2−k+1.

Clearly, the time complexity of B (denote by t) is that of A (denote by t′) plus the the time for one
computation of H and a small constant time c, i.e. t = t′ + TH + c.

Lemma 7. ePre property does not imply eTCR property.

Proof. The proof is easily obtained from the following facts:

– eTCR implies TCR (eTCR ⇒ TCR) [12].
– ePre does not imply TCR (ePre ; TCR) [22].

From the above two facts it is deduced that ePre does not imply eTCR (ePre ; eTCR) either. ut

3.4 Relationships among eTCR, Sec, eSec, and Pre Properties

The relationships between eTCR and the remaining three notions of security, namely Sec, eSec(TCR) and
Pre are straightforwardly extractable from the previously known relations between eTCR and TCR in [12]
and between TCR, Sec and Pre in [22].

eTCR Property vs. Sec Property

– eTCR implies TCR (eTCR ⇒ TCR) [12].
– TCR implies Sec (TCR ⇒ Sec) [22].
– Sec does not imply TCR (Sec ; TCR) [22].

From the above three facts it is deduced that eTCR is strictly stronger security notion than Sec, that is
(eTCR ⇒ Sec) but (Sec ; eTCR).



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 17

eTCR Property vs. eSec (TCR) Property

– eTCR implies TCR (eTCR ⇒ TCR) [12].
– Claim: TCR does not imply eTCR (TCR ; eTCR).

Hence, eTCR is strictly stronger security notion than TCR (= eSec).
Now we need to prove the claim that TCR ; eTCR. This can be shown using the following counterex-

ample borrowed from [22]:

H6K(M) =


0n if M = 0m

HK(M) if M 6= 0m
∧

HK(M) 6= 0n

HK(0m) otherwise

It is proved in [22] that H6 inherits eSec (TCR) property from H, so it remains to show that H6 is insecure
in eTCR sense. The following simple adversary A = (A1, A2) can break H6 in eTCR sense. A1 outputs
M = 0m as the target message. A2, on receiving a random key K, simply outputs M ′ = M = 0m but with
a different second key K ′ 6= K. Note that (M,K) 6= (M ′,K ′) and H6K(M) = H6K(M ′) = 0n, that is A
always win in eTCR attack against H6.
Therefore, assuming that there is a TCR secure hash function H (otherwise the whole discussion become
moot), it is possible to construct a hash function H6 which is TCR secure but completely insecure in eTCR
sense, i.e. TCR ; eTCR.

eTCR Property vs. Pre Property

– eTCR implies TCR (eTCR ⇒ TCR) [12].
– TCR (provisionally) implies Pre (TCR ⇒ Pre) [22].
– Pre does not imply eTCR (Pre ; TCR) [22].

Hence, eTCR (provisionally) implies Pre but Pre does not imply eTCR. By ‘provisional’ implication it is
meant that the strength of the implication depends on the amount of compression by the hash function. If
the hash function is highly compressing, i.e. m >> n then we have a strong implication but when m ≈ n
then the implication essentially vanishes. For more details we refer to [22].

4 Domain Extension and eTCR Property Preservation

In this section we investigate the eTCR preserving capability of eight domain extension transforms, namely
Plain MD [14, 8], Strengthened MD [14, 8], Prefix-free MD [7, 13], Randomized Hashing [12], Shoup [24],
Enveloped Shoup [2], XOR Linear Hash (XLH)[5], and Linear Hash (LH) [5] methods.

Assume that we have a compression function h : {0, 1}k×{0, 1}n+b → {0, 1}n that can only hash messages
of fixed length (n+b) bits. A domain extension transform can use this compression function (as a black-box)
to construct a hash function H : K ×M → {0, 1}n, where the message space M can be either {0, 1}∗ or
{0, 1}<2m

, for some positive integer m (e.g. m = 64). The key space K is determined by the construction of
a domain extender. Clearly log2(|K|) ≥ k, as H involves at least one invocation of h. The difference between
log2(|K|) (i.e. the key length of H) and k (i.e. the key length of h) is called the ‘key expansion’ of domain
extension transform and is a measure of its efficiency: the less key expansion is, the more efficient the domain
extension transform will be.

A domain extension transform comprises of two functions: an injective padding function Pad and an
iteration function fI . First, the padding function Pad :M→ DI is applied to an input message M ∈M to
convert it to the padded message Pad(M) in a domain DI . Then, the iteration function fI : K×DI → {0, 1}n
uses the compression function h as many times as required, and outputs the final hash value. The full-fledged



18 M. R. Reyhanitabar, W. Susilo and Y. Mu

hash function H is obtained by combining the two functions. It is known that the property preserving
capability of a domain extension transform depends on both the padding function and iteration function,
for example ‘Plain MD’ (i.e., plain padding and MD iteration) is not CR preserving domain extender,
but ‘Strengthened MD’ (i.e., strengthening padding and MD iteration) does preserve CR [14, 8, 2]. Hence,
precisely speaking, we can have several domain extenders using the same iteration function but with different
padding function, e.g. Plain MD, Strengthened MD, Prefix-free MD, which are considered as three different
domain extenders that have different capabilities from property preserving viewpoint [2].

The padding functions used in the eight domain extension transforms that we consider in this paper are
defined as follows:

– Plain: pad : {0, 1}∗ →
⋃

L≥1 {0, 1}Lb, where pad(M) = M ||10p and p is the minimum number of 0’s
required to make the length of pad(M) a multiple of block length.

– Strengthening: pads : {0, 1}<2m

→
⋃

L≥1 {0, 1}Lb, where pads(M) = M ||10p|| 〈|M |〉m and p is the
minimum number of 0’s required to make the length of pads(M) a multiple of block length.

– Prefix-free: padPF : {0, 1}∗ →
⋃

L≥1 {0, 1}Lb, where padPF transforms the input message space
{0, 1}∗ to a prefix-free message space, i.e. padPF (M) is not a prefix of padPF (M ′) for any two distinct
messages M and M ′. An example of a Prefix-free padding function, which we consider in this paper,
is as follows. Append 10p to the message where p is the minimum number of 0’s required to make the
length of the resulted message a multiple of b − 1 bits. Parse the resulted message into blocks of b − 1
bits and prepend a ‘0’ to all blocks but the final block where a ‘1’ must be prepended.

– Strengthened Chain Shift: padCSs : {0, 1}<2m

→
⋃

L≥1 {0, 1}Lb+b−n, where padCSs(M) = M ||10r||
〈|M |〉m ||0p, and parameters p and r are defined in two ways depending on the block length b. If b ≥ n+m
then p = 0, otherwise p = b − n. Then r is the minimum number of 0’s required to make the padded
message a member of {0, 1}Lb+b−n, for some positive integer L.

The iteration functions for MD, Randomized Hashing, Shoup, Enveloped Shoup, XLH and LH are shown
in Fig. 4.

4.1 Merkle-Damg̊ard Does not Preserve eTCR

MD iteration function as shown in Fig. 4 can be used together with Plain (pad), Strengthening(pads), or
Prefix-free(padPF ) padding function to construct a domain extension transform, which is called Plain MD,
Strengthened MD, or Prefix-free MD, respectively. In this section we show that none of these three domain
extension transforms can be used as an eTCR preserving domain extender.

Theorem 5 (Negative Result). Plain MD, Strengthened MD, and Prefix-free MD do not preserve eTCR.

Proof. We borrow the construction of the following counterexample from [5] where it was used in the context
of TCR property. Assume that there is a dedicated-key compression function g : {0, 1}k×{0, 1}n+b → {0, 1}n
with b > k which is (t, ε)-eTCR secure. Set b = k + b′ where b′ > 0 by the assumption that b > k. Consider
the following dedicated-key compression function h : {0, 1}k × {0, 1}(n+k)+b′ → {0, 1}n+k:

h(K, X||Y ||Z) = hK(X||Y ||Z) =
{

gK(X||Y ||Z)||K if K 6= Y
1n+k if K = Y

where K ∈ {0, 1}k , X ∈ {0, 1}n , Y ∈ {0, 1}k , Z ∈ {0, 1}b
′
(n + k is chaining variable length and b′ is block

length for h).
To complete the proof, we first show in Lemma 8 that hK inherits the eTCR property from gK . Note

that this cannot be directly inferred from the proof in [5] that hK inherits the weaker notion TCR from gK .
Then, we show a simple attack in each case to show that the hash function obtained via either of Plain,
Strengthened, or Prefix-free MD transform by extending domain of hK is completely insecure in eTCR sense.



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 19

MDh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k

Algorithm MDh
IV (K, M):

C0 = IV
for i = 1 to L do

Ci = hK(Ci−1||Mi)
return CL

IV hh h

M3 MLM1 M2

C2 C3 CL−1 CLC1 h

K KK K

IV hh h

M3 MLM1 M2

CLh

K3 KLK1 K2

IV hh h

M2 MLM1

CL+1h

K KK K

K′
K′K′

K′

LHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}Lk

Algorithm LHh
IV (K1||K2|| · · · ||KL,M):

C0 = IV
for i = 1 to L do

Ci = hKi
(Ci−1||Mi)

return CL

XLHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+Ln

Algorithm XLHh
IV (K||K0||K1|| · · · ||KL−1,M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Ki−1)||Mi)
return CL

Shh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L)e , ν(i) = max {x : 2x|i}

Algorithm Shh
IV (K||K0||K1|| · · · ||Kt−1,M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Kν(i))||Mi)
return CL

RHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+b

Algorithm RHh
IV (K||K ′,M):

C0 = IV
C1 = hK(C0||K ′)
for i = 2 to L + 1 do

Ci = hK(Ci−1||(Mi−1 ⊕K ′))
return CL+1

EShh
IV1,IV2

: K × {0, 1}(L−1)b+b−n → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L− 1)e+ 1, ν(i) = max {x : 2x|i}

Algorithm EShh
IV1,IV2

(K||K0||K1|| · · · ||Kt−1,M):
C0 = IV1; Kµ = Kt−1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

return hK((IV2 ⊕K0)||(CL−1 ⊕Kµ)||ML)

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KµKν(L−1)

b− n

ML

CLh

KK0

IV2

IV hh h

M3 MLM1 M2

CLh

K K3K K K2K1K0 KKL−1

Fig. 4. Iteration functions used in domain extension transforms: Merkle-Damg̊ard (MD), Randomized Hashing (RH), Shoup
(Sh), Enveloped Shoup (ESh), XLH and LH. The iteration functions are ordered top-down based on their efficiency in terms
of key expansion, MD iteration does not expand the key length of underlying compression function and is the most efficient
transform and LH is the least efficient transform.



20 M. R. Reyhanitabar, W. Susilo and Y. Mu

Lemma 8. The dedicated-key compression function h is (t′, ε′)-eTCR secure, where ε′ = ε + 2−k+1 ≈ ε and
t′ = t− c, for a small constant c.

Proof. Let A = (A1, A2) be an adversary which wins the eTCR game against hK with probability ε′ and
using time complexity t′. We construct an adversary B = (B1, B2) which uses A as a subroutine and wins
eTCR game against gK with success probability of at least ε = ε′ − 2−k+1(≈ ε′, for large k) and spending
time complexity t = t′ + c where small constant c can be determined from the description of algorithm B.
Algorithm B is as follows:

Algorithm B1() Algorithm B2(K1,M1, State)

(M1 = X1||Y1||Z1, State) $← A1(); Parse M1 as M1 = X1||Y1||Z1

return (M1, State); if
[
K1 = Y1

∨
K1 = 1k

]
return ‘Fail’;

(M2 = X2||Y2||Z2,K2)
$← A2(K1,M1, State);

return (M2,K2);

At the first stage of eTCR attack, B1 just merely runs A1 and returns whatever it returns as the first
message (i.e. M1 = X1||Y1||Z1) and any possible state information to be passed to the second stage algo-
rithm. At the second stage of the attack, let Bad be the event that [K1 = Y1

∨
K1 = 1k]. If Bad happens

then algorithm B2 (and hence B) will fail in eTCR attack; otherwise (i.e. if Bad happens) we show that B
will be successful in eTCR attack against g whenever A succeeds in eTCR attack against h.

Assume that the event Bad happens; that is, [K1 6= Y1
∧

K1 6= 1k]. We claim that in this case if A
succeeds then B also succeeds. Referring to the construction of (counterexample) compression function h in
this lemma, it can be seen that if A succeeds, i.e., whenever (M1,K1) 6= (M2,K2)

∧
hK1(M1) = hK2(M2),

it must be the case that gK1(M1)||K1 = gK2(M2)||K2 which implies that gK1(M1) = gK2(M2) (and also
K1 = K2). That is, (M1,K1) and (M2,K2) are also valid a colliding pair for the eTCR attack against g.
(Remember that M1 = X1||Y1||Z1 and M2 = X2||Y2||Z2.)

Now note that Pr[Bad] ≤ Pr[K1 = Y1] + Pr[K1 = 1k] = 2−k + 2−k = 2−k+1, as K1 is selected uniformly
at random just after the message M1 is fixed in the eTCR game. Therefore, we have ε = Pr[B succeeds] =
Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]− Pr[Bad] ≥ ε′ − 2−k+1.

To complete the proof of Theorem 5, we need to show that MD transforms cannot preserve eTCR while
extending the domain of this specific compression function hK . For this part, the same attacks that used
in [5, 2] against TCR property also work for our purpose here as clearly breaking TCR implies breaking its
strengthened variant eTCR. The eTCR attacks are as follows:

The Case of Plain MD and Strengthened MD:
Let’s denote Plain MD and Strengthened MD domain extension transforms applied on the counterexample
compression function h and using an initial value IV , respectively, by pMDh

IV and sMDh
IV . Note that MDh

IV

is used to denote the MD iteration function (Fig. 4). Then the full-fledged hash function H : {0, 1}k ×
M → {0, 1}n+k will be defined as H(K, M) = pMDh

IV (K, M) = MDh
IV (K, pad(M)) and H(K, M) =

sMDh
IV (K, M) = MDh

IV (K, pads(M)), for Plain and Strengthened MD case, respectively.
The following adversary A = (A1, A2) can break H in eTCR sense for both Plain MD and Strengthened

MD cases. A1 outputs M1 = 0b′ ||0b′ and A2, on receiving the first key K, outputs a different message as
M2 = 1b′ ||0b′ together with the same key K as the second key. Considering that the initial value IV =
IV1||IV2 ∈ {0, 1}n+k is fixed before adversary starts the attack game and K is chosen at random afterward
in the second stage of the game, we have Pr [K = IV2] = 2−k. If K 6= IV2 which is the case with probability
1− 2−k then adversary becomes successful as we have:



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 21

MDh
IV (K, 0b′ ||0b′) = hK(hK(IV1||IV2||0b′)||0b′) = hK(gK(IV1||IV2||0b′)||K||0b′) = 1n+k

MDh
IV (K, 1b′ ||0b′) = hK(hK(IV1||IV2||1b′)||0b′) = hK(gK(IV1||IV2||1b′)||K||0b′) = 1n+k

pMD :
{

H(K, 0b′ ||0b′) = MDh
IV (K, pad(0b′ ||0b′)) = hK(MDh

IV (K, 0b′ ||0b′)||10b′−1) = hK(1n+k||10b′−1)
H(K, 1b′ ||0b′) = MDh

IV (K, pad(1b′ ||0b′)) = hK(MDh
IV (K, 1b′ ||0b′)||10b′−1) = hK(1n+k||10b′−1)

sMD :


MDh

IV (K, pads(0b′ ||0b′)) = hK(MDh
IV (K, 0b′ ||0b′)||10b′−m−1|| 〈2b′〉m)

= hK(1n+k||10b′−m−1|| 〈2b′〉m)

MDh
IV (K, pads(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−m−1|| 〈2b′〉m)
= hK(1n+k||10b′−m−1|| 〈2b′〉m)

The Case of Prefix-free MD: Denote Prefix-free MD domain extension transform by preMD. The
full-fledged hash function H : {0, 1}k ×M→ {0, 1}n+k will be defined as H(K, M) = preMDh

IV (K, M) =
MDh

IV (K, padPF (M)). Note that we have M = {0, 1}∗ due to the application of padPF function. The
following adversary A = (A1, A2) which is used for TCR attack against Prefix-free MD in [2], can also break
H in eTCR sense, as clearly any TCR attacker against H is an eTCR attacker as well. Here, we provide the
description of the attack for eTCR, for completeness. A1 outputs M1 = 0b′−1||0b′−2 and A2 on receiving the
first key K outputs a different message as M2 = 1b′−1||0b′−2 together with the same key K as the second
key. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k is fixed before the adversary starts the
attack game and K is chosen at random afterward, we have Pr [K = IV2] = 2−k. If K 6= IV2 which is the
case with probability 1− 2−k then the adversary becomes successful as we have:

H(K, 0b′−1||0b′−2) = MDh
IV (K, padPF (0b′−1||0b′−2)) = MDh

IV (K, 0b′ ||10b′−21)
= hK(hK(IV1||IV2||0b′)||10b′−21) = hK(gK(IV1||IV2||0b′)||K||10b′−21) = 1n+k.

H(K, 1b′−1||0b′−2) = MDh
IV (K, padPF (1b′−1||0b′−2)) = MDh

IV (K, 01b′−1||10b′−21)
= hK(hK(IV1||IV2||01b′−1)||10b′−21) = hK(gK(IV1||IV2||01b′−1)||K||10b′−21) = 1n+k.

4.2 Randomized Hashing Does not Preserve eTCR

Our aim in this section is to show that Randomized Hashing (RH) construction, if considered as a do-
main extension for a dedicated-key compression function, does not preserve eTCR property. Note that (this
dedicated-key variant of) RH method as shown in Fig. 4 expands the key length of the underlying compres-
sion function by only a constant additive factor of b bits, that is log2(|K|) = k+ b which is independent from
input message length. That is, after MD transfrom, RH is the most efficient method from key expansion
point of view. The latter characteristic, i.e. a small and message-length-independent key expansion could
have been considered a stunning advantage from efficiency viewpoint, if RH had been able to preserve eTCR.
Nevertheless, unfortunately we shall show that randomized hashing does not preserve eTCR.

Following the specification of the original scheme for Randomized Hashing in [12], we assume that the
padding function is the strengthening padding pads and so we use the same name for domain extension
as its iteration function, i.e. RHh

IV (Fig. 4). The full-fledged hash function H : {0, 1}k ×M → {0, 1}n+k

will be defined as H(K||K ′,M) = RHh
IV (K||K ′, pads(M)). Note that we have M = {0, 1}<2m

due to the
application of pads function.



22 M. R. Reyhanitabar, W. Susilo and Y. Mu

Theorem 6 (Negative Result). The Randomized Hashing transform does not preserve eTCR.

Proof. We need to show as a counterexample, a dedicated-key compression function h which is eTCR but for
which the dedicated-key hash function H obtained via Randomized Hashing method is completely insecure
in eTCR sense. The same counterexample used in Theorem 5 can also be used to show that Randomized
Hashing transform (in dedicated-key hash function setting) does not preserve eTCR property.

As we have previously shown in Lemma 8 that the constructed hK inherits the eTCR property of gK ,
it just remains to show that RHh

IV cannot extend the domain of hK while preserving its eTCR property.
Consider an adversary A = (A1, A2) that plays the eTCR game against the hash function H, obtained via
Randomized Hashing, as follows. A1 outputs a one-block long target message M1 = 0b′ (note that for the
counterexample compression function hK , b′ is the block length and n + k is the chaining variable length).
A2 on getting the first key K||K ′ for H (in the second stage of eTCR attack), outputs the second message as
M2 = 1b′ and puts the second key the same as the first key. As M2 6= M1, we just need to show that these two
messages collide under the same key, i.e. K||K ′. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k

for RHh
IV is (selected and) fixed before the adversary starts the attack game and K||K ′ is chosen at random

latter in the second stage of the game, we have Pr [K = IV2] = 2−k. If K 6= IV2 (which is the case with
probability 1− 2−k) then the adversary A = (A1, A2) becomes successful as we have:

RHh
IV (K||K ′, pads(0b′)) = RHh

IV (K||K ′, 0b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m)).

RHh
IV (K||K ′, pads(1b′)) = RHh

IV (K||K ′, 1b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m)).

ut

4.3 Shoup, Enveloped Shoup and XLH Do not Preserve eTCR

In previous subsections, we have shown that neither MD nor RH are eTCR preserving transforms. The next
three most efficient candidates from key expansion viewpoint that we consider are Shoup (Sh), Enveloped
Shoup (ESh) and XLH transforms. In Sh and ESh transforms the key expansion depends logarithmically
on the input message length. For Sh iteration log2(|K|) = k + dlog2(L)en and for ESh iteration log2(|K|) =
k+(dlog2(L− 1)e+1)n, where L is the length of the padded message in blocks which is input to the iteration
function. (Note that Fig. 4 just shows the iteration function of the domain extensions and padding functions
are not shown Fig. 4).

We assume the same padding functions as proposed in the original schemes, that is, for Shoup [24] and
XLH [5] the strengthening padding function (pads) is used, and for Enveloped Shoup [2] the padding function
is the strengthened chain shift padding (padCSs). So, the full-fledged hash function H : {0, 1}k ×M →
{0, 1}n+k, obtained via these three domain extension methods, will be defined accordingly as follows:

Sh: H(K||K0|| · · · ||Kt,M) = Shh
IV (K||K0|| · · · ||Kt−1, pads(M)) ; where t = dlog2(L)e

ESh : H(K||K0|| · · · ||Kt,M) = EShh
IV (K||K0|| · · · ||Kt−1, padCSs(M)) ; where t = dlog2(L− 1)e+ 1

XLH : H(K||K0|| · · · ||Kt,M) = XLHh
IV (K||K0|| · · · ||KL−1, pads(M))



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 23

In the following theorem we show that none of Sh, ESh and XLH transforms can preserve eTCR. That is,
we lose the best TCR preserving transform, i.e. Sh, as well as the multi-property preserving ESh transform
when it comes to eTCR preservation.

Theorem 7 (Negative Results). Sh, ESh, and XLH transforms do not preserve eTCR.

Proof. The proof is quite simple but the results are stronger than previous counterexample based proofs,
as here the negative results hold for any arbitrary compression function (irrespective of how secure the
compression function h is), and not only for some specific counterexamples. That is these XOR masking
based domain extension transforms are structurally insecure in eTCR sense. Intuitively, the inability if these
domain extenders to preserve eTCR is due to the fact that they use XOR operation to add the key to the
internal state (i.e. chaining variable), and hence an eTCR adversary will be able to cancel internal differences
by taking advantage of its ability to select the value of the second key in the second stage of eTCR attack.
For the formal proof, we provide the following simple attacks.

The Case of Shoup:
The following adversary A = (A1, A2) can break the hash function H, obtained via Shoup domain extension
transfrom (i.e. pads padding function followed by Shh

IV iteration method), in the eTCR sense. At the first
stage of the eTCR attack, A1 outputs a two-block message M = M1||M2 as the target message which
after applying pads will become a three-block message M1||M2||(10b−1−m 〈2b〉m) to be input to the three-
round Shh

IV iteration. In the second stage of eTCR game, A2, after receiving the first key as K||K0||K1||K0

from the challenger, chooses the second two-block message as M ′ = M ′
1||M2 which after padding becomes

M ′
1||M2||(10b−1−m 〈2b〉m). A2 also puts the second key as K||K0||K ′

1||K0, where the value of K ′
1 is computed

as K ′
1 = K1 ⊕ hK

(
(IV ⊕ K0)||M1

)
⊕ hK

(
(IV ⊕ K0)||M ′

1

)
. It is easy to see (referring to Fig. 4) that this

value for K ′ cancel the introduced difference in chaining variable which was created due to the different
message blocks M1 and M ′

1. So, (K||K0||K1,M) and (K||K0||K ′
1,M

′) constitute a colliding pair for H in
eTCR sense. (Note that the key sequence used for iteration function Shh

IV is K||K0||K1||K0 because padded
message pads(M) has an extra third block containing the length information.)

The Case of Enveloped Shoup:
For the ESh transform the attack strategy is quite similar to Sh case. Adversary A = (A1, A2) plays the
eTCR game as follows. A1 outputs two different (L − 1)-block messages M = M1|| · · · ||ML−1 and M ′ =
M ′

1|| · · · ||M ′
L−1 which after applying padCSs padding function will become M1|| · · · ||ML−1||(10b−1−m−n||

〈(L− 1)b〉m) and M ′
1|| · · · ||M ′

L−1||(10b−1−m−n|| 〈(L− 1)b〉m), respectively. That is, the inputs to ESh itera-
tion function will have the same last block as ML = M ′

L = 10b−1−m−n 〈|M |〉m, but their first (L− 1) blocks
are different (note that in ESh the length of the last block which is used in the final envelop is b−n bits). In
the second stage of eTCR attack, A2, on receiving the first key, puts all blocks of the second key the same
as the first given key except the last key block Kµ. A2 simply adjusts the value of this last key block to a
new key block K ′

µ = Kµ ⊕ CL−1 ⊕ C ′
L−1 to cancel the introduced difference in the chaining variables CL−1

and C ′
L−1 (related to the computation for M and M ′, respectively). We stress that this adjustment of the

value of Kµ to K ′
µ to cancel the difference that appears in final chaining value is possible because “Kµ is

only used for the chaining variable fed into the envelope ” as stated in [2].

The Case of XLH:
The attack is similar to the case of Shoup. Consider an adversary A = (A1, A2) that can break the hash
function H, obtained via XLH domain extension transform (i.e. pads padding function followed by XLHh

IV

iteration method), in eTCR sense. A1 outputs a two-block message M = M1||M2 as the target message
which after applying pads will become a three-block message M1||M2||(10b−1−m 〈2b〉m) to be the input to
the three-round XLHh

IV iteration. In the second stage of eTCR game, A2, on receiving the first key as



24 M. R. Reyhanitabar, W. Susilo and Y. Mu

K||K0||K1||K2 from the challenger, chooses the second two-block message as M ′ = M ′
1||M2 which after

padding becomes M ′
1||M2||(10b−1−m 〈2b〉m). A2 then puts the second key as K||K0||K ′

1||K2, where the value
of K ′

1 is computed as K ′
1 = K1 ⊕ hK

(
(IV ⊕K0)||M1

)
⊕ hK

(
(IV ⊕K0)||M ′

1

)
. It is easy to see (referring to

Fig. 4) that this value for K ′ cancel the introduced difference in chaining variable which was created due to
the different message blocks M1 and M ′

1. Hence, (K||K0||K1||K2,M) and (K||K0||K ′
1||K2,M

′) constitute a
colliding pair for H in eTCR sense. ut

Remark. The eTCR adversaries used in the above proofs take advantage of XOR masking based structure
of XLH, Sh and ESh transforms to cancel the effect of all accumulated differences in the internal state that
may have been introduced by previous different message blocks, by simply adjusting the value of a last free
key block. This implies that any class of such XOR masking based transforms that allows this cancellation
phenomenon to happen will not be suitable for designing an eTCR preserving domain extender. It can be
seen that this is the case for the XTH scheme of [5] as well.

4.4 LH Transform and its Nested Variant

Up to know we have shown that neither of MD, RH, Sh, or XLH transforms can preserve eTCR property.
Henceforth, we have lost all efficient methods from key expansion viewpoint and now we have reached to the
same starting point for TCR preserving scenario as in [5], where it was shown that the LH method can be
used to preserve TCR only with respect to equal-length-collision finding adversaries and its nested variant
can be used to archive TCR for any variable-length-collision finding adversaries. We should mention that
it was pointed out in [5] and latter shown by an explicit counterexample in [1] that LH iteration cannot
preserve TCR with respect to variable length collisions.

After the previous series of negative results about inability of several efficient transforms to preserve
eTCR, we now consider whether at least (but hopefully not the last) this most non-efficient LH transform
or its variants can be used for eTCR preserving domain extension or not. Fortunately, we gather a positive
answer for this. The proof for this positive result is a straightforward extension of the methodology used in
[5] for the case of TCR, but with some necessary adaptations required for considering eTCR attack scenario
where adversary has more power in second stage by getting to choose a different key as well as a different
message. Firstly, in Theorem 8 we show that if the compression function h is eTCR secure then the hash
function LHh

IV will be secure against a restricted class of eTCR adversaries which only find equal-length
colliding pairs. Let’s denote this equal-length eTCR notion by eTCR∗. Secondly, it is shown in Theorem 9
that a nested variant of LH can be made eTCR secure, i.e. against any arbitrary adversary.

Assume that the input messages have length a multiple of block length and the maximum length in
blocks is some positive integer N , i.e. |M | ≤ Nb where b is the length of one block in bits. This restriction
of message space to a domain with messages of variable but multiple-block length can be easily removed by
using any proper injective padding function like plain padding function pad. LHh

IV iteration function can
be used to define a hash function as H(K1|| · · · ||KN ,M) , LHh

IV (K1|| · · · ||Km,M), where m is the length
of M in blocks.

Theorem 8 (Positive Result). Assume that the compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n
is (t, ε)-eTCR. Then the hash function H : {0, 1}Nk × {0, 1}≤Nb → {0, 1}n obtained using LHh

IV iteration
of h, will be (t′, ε′)-eTCR∗, where ε′ = Nε, t′ = t − Θ(N)

(
Th + n + b + k

)
, where Th is the time for one

computation of the compression function h.

Proof. Assume that A = (A1, A2) is an adversary which can break LHh
IV in eTCR∗ sense (i.e. equal-length

eTCR sense) with success probability ε′ and using time complexity t′. We construct an adversary B that uses
A to break the compression function h in eTCR sense. First we make the observation that if the adversary
A is successful in finding two equal-length colliding messages M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m under



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 25

the keys K = K1|| · · · ||Km and K ′ = K ′
1|| · · ·K ′

m, then there must be an i ∈ {1, · · · ,m} which the following
two conditions hold:

(1): LHh
IV (K1 · · ·Ki,M1 · · ·Mi) = LHh

IV (K ′
1 · · ·K ′

i,M
′
1 · · ·M ′

i)
(2): LHh

IV (K1 · · ·Ki−1,M1 · · ·Mi−1)||Mi 6= LHh
IV (K ′

1 · · ·K ′
i−1,M

′
1 · · ·M ′

i−1)||M ′
i OR Ki 6= K ′

i

This can be seen by noting that |M | = |M ′| and tracing back the computation in LHh
IV iteration which

may have made the final collision happen, that is LHh
IV (K1 · · ·Km,M1 · · ·Mm) = LHh

IV (K ′
1 · · ·K ′

m,M ′
1 · · ·M ′

m)
where (K, M) 6= (K ′,M ′) by winning condition for eTCR game.

Using the aforementioned observation we can build an adversary B = (B1, B2) which can break eTCR
property of h as follows:

Algorithm B1() Algorithm B2(Key,X, St)

(M,State) $← A1(); m = |M |b; (j, M,K1, · · · ,Kj−1, State)← St; Kj = Key;

j
$← {1, · · · ,m}; Kj+1, · · · ,KN

$← {0, 1}k;
K1, · · · ,Kj−1

$← {0, 1}k; (K ′,M ′) $← A2(K1, · · · ,KN ,M, State);
X = LHh

IV (K1 · · ·Kj−1,M1 · · ·Mj−1)||Mj ; X ′ = LHh
IV (K ′

1 · · ·K ′
j−1,M

′
1 · · ·M ′

j−1)||M ′
j ;

St = (j, M,K1, · · · ,Kj−1, State); Key′ = K ′
j ;

return (X, St); return (Key′, X ′);

At the first stage of the eTCR game, B1 outputs X as the target message together with the state in-
formation St to be passed to B2 in the second stage of eTCR attack game. B2 gets the first key for the
compression function h denoted by Key which is selected uniformly at random by the challenger according to
eTCR game. It outputs (Key′, X ′) as the second key and message to finish eTCR game. It can be seen from
the description of B that the distribution on key K = K1, · · · ,KN given to A2 is also uniform as expected
in eTCR game against LHh

IV . Now note that if A succeeds, there must be at least one index i ∈ {1, · · · ,m}
satisfying the two conditions (aforementioned conditions (1) and (2)) and as index j is selected at random
by B1 and independently from K, the probability that i matches to such an index is at least 1

n ≥
1
N . To

complete the proof note that in this case, B also succeeds, that is, we have (Key,X) 6= (Key′, X ′) and
h(Key,X) = h(Key′, X ′). This is seen from the way that messages X and X ′ are computed by algorithms
B1 and B2, noting that Kj = Key and K ′

j = Key′ and referring to the two aforementioned conditions.
Hence, if A succeeds with probability ε′ then B also succeeds with probability ε ≥ ε′

N . The time complexity
of B (denote by t) is that of A (denote by t′) plus the overhead Θ(N).

(
Th+n+b+k

)
by the above reduction,

where Th is the time for one computation of the compression function h. ut

The following theorem shows that the composition of a variable input length hash function which is
secure only in the equal-length eTCR sense with a compression function which is eTCR secure will yield a
variable input length hash function that is secure in eTCR sense.

Theorem 9 (From eTCR∗ to eTCR). Assume that H1 : {0, 1}k1 ×M→ {0, 1}n is (t1, ε1)-eTCR∗ hash
function and h : {0, 1}k2×{0, 1}n+b → {0, 1}n is (t2, ε2)-eTCR compression function, where b ≥ dlog2(|M |)e,
for any M ∈M. Then the composition function H : {0, 1}k1+k2×M→ {0, 1}n, defined as H(K1||K2,M) =
h(K2,H1(K1,M)|| 〈|M |〉b), will be (t, ε)-eTCR; where ε = ε1+2ε2, and t = min {t1 − k2, t2 − k1 − 2TH1 − 2b}.

Proof. Let A = (A1, A2) be a (t, ε)-breaking adversary against H, i.e. having time complexity t and
AdveTCR

H (A) = ε. The experiment defining the eTCR attack by A = (A1, A2) against H is as follows:

(M,State) $← A1();K1 $← {0, 1}k1 ;K2 $← {0, 1}k2 ; (M ′,K1′||K2′) $← A2(K1||K2,M, State) (8)

AdveTCR
H (A) is defined as the probability that, after running the above experiment in (8), the following

success event happens: H(K1||K2,M) = H(K1′||K2′,M ′)
∧

(K1||K2,M) 6= (K1′||K2′,M ′). Let x =
H1(K1,M) and x′ = H1(K1′,M ′). Let E1, E2, E3 be three events as follows:



26 M. R. Reyhanitabar, W. Susilo and Y. Mu

– E1: A is successful AND |M | = |M ′| AND x = x′ AND K2 = K2′

– E2: A is successful AND |M | = |M ′| AND x = x′ AND K2 6= K2′

– E3: A is successful AND (|M | 6= |M ′| OR x 6= x′)

Clearly E1, E2, and E3 are three disjoint events, and their union is the event that A succeeds in the
eTCR attack against H. Let p1 = Pr[E1], p2 = Pr[E2], p3 = Pr[E3], where probabilities are under the
experiment defined in equation (8). That is, we have AdveTCR

H (A) = p1 + p2 + p3. Therefore, we need to
bound p1, p2, and p3. To achieve this goal, using A as a subroutine, we show three adversaries B = (B1, B2),
C = (C1, C2), and D = (D1, D2): B can break H1 in equal-length eTCR sense (whenever E1 happens) and
has AdveTCR∗

H1
(B) = p1, C can break h in eTCR sense (whenever E2) happens and has AdveTCR

h (C) = p2,
and D can break h in eTCR sense (whenever E3 happens) and has AdveTCR

h (D) = p3. From our assumption
in the statement of the Theorem 9 hat H1 is (t1, ε1)-eTCR∗ and h is (t2, ε2)-eTCR, it must be the case
that AdveTCR

h (B) = p1 ≤ ε1, AdveTCR
h (C) = p2 ≤ ε2, AdveTCR

h (D) = p3 ≤ ε2, and hence, we have
AdveTCR

H (A) = p1 + p2 + p3 ≤ ε1 + 2ε2 as stated in the Theorem.
Now, we just need to show the algorithms for B = (B1, B2), C = (C1, C2) and D = (D1, D2). The

algorithms are as follows:

Algorithm B1() Algorithm B2(K1,M, State)

(M,State) $← A1() K2 $← {0, 1}k2

return (M,State) (K1′||K2′,M ′) $← A2(K1||K2,M, State)
return (K1′,M ′)

Algorithm C1() Algorithm C2(K2, y, (M,State, K1))

(M,State) $← A1() (K1′||K2′,M ′) $← A2(K1||K2,M, State)

K1 $← {0, 1}k1 return (K2′, y)
x = H1(K1,M)
y = x|| 〈|M |〉b
return (y, (M,State, K1))

Algorithm D1() Algorithm D2(K2, y, (M,State, K1))

(M,State) $← A1() (K1′||K2′,M ′) $← A2(K1||K2,M, State)

K1 $← {0, 1}k1 x′ = H1(K1′,M ′)
x = H1(K1,M) y′ = x′|| 〈|M ′|〉b
y = x|| 〈|M |〉b return (K2′, y′)
return (y, (M,State, K1))

The analysis is straightforward. Consider the eTCR attack experiment in Equation (8) and definition of
the events E1, E2, E3. We claim that whenever E1 happens, the adversary B = (B1, B2) becomes successful
in attacking H1. Note that when E1 happens |M | = |M ′| and hence B is an equal length eTCR attacker
against H1. To prove this claim, consider the definition of E1. Note that when A becomes successful in
eTCR attack against H = h◦H1, we have (K1||K2,M) 6= (K1′||K2′,M ′) and h(K2,H1(K1,M)|| 〈|M |〉b) =
h(K2′,H1(K1′,M ′)|| 〈|M ′|〉b). By definition of E1 we know that x = H1(K1,M) = H1(K1′,M ′) = x′ and
K2 = K2′, so the collision found by A must be an internal collision, i.e. a collision for H1 and so adversary
B = (B1, B2) which attacks H1 will be successful. That is, we have AdveTCR∗

H1
(B) = Pr[E1] = p1. The time

complexity of B is tB = t + k2 and this is at most t1 due to the assumption that H1 is (t1, ε1)-eTCR∗, that
is, t ≤ t1 − k2.



An Investigation of eTCR Property for Hash Functions: Implications, Separations, and Domain Extension 27

The analysis of success probability for the adversaries C and D which attack the eTCR property of the
outer function h in H = h◦H1 can be provided similarly, just by noting the definitions for E2 and E3 events
and the description of these adversaries.

Note that when E2 happens, we have h(K2, x|| 〈|M |〉b) = h(K2′, x|| 〈|M |〉b) (because A is successful)
and K2 6= K2′, hence adversary C becomes successful in eTCR attack against h as it outputs y = x|| 〈|M |〉b
in the first stage and (K2′, y) in the second stage. Hence (K2, y) 6= (K2′, y) and h(K2, y) = h(K2′, y) as
required for winning eTCR game against h. Therefore, we have AdveTCR

h (C) = Pr[E2] = p2. The time
complexity of C is tC = t+k1 +TH1 + b and this is at most t2 due to the assumption that h is (t2, ε2)-eTCR,
that is, t ≤ t2 − k1 − TH1 − b.

When E3 happens, we have h(K2, x|| 〈|M |〉b) = h(K2′, x′|| 〈|M ′|〉b) (because A is successful) and either
|M | 6= |M |′ or x 6= x′. Hence, adversary D becomes successful in eTCR attack against h as it outputs
y = x|| 〈|M |〉b in the first stage and (K2′, y′ = x′|| 〈|M ′|〉b) in the second stage. Hence (K2, y) 6= (K2′, y′)
(because y 6= y′) and h(K2, y) = h(K2′, y′) as required for winning eTCR game against h. Therefore, we
have AdveTCR

h (D) = Pr[E3] = p3. Therefore, we have AdveTCR
h (C) = Pr[E2] = p2. The time complexity of

D is tD = t + k1 + 2TH1 + 2b and this is at most t2 due to the assumption that h is (t2, ε2)-eTCR, that is,
t ≤ t2 − k1 − 2TH1 − 2b.

Note that the bound t in the statement of the Theorem, i.e. t = min {t1 − k2, t2 − k1 − 2TH1 − 2b},
satisfies all the three bounds for t as required. ut

Nested Linear Hash: Let H1 be the equal-length eTCR hash function obtained via LH transform as stated
in Theorem 8. From Theorem 9 we can obtain a variant of LH which is eTCR secure. This variant which
we call it Nested LH is obtained by the composition of H1 with an eTCR compression function h, that is,
LH nested by this final application of the compression function in the way stated in Theorem 9 (i.e. final
block is just 〈|M |〉b). Theorem 9 and Theorem 8 show that this Nested LH will be eTCR if the compression
function is eTCR. Alternatively, this Nested LH construction can be seen as obtained using a variant of
strengthening padding followed by LH iteration on the compression function h. This variant of strengthening
padding, which might be called full-final-block strengthening, acts as follows. On input a message M , append
the message by 10r to make its length a multiple of block length and then append another full block which
only contains the representation of length of M in an exactly b-bit string, i.e. 〈|M |〉b.

5 Conclusion

The invention of the Enhanced Target Collision Resistance (eTCR) property by Halevi and Krawczyk [12]
has been proven to be very useful to enrich the notions of hash functions, in particular with its application
to construct the Randomized Hashing mode which has been announced by NIST as Draft SP 800-106.
Nonetheless, the relationships between eTCR with the existing properties of hash functions need to be
further studied. In this paper, we compared the eTCR property with all of the seven security properties
for a hash function, formalized by Rogaway and Shrimpton in FSE 2004, and provided a full picture of
relationships between eTCR and each of the properties, namely CR, Sec, aSec, eSec, Pre, aPre and ePre,
where all these properties are considered formally for a dedicated-key hash function. Furthermore, when
considering the problem of eTCR property preserving domain extension, we found that the only eTCR
preserving method is a nested variant of LH which has a drawback of having high key expansion factor.
Therefore, it is interesting to design a new eTCR preserving domain extension in standard model, which is
efficient. We left this as an open problem in this paper.

References

[1] E. Andreeva, G. Neven, B. Preneel, T. Shrimpton: Seven-Property-Preserving Iterated Hashing: ROX. In: K. Kurosawa
(ed.): ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer (2007)



28 M. R. Reyhanitabar, W. Susilo and Y. Mu

[2] M. Bellare, T. Ristenpart: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. In L.
Arge, C. Cachin, T. Jurdzinski, A. Tarlecki (eds.): ICALP 07. LNCS, vol. 4596, pp. 399–410. Springer (2007)

[3] M. Bellare, T. Ristenpart: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In X. Lai, K.
Chen (eds.): ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer (2006)

[4] M. Bellare, A. Palacio: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active
and Concurrent Attacks. In M. Yung (ed.): CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer (2002)

[5] M. Bellare, P. Rogaway: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In B.S. Kaliski Jr. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer (1997)

[6] S. Contini, Y.L. Yin: Forgery and Partial Key-Recovery Attacks on HMAC and NMAC using Hash Collisions. In: X. Lai,
K. Chen (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 37–53. Springer (2006)

[7] J.S. Coron, Y. Dodis, C. Malinaud, P. Puniya: Merkle-Damg̊ard Revisited: How to Construct a Hash Function. In V.
Shoup (ed.): CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer (2005)

[8] I. Damg̊ard: A Design Principle for Hash Functions. In G. Brassard (ed.): CRYPTO 1989. LNCS, vol. 435, pp. 416–427.
Springer (1990)

[9] C. De Cannière, C. Rechberger: Finding SHA-1 Characteristics: General Results and Applications. In: X. Lai, K. Chen
(eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer (2006)

[10] B. den Boer, A. Bosselaers: Collisions for the Compressin Function of MD5. In: T. Helleseth (ed.): EUROCRYPT 1993.
LNCS, vol. 765, pp. 293–304. Springer (1993)

[11] Y. Dodis, P. Puniya: Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA? In S.M.
Bellovin, R. Gennaro, A.D. Keromytis, M. Yung (eds.): ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer (2008)

[12] S. Halevi, H. Krawczyk: Strengthening Digital Signatures Via Randomized Hashing. In C. Dwork (ed.): CRYPTO 2006.
LNCS, vol. 4117, pp. 41–59. Springer (2006)

[13] U. Maurer, J. Sjödin: Single-Key AIL-MACs from Any FIL-MAC. In L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi,
M. Yung (eds.): ICALP 05. LNCS, vol. 3580, pp. 472–484. Springer (2005)

[14] R.C. Merkle: One Way Hash Functions and DES. In G. Brassard (ed.): CRYPTO 1989. LNCS, vol. 435, pp. 428–446.
Springer (1990)

[15] I. Mironov: Hash Functions: From Merkle-Damg̊ard to Shoup. In B. Pfitzmann (ed.): EUROCRYPT 2001. LNCS, vol.
2045, pp. 166–181. Springer (2001)

[16] M. Naor, M. Yung: Universal One-Way Hash Functions and Their Cryptographic Applications. In: STOC 1989, pp. 33–43.
ACM (1989)

[17] National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[18] National Institute of Standards and Technology. Draft NIST SP 800-106: Randomized Hashing for Digital Signatures
(August 2008). http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-106.

[19] B. Preneel: The State of Cryptographic Hash Functions. In I. Damg̊ard (ed.): Lectures on Data Security. LNCS, vol. 1561,
pp. 158–182. Springer (1999)

[20] M.R. Reyhanitabar, W. Susilo, Y. Mu: Enhanced Target Collision Resistant Hash Functions Revisited. In O. Dunkelman
(ed.): FSE 2009. LNCS, vol. 5665, pp. 327–344. Springer (2009)

[21] P. Rogaway: Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys. In P.Q. Nguyen (ed.): VIET-
CRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer (2006)

[22] P. Rogaway, T. Shrimpton: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage
Resistance, Second-Preimage Resistance, and Collision Resistance. Cryptology ePrint Archive: Report 2004/035 (Latest
revised version: 9 Aug 2009).

[23] P. Rogaway, T. Shrimpton: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage
Resistance, Second-Preimage Resistance, and Collision Resistance. In B.K. Roy, W. Meier (eds.): FSE 2004. LNCS, vol.
3017, pp. 371–388. Springer (2004)

[24] V. Shoup: A Composition Theorem for Universal One-Way Hash Functions. In: B. Preneel (ed.): EUROCRYPT 2000.
LNCS, vol. 1807, pp. 445–452. Springer (2000)

[25] D.R. Simon: Finding Collisions on a One-Way Street: Can Secure Hash Functions be Based on General Assumptions? In:
K. Nyberg (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer (1998)

[26] D.R. Stinson: Some Observation on the Theory of Cryptographic Hash Functions. Journal of Design, Codes and Cryp-
tography, Vol. 38, 259–277, 2006.

[27] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In R. Cramer (ed.):
EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer (2005)

[28] X. Wang, Y.L. Yin, H. Yu: Finding Collisions in the Full SHA-1. In V. Shoup (ed.): CRYPTO 2005. LNCS, vol. 3621,
pp. 17–36. Springer (2005)

[29] X. Wang, H. Yu: How to Break MD5 and Other Hash Functions. In R. Cramer (ed.): EUROCRYPT 2005. LNCS, vol.
3494, pp. 19–35. Springer (2005)


