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Abstract. Due to its universality oblivious transfer (OT) is a primitive of great importance in secure
multi-party computation. OT is impossible to implement from scratch in an unconditionally secure
way, but there are many reductions of OT to other variants of OT, as well as other primitives such as
noisy channels. It is important to know how efficient such unconditionally secure reductions can be in
principle, i.e., how many instances of a given primitive are at least needed to implement OT. For perfect
(error-free) implementations good lower bounds are known, e.g. the bounds by Beaver (STOC ’96) or
by Dodis and Micali (EUROCRYPT ’99). But since in practice one is usually willing to tolerate a small
probability of error and since these statistical reductions can be much more efficient, the known bounds
have only limited application. In this work we provide lower bounds on the efficiency of 1-out-of-n
OT and Rabin-OT reductions to distributed randomness in the statistical case. From these results we
derive bounds on reductions to different variants of OT that generalize known bounds to the statistical
case. Our bounds hold in particular for transformations between a finite number of primitives and for
any error.
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1 Introduction

Secure multi-party computation has been introduced by Yao ([Yao82]). It allows two or more
distrustful players to jointly compute a function of their inputs in a secure way. Security here
means that the players compute the value of the function correctly without learning more than
what they can derive from their own input and output.

A primitive of central importance in secure multi-party computation is oblivious transfer (OT),
as it is sufficient to execute any multi-party computation securely [GV88,Kil88]. The original form
of OT ((1

2)-RabinOT1) has been introduced by Rabin in [Rab81]. It allows a sender to send a bit x,
which the receiver will get with probability 1

2 . Another variant of OT, called one-out-of-two bit-OT

(
(

2
1

)
-OT1) was defined in [EGL85] (see also [Wie83]). Here, the sender has two input bits x0 and

x1. The receiver gives as input a choice bit c and receives xc without learning x1−c. The sender
gets no information about the choice bit c. Other important variants of OT are

(
n
1

)
-OTk where the

inputs are strings of k bits and the receiver can choose from n > 2 secrets and (p)-RabinOTk where
the inputs are strings of k bits and the erasure probability is different from 1

2 .

If the players have access to noiseless communication only, it is impossible to implement un-
conditionally secure OT, i.e. secure against an adversary with unlimited computing power. It has
been shown in [Cré88] that (p)-RabinOTk and

(
2
1

)
-OT1 are equally powerful, i.e., one can be im-

plemented from the other. Numerous reductions between different variants of
(
n
1

)
-OTk are known

as well:
(

2
1

)
-OTk can be implemented from

(
2
1

)
-OT1 [BBR88,CS91,BCS96,BCW03], and

(
n
1

)
-OTk

can be implemented from
(

2
1

)
-OTk′ [BCR86,BCS96,DM99,WW05]. There has also been a lot of

interest in reductions of OT to weaker primitives. It is known that OT can be realized from



noisy channels [CK88,CMW04,DFMS04], noisy correlations [WW04,NW06], or weak variants of
OT [CK88,BCW03,Cac98,DFSS06,DKS99,Wul07].

Given these positive results it is natural to ask which reductions are possible in principle with
unconditional security and how efficient such reductions can be, i.e., how many instances of a given
primitive are needed to implement OT.

Previous Results. The first impossibility result for unconditionally secure reductions of OT has been
presented in [Bea96]. There it has been shown that the number of

(
2
1

)
-OT1 cannot be extended3,

i.e., there does not exist a protocol using n instances of
(

2
1

)
-OT1 that perfectly implements m > n

instances. Lower bounds for the number of instances of OT needed to perfectly implement other
variants of OT have been presented in [DM99] (see also [Mau99]) and generalized in [WW05,WW08].
These bounds apply to both the semi-honest (where dishonest players follow the protocol) and
the malicious (where dishonest players behave arbitrarily) model. If we restrict ourselves to the
malicious model these bounds can be improved, as shown in [KK07]. Lower bounds for general
functions have been presented in [BM04].

All these results only consider perfect protocols and do not give much insight into the case of
statistical implementations. As pointed out in [KK07], their result only applies to the perfect case,
because the protocol in [CS06] is more efficient. The bounds for perfect and statistical protocols
can in fact be very far apart, as shown in [BM04]: The amount of OTs needed to compute the
equality function is exponentially bigger in the perfect case than in the statistical case. Therefore,
it is not true in general that a bound in the perfect case implies a similar bound in the statistical
case.

So far very little is known in the statistical case. In [AC07] a proof sketch of a lower bound for
statistical implementations of

(
2
1

)
-OTk has been presented. However, this result only holds in the

asymptotic case, where the number n of resource primitives goes to infinity and the error goes to
zero as n goes to infinity. In [BM04] a non-asymptotic lower bound on the number of ANDs needed
to implement functions with boolean output has been shown. But this result can only be applied
to protocols implementing one instance of

(
n
1

)
-OT1 and does not lead to an optimal bound.

Contribution. We provide general impossibility results for statistical implementations of
(
n
1

)
-OTk

and (p)-RabinOTk in the semi-honest model4. In particular our bounds do not involve any asymp-
totics, i.e., we consider a finite number of primitives and our results hold for any error. The bounds
for implementations of

(
n
1

)
-OTk (Theorems 1 - 3) imply the following two corollaries, which gener-

alize Theorem 3 from [Bea96] and the lower bounds from [DM99,WW05,WW08] to the statistical
case.

Corollary 1. If εm + h(ε) < 1/5, then there does not exist a reduction of m + 1 instances of(
2
1

)
-OT1 to m instances of

(
2
1

)
-OT1 in the semi-honest model for any m > 0.

Corollary 2. For any reduction that implements
(
N
1

)
-OTK from m instances of

(
n
1

)
-OTk in the

semi-honest model with an error smaller than ε, we have

m ≥ max

(
(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)
− 7NK · (ε+ h(ε)) .

3 Note that in the computational setting, OT can be extended, see [Bea96,IKNP03,Nie07].
4 Bounds on OT in the semi-honest model imply similar bounds in the malicious model, see Section 2.3.
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Corollary 2 is strictly stronger than the impossibility bounds from [AC07]. The following corol-
lary is implied by Corollary 1, and gives an explicit error bound on how good

(
2
1

)
-OT1 can be

implemented from scratch, i.e., using noiseless communication only.

Corollary 3. There does not exist a protocol that implements
(

2
1

)
-OT1 in the semi-honest model

with an error smaller than 0.026.

We derive new bounds in the statistical case for protocols implementing (p)-RabinOTk (Theo-
rems 4 - 5). Finally, we show that our bounds imply bounds for implementations of oblivious linear
function evaluation (OLFE, Corollary 5).

Our results show that the upper bounds implied by the protocols presented in [DM99] and
[WW05] are tight in many cases, and that the protocol presented in [CS06] is asymptotically
optimal. Our bounds also imply that the statistical reduction of the product-sharing functionality
Fpdt-shr (which is equivalent to OLFE) to OT presented in [IPS09] is close to optimal.

2 Preliminaries

We denote the distribution of a random variable X over X by PX(x). Given the distribution PXY

over X × Y, the marginal distribution is denoted by PX(x) :=
∑

y∈Y PXY (x, y). A conditional
distribution PX|Y (x, y) over X ×Y defines for every y ∈ Y a distribution PX|Y =y. PX|Y can be seen
as a randomized function that has input y and output x.

The statistical distance between the distributions PX and PX′ over the domain X is defined as

δ(PX , PX′) =
1

2

∑
x∈X

∣∣PX(x)− PX′(x)
∣∣.

If δ(PX , PX′) ≤ ε, we may also say that PX is ε-close to PX′ .

2.1 Entropies and Information

We will use the following tools from information theory5 in our proofs. The conditional Shannon
entropy of X given Y is defined as6

H(X | Y ) := −
∑
x,y

PXY (x, y) logPX|Y (x, y) ,

and the mutual information of X and Y given Z as

I(X;Y | Z) = H(X | Z)−H(X | Y Z) .

We use the notation
h(p) = −p log p− (1− p) log(1− p)

for the binary entropy function, i.e., h(p) is the Shannon entropy of a binary random variable that
takes on one value with probability p and the other with 1 − p. Note that the function h(p) is
concave, which implies that for any 0 ≤ p ≤ 1 and 0 ≤ c ≤ 1, we have

h(c · ε) ≥ c · h(ε) . (2.1)

5 See [CT91] for a good introduction into information theory.
6 All logarithms are binary, and we use the convention that 0 · log 0 = 0.
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We will need the chain-rule

H(XY | Z) = H(X | Z) + H(Y | XZ) , (2.2)

and the following monotonicity inequalities

H(XY | Z) ≥ H(X | Z) ≥ H(X | Y Z) , (2.3)

I(WX;Y | Z) ≥ I(X;Y | Z) . (2.4)

We will also need

H(X | Y Z) =
∑
z

PZ(z) ·H(X | Y,Z = z) . (2.5)

We say that X, Y and Z form a Markov-chain, denoted by X ↔ Y ↔ Z, if X and Z are independent
given Y , which means that PX|Y = PX|Y Z , or PZ|Y = PZ|XZ , since the condition is symmetric in
X and Z. X ↔ Y ↔ Z implies that

H(X | Z) ≥ H(X | Y Z) = H(X | Y ) . (2.6)

It is easy to show that if W ↔ XZ ↔ Y , then

I(X;Y | ZW ) ≤ I(X;Y | Z) and (2.7)

I(W ;Y | Z) ≤ I(X;Y | Z) . (2.8)

Let (X,Y ), and (X̂, Ŷ ) be random variables distributed according to PXY and PX̂Ŷ , and let
δ(PXY , PX̂Ŷ ) ≤ ε. Then (as we prove in Appendix B)

H(X̂|Ŷ ) ≥ H(X|Y )− ε log(|X |)− h(ε) . (2.9)

Inequality (2.9) implies Fano’s inequality: For all X, X̂ ∈ X with Pr[X 6= X̂] ≤ ε, we have

H(X | X̂) ≤ ε · log |X |+ h(ε) . (2.10)

2.2 Protocols and Security in the Semi-Honest Model

In the following we consider two-party primitives that take inputs (x, y) and output (x̄, ȳ) dis-
tributed according to PX̄Ȳ |XY . For simplicity, we identify such a primitive with PX̄Ȳ |XY . If the
primitive has no input and outputs values (x, y) distributed according to PX̄Ȳ , we may simply
write PX̄Ȳ .

We define a protocol with black-box access to a primitive PUV as a pair of functions (f, g). The
protocol is then executed between the two players, Alice and Bob, as follows. The players receive
their inputs x and y, choose uniformly at random rA, rB ∈ {0, 1}∗, and receive the outputs u
and v from PUV . Then they repeat for i = 1, 2 . . . : If i is odd, then Alice sends a message mi =
f(x, u,m1, . . . ,mi−1, rA) to Bob; if i is even, Bob sends a message mi = g(y, v,m1, . . . ,mi−1, rB) to
Alice. If any mi is equal to halt, i.e., if one of the two players aborts the computation, then the loop is
exited. Finally, Alice outputs x̃ = f(x, u,m1, . . . ,mi, rA), and Bob outputs ỹ = g(y, v,m1, . . . ,mi, rA).

We will only consider the semi-honest model, where both players behave honestly, but may save
all the information they get during the protocol to obtain extra information about the other player’s
input or output. Therefore, a dishonest Alice will output her whole view (x̃, (x, u,m1, . . . ,mi, rA)).
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A protocol securely implements PX̄Ȳ |XY , if the entire view of each player can be simulated in an
ideal setting, where the players only have black-box access to the primitive PX̄Ȳ |XY . Note that this
simulation is not allowed to change the input nor the output from the ideal primitive. Our definition
of security follows Definition 7.2.1 from [Gol04], but is adapted to the case of computationally
unbounded adversaries and statistical indistinguishability.

Definition 1. A protocol (f, g) with black-box access to a primitive PUV implements a primitive
PX̄Ȳ |XY ε-secure in the semi-honest model, if there exist two randomized functions SA(x, x̄) and

SB(y, ȳ), called the simulators7, such that for all x and y, the distribution of ((x̄, SA(x, x̄)), ȳ) is
ε-close to the distribution of ((x̃, (x, u,m1, . . . ,mi, rA)), ỹ) and the distribution of (x̄, (ȳ, SB(y, ȳ)))
is ε-close to the distribution of (x̃, (ỹ, (y, v,m1, . . . ,mi, rB))), where x̄, ȳ are distributed according
to PX̄Ȳ |X=x,Y =y.

2.3 Semi-Honest vs. Malicious Model

In the malicious model the adversary is not required to follow the protocol. Therefore, a protocol
that is secure in the malicious model protects against a much bigger set of adversaries. On the other
hand, the security definition in the malicious model only implies that for any (also semi-honest)
adversary there exists a malicious simulator for the ideal primitive, i.e., the simulator is allowed
to change his input or output from the ideal primitive. Since this is not allowed in the semi-honest
model, security in the malicious model does not imply security in the semi-honest model in general.

For implementations of OT, however, this implication does hold, because if the adversary is
semi-honest, a simulator can only change the input with small probability. Otherwise, it is not able
to correctly simulate the input or the output of the protocol. Therefore, any impossibility result for
OT in the semi-honest model also implies impossibility in the malicious model. The proof is given
in Appendix A.

2.4 Primitives and Randomized Primitives

In this work we will mainly focus on implementations of the primitives
(
n
1

)
-OTk and (p)-RabinOTk.

–
(
n
1

)
-OTk is the primitive where Alice has an input x = (x0, . . . , xn−1) ∈ {0, 1}k·n, and Bob has

an input c ∈ {0, . . . , n− 1}. Bob receives y = xc ∈ {0, 1}k.
– (p)-RabinOTk is the primitive where Alice has an input x ∈ {0, 1}k. Bob receives y which is

equal to x with probability p and ∆ otherwise.

We only allow a protocol to use a primitive PUV that does not have any input. This is enough
for all reductions we look at in this work, since

(
n
1

)
-OTk and (p)-RabinOTk are all equivalent to such

primitives PUV , i.e., there exist two protocols that are secure in the semi-honest model: one that
generates the distributed randomness using one instance of the primitive, and one that implements
the primitive using the distributed randomness as input to the two parties. The fact that

(
2
1

)
-OT1

is equivalent to distributed randomness has been presented in [BBCS92,Bea95]. The generalization
to
(

2
1

)
-OTk is straightforward. The randomized primitives are obtained by simply choosing all

inputs uniformly at random. For (p)-RabinOTk, the implementation is straightforward. Hence, any
protocol that uses some instances of

(
n
1

)
-OTk or (p)-RabinOTk can be converted into a protocol

that only uses a primitive PUV without any input. In our proofs, we will need three properties of

7 We do not require the simulator to be efficient.

5



these primitives: H(U | V ), H(V | U) and I(U ;V ), which are simplified versions of the monotones
defined in [WW05,WW08]8

If (U, V ) is distributed according to the randomized primitive equivalent to
(
n
1

)
-OTk, we get

H(U | V ) = (n− 1)k , H(V | U) = log(n) , I(U ;V ) = k . (2.11)

If (U, V ) is distributed according to the randomized primitive equivalent to (p)-RabinOTk, we get

H(U | V ) = (1− p)k , H(V | U) = h(p) , I(U ;V ) = pk . (2.12)

3 Lower Bounds for Unconditionally Secure Two-Party Computation

We will now give lower bounds for unconditionally secure two-party protocols. We will look at
protocols as described in Section 2.2. Let (U, V ) be the output of the primitive PUV , and let M be
the whole communication during the execution of the protocol. Let X̃ and Ỹ be the outputs of Alice
and Bob on inputs X and Y distributed according to PXY . Note that X̃ is generated from (X,U,M)
and Ỹ from (Y, V,M), from which follows that X̃ ↔ XUM ↔ Y V Ỹ and XUX̃ ↔ Y VM ↔ Ỹ .
Since this holds for any input distribution PXY , it also holds conditioned on X = x or Y = y.

Lemma 1.

I(U ;V |M) ≤ I(U ;V ) .

Proof. Let M i := (M1, . . . ,Mi), i.e., the sequence of all messages sent until the ith round. Without
loss of generality, let us assume that Alice sends the message of the (i+ 1)th round. Since, we have
M i+1 ↔M iU ↔ V , it follows from (2.7) that

I(U ;V |M i+1) ≤ I(U ;V |M i) .

The statement follows by induction over all rounds.

Let the protocol be an ε-secure implementation of a primitive PX̄Ȳ |XY in the semi-honest model.
Let PXY be the input distribution and let PX̄Ȳ be the corresponding output distribution of the
ideal primitive, i.e., PX̄Ȳ := PXY PX̄Ȳ |XY . Then the security of the protocol implies the following
lemma.

Lemma 2.

H(X | VM) ≥ H(X | Y Ȳ )− ε log(|X |)− h(ε).

Proof. The security of the protocol implies that there exists a randomized function SB, such that
δ(PXY Ȳ SB(Y,Ȳ ), PXY Ȳ VM ) ≤ ε. Using (2.9) and (2.6), we get

H(X | VM) ≥ H(X | SB(Y, Ȳ ))− ε log(|X |)− h(ε)

≥ H(X | Y Ȳ )− ε log(|X |)− h(ε) .

8 Note that our results could easily be generalized to the monotones from [WW05,WW08]. However, for the dis-
tributions of the randomized primitives considered here, they would only complicate the proofs and not give any
improvement.
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3.1 Lower Bounds for Protocols implementing OT

Let PȲ |XC be the conditional distribution of
(
n
1

)
-OTk. Let Alice and Bob choose their inputs

X = (X0, X1, . . . , Xn−1) ∈ {0, 1}kn and C ∈ {0, . . . , n−1} uniformly at random. We have Ȳ = XC .
Let Y be the output of Bob at the end of the protocol.

Lemma 3.
H(X | UM) ≤ (3n− 2)(εk + h(ε)).

Proof. There exists a randomized function SA(x) such that δ(PXMU |C=c, PXSA(X)) ≤ ε for all
c ∈ {0, . . . , n− 1}. Using the triangle inequality it follows that for any c, c′

δ(PXMU |C=c, PXMU |C=c′) ≤ 2ε . (3.1)

It holds that X ↔ UM ↔ Y C. Furthermore, we have Pr[Y 6= XC | C = c] ≤ ε. Thus, it follows
from (2.10) that

H(Xc | UM,C = c) ≤ H(Xc | Y,C = c) ≤ εk + h(ε) . (3.2)

Together with (3.1) and (2.9), this implies that for any c, c′

H(Xc′ | UM,C = c) ≤ 3εk + h(ε) + h(2ε)

≤ 3εk + 3h(ε) ,

where the second inequality follows from (2.1). Using (2.2) and (2.3) we get

H(X | UM,C = c) ≤
∑

c′∈{0,...,n−1}

H(Xc′ | UM,C = c) ≤ (3n− 2)(εk + h(ε)) .

Using (2.5), this implies that

H(X | UMC) ≤ (3n− 2)(εk + h(ε))

Since X ↔ UM ↔ Y C, (2.6) implies that

H(X | UM) = H(X | UMC)

≤ (3n− 2)(εk + h(ε)) .

Theorem 1. Let a protocol having access to PUV be an ε-secure implementation of
(
n
1

)
-OTk in the

semi-honest model. Then

H(U | V ) ≥ (n− 1)k − (3n− 1)(εk + h(ε)).

Proof. From Lemma 3 and (2.3) follows that

H(X | UVM) ≤ H(X | UM) ≤ (3n− 2)(εk + h(ε)) .

Using (2.3), (2.2), (2.9) and Lemma 2, we get

(n− 1)k − εk − h(ε) = H(X | CXC)− εk − h(ε)

≤ H(X | VM)

= H(U | VM) + H(X | UVM)−H(U | XVM)

≤ H(U | VM) + (3n− 2)(εk + h(ε))

≤ H(U | V ) + (3n− 2)(εk + h(ε)) .
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Lemma 4. For all c ∈ {0, . . . , n− 1}, we have

H(XC |M,C = c) ≥ k − h(6ε)− 6εk ≥ k − 6(ε+ h(ε))k.

Proof. Let PR be the uniform distribution over the k-bit strings. As in the proof of Lemma 3 we
get for all c 6= c′ ∈ {0, . . . , n− 1} that

δ(PXMU |C=c, PXMU |C=c′) ≤ 2ε ,

which implies that

δ(PXcM |C=c, PXcM |C=c′) ≤ 2ε . (3.3)

and

δ(PRPM |C=c, PRPM |C=c′) ≤ 2ε . (3.4)

Because the protocol is secure, there exists a simulator SB(c, ȳ) such that

δ(PXM |C=c′ , PXSB(c′,Xc′ )
) ≤ ε ,

which implies that δ(PXcM |C=c′ , PRPSB(c′,Xc′ )
) ≤ ε. Therefore, using the triangle inequality we get

that

δ(PXcM |C=c′ , PRPM |C=c′) ≤ δ(PXcM |C=c′ , PRPSB(c′,Xc′ )
)

+ δ(PRPSB(c′,Xc′ )
, PRPM |C=c′)

≤ 2ε. (3.5)

Using the triangle inequality again it follows from (3.3), (3.4) and (3.5) that

δ(PXcM |C=c, PRPM |C=c) ≤ δ(PXcM |C=c, PXcM |C=c′)

+ δ(PXcM |C=c′ , PRPM |C=c′)

+ δ(PRPM |C=c′ , PRPM |C=c)

≤ 6ε .

Using (2.9) and (2.1), we get for all c ∈ {0, . . . , n− 1}

H(XC |M,C = c) ≥ k − h(6ε)− 6εk ≥ k − 6h(ε)− 6εk .

Using Lemma 4 we can prove the following lower bound for reductions of
(
n
1

)
-OTk in the semi-

honest model.

Theorem 2. Let a protocol having access to PUV be an ε-secure implementation of
(
n
1

)
-OTk in the

semi-honest model. Then

I(U ;V ) ≥ k − 7εk − 7h(ε) .
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Proof. Let Alice’s input X be uniformly distributed and Bob’s input be C = 0. Let Y be Bob’s
output and M be the whole communication. Then Lemma 4 implies that

H(X0 |M) ≥ k − 6(h(ε) + εk) . (3.6)

Since Pr[Y 6= X0] ≤ ε and X0 ↔ VM ↔ Y , it follows from (2.6) and (2.10) that

H(X0 | VM) ≤ H(X0 | Y ) ≤ εk + h(ε) . (3.7)

(3.6) and (3.7) imply, using X ↔ UM ↔ CY V , (2.8) and (2.4), that

I(U ;V |M) ≥ I(X;V |M)

≥ I(X0;V |M)

= H(X0 |M)−H(X0 | VM)

≥ k − 7εk − 7h(ε)

The statement follows using Lemma 1.

In [WW06], it has been shown that
(

2
1

)
-OT1 can be implemented from one instance of

(
2
1

)
-OT1

in the opposite direction. Therefore, it follows immediately from Theorem 1 that

H(V | U) ≥ 1− 5(ε+ h(ε)) ,

since any violation of this bound could be used to construct a violation of the bound from Theorem 1.
We will now show that a generalization of this bound also holds for n > 2. In the following, we will
assume that k = 1. The resulting bound then also implies a bound for k > 1 since one instance of(
n
1

)
-OT1 can be implemented from one instance of

(
n
1

)
-OTk.

Lemma 5.
H(C | VM) ≤ 3(log n+ 2)(ε+ h(ε)).

Proof. Let Ai := X0 ⊕ Xi, for i ∈ {1, . . . , n − 1}. From the security of the protocol follows that
there exist a randomized function SB(c, ȳ) such that for all a = (a1, . . . , an−1) ∈ {0, 1}n−1,

δ(PY CVM |A=a, PXCCSB(C,XC)) ≤ ε .

Hence, using the triangle inequality, we get for all a, a′ that

δ(PY CVM |A=a, PY CVM |A=a′) ≤ 2ε . (3.8)

We have Pr[Y 6= XC | A = a] ≤ ε for all a. If A = (0, . . . , 0), we have XC = X0. Since
X ↔ VM ↔ Y , it follows from (2.3) and (2.10) that

H(Y | VM,A = (0, . . . , 0)) ≤ H(Y | X,A = (0, . . . , 0)) (3.9)

≤ H(Y | X0, A = (0, . . . , 0)) ≤ ε+ h(ε) .

Now, let us map C to a bit-string of size dlog ne, and let Cb be the bth bit of that bit-string, where
b ∈ {0, . . . , dlog ne − 1}. Let ab = (ab1, . . . , a

b
n−1), where abi = 1 if and only if the bth bit of i is 1.

Conditioned on A = ab, we have XC = X0 ⊕Cb. It follows from X ↔ VM ↔ Y C, (2.3) and (2.10)
that

H(Y ⊕ Cb | VM,A = ab) ≤ H(Y ⊕ Cb | X0, A = ab) ≤ ε+ h(ε) . (3.10)

9



From (3.8) and (3.9), we get

H(Y | VMA) ≤ ε+ h(ε) + 2ε+ h(2ε) ≤ 3ε+ 3h(ε).

It follows from (3.8) and (3.10) that for all b

H(Y ⊕ Cb | VMA) ≤ 3ε+ 3h(ε) .

Since (C, Y ) can be calculated from (Y, Y ⊕ C0, . . . , Y ⊕ Cdlogne−1), this implies that

H(CY | VMA) ≤ 3(dlog ne+ 1)(ε+ h(ε)) .

The statement follows from A↔ VM ↔ CY , (2.3) and dlog ne ≤ log n+ 1.

Theorem 3. Let a protocol having access to PUV be an ε-secure implementation of
(
n
1

)
-OT1 in the

semi-honest model. Then

H(V | U) ≥ log n− (4 log n+ 7)(ε+ h(ε)).

Proof. From Lemma 5 and (2.3) follows that

H(C | UVM) ≤ H(C | VM) ≤ 3(log n+ 2)(ε+ h(ε)) .

Using (2.3), (2.2), (2.9) and Lemma 2, we get

log n− ε log n− h(ε) ≤ H(C | UM)

= H(V | UM) + H(C | UVM)−H(V | CUM)

≤ H(V | UM) + 3(log n+ 2)(ε+ h(ε))

≤ H(V | U) + 3(log n+ 2)(ε+ h(ε)) .

Theorems 1, 2 and 3 can now be used to show various lower bounds. First of all, m instances
of
(
n
1

)
-OTk are equivalent to a primitive PUV with H(U | V ) = m(n − 1)k, I(U ;V ) = mk and

H(V | U) = m log n. For any protocol that implements one instance of
(
N
1

)
-OTK , with an error of

ε, it follows from Theorem 1 that

m(n− 1)k ≥ (N − 1)K − (3N − 1)(εK + h(ε)) ,

from Theorem 2 that

mk ≥ K − 7εK − 7h(ε) ,

and from Theorem 3 that

m log n ≥ logN − (4 logN + 7)(ε+ h(ε)) .

Hence, we get

m ≥ max

(
(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)
−max

(
(3N − 1)K

(n− 1)k
,
7K

k
,
4 logN + 7

log n

)
(ε+ h(ε))

≥ max

(
(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)
− 7NK · (ε+ h(ε)) ,
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which is the statement of Corollary 2.
In the same way we can prove the following corollary that generalizes a bound on reductions of OT
to the binary symmetric noisy channel with error p ((p)-BNC), given in [WW08] to the statistical
case. (p)-BNC has an input x ∈ {0, 1} and outputs a value y ∈ {0, 1} that is equal to x with
probability p, where 0 ≤ p < 1

2 .

Corollary 4. If a protocol implements
(
n
1

)
-OTk from t instances of a (p)-BNC secure in the semi-

honest model with an error ε, then

t ≥ max

(
(n− 1)k

h(p)
,

k

1− h(p)
,
log n

h(p)

)
− 7nk

h(p)
· (ε+ h(ε)) .

There exists a trivial protocol that implements
(
n
1

)
-OTkm from m instances of

(
n
1

)
-OTk: The

receiver simply chooses always the same value. This allows us to generalize Theorems 1 and 2,
because from any protocol for which the bounds of Corollary 5 does not hold, we could construct
a protocol that violates the bounds of Theorems 1 or 2.

Corollary 5. Let a protocol having access to PUV be an ε-secure implementation of m instances
of
(
n
1

)
-OTk in the semi-honest model. Then

H(U | V ) ≥ m(n− 1)k − (3n− 1)(εmk + h(ε)) ,

I(U ;V ) ≥ mk − 7εmk − 7h(ε) .

If PUV is equivalent to m instances of
(
n
1

)
-OTk, we get H(U | V ) = m(n− 1)k. Hence, for any

protocol that implements m+ 1 instances with an error ε, we have

m(n− 1)k ≥ (m+ 1)(n− 1)k − (3n− 1)(εmk + h(ε)) .

This implies the following corollary.

Corollary 6. Let a protocol P having access to m instances of
(
n
1

)
-OTk be an ε-secure implemen-

tation of m+ 1 instances of
(
n
1

)
-OTk in the semi-honest model. Then

εmk + h(ε) ≥ (n− 1)k

3n− 1
.

The statement of Corollary 1 follows for k = 1 and n = 2.

3.2 Lower Bounds for Protocols implementing RabinOT

Let a protocol P having access to PUV be an ε-secure implementation of (p)-RabinOTk in the
semi-honest model. In the following we assume 0 ≤ ε < min(p, 1 − p). Let X ∈ {0, 1}k be the
uniformly distributed input of Alice and Y ∈ {0, 1}k ∪∆ the output of Bob. Let M be the whole
communication during the execution of the protocol. Let PȲ |X be the conditional distribution of
an ideal RabinOT and PȲ X := PXPȲ |X . Then the following two lemmas hold for any protocol.

Lemma 6.

H(X | UM) ≤ 3(εk + h(ε))

min(p, 1− p)− ε
.

11



Proof. From the security of the protocol follows that there exists a simulator SA(x) such that
δ(PXSA(X)Ȳ , PXUMY ) ≤ ε. Let D = 1 if Y 6= ∆ and 0 otherwise, and D̄ = 1 if Ȳ 6= ∆ and 0
otherwise. We have PXSA(X)D̄ = PXSA(X)PD̄. From Lemma 12 follows that

δ(PXMU |D=0, PXMU |D=1) ≤ 2ε

min(p, 1− p)− ε
. (3.11)

Since δ(PXY , PXȲ ) ≤ ε, we have

Pr[Y 6= X | D = 1] ≤ ε

Pr[D = 1]
≤ ε

p− ε
.

We have X ↔ UM ↔ Y . Thus, it follows from (2.6) and (2.10) that

H(X | UM,Y 6= ∆) ≤ H(X | Y, Y 6= ∆)

≤ εk

p− ε
+ h

(
ε

p− ε

)
≤ εk + h(ε)

p− ε
. (3.12)

Together (3.11) and (3.12) imply that

H(X | UM,Y = ∆) ≤ εk + h(ε)

p− ε
+

2(εk + h(ε))

min(p, 1− p)− ε

≤ 3(εk + h(ε))

min(p, 1− p)− ε
, (3.13)

and (2.5), (3.12) and (3.13) imply that

H(X | UMD) ≤ 3(εk + h(ε))

min(p, 1− p)− ε
.

Using X ↔ UM ↔ Y D and (2.6) we get that H(X | UM) = H(X | UMD). The statement follows.

Lemma 7.

H(X | VM) ≤ (1− p)k + εk + h(ε) .

Proof. There exists a simulator SB(ȳ) such that δ(PXȲ SB(Ȳ ), PXY VM ) ≤ ε. Since X ↔ VM ↔ Y ,
it follows from (2.6) and (2.9) that

H(X | VM) ≤ H(X | Y )

≤ H(X | Ȳ ) + εk + h(ε)

= (1− p) · k + εk + h(ε) .

Let a protocol P having access to PUV be an ε-secure implementation of (p)-RabinOTk over
k-bit strings in the semi-honest model. Let X be the uniformly distributed input of Alice and Y
the output of Bob. Let M be the whole communication during the execution of the protocol. Let
PȲ |X be the conditional distribution of m ideal instances of RabinOT and PȲ X := PXPȲ |X .

Theorem 4. Let a protocol having access to PUV be an ε-secure implementation of (p)-RabinOTk

in the semi-honest model. Then

H(U | V ) ≥ (1− p)k − 4(εk + h(ε))

min(p, 1− p)− ε
.

12



Proof. From Lemma 6 and (2.3)

H(X | UVM) ≤ H(X | UM) ≤ 3(εk + h(ε))

min(p, 1− p)− ε
.

Using (2.3), (2.2), (2.9) and Lemma 2 we get

m(1− p)k − εk − h(ε) = H(X | Ȳ )− εk − h(ε)

≤ H(X | VM)

= H(U | VM) + H(X | UVM)−H(U | XVM)

≤ H(U | VM) +
3(εk + h(ε))

min(p, 1− p)− ε

≤ H(U | V ) +
3(εk + h(ε))

min(p, 1− p)− ε
.

The statement follows now from 1/(min(p, 1− p)− ε) ≥ 1.

Lemma 8.

H(X |M) ≥ k − 5(εk + h(ε))

min(p, 1− p)− 2ε
.

Proof. Let D be defined as before. Since the protocol is secure, there exists a simulator SB(ȳ) such
that δ(PXYMV , PXȲMBVB

) ≤ ε, where (MB, VB) := SB(Ȳ ). There also exists a simulator SA(x)
such that δ(PXȲMAUA

, PXYMU ) ≤ ε, where (MA, UA) := SA(X). Let D̄ = 1 if Ȳ 6= ∆ and 0
otherwise. We have PXMAD̄ = PXMA

PD̄. We have

δ(PXȲMA
, PXȲMB

) ≤ 2ε

since δ(PXȲMA
, PXYM ) ≤ ε and δ(PXȲMB

, PXYM ) ≤ ε. Together with Lemma 12 it follows that

δ(PXMB |D̄=0, PXMB |D̄=1) ≤ 4ε

min(p, 1− p)− 2ε
.

Since H(X |MB, Ȳ = ∆) = k, together with (2.9) this implies

H(X |MB, Ȳ 6= ∆) ≥ k − 4(εk + h(ε))

min(p, 1− p)− 2ε
.

From (2.5) follows

H(X |MBD̄) ≥ k − 4(εk + h(ε))

min(p, 1− p)− 2ε
.

Therefore, using again (2.9),

H(X |M) ≥ H(X |MD)

≥ k − εk − h(ε)− 4(εk + h(ε))

min(p, 1− p)− 2ε
.

The statement follows now from 1/(min(p, 1− p)− 2ε) ≥ 1.
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Theorem 5. Let a protocol having access to PUV be an ε-secure implementation of (p)-RabinOTk

in the semi-honest model. Then

I(U ;V ) ≥ pk − 6(εk + h(ε))

min(p, 1− p)− 2ε
.

Proof. Let Alice input X be uniformly distributed. Let Y be Bob’s outputs and M be the whole
communication. Then Lemma 8 implies that

H(X |M) ≥ k − 5(εk + h(ε))

min(p, 1− p)− 2ε
,

and from Lemma 7 we have

H(X | VM) ≤ (1− p)k + εk + h(ε).

Together this implies

I(U ;V |M) ≥ I(X;V |M)

= H(X |M)−H(X | VM)

≥ pk − εk − h(ε)− 5(εk + h(ε))

min(p, 1− p)− 2ε
.

The statement follows now from 1/(min(p, 1− p)− 2ε) ≥ 1 and Lemma 1.

Note that as in Corollary 5 for
(
n
1

)
-OTk, the statement of these theorems can be generalized to

m independent instances. We leave this to the full version of this work.

3.3 Lower Bounds for Protocols implementing OLFE

We will now show that Theorems 1 and 2 also imply bounds for oblivious linear function evaluation
((q)-OLFE), which is defined as follows:

– For any finite field GF (q) of size q, (q)-OLFE is the primitive where Alice has an input a, b ∈
GF (q) and Bob has an input c ∈ GF (q). Bob receives d = a+ b · c ∈ GF (q).

Our lower bound is a simple consequence of the fact that (q)-OLFE can be used to implement(
2
1

)
-OTlog(q).

Corollary 7. Let a protocol having access to PUV be an ε-secure implementation of m instances
of (q)-OLFE in the semi-honest model. Then

H(U | V ) ≥ m log q − 5(εm log q + h(ε)) , (3.14)

H(V | U) ≥ m log q − 5(εm log q + h(ε)) , (3.15)

I(U ;V ) ≥ m log q − 7(εm log q + h(ε)) . (3.16)

Proof. First of all, note that
(

2
1

)
-OTk can easily be generalized to the case where x0, x1 ∈ {0, . . . , qm−

1}, for any q,m > 0. Theorem 1 and Theorem 2 easily generalize to this variant of oblivious transfer.
There exists a simple reduction from this oblivious transfer to m instances of (q)-OLFE: Alice gets
input x = (x0, x1) ∈ {0, . . . , qm− 1}2. We can write xi = (x0

i , . . . , x
m−1
i ), where xji ∈ {0, . . . , q− 1}.

Alice sends aj := xj0 and bj := xj1 − x
j
0 to the jth instance of (q)-OLFE. Bob sends c ∈ {0, 1} to all
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instances of (q)-OLFE. Bob receives yj ∈ GF (q) and outputs y := (y0, . . . , ym−1). We have y = xc,
since for c = 0, yj = xj0 + (xj1 − x

j
0) · 0 = xj0 and for c = 1, yj = xj0 + (xj1 − x

j
0) · 1 = xj1. It is

easy to see that the protocol is also secure. Therefore, a violation of (3.14) or (3.16) would imply
a violation of Theorem 1 or Theorem 2. Furthermore, it has been shown in [WW06] that (q)-OLFE
is symmetric. Hence, a violation of (3.15) would imply a violation of (3.14).

From Corollary 7 follows immediately that

Corollary 8. Let a protocol P having access to m instances of (q)-OLFE be an ε-secure implemen-
tation of m+ 1 instances of (q)-OLFE in the semi-honest model. Then

ε ·m log q + h(ε) ≥ log q

5
.
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A Malicious OT implies Semi-honest OT

To prove the impossibility results in the malicious model it is sufficient to allow the simulators
(for a semi-honest adversary) in Definition 1 to change the input from the honest players and
change the output from the ideal primitive. The following lemmas prove that from such a malicious
simulator we can always construct a semi-honest simulator in case of implementations of

(
n
1

)
-OTk

and (p)-RabinOTk.

Lemma 9. If a protocol implementing
(
n
1

)
-OTk is secure in the malicious model with an error of

at most ε, then it is also secure in the semi-honest model with an error of at most (2n+ 1)ε.

Proof. From the security of the protocol we know that there exists a (malicious) simulator that
simulates the view of honest Alice. If two honest players execute the protocol on input (x0, . . . , xn−1)
and c, then with probability 1 − ε the receiver gets y = xc. Thus, the simulator can change the
input xi with probability at most 2ε for all 0 ≤ i < n − 1. We construct a new simulator that
executes the malicious simulator but never changes the input. This simulation is (2n+ 1)ε-close to
the distribution of the protocol. From the security of the protocol we also know that there exists
a (malicious) simulator that simulates the view of honest Bob. If two honest players execute the
protocol with uniform input (X0, . . . , Xn−1) and choice bit c, then with probability 1−ε the receiver
gets y = xc. If the simulator changes the choice bit c, he does not learn xc and the simulated y is
not equal to xc with probability at least 1/2. Therefore, the simulator can change c or the output
with probability at most 4ε. As above we can construct a simulator for the semi-honest model with
an error of at most 5ε.

Lemma 10. If a protocol implementing (p)-RabinOTk is secure in the malicious model with an
error of at most ε, then it is also secure in the semi-honest model with an error of at most
max( 2k+1

2k−1
ε+ 2ε, 2ε/p).

Proof. From the security of the protocol we know that there exists a (malicious) simulator that
simulates the view of honest Alice. If two honest players execute the protocol on input x, then
with probability at most ε the receiver gets an output x′ /∈ {x,∆}. Thus, the simulator can change
the input x with probability at most 2ε/p. From the security of the protocol we also know that
there exists a (malicious) simulator that simulates the view of honest Bob. Let the input be chosen
uniformly. If the simulator changes the output from ∆ to y′, then with probability at most 1/2k it

holds that y′ = x. Thus, the simulator may change the output with probability at most 2k+1

2k−1
ε/(1−p)

from ∆. Therefore the simulator may change an output x 6= ∆ with probability at most 2k+1

2k−1
ε/(1−

p) + 2ε. Otherwise the probability that x′ /∈ {x,∆} is greater than 2ε. As in lemma 9 we can now

construct semi-honest simulators with an error of at most max( 2k+1

2k−1
ε/(1− p) + 2ε, 2ε/p).

Note that some of our proofs could easily be adapted to the malicious model to get slightly
better bounds than the ones that follow from the combination of the bounds in the semi-honest
model and Lemmas 9 and 10.

B Some Lemmas

Lemma 11. Let PXY be a distribution over X × {0, 1}. Then for any PX′ over X , we have

δ(PX|Y =0, PX|Y =1) ≤ δ(PXY , PX′PY )

min(PY (0), PY (1))

17



Proof. For y ∈ {0, 1}, we have

δ(PX|Y =y, PX′) =
1

2

∑
x

∣∣∣∣PXY (x, y)

PY (y)
− PX′(x)

∣∣∣∣
=

1

2PY (y)

∑
x

|PXY (x, y)− PX′(x)PY (y)|

≤ 1

min(PY (0), PY (1))

1

2

∑
x

|PXY (x, y)− PX′(x)PY (y)| .

Hence,

δ(PX|Y =0, PX|Y =1) ≤ δ(PX|Y =0, PX′) + δ(PX|Y =1, PX′)

≤ 1

min(PY (0), PY (1))

1

2

∑
xy

|PXY (x, y)− PX′(x)PY (y)|

=
1

min(PY (0), PY (1))
δ(PXY , PX′PY ) .

Lemma 12. Let PXY be a distribution over X × {0, 1}, PX′ over X and PY ′ over {0, 1}. Then
δ(PXY , PX′PY ′) ≤ ε implies

δ(PX|Y =0, PX|Y =1) ≤ 2ε

min(PY ′(0), PY ′(1))− ε
.

Proof. δ(PXY , PX′PY ′) ≤ ε implies δ(PX , PX′) ≤ ε and hence

δ(PXPY ′ , PX′PY ′) = δ(PX , PX′) ≤ ε .

We get
δ(PXY , PX′PY ) ≤ δ(PXPY , PX′PY ′) + δ(PX′PY ′ , PX′PY ) ≤ 2ε .

δ(PXY , PX′PY ′) ≤ ε also implies δ(PY , PY ′) ≤ ε, from which follows that for y ∈ {0, 1}, |PY (y)−
PY ′(y)| ≤ ε. We get

1

min(PY (0), PY (1))
≤ 1

min(PY ′(0), PY ′(1))− ε
The statement follows now by applying Lemma 11.

Lemma 13. Let (X,Y ), and (X̂, Ŷ ) be random variables distributed according to PXY and PX̂Ŷ ,
and let δ(PXY , PX̂Ŷ ) ≤ ε. Then

H(X̂|Ŷ ) ≥ H(X|Y )− ε log(|X |)− h(ε).

Proof. There exist random variables A,B such that PXY |A=0 = PX̂Ŷ |B=0 and Pr[A = 0] = Pr[B =

0] = 1− ε. Thus, using the monotonicity of the entropy and the fact that H(X) ≤ log(|X |) we get
that

H(X̂|Ŷ ) ≥ (1− ε) H(X̂|Ŷ A = 0) + εH(X̂|Ŷ A = 1)

≥ (1− ε) H(X|Y B = 0)

= H(X|Y B)− εH(X|Y B = 1)

= H(XB|Y )−H(B|Y )− εH(X|Y B = 1)

≥ H(X|Y )− h(ε)− ε log(|X |).
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