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Abstract. Due to its universality oblivious transfer (OT) is a primitive of great importance in secure
multi-party computation. OT is impossible to implement from scratch in an unconditionally secure way,
but there are many reductions of OT to other variants of OT, as well as other primitives such as noisy
channels. It is important to know how efficient such unconditionally secure reductions can be in principle,
i.e., how many instances of a given primitive are at least needed to implement OT. For perfect (error-free)
implementations good lower bounds are known, e.g. the bounds by Beaver (STOC ’96) or by Dodis and Micali
(EUROCRYPT ’99). However, in practice one is usually willing to tolerate a small probability of error and
it is known that these statistical reductions can in general be much more efficient. Thus, the known bounds
have only limited application. In the first part of this work we provide bounds on the efficiency of secure
(one-sided) two-party computation of arbitrary finite functions from distributed randomness in the statistical
case. From these results we derive bounds on the efficiency of protocols that use (different variants of) OT as
a black-box. When applied to implementations of OT, our bounds generalize known results to the statistical
case. Our results hold in particular for transformations between a finite number of primitives and for any
error. Furthermore, we provide bounds on the efficiency of protocols implementing Rabin OT.
In the second part we study the efficiency of quantum protocols implementing OT. Recently, Salvail, Schaffner
and Sotakova (ASIACRYPT ’09) showed that most classical lower bounds for perfectly secure reductions of
OT to distributed randomness still hold in a quantum setting. We present a statistically secure protocol that
violates these bounds by an arbitrarily large factor. We then present a weaker lower bound that does hold
in the statistical quantum setting. We use this bound to show that even quantum protocols cannot extend
OT. Finally, we present two lower bounds for reductions of OT to commitments and a protocol based on
string commitments that is optimal with respect to both of these bounds.
Keywords. Unconditional Security, Oblivious Transfer, Lower Bounds, Quantum Cryptography, Two-Party
Computation.

1 Introduction

Secure multi-party computation allows two or more distrustful players to jointly compute a function of
their inputs in a secure way ([Yao82]). Security here means that the players compute the value of the
function correctly without learning more than what they can derive from their own input and output.

A primitive of central importance in secure multi-party computation is oblivious transfer (OT), as
it is sufficient to execute any multi-party computation securely [GV88,Kil88]. The original form of OT
((1

2 )-RabinOT1) has been introduced by Rabin in [Rab81]. It allows a sender to send a bit x, which the

receiver will get with probability 1
2 . Another variant of OT, called one-out-of-two bit-OT (

(2
1

)

-OT1) was
defined in [EGL85] (see also [Wie83]). Here, the sender has two input bits x0 and x1. The receiver gives
as input a choice bit c and receives xc without learning x1−c. The sender gets no information about the
choice bit c. Other important variants of OT are

(n
1

)

-OTk where the inputs are strings of k bits and the

receiver can choose from n > 2 secrets and (p)-RabinOTk where the inputs are strings of k bits and the
erasure probability is different from 1

2 .
If the players have access to noiseless (classical or quantum) communication only, it is impossible

to implement unconditionally secure OT, i.e. secure against an adversary with unlimited computing
power. It has been shown in [Cré88] that (p)-RabinOTk and

(

2
1

)

-OT1 are equally powerful, i.e., one

can be implemented from the other. Numerous reductions between different variants of
(

n
1

)

-OTk are



known as well:
(2
1

)

-OTk can be implemented from
(2
1

)

-OT1 [BBR88,CS91,BCS96,BCW03], and
(n
1

)

-OTk

can be implemented from
(2
1

)

-OTk
′
[BCR86,BCS96,DM99,WW05]. There has also been a lot of interest

in reductions of OT to weaker primitives. It is known that OT can be realized from noisy channels
[CK88,CMW04,DFMS04,Wul09], noisy correlations [WW04,NW06], or weak variants
of OT [CK88,Cac98,DKS99,BCW03,DFSS06,Wul07].

In the quantum world, it has been shown in [BBCS92] (see also [CK88,Cré94]) that OT can be
implemented from black-box commitments, something that is impossible in the classical setting. The
security proof has been more and more refined a sequence of papers [MS94,Yao95,DFL+09] (see also
[CDMS04]). In [Unr09], it has been shown that the reduction is in fact universally composable.

Given these positive results it is natural to ask how efficient such reductions can be in principle, i.e.,
how many instances of a given primitive are needed to implement OT.

1.1 Previous Results

In the classical setting, several lower bounds for OT reductions are known. The first impossibility result
for unconditionally secure reductions of OT has been presented in [Bea96]. There it has been shown
that the number of

(

2
1

)

-OT1 cannot be extended3, i.e., there does not exist a protocol using n instances

of
(

2
1

)

-OT1 that perfectly implements m > n instances. Lower bounds for the number of instances of OT
needed to perfectly implement other variants of OT have been presented in [DM99] (see also [Mau99])
and generalized in [WW05,WW08]. These bounds apply to both the semi-honest (where dishonest
players follow the protocol) and the malicious (where dishonest players behave arbitrarily) model. If
we restrict ourselves to the malicious model these bounds can be improved, as shown in [KK07]. Lower
bounds on the number of ANDs needed to implement general functions have been presented in [BM04].

All these results only consider perfect protocols and do not give much insight into the case of statis-
tical implementations. As pointed out in [KK07], their result only applies to the perfect case, because
there is a statistical protocol that is more efficient ([CS06]). The bounds for perfect and statistical
protocols can in fact be very far apart, as shown in [BM04]: The amount of OTs needed to compute
the equality function is exponentially bigger in the perfect case than in the statistical case. Therefore,
it is not true in general that a bound in the perfect case implies a similar bound in the statistical case.

So far very little is known in the statistical case. In [AC07] a proof sketch of a lower bound for statis-
tical implementations of

(2
1

)

-OTk has been presented. However, this result only holds in the asymptotic
case, where the number n of resource primitives goes to infinity and the error goes to zero as n goes
to infinity. In [BM04] a non-asymptotic lower bound on the number of ANDs needed for one-sided
secure computation of arbitrary functions with boolean output has been shown. This result directly im-
plies lower bounds for protocols that use

(

n
t

)

-OTk as a black-box. However, besides being restricted to
boolean-valued functions this result is not strong enough to show optimality of several known reductions
and it does not provide bounds for reductions to randomized primitives such as (1

2 )-RabinOT1.

In the quantum setting almost all negative results known show that a certain primitive is im-
possible to implement from scratch. Commitment has been shown to be impossible in the quan-
tum setting in [May97,LC97] (See also [DKSW06].). Using a similar proof, it has been shown in
[Lo97] that general one-sided two-party computation and in particular oblivious transfer are also
impossible to implement securely in the quantum setting. These results have been generalized in
[Col06,Col07,KMQR09,SSS09]. Bounds in the quality of commitments for a relaxed security definition
have been shown in [SR01,BCH+08].

The only lower bounds for quantum protocols where the players have access to resource primi-
tives (such as different variants of OT) have been presented in [SSS09] where Theorem 4.7 shows that
important lower bounds for classical protocols also apply to perfectly secure quantum reductions.

3 Note that in the computational setting, OT can be extended, see [Bea96,IKNP03,Nie07].
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1.2 Contribution

Classical Reductions. In Section 2 we consider statistically secure protocols that compute a function
between two parties from trusted randomness distributed to the players. We provide two bounds on
the efficiency of such reductions that allow in particular to derive bounds on the minimal number of
(n
t

)

-OTk or (p)-RabinOTk needed to compute a general function securely. Our bounds do not involve
any asymptotics, i.e., we consider a finite number of resource primitives and our results hold for any
error.

In Section 2.5 we provide an additional bound for the special case of statistical implementations of
the

(

n
1

)

-OTk in the semi-honest model4. The bounds for implementations of
(

n
1

)

-OTk (Theorem 3) imply
the following corollary that gives a general bound on the conversion rate between different variants of
OT.

Corollary 1. For any reduction that implements M instances of
(

N
1

)

-OTK from m instances of
(

n
1

)

-OTk

in the semi-honest model with an error of at most ε, we have

m

M
≥ max

(

(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)

− 7NK · (ε+ h(ε)) .

Corollary 1 generalizes the lower bounds from [DM99,WW05,WW08] to the statistical case and is
strictly stronger than the impossibility bounds from [AC07]. If we let M = m + 1, N = n = 2 and
K = k = 1, we obtain a stronger version of Theorem 3 from [Bea96] which states that OT cannot be
extended.

In Appendix B we also derive new bounds in the statistical case for protocols implementing (p)-RabinOTk

(Theorems B1-B2), and show that our bounds imply bounds for implementations of oblivious linear
function evaluation (OLFE, Corollary B1).

Our lower bounds show that the following protocols are (close to) optimal in the sense that they
use the minimal number of instances of the given primitive.

– The protocol in [BCS96,DM99] which uses N−1
n−1 instances of

(n
1

)

-OTk to implement
(N

1

)

-OTk is
optimal.

– The protocol in [WW05] which uses t instances of
(

n
1

)

-OTkn
t−1

to implement
(

nt

1

)

-OTk is optimal.

– In the semi-honest model, the trivial protocol that implements
(

2
1

)

-OTk from k instances of
(

2
1

)

-OT1

is optimal. In the malicious case, the protocol in [CS06] uses asymptotically (as k goes to infinity)
the same amount of instances and is therefore asymptotically optimal.

– The protocol in [Sav07] that implements
(2
1

)

-OTk from (1
2 )-RabinOT1 in the malicious model is

asymptotically optimal.

Quantum Reductions. While previous result show that quantum protocols show similar limits for re-
ductions between different variants of oblivious transfer as classical protocols, we present in Section 3 a
statistically secure protocol that violates the classical bounds and the bound for perfectly secure quan-
tum protocols by an arbitrarily large factor. More precisely, we prove that string oblivious transfer can
be reversed in the quantum setting much more efficiently than by any classical protocol.

Theorem 4. There exists a protocol that implements
(

2
1

)

-OTk
′

with an error ε from κ = O(log 1/ε)

instances of
(2
1

)

-OTk in the opposite direction where k′ = Ω(k).

For classical and perfect quantum protocols k′ is essentially upper bounded by κ. In Theorem 5 we
then show that a weaker lower bound for quantum reductions holds also for quantum protocols in the
statistical setting. Theorem 5 implies that quantum protocols cannot extend oblivious transfer, i.e., we

4 Bounds on OT in the semi-honest model imply similar bounds in the malicious model, see Appendix A.
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show that there exists a constant c > 0 such that any quantum reduction of m+ 1 instances of
(2
1

)

-OT1

to m instances of
(2
1

)

-OT1 must have an error of at least c
m .

Furthermore, it also implies a lower bound for reductions between different variants of OT.

Corollary 2. For any quantum reduction that implements
(2
1

)

-OTK from m instances of
(n
1

)

-OTk with
an error smaller than ε, we have

m ≥ K

2nk + 2 log n
− 3K

√
ε− 13h(

√
ε) .

Finally, we also derive a lower bound on the number of commitments (Theorem 7) and on the
total number of bits the players need to commit to in any ε-secure implementation of

(2
1

)

-OTk from
commitments (Theorem 6).

Corollary 3. A protocol that implements
(2
1

)

-OTk from commitments only with an error of at most ε
must use at least log(1/ε)− 6 commitments and needs to commit to at least k/2− 12k

√
ε− 7h(

√
ε) bits

in total.

Corollary 3 implies that bit commitments cannot be extended. More precisely, there exists a constant
c > 0 such that any protocol that implements m+ 1 bit commitments out of m bit commitments must
have an error of at least c

m . Finally, in Section 8 we show that there exists a protocol that is essentially
optimal with respect to Corollary 3. We use the protocol from [BBCS92,DFL+09], but let the receiver
commit to blocks of measurements at once, to prove the following theorem.

Theorem 8. There exists a quantum protocol that implements
(

2
1

)

-OTk with an error of at most ε,
using κ = O(log 1/ε) commitments to strings of size b, where κb = O(k + log 1/ε).

1.3 Notation

We denote the distribution of a random variable X over X by PX(x). Given the distribution PXY over
X × Y, the marginal distribution is denoted by PX(x) :=

∑

y∈Y PXY (x, y). A conditional distribution
PX|Y (x, y) over X ×Y defines for every y ∈ Y a distribution PX|Y=y. PX|Y can be seen as a randomized
function that has input y and output x. The statistical distance between the distributions PX and PX′

over the domain X is defined as the maximum, over all (inefficient) distinguishers D : X → {0, 1}, of
the distinguishing advantage

δ(PX , PX′) =| Pr[D(X) = 1] − Pr[D(X ′) = 1] | .
If δ(PX , PX′) ≤ ε, we may also say that PX is ε-close to PX′ . The conditional Shannon entropy of X
given Y is defined as5

H(X | Y ) := −
∑

x,y

PXY (x, y) log PX|Y (x, y) ,

and the mutual information of X and Y given Z as

I(X;Y | Z) = H(X | Z) − H(X | Y Z) .

We use the notation
h(p) = −p log p− (1 − p) log(1 − p)

for the binary entropy function. We say that X, Y and Z form a Markov-chain, denoted by X ↔
Y ↔ Z, if X and Z are independent given Y , which means that PX|Y=y = PX|Y=y,Z=z for all y, z
(,or PZ|Y=y = PZ|X=x,Y=y for all x, y, since the condition is symmetric in X and Z). Furthermore, we
write [k] to denote the set {1, . . . , k}. If x = (x1, . . . , xn) and T := {i1, . . . , ik} ⊆ {1, 2, . . . , n}, then x|T
denotes the sub-string (xi1 , xi2 , . . . , xik) of x. If x, y ∈ {0, 1}n, then x⊕ y denotes the bitwise xor of x
and y. Let f : X × Y → Z be a function.

5 All logarithms are binary, and we use the convention that 0 · log 0 = 0.
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1.4 Primitives and Randomized Primitives

In the following we look at two-party primitives that take inputs x from Alice and y from Bob and
outputs x̄ to Alice and ȳ to Bob, where (x̄, ȳ) are distributed according to PX̄Ȳ |XY . For simplicity, we
identify such a primitive with PX̄Ȳ |XY . If the primitive has no input and outputs values (u, v) distributed
according to PUV , we may simply write PUV . If the primitive is deterministic and only Bob gets an
output, i.e., if there exists a function f : X ×Y → Z such that PX̄Ȳ |X=x,Y=y(⊥, f(x, y)) = 1 for all x, y,
then we identify the primitive with the function f .

Examples of such primitives are
(n
t

)

-OTk, (p)-RabinOTk, IPnand EQn.

–
(n
t

)

-OTk is the primitive where Alice has an input x = (x0, . . . , xn−1) ∈ {0, 1}k·n, and Bob has an
input c ⊆ {0, . . . , n− 1} with |c| = t. Bob receives y = x|c ∈ {0, 1}tk .

– (p)-RabinOTk is the primitive where Alice has an input x ∈ {0, 1}k. Bob receives y which is equal
to x with probability p and ∆ otherwise.

– The equality function EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as

EQn(x, y) =

{

1, if x = y,

0, otherwise .

– The inner product modulo two function IPn : {0, 1}n × {0, 1}n → {0, 1}n is defined as IPn(x, y) =
⊕n
i=1xiyi.

We often allow a protocol to use a primitive PUV that does not have any input. This is enough
to model reductions to

(n
t

)

-OTk and (p)-RabinOTk, since these primitives are equivalent to distributed
randomness PUV , i.e., there exist two protocols that are secure in the semi-honest model: one that
generates the distributed randomness using one instance of the primitive, and one that implements
one instance of the primitive using the distributed randomness as input to the two parties. The fact
that

(

2
1

)

-OT1 is equivalent to distributed randomness has been presented in [BBCS92,Bea95]. The gen-

eralization to
(n
t

)

-OTk is straightforward. The randomized primitives are obtained by simply choosing

all inputs uniformly at random. For (p)-RabinOTk the implementation is straightforward. Hence, any
protocol that uses some instances of

(n
t

)

-OTk or (p)-RabinOTk can be converted into a protocol that
only uses a primitive PUV without any input.

2 Lower Bounds for Classical Two-Party Computation

2.1 Protocols and Security in the Semi-Honest Model

We will only consider the semi-honest model, where both players behave honestly, but may save all the
information they get during the protocol to obtain extra information about the other player’s input
or output. A protocol securely implements PX̄Ȳ |XY , if the entire view of each player can be simulated
in an ideal setting, where the players only have black-box access to the primitive PX̄Ȳ |XY . Note that
this simulation is not allowed to change the input nor the output. Our definition of security follows
Definition 7.2.1 from [Gol04], but is adapted to the case of computationally unbounded adversaries and
statistical indistinguishability.

Definition 1. Let π be a protocol with black-box access to a primitive PUV that implements a primitive
PX̄Ȳ |XY . V iewπA(x, y) and V iewπB(x, y) denote the views of the Alice and Bob on input (x, y) defined as
(x, u,m1, . . . ,mi, rA) and (x, v,m1, . . . ,mi, rB) respectively where rA and rB is the private randomness
of the players, mi represents the i-th message and u, v is the output from PUV . OutputπA(x, y) and
OutputπB(x, y) denote the outputs (that are implicit in the views) of Alice and Bob respectively on input
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(x, y). The protocol is secure in the semi-honest model with an error of at most ε, if there exist two
randomized functions SA and SB, called the simulators6, such that for all x and y:

δ((V iewπA(x, y), OutputπB(x, y)), ((x̄, SA(x, x̄)), ȳ)) ≤ ε,

δ((x̄, (ȳ, SB(y, ȳ))), (OutputπA(x, y), V iewπB(x, y))) ≤ ε,

where x̄, ȳ are distributed according to PX̄Ȳ |X=x,Y=y.

2.2 Sufficient Statistics

Intuitively speaking, the sufficient statistics7 of X with respect to Y , denoted X ց Y , is the part of X
that is correlated with Y .

Definition 2. Let X and Y be random variables, and let f(x) := PY |X=x. The sufficient statistics of
X with respect to Y is defined as X ց Y := f(X).

It is easy to show (see for example [FWW04]) that for any PXY , we have X ↔ X ց Y ↔ Y . This
immediately implies that any protocol with access to a primitive PUV can be transformed into a protocol
with access to PUցV,VցU (without compromising the security) because the players can compute PUV
from PUցV,VցU privately. Thus, in the following we only consider primitives PUV where U = U ց V
and V = V ց U .

2.3 Common Part

Roughly speaking, the common part X ∧Y of X and Y is the maximal element of the set of all random
variables (i.e., the finest random variable) that can be generated both from X and from Y without any
error. For example, if X = (X0,X1) ∈ {0, 1}2 and Y = (Y0, Y1) ∈ {0, 1}2, and we have X0 = Y0 and
Pr[X1 6= Y1] = ε > 0, then the common part of X and Y is equivalent to X0. The common part was
first introduced in [GK73]; in a cryptographic context, it was used in [WW04].

Definition 3. Let X and Y be random variables with distribution PXY . Let X := supp(PX) and Y :=
supp(PY ). Then X ∧ Y , the common part of X and Y , is constructed in the following way:

– Consider the bipartite graph G with vertex set X ∪ Y, and where two vertices x ∈ X and y ∈ Y are
connected by an edge if PXY (x, y) > 0 holds.

– Let fX : X → 2X∪Y be the function that maps a vertex v ∈ X of G to the set of vertices in the
connected component of G containing v. Let fY : Y → 2X∪Y be the function that does the same for
a vertex w ∈ Y of G.

– X ∧ Y :≡ fX(X) ≡ fY (Y ).

2.4 Lower Bounds for Secure Function Evaluation

Let a protocol be an ε-secure implementation of a primitive PX̄Ȳ |XY in the semi-honest model. Let PXY
be the input distribution and let PX̄Ȳ be the corresponding output distribution of the ideal primitive,
i.e., PX̄Ȳ := PXY PX̄Ȳ |XY , and let M be the whole communication during the execution of the protocol.
Then the security of the protocol implies the following lemma that we will use in our proofs.

Lemma 1.

H(X | VM) ≥ H(X | Y Ȳ ) − ε log(|X |) − h(ε).

6 We do not require the simulator to be efficient.
7 In [FWW04], sufficient statistics has been called the dependent part.
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Proof. The security of the protocol implies that there exists a randomized function SB, such that
δ(PXY Ȳ SB(Y,Ȳ ), PXY Ȳ V M ) ≤ ε. Using Lemma B1 and (B.6), we get

H(X | VM) ≥ H(X | SB(Y, Ȳ )) − ε log(|X |) − h(ε)

≥ H(X | Y Ȳ ) − ε log(|X |) − h(ε) .

⊓⊔

We will now give lower bounds for unconditionally secure implementations of functions f : X×Y → Z
from a primitive PUV in the semi-honest model. Let f : X × Y → Z be a function such that

∀x 6= x′ ∈ X ∃y ∈ Y : f(x, y) 6= f(x′, y) . (2.1)

This means that given the values {f(x, y) : y ∈ Y}, it is possible to calculate x. In any secure
implementation of f , Alice does not get to know which y Bob has chosen, but has to make sure that
Bob can receive f(x, y) for any y. This implies that she cannot hold back any information about x.
Lemma 2 gives a formal statement of this intuitive observation. Let Alice and Bob choose their inputs
X and Y uniformly at random.

Lemma 2. For any protocol that is an ε-secure implementation of f in the semi-honest model,

H(X | UM,Y = y) ≤ (3|Y| − 2)(ε log |Z| + h(ε)) .

Proof. There exists a randomized function SA such that δ(PXMU |Y =y, PXSA(X)) ≤ ε for all y ∈ Y. Using
the triangle inequality it follows that for any y, y′

δ(PXMU |Y=y, PXMU |Y=y′) ≤ 2ε . (2.2)

It holds that X ↔ UM ↔ Y Z. Furthermore, we have Pr[Z 6= f(X,Y ) | Y = y] ≤ ε. Thus, it follows
from (B.9) that

H(f(X, y) | UM,Y = y) ≤ H(f(X, y) | Z, Y = y) ≤ ε · log |Z| + h(ε) . (2.3)

Together with (2.2) and Lemma B1 this implies that for any y, y′

H(f(X, y) | UM,Y = y′) ≤ 3ε log |Z| + h(ε) + h(2ε)

≤ 3(ε log |Z| + h(ε)) ,

where the second inequality follows from (B.1). SinceX can be calculated from the values f(X, y1), . . . , f(X, y|Y|),
we get

H(X | UM,Y = y) ≤ H(f(X, y1), . . . f(X, y|Y|) | UM,Y = y)

≤
∑

y′∈Y
H(f(X, y′) | UM,Y = y)

≤ (3|Y| − 2)(ε log |Z| + h(ε)) .

⊓⊔

Theorem 1. Let f : X ×Y → Z be a function that satisfies (2.1). Let a protocol having access to PUV
be an ε-secure implementation of f in the semi-honest model. Then

H(U | V ) ≥ max
y

H(X | f(X, y)) − (3|Y| − 2)(ε log |Z| + h(ε)) − ε log(|X |) − h(ε).

7



Proof. Let y ∈ Y. From Lemma 2 and (B.3) follows that

H(X | UVM,Y = y) ≤ H(X | UM,Y = y) ≤ (3|Y| − 2)(ε log |Z| + h(ε)) .

Using (B.3), (B.2) and Lemma B1 , we get

H(X | VM,Y = y) = H(U | VM,Y = y) + H(X | UVM,Y = y) − H(U | XVM,Y = y)

≤ H(U | VM,Y = y) + (3|Y| − 2)(ε log |Z| + h(ε))

≤ H(U | V ) + (3|Y| − 2)(ε log |Z| + h(ε)) .

and from Lemma 1, we get

H(X | f(X, y)) − ε log(|X |) − h(ε) ≤ H(X | VM,Y = y)

The statement follows by maximizing over all y. ⊓⊔

Note that for many functions |Y| is very large, and therefore Theorem 1 may only give a rather weak
bound. A simple way to improve the bound is to restrict the domain of f , i.e., to look at a function
f ′(x, y) : X ′ × Y ′ → Z where X ′ ⊂ X and Y ′ ⊂ Y with f ′(x, y) = f(x, y) that still satisfies condition
(2.1). Clearly, if f can be computed from a primitive PUV with an error ε in the semi-honest model,
then f ′ can be computed with the same error. Thus, any lower bound for f ′ implies a lower bound for
f .

The following corollaries for
(n
t

)

-OTk and EQn follow immediately from Theorem 1.

Corollary 4. Let a protocol having access to PUV be an ε-secure implementation of
(n
t

)

-OTk in the
semi-honest model. Then

H(U | V ) ≥ (n− t)k − (3⌈n/t⌉ − 2) (εtk + h(ε)) − εnk − h(ε).

Proof. We can choose subsets Ci ⊆ {0, . . . , n − 1}, 1 ≤ i ≤ ⌈n/t⌉ of size t such that
⋃⌈n/t⌉
i=1 Ci =

{1, . . . , n}, and restrict Bob to choose his input among these sets. It is easy to check that condition
(2.1) is satisfied. The statement follows from Theorem 1. ⊓⊔

Corollary 5. Let a protocol having access to a PUV be an ε-secure implementation of EQn in the
semi-honest model. Then

H(U |V ) ≥ max
0<k≤n

(k − (3 · 2k − 2)(ε + h(ε)) − εk − h(ε) − 2)

Proof. We can restrict the input domains of both players to the same subsets of size 2k. Condition (2.1)
will still be satisfied.8 Thus, the corollary follows immediately from Theorem 1. ⊓⊔

There exists a secure reduction of EQn to EQk ([BM04]): Alice and Bob compare k inner products of
their inputs with random strings using EQk. This protocol is secure in the semi-honest model with an
error of at most 2−κ. 9 Since there exists a circuit to implement EQk with k XOR and k AND gates, it
follows from [GV88] that EQk can be securely implemented using k instances to

(4
1

)

-OT1 or 3k instances

of
(2
1

)

-OT1 in the semi-honest model. Since m instances of
(2
1

)

-OT1 are equivalent to a primitive PUV
with H(U |V ) = m, the bound of Corollary 5 is optimal up to a factor of 3.

8 Note, however, that it is not possible to restrict Bob’s input without also restricting the input of Alice as well to the
same set.

9 Note that Definition 1 is different from the security definition in [BM04].
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Corollary 6. Let a protocol having access to a primitive PUV be an ε-secure implementation of the
inner product function IPn in the semi-honest model. Then

H(U |V ) ≥ n− 1 − (3n− 2)(ε + h(ε)) − εn− h(ε)

≥ n− 4nε− 3nh(ε) − 1

≥ n− 1 − 4n(ε+ h(ε)).

Proof. Let ei ∈ {0, 1}n be the string that has a one at the i-th position and is zero otherwise. Let
S := {ei : 1 ≤ i ≤ n}. Then the protocol is an ε-secure implementation of the restriction IPS

n of the
inner-product function to {0, 1}n × S. Since IPS

n satisfies condition (2.1), the statement follows from
Theorem 1.

If ε + h(ε)) ≤ 1/8, then it immediately follows from Corollary 6 that we need at least n/2 − 1 calls
to

(2
1

)

-OT1 to compute IPn with an error of at most ε. From the protocol presented in [BM04] we

know that there exists a perfectly secure protocol that computes IPn from n instances of
(

2
1

)

-OT1 (see
Appendix B.2).

For our next lower-bound, the function f must satisfy the following property. Let f : X × Y → Z
be a function such that there exist y1 ∈ Y such that

∀x 6= x′ ∈ X : f(x, y1) 6= f(x′, y1) , (2.4)

and y2 ∈ Y such that

∀x, x′ ∈ X : f(x, y2) = f(x′, y2) . (2.5)

Therefore, Bob will receive Alice’s whole input if his input is y1, and will get no information about
Alice’s input if his input is y2. This property can for example be satisfied by restricting Alice’s input in
(

n
t

)

-OTk, as we will see in Corollary 7.

Let Alice’s inputs X and Y be independent and uniformly distributed. Then the following lemma
holds for any protocol that implements f from a primitive PUV with an error of at most ε in the semi-
honest model. The following lemma states that if it is possible that Bob does not receive the input x
(by choosing input y2), then M,U ∧ V should not reveal x, even if Bob receives it (by choosing y1).

Lemma 3.

H(f(X, y1) |M,U ∧ V, Y = y1) ≥ log |X | − 6ε log |X | − 6h(ε).

Proof. Let gU , gV be the functions that compute the common part of PUV . As in the proof of Lemma 2
we get for all y 6= y′ ∈ Y that

δ(PXMU |Y=y, PXMU |Y=y′) ≤ 2ε ,

which implies that

δ(PXMgU (U)|Y=y, PXMgU (U)|Y=y′) ≤ 2ε , (2.6)

and

δ(PXPMgU (U)|Y=y, PXPMgU (U)|Y=y′) ≤ 2ε . (2.7)

Because the protocol is secure, there exists a simulator SB such that

δ(PXMV |Y=y2 , PXSB(y2,f(X,y2))) ≤ ε ,

9



From (2.5) follows that δ(PXMV |Y=y2, PXPSB(y2,f(X,y2))) ≤ ε. Therefore, using the triangle inequality
we get that

δ(PXMgU (U)|Y=y2 , PXPMgU (U)|Y=y2) ≤ δ(PXMV |Y=y2 , PXPMV |Y=y2) (2.8)

≤ δ(PXMV |Y=y2 , PXPSB(y2,f(X,y2)))

+ δ(PXPSB(y2,f(X,y2)), PXPMV |Y=y2)

≤ 2ε. (2.9)

Using the triangle inequality again it follows from (2.6), (2.7) and (2.9) that

δ(PXMgU (U)|Y=y1 , PXPMgU (U)|Y=y1) ≤ δ(PXMgU (U)|Y=y1 , PXMgU (U)|Y=y2)

+ δ(PXMgU (U)|Y=y2 , PXPMgU (U)|Y=y2)

+ δ(PXPMgU (U)|Y=y2, PXPMgU (U)|Y=y1)

≤ 6ε .

Using Lemma B1 we get

H(f(X, y1) |M,U ∧ V, Y = y1) = H(X |M,U ∧ V, Y = y1)

≥ log |X | − 6ε log |X | − h(6ε)

≥ log |X | − 6ε log |X | − 6h(ε) .

⊓⊔

Using Lemma 3 we can prove the following lower bound for implementations of a function f with
an error of at most ε in the semi-honest model.

Theorem 2. Let f : X ×Y → Z be a function that satisfies (2.4) and (2.5). Then for any protocol that
implements f with an error of at most ε in the semi-honest model from a primitive PUV

I(U ;V ) ≥ I(U ;V | U ∧ V )

≥ log |X | − 7ε log |X | − 7h(ε) .

Proof. Let Alice’s input X be uniformly distributed and Bob’s input be fixed to y1. Let Z be Bob’s
output and M the whole communication. Then Lemma 3 implies that

H(f(X, y1) |M,U ∧ V ) ≥ log |X | − 6ε log |X | − 6h(ε) . (2.10)

Since Pr[Z 6= f(X, y1)] ≤ ε and X ↔ VM ↔ Z, it follows from (B.6) and (B.9) that

H(f(X, y1) | VM) ≤ H(f(X, y1) | Z) ≤ ε log |X | + h(ε) . (2.11)

(2.10) and (2.11) imply, using X ↔ UM ↔ ZY V , (B.8) and (B.4), that

I(U ;V |M,U ∧ V ) ≥ I(f(X, y1);V |M,U ∧ V )

= H(f(X, y1) |M,U ∧ V ) −H(f(X, y1) | VM,U ∧ V )

≥ log |X | − 7ε log |X | − 7h(ε) .

Let M i := (M1, . . . ,Mi), i.e., the sequence of all messages sent until the ith round. Without loss of
generality, let us assume that Alice sends the message of the (i + 1)th round. Since, we have M i+1 ↔
M iU ↔ V , it follows from (B.7) that

I(U ;V |M i+1, U ∧ V ) ≤ I(U ;V |M i, U ∧ V ) .

10



Then it follows by induction over all rounds that

I(U ;V |M,U ∧ V ) ≤ I(U ;V | U ∧ V ) .

The statement follows.

The following corollary that gives a lower bound for implementations of
(n
t

)

-OTk from a primitive
PUV follows immediately from Theorem 2.

Corollary 7. Let a protocol having access to PUV be an ε-secure implementation of
(n
t

)

-OTk in the
semi-honest model where t ≤ ⌊n/2⌋. Then

I(U ;V ) ≥ tk − 7εtk − 7h(ε) .

Proof. Consider the function that is obtained by setting the first n − t inputs to a fixed value (and
choosing the remaining t inputs from {0, 1}tk).

In Section B.3 in the appendix, we further generalize Theorem 2. In the case of perfect imple-
mentations the (weaker) bound H(U) ≥ log |X | follows from Theorems 1 and 2. From this we get
that any perfectly secure protocol needs at least log |X | instances of

(2
1

)

-OT1 to implement a function
f : X × Y → Z. This implies Theorem 4.11 from [BM04].

2.5 Lower Bounds for Protocols implementing OT

In [WW06], it has been shown that
(2
1

)

-OT1 can be implemented from one instance of
(2
1

)

-OT1 in the
opposite direction. Therefore, it follows immediately from Theorem 1 that

H(V | U) ≥ 1 − 5(ε+ h(ε)) ,

since any violation of this bound could be used to construct a violation of the bound from Corollary 4.
We will show that a generalization of this bound also holds for n > 2. Note that we can assume that
k = 1. The resulting bound then also implies a bound for k > 1 because one instance of

(

n
1

)

-OT1

can be implemented from one instance of
(n
1

)

-OTk. Furthermore, we consider implementations of m

independent copies of
(n
1

)

-OTk.

Lemma 4. Let a protocol having access to PUV be an ε-secure implementation of m independent copies
of

(n
1

)

-OT1 in the semi-honest model. Then

H(V | U) ≥ m log n−m(4 log n+ 7)(ε + h(ε)).

Proof. Let Alice and Bob choose their inputsX = (X1, . . . ,Xm) = ((X1
0 , . . . ,X

1
n−1), . . . , (X

m
0 , . . . ,X

m
n−1)) ∈

{0, 1}mn and C = (C1, . . . , Cm) ∈ {0, . . . , n− 1}m uniformly at random. Let Y = (Y 1, . . . , Y m) be the
output of Bob at the end of the protocol. Let us for the moment look that the jth instance of

(n
1

)

-OT1,

for j ∈ {1, . . . ,m}. Let Ai := Xj
0 ⊕Xj

i , for i ∈ {1, . . . , n− 1}. From the security of the protocol follows
that there exist a randomized function SB(c, xc) such that for all a = (a1, . . . , an−1) ∈ {0, 1}n−1,

δ(PY CVM |A=a, PXCCSB(C,XC)) ≤ ε .

Hence, using the triangle inequality, we get for all a, a′ that

δ(PY jCjVM |A=a, PY jCjVM |A=a′) ≤ δ(PY CVM |A=a, PY CVM |A=a′) (2.12)

≤ 2ε. (2.13)
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We have Pr[Y j 6= Xj
C | A = a] ≤ ε for all a. If A = (0, . . . , 0), we have Xj

C = Xj
0 . SinceXj ↔ VM ↔ Y j ,

it follows from (B.3) and (B.9) that

H(Y j | VM,A = (0, . . . , 0)) ≤ H(Y j | Xj , A = (0, . . . , 0)) (2.14)

≤ H(Y j | Xj
0 , A = (0, . . . , 0)) ≤ ε+ h(ε) .

Now, let us map Cj to a bit-string of size ⌈log n⌉, and let Cb be the bth bit of that bit-string, where
b ∈ {0, . . . , ⌈log n⌉ − 1}. Let ab = (ab1, . . . , a

b
n−1), where abi = 1 if and only if the bth bit of i is 1.

Conditioned on A = ab, we have Xj
C = Xj

0 ⊕ Cb. It follows from Xj ↔ VM ↔ Y jCj, (B.3) and (B.9)
that

H(Y j ⊕ Cb | VM,A = ab) ≤ H(Y j ⊕ Cb | Xj
0 , A = ab) ≤ ε+ h(ε) . (2.15)

From (2.12) and (2.14), we get

H(Y j | VMA) ≤ ε+ h(ε) + 2ε+ h(2ε) ≤ 3ε+ 3h(ε).

It follows from (2.12) and (2.15) that for all b

H(Y j ⊕ Cb | VMA) ≤ 3ε+ 3h(ε) .

Since (Cj , Y j) can be calculated from (Y j , Y j ⊕ C0, . . . , Y
j ⊕ C⌈logn⌉−1), this implies that

H(CjY j | VMA) ≤ 3(⌈log n⌉ + 1)(ε + h(ε)) .

From A↔ VM ↔ CjY j , (B.3) and ⌈log n⌉ ≤ log n+ 1 follows that

H(Cj | VM) ≤ 3(log n+ 2)(ε + h(ε)).

and, therefore,

H(C | VM) ≤
n

∑

j=1

H(Cj | VM)

≤ 3m(log n+ 2)(ε + h(ε)).

Using (B.3), (B.2) and Lemmas B1 and 1, we get

m(log n− ε log n) − h(ε) ≤ H(C | UM)

= H(V | UM) + H(C | UVM) − H(V | CUM)

≤ H(V | UM) + 3m(log n+ 2)(ε + h(ε))

≤ H(V | U) + 3m(log n+ 2)(ε + h(ε)) .

⊓⊔

Altogether, Corollary 4, Corollary 7 and Lemma 4 prove the following theorem.

Theorem 3. Let a protocol having access to PUV be an ε-secure implementation of m instances of
(n
1

)

-OTk in the semi-honest model. Then

H(U | V ) ≥ m(n− 1)k − (4n− 2)(εmk + h(ε)),

H(V | U) ≥ m log n−m(4 log n+ 7)(ε + h(ε)),

I(U ;V ) ≥ mk − 7εmk − 7h(ε) .
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Since m instances of
(n
1

)

-OTk are equivalent to a primitive PUV with H(U | V ) = m(n − 1)k,

I(U ;V ) = mk and H(V | U) = m log n, any protocol that implements M instances of
(N

1

)

-OTK from m

instances of
(n
1

)

-OTk with an error of at most ε needs to fulfill

m(n− 1)k ≥M(N − 1)K − (4N − 2)(εMK + h(ε)),

mk ≥MK − 7εMK − 7h(ε),

m log n ≥M logN −M(4 logN + 7)(ε + h(ε)) .

Hence, we get

m

M
≥ max

(

(N − 1)K

(n− 1)k
,
K

k
,
logN

log n

)

− 7NK · (ε+ h(ε)) ,

which is the statement of Corollary 1.

In Appendix B we also derive new bounds for protocols implementing (p)-RabinOTk (Theorems B1-
B2), and show that our bounds imply bounds for implementations of oblivious linear function evaluation
(OLFE, Corollary B1). In Appendix A we show that our bounds on OT and RabinOT in the semi-honest
model imply similar bounds in the malicious model.

3 Reversing String OT Efficiently using Quantum Communication

As the bounds of the last section generalize the known bounds for perfect implementations of OT from
[Bea96,DM99,WW05,WW08] to the statistical case, it is natural to ask whether similar bounds also
hold for quantum protocols, i.e., if the bounds presented in [SSS09] can be generalized to the statistical
case. We answer this question with no by giving a statistically secure quantum protocol that violates
these bounds. Thereto we introduce the following functionality FA→B,k

MCOM
that can be implemented from

(n
1

)

-OTk as we will show.

Definition 4 (Multi-Commitment). The functionality FA→B,k
MCOM behaves as follows: Upon (the first)

input (commit, b) with b ∈ {0, 1}k from Alice, send committed to Bob. Upon input (open,T) with
T ⊆ [k] from Alice send (open, bT ) to Bob. All communication/input/output is classical. We call Alice
the sender and Bob the recipient.

In [BBCS92] a protocol has been proposed that implements
(2
1

)

-OTk from commitments. Recently,
a formal proof of the protocol has been presented in [DFL+09] (see also [Yao95,CDMS04,BF09]). The
protocol uses m = O(k + κ) commitments to 2 bits to implement

(2
1

)

-OTk with an error of 2−Ω(κ).
In the protocol, Alice sends m BB84-states, and Bob measures them either in basis + or in ×. To
ensure that Bob really measures, for every qubit received, he is required to commit to a pair of values
consisting of the basis he has measured in and the measurement outcome. Alice then asks Bob to open
a small subset T of size αm of the commitments. If Bob is able to open these values correctly, then
with high probability, Bob has measured most states correctly. OT can then be implemented with some
further classical processing. (See [DFL+09] for a complete description of the protocol.) In [Unr09] it
has been shown that this protocol implements statistically secure and universally composable oblivious
transfer from any statistically secure commitment scheme. Obviously the construction remains secure if
we replace the commitment scheme with FA→B,k

MCOM
. The following lemma that we prove in Appendix C

shows that FA→B,k
MCOM

can be implemented from the oblivious transfer functionality FA→B,k
OT

(see [Unr09]

for a definition of FA→B,k
OT

). Note that we assume as in the proofs of [Unr09] that all communication
between the players is over secure channels and we only consider static adversaries.
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Inputs: Alice has an input b = (b1, . . . , bk) ∈ {0, 1}k in Commit. Bob has an input T ⊆ [k] in Open.
Commit(b):
For all 1 ≤ i ≤ κ:

1. Alice and Bob invoke FA→B,k
OT

with random inputs xi0, x
i
1 ∈ {0, 1}k and ci ∈R {0, 1}k .

2. Bob receives yi = xici from FA→B,k
OT

.
3. Alice sends mk := xi0 ⊕ xi1 ⊕ b to Bob.

Open(T):

1. Alice sends b|T , T and xi0|T , xi1|T for all 1 ≤ i ≤ κ to Bob.
2. If mi|T = xi0|T ⊕ xi1|T ⊕ bi|T and yi|T = xic|T for all 1 ≤ i ≤ κ, Bob accepts and outputs bT ,

otherwise he rejects.

Lemma 5. The above protocol statistically UC-realizes FA→B,k
MCOM with an error of 2−κ/2 using κ instances

of FA→B,k
OT .

Since any classically UC secure protocol is also statistically quantum UC secure ([Unr09]), we get
together with the proofs from [DFL+09] and [Unr09] the following theorem.

Theorem 4. There exists a protocol that implements
(2
1

)

-OTk
′

with an error ε from κ = O(log 1/ε)

instances of
(

2
1

)

-OTk in the opposite direction where k′ = Ω(k).

Since we can choose k ≫ κ, this immediately implies that the bound of Corollary 4 does not hold for
quantum protocols. Similar violations can be shown for the other two lower bounds. For example, it
has been shown in [WNI03] that statistically secure and universally composable10 commitments can be
implemented from shared randomness PUV that is distributed according to (p)-RabinOT at a rate of

H(U | V ) = 1− p. Together with Theorem 8, one can implement FB→A,k
OT

with k ∈ Ω(n(1− p)) from n
copies of PUV . Since I(U ;V ) = p, we can also violate the bound of Corollary 7 with a quantum protocol.

In [WNI03] it has been conjectured that noiseless quantum communication does not increase the
commitment capacity. Since

(2
1

)

-OTk has a commitment capacity of 1, our example also implies that
this conjecture is false.

4 Lower Bounds for Quantum Protocols

The protocols presented in the previous section prove that the known impossibility results for perfectly
secure oblivious transfer reductions from [SSS09] do not hold for statistically secure quantum proto-
cols. Thus, it seems natural to ask whether quantum protocols can even extend oblivious transfer or,
more generally, how efficient statistically secure quantum protocols can be. In this section we prove an
impossibility result that holds for statistically secure quantum protocols and that implies in particular
that also quantum protocols cannot extend OT. Since in contrast to the classical case security against
semi-honest adversaries can be trivially achieved in the quantum setting, we consider in the following
only protocols that are secure against malicious adversaries in the stand-alone model.

4.1 Preliminaries

We use the notation ρAB for a state over the Hilbert space HA ⊗ HB, and ρA := trB(ρAB). Let dA
be the dimension of HA (We assume that all Hilbert spaces are finite-dimensional.). Furthermore, we

10 Stand-alone statistically secure commitments based on stateless two-party primitives are universally composable
([DvdGMQN08]).
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denote by τA = 1A

dA
the fully mixed state on HA. We call a state ρXA a cq-state, if it has the form

ρXA =
∑

x∈{0,1}
px · |x〉〈x|X ⊗ ρAx .

The statistical distance between two states ρ and φ is defined as

δ(ρ, φ) := max
D

∣

∣ Pr[D(ρ) = 1] − Pr[D(φ) = 1]
∣

∣ .

where we maximize over all measurements D(·) that take a quantum state as input and output one bit.

We need the von Neumann entropy, defined as

H(A | B)ρ := H(ρAB) −H(ρB) ,

where H(ρ) := tr(−ρ log(ρ)), and the following facts about the von Neumann entropy. First, from the
Alicki-Fannes inequality [AF03] follows that for any state ρAB, δ(ρAB , τA ⊗ ρB) ≤ ε implies

H(A | B)ρ ≥ (1 − 4ε) · log dA − 2h(ε) . (4.1)

If there exists a measurement on B with outcome X ′ such that Pr[X ′ 6= X] ≤ ε, then

H(X | B)ρ ≤ H(X | X ′) ≤ h(ε) + ε · k (4.2)

for any cq-state ρXB . Finally, we use the fact that joint entropy of two systems satisfies subadditivity
and the triangle inequality

H(AB) ≤ H(A) +H(B), (4.3)

H(AB) ≥ |H(A) −H(B)|. (4.4)

This implies

H(A | B) −H(A | BC) = H(AB) −H(B) −H(ABC) +H(BC)

≤ H(AB) +H(C) −H(ABC)

≤ H(AB) +H(C) − |H(AB) −H(C)|
≤ 2min{H(AB),H(C)}
≤ 2H(C) (4.5)

for any state ρABC .

4.2 Oblivious Transfer

A protocol is an ε-secure implementation of OT if for any adversary A attacking the protocol (real
setting), there exists a simulator S using the ideal OT (ideal setting) such that for all inputs of the
honest players the real and the ideal setting can be distinguished with an advantage of at most ε. This
definition implies the following three conditions (see also [FS08]).

– Correctness: If both players are honest, then in the ideal setting, the receiver always gets y = xc.
This implies that in an ε-secure protocol, Bob must output a value Y where

Pr[Y 6= xc] ≤ ε . (4.6)
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– Security for Alice: Let now Alice be honest and Bob malicious, and let Alice’s input be chosen
uniformly at random. In the ideal setting, the simulator must provide OT with a classical input
C ′ ∈ {0, 1}. He gets back the output Y and then outputs a quantum state that may depend on C ′

and Y . The output of the simulator together with classical values X0, X1 and C ′ now define the
state σX0X1BC′

.

Since X1−C′ is random and independent of C ′ and Y , we must have

σX1−C′XC′BC′
= τX1−C′ ⊗ σXC′BC′

and δ(σX0X1B , ρX0X1B) ≤ ε (4.7)

where ρX0X1B is the resulting state of the protocol.11

– Security for Bob: If Bob is honest and Alice malicious, the simulator outputs a quantum state σA

that is independent of Bob’s input c. Let ρAc be the state that Alice has at the end of the protocol
if Bob’s input is c. The security definition now requires that δ(σA, ρAc ) ≤ ε for c ∈ {0, 1}. By the
triangle inequality, we get

δ(ρA0 , ρ
A
1 ) ≤ 2ε . (4.8)

Note that the Conditions (4.6), (4.7) and (4.8) are only necessary for the security of a protocol, they
do not imply that a protocol is secure.

4.3 Lower Bounds

In the following we will give two lower bounds for quantum protocols that implement
(2
1

)

-OTk using a
trusted resource such as trusted randomness distributed to the players or a bit commitment functionality.
Our proofs use similar techniques as the impossibility results in [May97,LC97,Lo97]. First, the protocol
is replaced by a purified version of the protocol that is equivalent in a certain sense. In particular the
purified version has the same security properties as the original protocol and the impossibility of the
former implies the impossibility of the latter. In this protocol the players defer all of their measurements
to the very end of the protocol. (See also [BCMS97].)

Let Alice choose her inputs uniformly at random and let Bob’s input be c. When Alice and Bob
execute the purified protocol honestly the final state just before the honest players perform their mea-
surements is a pure state |ρ〉ABEc , where A and B are the quantum memory of Alice and Bob, and E is
the memory of the trusted resource. We use the following technical lemma that we prove in Appendix C
which is also used in [May97,LC97,Lo97].

Lemma 6. For c ∈ {0, 1} let the states |ρ〉ABEc be given. If δ(ρA0 , ρ
A
1 ) ≤ ε, then there exist a unitary

UBE such that

δ(|ρ〉ABE0 , (1A ⊗ UBE)|ρ〉ABE1 ) ≤
√

2ε . (4.9)

We first consider protocols where the players have access to a primitive |ψ〉ABE that generates a pure
state |ψ〉ABE , distributes registers A and B to Alice and Bob respectively and keeps E in its memory.

Theorem 5. To implement a
(2
1

)

-OTk over strings of size k with an error of at most ε from a primitive

|ψ〉ABE we need

2H(E)ψ ≥ (1 − 21ε − 2
√
ε) · k − 11h(ε) − 2h(

√
ε) .

11 The standard security definition of OT considered here requires Bob’s choice bit to be fixed at the end of the protocol.
To show that a protocol is insecure, it suffices therefore to show that Bob can still choose after the termination of the
protocol if he wants to receive x0 or x1. Lo in [Lo97] shows impossibility of OT in a stronger sense, namely that Bob
can learn all of Alice’s inputs.
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Proof. Let the final state of the protocol be |ρ〉ABEc , when both players are honest and Bob has input
c ∈ {0, 1}. If Bob is executing the protocol honestly using input c = 1, he must be able to calculate X1

with an error of at most 1 − ε. Since the protocol is ε-secure for Alice, it follows from Lemma 11 in
Appendix F that

δ(ρX0B
1 , τX0 ⊗ ρB1 ) ≤ 5ε .

Eq. (4.1) implies that

H(X0 | B)ρ1 ≥ (1 − 20ε) · k − 2h(5ε) ≥ (1 − 20ε) · k − 10h(ε) .

Since the protocol is ε-secure for Bob, we have δ(ρA0 , ρ
A
1 ) ≤ 2ε. From Lemma 6 follows that there exists

a unitary UBE such that Bob could transform the state ρ1 into the state ρ′0 with δ(ρ0, ρ
′
0) ≤ 2

√
ε, if

he had access to E. Since in ρX0B
0 , X0 can be guessed from ρB0 with probability 1 − ε, it follows from

Lemma 10 in Appendix F that X0 can be guessed from ρBE1 with a probability of at least 1− ε− 2
√
ε.

Using Eq. (4.2), we get

H(X0 | BE)ρ1 ≤ h(ε+ 2
√
ε) + (ε+ 2

√
ε) · k

≤ h(ε) + h(2
√
ε) + (ε+ 2

√
ε) · k .

Hence, using (4.5) the statement follows

2H(E)ψ = 2H(E)ρ1 ≥ H(X0 | B)ρ1 −H(X0 | BE)ρ1

≥ (1 − 20ε) · k − 10h(ε) − h(ε) − h(2
√
ε) − (ε+ 2

√
ε) · k

= (1 − 21ε− 2
√
ε) · k − 11h(ε) − 2h(

√
ε) .

⊓⊔

A classical primitive PUV can be modeled by the quantum primitive

|ψ〉ABE =
∑

u,v

√

PUV (u, v) · |u, v〉AB ⊗ |u, v〉E

that distributes the values u and v and keeps the purification in its memory E. Therefore, we get the
following corollary from Theorem 5.

Corollary 8. To implement a
(2
1

)

-OTk with an error of at most ε from a primitive PUV , we need at
least 2H(UV ) ≥ (1 − 21ε − 2

√
ε) · k − 11h(ε) − 2h(

√
ε).

Since m instances of
(

2
1

)

-OTk can be implemented from shared randomness with H(UV ) = 2k + 1
we get the following corollary.

Corollary 9. To implement a
(2
1

)

-OTk with an error of at most ε from n instances of
(2
1

)

-OTk
′

in
either direction, we need at least 2n(2k′ + 1) ≥ (1 − 21ε− 2

√
ε) · k − 11h(ε) − 2h(

√
ε).

Next, we prove a bound for implementations of
(

2
1

)

-OTk from commitments. We can model black-box
commitments by a trusted functionality that receives bits over a classical channel and stores them in
a register E. When the committer sends the open command, the functionality sends the bits to the
receiver. We can replace the two classical channels with a quantum channel where the players measure
the qubits when sending and after receiving them. These measurements can then be purified by the
players. Adapting the proof of Theorem 5 to this scenario we get the following bound.

Theorem 6. To implement a
(2
1

)

-OTk with an error of at most ε we need to commit to at least

(1 − 21ε− 2
√
ε)k/2 − 6h(ε) − h(

√
ε)

bits in total.
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Proof. Let the final state of the protocol be |ρ〉ABEc , when both players are honest and Bob has input
c ∈ {0, 1}. As in the proof of Theorem 5 we get that

H(X0 | B)ρ1 ≥ (1 − 20ε) · k − 2h(5ε) ≥ (1 − 20ε) · k − 10h(ε) .

and

H(X0 | BE)ρ1 ≤ h(ε) + h(2
√
ε) + (ε+ 2

√
ε) · k .

Let E contain at most n qubits. Then it follows from Eq. (4.5) that

H(X0 | SBE)ρ1 ≥ H(X0 | SB)ρ1 − 2n .

Hence, the statement follows from

2n ≥ H(X0 | B)ρ1 −H(X0 | BE)ρ1

≥ (1 − 20ε) · k − 10h(ε) − h(ε) − h(2
√
ε) − (ε+ 2

√
ε) · k

= (1 − 21ε − 2
√
ε) · k − 11h(ε) − 2h(

√
ε) .

⊓⊔

From Corollary 9 and Theorem 6 follows that OTs and commitments cannot be extended by quantum
protocols. The proofs are given in Appendix D.2 and D.3.

Corollary 10. Any (quantum) protocol that implement m+ 1 instances of
(2
1

)

-OT1 from m instances

of
(2
1

)

-OT1 must have an error of at least 5·10−6

m for any m > 0.

Corollary 11. Any (quantum) protocol that implements m+1 bit commitments out of m commitments
must have an error of at least 1

5800·8·(12m+20056) for any m > 0.

Next, we give an additional lower bound for reductions of OT to commitments that shows that the
number of commitments (of arbitrary size) used in any ε-secure protocol must be at least Ω(log(1/ε)).
We model the commitments as before, but store the commitments of Alice and Bob separately in EA
and EB. The proof idea is the following: We let the adversary guess a subset T of commitments that he
will be required to open during the protocol. He honestly executes all commitments in T , but cheats in
all others. If the adversary guesses T right, he is able to cheat in the same way as in any protocol that
does not use any commitments.

Theorem 7. If ε < 2−κ/36, then there does not exist a ε-secure quantum protocol that implements
(

2
1

)

-OTk using κ commitments (of arbitrary length) only.

Proof. We assume that both Alice and Bob commit at most κ times. We will show that there exists a
malicious Alice and a malicious Bob such that either Alice can break Bob’s security condition or vice
versa.

Let |ρ〉ABEAEB

c be the final state of the protocol when both players are honest and Bob has input
c ∈ {0, 1}. We distinguish two cases. In the first case we assume that an honest Alice could guess c with
an advantage of at least ε′ := 1/18, if she had access to AEA, i.e.,

δ(ρAEA
0 , ρAEA

1 ) ≥ ε′ . (4.10)

We let Bob be honest and let Alice apply the following strategy: She chooses a random subset T of [k].
She executes all commitments in T honestly, but for all commitments not in T she sends |0〉 to EA and
keeps her state in her quantum memory. Otherwise, she follows the whole protocol honestly.
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During the protocol, Bob may ask Alice to open some commitments. Let that set by T ′. If T ′ = T ,
which happens with probability 2−κ independent of everything else, then at the end of the protocol the
global state is |ρ〉c, with the difference that the values normally in EA are now part of A. Therefore,
Alice has an advantage of more than ε′ to distinguish c = 0 from c = 1 in this case, and her total
advantage is more than ε′ · 2−κ > 2ε, which contradicts condition (4.8).

In the second case, we assume that δ(ρAEA
0 , ρAEA

1 ) < ε′. From condition (4.6) follows that honest
Bob can guess X1 with probability 1 − ε if c = 1. We can apply Lemma 11, which tells us that X1

should be 5ε-close to uniform with respect to ρB1 . To get a contradiction to the security condition (4.7),
we can use equation (F.1) (which is implied by Lemma 10 in Appendix F): it suffices to show that Bob
can guess the first bit of X0 with a probability of at least 1

2 + 5ε.

Let Alice be honest and Bob do the same attack as Alice in the first case, choosing c = 1. Again,
if Bob guesses the set T right, which happens with probability 2−κ, all qubits normally in EB are in
B. Then Lemma 6 tells us that there exist a unitary UBCB such Bob can transform the state ρ1 into a
state ρ′1 where δ(ρ0, ρ

′
1) ≤

√
2ε′. Bob can guess X0 with an error of at most ε in ρ0, and therefore he

can guess X0 in ρ′1 with an error of at most
√

2ε′ + ε.

If he fails to guess T , he simply outputs a random bit as guess for the first bit of X0. Since the
probability that he guesses T correctly is exactly 2−κ, he can guess the first bit of X0 with probability

(1 − 2−κ) · 1

2
+ 2−κ · (1 − ε−

√
2ε′) =

1

2
+ 2−κ ·

(

1

2
− ε−

√
2ε′

)

>
1

2
+ 2−κ ·

(

1

2
− ε′/2 −

√
2ε′

)

=
1

2
+ 2−κ · 5

36
=

1

2
+ 5ε .

⊓⊔

4.4 Reduction of OT to String-Commitments

The protocol we described in Section 3 uses m = O(k+κ) commitments to 2 bits to implement
(2
1

)

-OTk

with an error of 2−Ω(κ). If k = ω(κ) this it is not optimal with respect to Theorem 7. We will now show
how to construct a protocol that is optimal with respect to the lower bounds of both Theorem 6 and
Theorem 7. We modify the protocol by grouping the m pairs into κ blocks of size b := m/κ. We let Bob
commit to the blocks of b pairs of values at once. The subset T is now of size ακ, and defines the blocks
to be opened by Bob. If Bob is able to open all commitment in T correctly, then with high probability,
he must have correctly measured almost all qubits. We only need to estimate the error probability of
the sampling strategy that corresponds to the new checking procedure which Alice applies and apply
the proof of [DFL+09] to get the following theorem. The formal proof is given in Appendix D.4.

Theorem 8. There exists a quantum protocol that implements
(2
1

)

-OTk with an error of at most ε out
of κ = O(log 1/ε) commitments of size b, where κb = O(k + log 1/ε).

Using Theorem 8, it can be shown that string-commitments cannot be extended. The proof of the
following corollary can be found in Appendix D.5.

Corollary 12. Let m > 0. If there exists a (quantum) protocol that implements string commitments of
length m′ + 1 out of string commitments of length m′ for all m′ > m with an error of at most ε, then
there exists a constant c > 0 such that

ε ≥ c

m
.
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A Malicious OT implies Semi-honest OT

In the malicious model the adversary is not required to follow the protocol. Therefore, a protocol that is
secure in the malicious model protects against a much bigger set of adversaries. On the other hand, the
security definition in the malicious model only implies that for any (also semi-honest) adversary there
exists a malicious simulator for the ideal primitive, i.e., the simulator is allowed to change his input or
output from the ideal primitive.

Since this is not allowed in the semi-honest model, security in the malicious model does not imply
security in the semi-honest model in general.

For implementations of OT12, however, it has been shown in [PR08] that this implication does hold,
because if the adversary is semi-honest, a simulator can only change the input with small probability.
Otherwise, he is not able to correctly simulate the input or the output of the protocol. Therefore, any
impossibility result for OT in the semi-honest model also implies impossibility in the malicious model.

We will state these results for
(n
1

)

-OTk and (p)-RabinOTk with explicit bounds on the errors.

Lemma A1 If a protocol implementing
(n
1

)

-OTk is secure in the malicious model with an error of at
most ε, then it is also secure in the semi-honest model with an error of at most (2n + 1)ε.

Proof. From the security of the protocol we know that there exists a (malicious) simulator that simulates
the view of honest Alice. If two honest players execute the protocol on input (x0, . . . , xn−1) and c, then
with probability 1 − ε the receiver gets y = xc. Thus, the simulator can change the input xi with

12 And any other so-called deviation revealing functionality.
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probability at most 2ε for all 0 ≤ i < n− 1. We construct a new simulator that executes the malicious
simulator but never changes the input. This simulation is (2n + 1)ε-close to the distribution of the
protocol. From the security of the protocol we also know that there exists a (malicious) simulator
that simulates the view of honest Bob. If two honest players execute the protocol with uniform input
(X0, . . . ,Xn−1) and choice bit c, then with probability 1 − ε the receiver gets y = xc. If the simulator
changes the choice bit c, he does not learn xc and the simulated y is not equal to xc with probability at
least 1/2. Therefore, the simulator can change c or the output with probability at most 4ε. As above
we can construct a simulator for the semi-honest model with an error of at most 5ε. ⊓⊔

Lemma A2 If a protocol implementing (p)-RabinOTk is secure in the malicious model with an error of

at most ε, then it is also secure in the semi-honest model with an error of at most max( 2k+1

2k−1
ε+2ε, 2ε/p).

Proof. From the security of the protocol we know that there exists a (malicious) simulator that simulates
the view of honest Alice. If two honest players execute the protocol on input x, then with probability
at most ε the receiver gets an output x′ /∈ {x,∆}. Thus, the simulator can change the input x with
probability at most 2ε/p. From the security of the protocol we also know that there exists a (malicious)
simulator that simulates the view of honest Bob. Let the input be chosen uniformly. If the simulator
changes the output from ∆ to y′, then with probability at most 1/2k it holds that y′ = x. Thus, the

simulator may change the output with probability at most 2k+1

2k−1
ε/(1−p) from∆. Therefore the simulator

may change an output x 6= ∆ with probability at most 2k+1

2k−1
ε/(1 − p) + 2ε. Otherwise the probability

that x′ /∈ {x,∆} is greater than 2ε. As in lemma A1 we can now construct semi-honest simulators with

an error of at most max( 2k+1

2k−1
ε/(1 − p) + 2ε, 2ε/p). ⊓⊔

Note that some of our proofs could easily be adapted to the malicious model to get slightly better
bounds than the ones that follow from the combination of the bounds in the semi-honest model and
Lemmas A1 and A2.

B Lower Bounds for Classical Two-Party Computation

B.1 Information Theory

We will use the following tools from information theory13 in our proofs. The conditional Shannon entropy
of X given Y is defined as14

H(X | Y ) := −
∑

x,y

PXY (x, y) log PX|Y (x, y) ,

and the mutual information of X and Y given Z as

I(X;Y | Z) = H(X | Z) − H(X | Y Z) .

We use the notation
h(p) = −p log p− (1 − p) log(1 − p)

for the binary entropy function, i.e., h(p) is the Shannon entropy of a binary random variable that takes
on one value with probability p and the other with 1− p. Note that the function h(p) is concave, which
implies that for any 0 ≤ p ≤ 1 and 0 ≤ c ≤ 1, we have

h(c · p) ≥ c · h(p) . (B.1)

13 See [CT91] for a good introduction into information theory.
14 All logarithms are binary, and we use the convention that 0 · log 0 = 0.
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We will need the chain-rule

H(XY | Z) = H(X | Z) + H(Y | XZ) , (B.2)

and the following monotonicity inequalities

H(XY | Z) ≥ H(X | Z) ≥ H(X | Y Z) , (B.3)

I(WX;Y | Z) ≥ I(X;Y | Z) . (B.4)

We will also need

H(X | Y Z) =
∑

z

PZ(z) ·H(X | Y,Z = z) . (B.5)

X ↔ Y ↔ Z implies that

H(X | Z) ≥ H(X | Y Z) = H(X | Y ) . (B.6)

It is easy to show that if W ↔ XZ ↔ Y , then

I(X;Y | ZW ) ≤ I(X;Y | Z) and (B.7)

I(W ;Y | Z) ≤ I(X;Y | Z) . (B.8)

We will need the following lemma.

Lemma B1 Let (X,Y ), and (X̂, Ŷ ) be random variables distributed according to PXY and PX̂Ŷ , and
let δ(PXY , PX̂Ŷ ) ≤ ǫ. Then

H(X̂ |Ŷ ) ≥ H(X|Y ) − ǫ log(|X |) − h(ǫ).

Proof. There exist random variables A,B such that PXY |A=0 = PX̂Ŷ |B=0 and Pr[A = 0] = Pr[B = 0] =

1 − ǫ. Thus, using the monotonicity of the entropy and the fact that H(X) ≤ log(|X |) we get that

H(X̂|Ŷ ) ≥ (1 − ε)H(X̂ |Ŷ A = 0) + εH(X̂ |Ŷ A = 1)

≥ (1 − ǫ)H(X|Y B = 0)

= H(X|Y B) − ǫH(X|Y B = 1)

= H(XB|Y ) −H(B|Y ) − ǫH(X|Y B = 1)

≥ H(X|Y ) − h(ǫ) − ǫ log(|X |).

⊓⊔

Lemma (B1) implies Fano’s inequality: For all X, X̂ ∈ X with Pr[X 6= X̂ ] ≤ ε, we have

H(X | X̂) ≤ ε · log |X | + h(ε) . (B.9)

B.2 Inner Product from OT

Proposition 1. There is a protocol that computes the function IPn in the semi-honest model perfectly
secure with n calls to

(2
1

)

-OT1.

Proof. Consider the following protocol from [BM04] that is adapted to
(

2
1

)

-OT1: Alice chooses r =
(r1, . . . , rn−1) uniformly at random and sets rn := ⊕n−1

i=1 . Then, for each i Alice inputs ai,0 := ri and
ai,1 := xi ⊕ ri to the OT and Bob inputs yi. Bob receives zi from the OTs and outputs ⊕n

i=1zi. Since
⊕n
i=1zi = ⊕n

i=1(xiyi ⊕ ri) = (⊕n
i=1xiyi) ⊕ (⊕n

i=1ri) = ⊕n
i=1xiyi = IPn(x, y), the protocol is correct.

The security for Alice follows from the fact that z1, . . . , zn is a uniformly random string subject to
⊕n
i=1zi = IPn(x, y).
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B.3 Generalization of Theorem 2

In order to generalize Theorem 2 we define the following relation on the rows of a matrix Mf .

Definition 5 ([Kus89]). The relation ∼ on the rows of a matrix Mf is defined as follows: x, x′ ∈ X
satisfy x ∼ x′ if there exists y ∈ Y such that Mf (x, y) = Mf (x

′, y). The equivalence relation ≡r on
the rows of Mf is defined as the transitive closure of ∼, i.e., x, x′ ∈ X satisfy x ≡r x

′ if there exist
x1, . . . , xℓ such that x ∼ x1 ∼ · · · ∼ xℓ ∼ x′. Furthermore, we say that x, x′ ∈ X are c-equivalent with
respect to ≡r with c ∈ N, if if there exist x1, . . . , xℓ such that x ∼ x1 ∼ · · · ∼ xℓ ∼ x′ and ℓ ≤ c.

Lemma 7. Let f : X × Y → Z be a function such that all rows of Mf are c-equivalent with respect to
≡r. Let X and Y be chosen uniformly at random. Then for all x, x′ ∈ X and all y ∈ Y

δ(PM |X=x,Y=y, PM |X=x′,Y=y) ≤ 2(1 + 2(c+ 1))ε = (6 + 4c)ε.

Proof. As in the proof of Lemma 2 we get for all y 6= y′ ∈ Y that

δ(PM |X=x,Y=y, PM |X=x,Y=y′) ≤ 2ε ,

From the security of the protocol there exists a simulator SB such that for all x, y

δ(PM |X=x,Y=y, PSB(y,f(x,y))) ≤ ε.

Thus, for all x, x′, y with f(x, y) = f(x′, y), we have

δ(PM |X=x,Y=y, PM |X=x′,Y=y) ≤ 2ε.

Since all all rows of Mf are c-equivalent with respect to ≡r, we get

δ(PM |X=x,Y=y, PM |X=x′,Y=y) ≤ 2(1 + 2(c+ 1))ε = (6 + 4c)ε.

Let f : X × Y → Z be a function such that there exists ȳ ∈ Y with |{f(x, ȳ) : x ∈ X}| ≥ t and all
rows of Mf are c-equivalent with respect to ≡r. There exists X ′ ⊆ X with |X ′| = t and f(x, ȳ) 6= f(x′, ȳ)
for all x 6= x′ ∈ X ′. Let Alice’s input X be uniformly distributed over X ′. Let Bob’s input be fixed to ȳ.
Let M be the whole communication. Then the following lemma holds for any ε-secure implementation
of f .

Lemma 8.
H(f(X, ȳ) |M) ≥ log(t) − (6 + 4c)ε log(t) − (6 + 4c)h(ε).

Proof. From Lemma 7, we have

δ(PM |X=x, PM |X=x′) ≤ 2(1 + 2(c + 1))ε = (6 + 4c)ε.

This implies that
δ(PXM , PXPM ) ≤ (6 + 4c)ε.

Using Lemma B1 we get

H(f(X, ȳ) |M) = H(X |M)

≥ log(t) − (6 + 4c)ε log(t) − (6 + 4c)h(ε).

The following theorem follows from Lemma 8 using the proof of Theorem 2.

Theorem 9. Let f : X ×Y → Z be a function such that all rows of Mf are c-equivalent with respect to
≡r and such that there exists ȳ ∈ Y with |{f(x, ȳ) : x ∈ X}| ≥ t. Then for any protocol that implements
f with an error of at most ε in the semi-honest model from a primitive PUV

I(U ;V ) ≥ log(t) − (7 + 4c)ε log(t) − (7 + 4c)h(ε).
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B.4 Lower Bounds for Protocols implementing RabinOT

Let a protocol P having access to PUV be an ε-secure implementation of (p)-RabinOTk in the semi-
honest model. In the following we assume 0 ≤ ε < min(p, 1 − p). Let X ∈ {0, 1}k be the uniformly
distributed input of Alice and Y ∈ {0, 1}k ∪∆ the output of Bob. Let M be the whole communication
during the execution of the protocol. Let PȲ |X be the conditional distribution of an ideal RabinOT and
PȲ X := PXPȲ |X . Then the following two lemmas hold for any protocol.

Lemma B2

H(X | UM) ≤ 3(εk + h(ε))

min(p, 1 − p) − ε
.

Proof. From the security of the protocol follows that there exists a simulator SA(x) such that δ(PXSA(X)Ȳ , PXUMY )

ε. Let D = 1 if Y 6= ∆ and 0 otherwise, and D̄ = 1 if Ȳ 6= ∆ and 0 otherwise. We have PXSA(X)D̄ =
PXSA(X)PD̄. From Lemma F2 follows that

δ(PXMU |D=0, PXMU |D=1) ≤
2ε

min(p, 1 − p) − ε
. (B.10)

Since δ(PXY , PXȲ ) ≤ ε, we have

Pr[Y 6= X | D = 1] ≤ ε

Pr[D = 1]
≤ ε

p− ε
.

We have X ↔ UM ↔ Y . Thus, it follows from (B.6) and (B.9) that

H(X | UM,Y 6= ∆) ≤ H(X | Y, Y 6= ∆)

≤ εk

p− ε
+ h

(

ε

p− ε

)

≤ εk + h(ε)

p− ε
. (B.11)

Together (B.10) and (B.11) imply that

H(X | UM,Y = ∆) ≤ εk + h(ε)

p− ε
+

2(εk + h(ε))

min(p, 1 − p) − ε

≤ 3(εk + h(ε))

min(p, 1 − p) − ε
, (B.12)

and (B.5), (B.11) and (B.12) imply that

H(X | UMD) ≤ 3(εk + h(ε))

min(p, 1 − p) − ε
.

Using X ↔ UM ↔ Y D and (B.6) we get that H(X | UM) = H(X | UMD). The statement follows. ⊓⊔

Lemma B3

H(X | VM) ≤ (1 − p)k + εk + h(ε) .

Proof. There exists a simulator SB(ȳ) such that δ(PXȲ SB(Ȳ ), PXY VM ) ≤ ε. Since X ↔ VM ↔ Y , it
follows from (B.6) and Lemma B1 that

H(X | VM) ≤ H(X | Y )

≤ H(X | Ȳ ) + εk + h(ε)

= (1 − p) · k + εk + h(ε) .

⊓⊔
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Theorem B1 Let a protocol having access to PUV be an ε-secure implementation of (p)-RabinOTk in
the semi-honest model. Then

H(U | V ) ≥ (1 − p)k − 4(εk + h(ε))

min(p, 1 − p) − ε
.

Proof. From Lemma B2 and (B.3)

H(X | UVM) ≤ H(X | UM) ≤ 3(εk + h(ε))

min(p, 1 − p) − ε
.

Using Lemmas B1 and 1, (B.3) and (B.2) we get

m(1 − p)k − εk − h(ε) = H(X | Ȳ ) − εk − h(ε)

≤ H(X | VM)

= H(U | VM) + H(X | UVM) − H(U | XVM)

≤ H(U | VM) +
3(εk + h(ε))

min(p, 1 − p) − ε

≤ H(U | V ) +
3(εk + h(ε))

min(p, 1 − p) − ε
.

The statement follows now from 1/(min(p, 1 − p) − ε) ≥ 1. ⊓⊔

Lemma B4

H(X |M) ≥ k − 5(εk + h(ε))

min(p, 1 − p) − 2ε
.

Proof. Let D be defined as before. Since the protocol is secure, there exists a simulator SB(ȳ) such that
δ(PXYMV , PXȲ MBVB

) ≤ ε, where (MB , VB) := SB(Ȳ ). There also exists a simulator SA(x) such that
δ(PXȲ MAUA

, PXYMU ) ≤ ε, where (MA, UA) := SA(X). Let D̄ = 1 if Ȳ 6= ∆ and 0 otherwise. We have
PXMAD̄

= PXMA
PD̄. We have

δ(PXȲ MA
, PXȲ MB

) ≤ 2ε

since δ(PXȲ MA
, PXYM ) ≤ ε and δ(PXȲ MB

, PXYM ) ≤ ε. Together with Lemma F2 it follows that

δ(PXMB |D̄=0, PXMB |D̄=1) ≤
4ε

min(p, 1 − p) − 2ε
.

Since H(X |MB , Ȳ = ∆) = k, together with Lemma B1 this implies

H(X |MB , Ȳ 6= ∆) ≥ k − 4(εk + h(ε))

min(p, 1 − p) − 2ε
.

From (B.5) follows

H(X |MBD̄) ≥ k − 4(εk + h(ε))

min(p, 1 − p) − 2ε
.

Therefore, using Lemma B1 again,

H(X |M) ≥ H(X |MD)

≥ k − εk − h(ε) − 4(εk + h(ε))

min(p, 1 − p) − 2ε
.

The statement follows now from 1/(min(p, 1 − p) − 2ε) ≥ 1. ⊓⊔
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Theorem B2 Let a protocol having access to PUV be an ε-secure implementation of (p)-RabinOTk in
the semi-honest model. Then

I(U ;V ) ≥ pk − 6(εk + h(ε))

min(p, 1 − p) − 2ε
.

Proof. Let Alice input X be uniformly distributed. Let Y be Bob’s outputs and M be the whole
communication. Then Lemma B4 implies that

H(X |M) ≥ k − 5(εk + h(ε))

min(p, 1 − p) − 2ε
,

and from Lemma B3 we have

H(X | VM) ≤ (1 − p)k + εk + h(ε).

Together this implies

I(U ;V |M) ≥ I(X;V |M)

= H(X |M) − H(X | VM)

≥ pk − εk − h(ε) − 5(εk + h(ε))

min(p, 1 − p) − 2ε
.

Let M i := (M1, . . . ,Mi), i.e., the sequence of all messages sent until the ith round. Without loss of
generality, let us assume that Alice sends the message of the (i + 1)th round. Since, we have M i+1 ↔
M iU ↔ V , it follows from (B.7) that

I(U ;V |M i+1) ≤ I(U ;V |M i) .

Then it follows by induction over all rounds that

I(U ;V |M) ≤ I(U ;V ) .

The statement follows now from 1/(min(p, 1 − p) − 2ε) ≥ 1. ⊓⊔

Note that as in the case of
(n
1

)

-OTk, the statement of these theorems can be generalized to m
independent instances. We leave this to the full version of this work.

B.5 Lower Bounds for Protocols implementing OLFE

We will now show that Theorem 3 also implies bounds for oblivious linear function evaluation ((q)-OLFE),
which is defined as follows:

– For any finite field GF (q) of size q, (q)-OLFE is the primitive where Alice has an input a, b ∈ GF (q)
and Bob has an input c ∈ GF (q). Bob receives d = a+ b · c ∈ GF (q).

Our lower bound is a simple consequence of the fact that (q)-OLFE can be used to implement
(2
1

)

-OTlog(q).

Corollary B1 Let a protocol having access to PUV be an ε-secure implementation of m instances of
(q)-OLFE in the semi-honest model. Then

H(U | V ) ≥ m log q − 5(εm log q + h(ε)) , (B.13)

H(V | U) ≥ m log q − 5(εm log q + h(ε)) , (B.14)

I(U ;V ) ≥ m log q − 7(εm log q + h(ε)) . (B.15)
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Proof. First of all, note that
(2
1

)

-OTk can easily be generalized to the case where x0, x1 ∈ {0, . . . , qm−1},
for any q,m > 0. Theorem 1 and Theorem 2 easily generalize to this variant of oblivious transfer. There
exists a simple reduction from this oblivious transfer to m instances of (q)-OLFE: Alice gets input
x = (x0, x1) ∈ {0, . . . , qm − 1}2. We can write xi = (x0

i , . . . , x
m−1
i ), where xji ∈ {0, . . . , q − 1}. Alice

sends aj := xj0 and bj := xj1 − xj0 to the jth instance of (q)-OLFE. Bob sends c ∈ {0, 1} to all instances
of (q)-OLFE. Bob receives yj ∈ GF (q) and outputs y := (y0, . . . , ym−1). We have y = xc, since for c = 0,
yj = xj0 + (xj1 − xj0) · 0 = xj0 and for c = 1, yj = xj0 + (xj1 − xj0) · 1 = xj1. It is easy to see that the
protocol is also secure. Therefore, a violation of (B.13) or (B.15) would imply a violation of Theorem 1 or
Theorem 2. Furthermore, it has been shown in [WW06] that (q)-OLFE is symmetric. Hence, a violation
of (B.14) would imply a violation of (B.13). ⊓⊔

From Corollary B1 follows immediately that

Corollary B2 Let a protocol P having access to m instances of (q)-OLFE be an ε-secure implementation
of m+ 1 instances of (q)-OLFE in the semi-honest model. Then

ε ·m log q + h(ε) ≥ log q

5
.

C Quantum Reductions

Lemma 5. The protocol of Section 3 statistically UC-realizes FA→B,k
MCOM

with an error of 2−κ/2 using κ

instances of FA→B,k
OT

.

Proof. Note that we assume that all communication between the players is over secure channels and
we only consider static adversaries. The statement is obviously true in the case of no corrupted parties
and in the case of both the sender and the recipient being corrupted. We construct for any adversary
A a simulator S that runs a copy of A as a black-box: In the case where the sender is corrupted S
can extract the commitment b from the input to FA→B,k

OT
and the messages except with probability

2−κ/2 as follows: Define the extracted commitment as bi := maj(m1
i ⊕ x1

0,i ⊕ x1
1,i, . . . ,m

κ
i ⊕ xκ0,i ⊕ xκ1,i)

for all 1 ≤ i ≤ k where maj denotes the majority function. Let T be a (non-empty) subset of [k] and
let b̃ ∈ {0, 1}k such that b̃|T 6= b|T . Then an honest recipient accepts b̃|T together with T in Open with
probability at most 2−κ/2 as follows: There must exist j ∈ T such that bj 6= b̃j. Then the sender needs to
change either xi0,j or xi1,j for at least κ/2 indices i. Thus, the simulator extracts the bit b in the commit

phase as specified before and gives (commit, b) to FA→B,k
MCOM

. Upon getting (b̃, T ) from the adversary, the

simulator gives (open, T ) to FA→B,k
MCOM

, if b̃|T = b|T , otherwise it stops. Therefore, any environment can
distinguish the simulation and the real execution with an advantage of at most 2−κ/2. In the case where
the recipient is corrupted S, upon getting the message committed from FA→B,k

MCOM
and the choice bits ci,

chooses the outputs yi from FA→B,k
OT

and the messages mi uniformly and independently at random for
all i. In the open phase S upon getting a (T, bT ) simulates the messages of an honest sender by setting
xi1−ci |T := mi|T ⊕ yi|T ⊕ b|T and xici |T := yi|T for all i. This simulation is perfectly indistinguishable
from the real execution. ⊓⊔

D Lower Bounds for Quantum Protocols

D.1 Proof of Lemma 6

The fidelity between ρ and φ is defined as

F (ρ, σ) := tr

√

√

φρ
√

φ .

The following lemma follows from Uhlmann’s theorem [Uhl76,Joz94].
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Lemma D1 For any two pure states |ρ〉AB and |φ〉AB there exists a unitary UB, such that

F (|ρAB〉, (1A ⊗ UB)|φAB〉) = F (ρA, φA) .

We say that ρ is ε-close to φ if δ(ρ, φ) ≤ ε. It can be shown (see for example [NC00]) that

δ(ρ, φ) =
1

2
‖ρ− φ‖1 =

1

2
tr

√

(ρ− φ)†(ρ− φ) .

F and δ are related by

1 − F (ρ, φ) ≤ δ(ρ, φ) ≤
√

1 − F (ρ, φ)2

and

1 − δ(ρ, φ) ≤ F (ρ, φ) ≤
√

1 − δ(ρ, φ)2 .

Lemma 6. For c ∈ {0, 1} the states |ρ〉ABCc be given. If δ(ρA0 , ρ
A
1 ) ≤ ε, then there exist a unitary UBC

such that

δ(|ρ〉ABC0 , (1A ⊗ UBC)|ρ〉ABC1 ) ≤
√

2ε . (D.1)

Proof. δ(ρA0 , ρ
A
1 ) ≤ ε implies that F (ρA0 , ρ

A
1 ) ≥ 1−ε. We can apply Lemma D1, which tells us that there

exists a unitary UBC , such that

F (|ρ〉ABC0 , (1A ⊗ UBC)|ρ〉ABC1 ) ≥ 1 − ε .

It follows that
√

1 − δ2(|ρ〉ABC0 , (1A ⊗ UBC)|ρ〉ABC1 ) ≥ 1 − ε

and hence,

δ(|ρ〉ABC0 , (1A ⊗ UBC)|ρ〉ABC1 ≤
√

1 − (1 − ε)2 ≤
√

2ε .

⊓⊔

D.2 Proof of Corollary 10

Corollary 10. Any (quantum) protocol that implements m+1 instances of
(2
1

)

-OT1 from m instances

of
(2
1

)

-OT1 must have an error of at least 5·10−6

m .

Proof. Let us assume that there exists a protocol that implements m+ 1 instances of
(2
1

)

-OT1 with an

error of ε. We can apply this protocol iteratively, to implement 8m instances of
(2
1

)

-OT1 with an error
of 7mε. There exists a trivial protocol that implements

(n
1

)

-OT8m from 8m instances of
(n
1

)

-OT1: Bob

simply inputs always the same choice bit. From Corollary 9 follows that for any reduction of
(

2
1

)

-OT8m

to m instances of
(2
1

)

-OT1 with an error of at most ε′, we have

184
√
ε′ + 13 · h(

√
ε′)/m ≥ 2.

Note that this bound also holds when Bob chooses his inputs in the reduction above honestly. This
implies that ε′ ≥ 4 · 10−5 and, therefore, ε ≥ 5·10−6

m . ⊓⊔
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D.3 Proof of Corollary 11

Corollary 11. Any (quantum) protocol that implementsm+1 bit commitments out ofm commitments
must have an error of at least 1

5800·8·(4m+20058) for any m > 0.

Proof. We assume that there exists a protocol that implements m+1 bit commitments out of m with an
error of ε. We can apply this protocol iteratively, to implement n := 8 · (4m+ 20058) bit commitments
with an error of at most nε. Then, we can apply the protocol from [BBCS92] to implement

(2
1

)

-OTk.
Using the analysis from [BF09] we get an error of at most

1

2
2
− 1

2
((1/4−h(δ))(n−κ)− κδ2

32(2−
√

3)
−k)

+ 4exp(−2 +
√

3

8
δ2κ) .

We choose κ := 80000, δ := 0.016 and k := 4m+ 28. Since h(δ) ≤ 1/8 and δ2

32(2−
√

3)
≤ 1

8 we get

(1/4 − h(δ))(n − κ) − κδ2

32(2 −
√

3)
− k ≥ n

8
− κ

4
− k = 30 .

So the error of the last step is at most

4 exp(−2 +
√

3

8
δ2κ) +

1

2
· 2−15 ≤ 0.0003

and the total error is at most

ε′ := 8 · (4m+ 20058)ε + 0.0003 .

But any quantum reduction of
(2
1

)

-OT4m+28 to m commitments must have an error of at least 1/2116,
since otherwise we would have

(1 − 23
√
ε′)(4m+ 28)/2 − 7h(

√
ε′) >

1

4
(4m+ 28) − 7 ≥ m ,

which contradicts Theorem 6. It follows that

nε+ 0.0003 ≥ 1/2116

or

ε ≥ 1/2116 − 0.0003

n
≥ 1

5800 · n =
1

5800 · 8 · (4m+ 20058)
.

⊓⊔

D.4 Proof of Theorem 8

We now give a formal statement for the only part that needs to be modified in the security proof of
[DFL+09], which is the last part of the proof of Lemma 4.3. We need the following sampling lemma.

Lemma 9. Let α ∈ [0, 1
2 ]. Let us take a bit-strings y = (y1, . . . ym) of length m := bκ, that we group

into κ blocks of size b. Let T ∗ be a random subset of [κ] of size ακ, T the corresponding set of bits in
[m] and T̄ the complement of T . Let T ′ be a random subset of T , where every element is chosen to be
in T ′ with probability 1

2 , independent of everything else. With α′ := (1/2 − ε)α we have for any ε > 0

Pr

[

1

|T ′|
∑

i∈T ′

yi ≤
1

(1 − α)m

∑

i∈T̄
yi − 2ε

]

≤ 3e−α
′κε2/2 .
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In the last part of Lemma 4.3 in [DFL+09], it is stated that

δ(ρTestAE , ρ̃TestAE) ≤
∑

test

PTest(test)|ε⊥test|2 = Pr[X 6∈ Btest] ,

where Btest = {x ∈ {0, 1}m|rH(x|T̄ , x̂|T̄ ) ≤ rH(x|T ′ , x̂|T ′) + ε} and rH(x, x′) is the hamming distance
between x and x′, divided by their length. If we choose y := x⊕ x̂, Lemma 9 implies that

Pr[x 6∈ Btest] ≤ 3e−α
′κε2/8 ≤

(

2e−α
′κε2/16

)2
.

Therefore, ρTestAE and ρ̃TestAE are still 2−Ω(κ)-close to each other. Everything else in the proof in
[DFL+09] remains the same. Therefore, we get

Theorem 8. There exists a quantum protocol that implements
(2
1

)

-OTk with an error of at most ε out
of κ = O(log 1/ε) commitments of size b, where κb = O(k + log 1/ε).

D.5 Proof of Corollary 12

Using the sampling strategy of Lemma 9 and the proof of Theorem 4 from [BF09] we get the following
corollary.

Corollary 13. Consider an execution of the above described implementation of
(

2
1

)

-OTk from string
commitments. Let X0 and X1 be the strings from {0, 1}k output by Alice. Then there exists a bit c such
that X1−c is close to uniform with respect to Bob’s view (given Xc), i.e., for any ε, δ > 0:

δ(ρX1−cXcE ,
1

2k
1⊗ ρXcE)

≤ 1

2
· 2− 1

2
(( 1

4
− ε

2
−h(δ))(1−α)κb−k) + 2e−(1−δ)ακδ2/32 + 2e−2ε2(1−α)κb.

where E denotes the quantum state output by Bob and 1 the identity operator on C
2k

.

Proof. As in the proof of Theorem 4 from [BF09] we consider the equivalent EPR-version of the protocol.
Let

|ϕAEo〉 ∈ HA1 ⊗ . . .HAm ⊗HEo,

be the state shared between Alice and Bob after Bob has committed to the bases θ̂ and the measurement
outcomes x̂ where we can assume θ̂ = x̂ = (0, . . . , 0). Alice now chooses a subset T of size ακb to be
opened by Bob. Let α′ := (1/2 − δ/2)α. Using Lemma 9 we can conclude that the state |ϕAT̄ Eo〉 is

εδquant ≤
√

εδclass ≤
√

3 exp(−α′κδ2/8)

close to being a superposition of states with Hamming weight of at most δ within AT̄ (if Alice does not
abort). The statement then follows from the proof given in [BF09].

Corollary 12. Let m > 0. If there exists a (quantum) protocol that implements string commitments
of length m′ + 1 out of string commitments of length m′ for all m′ > m with an error of at most ε, then
there exists a constant c > 0 such that

ε ≥ c

m
.
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Proof. We assume that there exists a protocol that implements string commitments of length m′+1 out
of string commitments of length m′ with an error of at most ε for any m′ ≥ m. Then we can start with
κ string commitments of length m and implement κ string commitments of length n := 25(4m+1) with
an error of at most κn · ε. Then, we can apply the protocol from [BBCS92] using string commitments
to implement

(

2
1

)

-OTk. Using Corollary 13 we get an error of at most

1

2
· 2− 1

2
(( 1

4
− ε̄

2
−h(δ))(1−α)κn−k) + 2exp(−(1 − δ)ακδ2/32) + 2 exp(−2ε̄2(1 − α)κm).

for any ε̄, δ > 0. We choose κ := 1300000, δ := 0.02, ε̄ := 0.01, α := 0.6, and k := 4mκ + 28. Since
((1

4 − ε̄
2 − h(δ))(1 − α) ≥ 1/25 we get

(

1

4
− ε̄

2
− h(δ)

)

(1 − α)κn − k ≥ κn

25
− k ≥ 60 .

So the error of the last step is at most

2 exp(−(1 − δ)ακδ2/32) + 2 exp(−2ε̄2(1 − α)κm) +
1

2
· 2−30 ≤ 0.00015

and the total error is at most

ε′ := κn · ε+ 0.00015 .

But any quantum reduction of
(2
1

)

-OT4m+28 to m commitments must have an error of at least 1/2116,
since otherwise we would have

(1 − 23
√
ε′)(4m+ 28)/2 − 7h(

√
ε′) >

1

4
(4m+ 28) − 7 ≥ m ,

which contradicts Theorem 6. It follows that

κn · ε+ 0.00015 ≥ 1/2116

or

ε ≥ 1/2116 − 0.00015

25κ(4m + 1)
≥ 1

3100 · 25κ(4m + 1)
.

The statement follows. ⊓⊔

E Proof of Lemma 9

We need the following two inequalities: The Chernoff/Hoeffding inequality and a uniform sampling
lemma, which follows from the Hoeffding-Azuma inequality.

Lemma E1 (Chernoff/Hoeffding Inequality [Che52,Hoe63]) Let X0, . . . ,Xn−1 be independent
random variables with Xi ∈ [0, 1]. Let X := 1

n

∑n−1
i=0 Xi, and µ = E[X]. Then, for any ε > 0,

Pr [X ≥ µ+ ε] ≤ e−2nε2 and Pr [X ≤ µ− ε] ≤ e−2nε2 .

Lemma E2 (Uniform Sampling [BH05]) Let (β1, . . . , βn) ∈ [0, 1]n. Let T be a random subset of
[n] of size s.

Pr

[

1

s

∑

i∈T
βi ≤

1

n

n
∑

i=1

βi − ε

]

≤ e−sε
2/2 .
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Lemma 9. Let α ∈ [0, 1
2 ]. Let us take a bit-strings y = (y1, . . . ym) of length m := bκ, that we group

into κ blocks of size b. Let T ∗ be a random subset of [κ] of size ακ, T the corresponding set of bits in
[m] and T̄ the complement of T . Let T ′ be a random subset of T , where every element is chosen to be
in T ′ with probability 1

2 , independent of everything else. With α′ := (1/2 − ε)α we have for any ε > 0

Pr

[

1

|T ′|
∑

i∈T ′

yi ≤
1

(1 − α)m

∑

i∈T̄
yi − 2ε

]

≤ 3e−α
′κε2/2 .

Proof. Let aj be the number bits where y is equal to 1 in the jth block, for j ∈ [κ], and let T̄ ∗ be the
complement of T ∗. We apply Lemma E2 choosing βj := 1 − aj/b and get

Pr





1

(1 − α)m

∑

i∈T̄
yi ≥

1

m

m
∑

i=1

yi + ε



 = Pr





1

(1 − α)m

∑

j∈T̄ ∗

aj ≥
1

m

κ
∑

j=1

aj + ε



 (E.1)

≤ e−(1−α)κε2/2 . (E.2)

Let S ∈ {0, . . . , αm} be the size of T ′. Even if we condition on the event that T ′ has size s, i.e, S = s,
T ′ is still a random subset of [m]. Hence, we can apply Lemma E2 again and get

Pr

[

1

s

∑

i∈T ′

yi ≤
1

m

m
∑

i=1

yi − ε
∣

∣

∣
S = s

]

≤ e−sε
2/2 ,

which implies that

Pr

[

1

S

∑

i∈T ′

yi ≤
1

m

m
∑

i=1

yi − ε
∣

∣

∣
S ≥ α′m

]

≤ e−α
′mε2/2 .

From Lemma E1 follows that

Pr[S ≤ α′m] = Pr

[

S

αm
≤ 1

2
− ε

]

≤ e−2αmε2 .

Hence,

Pr

[

1

S

∑

i∈T ′

yi ≤
1

m

m
∑

i=1

yi − ε

]

≤ e−2αmε2 + e−α
′κε2/2 ≤ 2e−α

′mε2/2 . (E.3)

Combining Eqs. (E.1) and (E.3), we get

Pr





1

S

∑

i∈T ′

yi ≤
1

(1 − α)m

∑

i∈T̄
yi − 2ε



 ≤ 2e−α
′mε2/2 + e−(1−α)κε2/2 (E.4)

≤ 3e−α
′κε2/2 .

⊓⊔

F Some Lemmas

F.1 Lemma 10

Lemma 10 shows that if two cq-states are close, then the probability to guess the classical bit from the
quantum part are close as well.
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Lemma 10. For any two cq-states ρXA and σXA, δ(ρXA, σXA) ≤ ε implies that for any measurement
G on system A that outputs a bit, we have

∣

∣Pr[G(ρA) = X] − Pr[G(σA) = X]
∣

∣ ≤ ε .

Proof. Let us assume that there exists a measurement G that outputs a bit such that
∣

∣Pr[G(ρA) = X] − Pr[G(σA) = X]
∣

∣ > ε .

We can define the measurement D which on an input ψXA outputs 1 if X = G(ψA), and 0 otherwise.
We get

∣

∣ Pr[D(ρXA) = 1] − Pr[D(σXA) = 1]
∣

∣ =
∣

∣ Pr[G(ρA) = X] − Pr[G(σA) = X]
∣

∣ > ε ,

which contradicts the assumption that δ(ρXA, σXA) ≤ ε. ⊓⊔

If we choose σXA := τX ⊗ σA, then X cannot be guessed from σA with probability bigger than 1/2.
Lemma 10 therefore implies that if δ(ρXA, τX ⊗ σA) ≤ ε, then

Pr[G(ρA) = X] ≤ 1

2
+ ε . (F.1)

F.2 Lemma 11

Lemma 11 shows that if Bob knows X1 with a small error, then the security condition implies that X0

is close to uniform with respect to his state, if Alice chooses her inputs at random.

Lemma 11. Let ρX0X1B satisfy condition (4.7). If there exists a measurement G on system B such
that Pr[G(ρB) = X1] ≥ 1 − ε, then

δ(ρX0X1B, τX0 ⊗ ρX1B) ≤ 5ε .

Proof. Let σX0X1BC′
be the state in condition (4.7). Using Lemma 10, we get

Pr[G(σB) = X1] ≥ Pr[G(ρB) = X1] − ε ≥ 1 − 2ε .

In the state σX0X1BC′
, we can guess the first bit of X1−C′ if we output the first bit of G(σB) whenever

C ′ = 0 and a random bit otherwise. We succeed with a probability of

g :=
1

2
· Pr[C ′ = 1] + Pr[G(σB) = X1 ∧C ′ = 0]

=
1

2
· (1 − Pr[C ′ = 0]) + Pr[C ′ = 0] − Pr[G(σB) 6= X1 ∧ C ′ = 0]

≥1

2
· (1 − Pr[C ′ = 0]) + Pr[C ′ = 0] − 2ε

=
1

2
+

Pr[C ′ = 0]

2
− 2ε .

Since X1−C′ is completely random and independent of the rest, we have g ≤ 1
2 , and hence Pr[C ′ = 0] ≤

4ε. This implies that for σ̂X0X1BC′
:= τX0 ⊗ σX1B ⊗ |1〉〈1| we have

δ(σX1−C′XC′BC′
, σ̂X1−C′XC′BC′

) ≤ 4ε

and hence

δ(ρX0X1B , τX0 ⊗ ρX1B) ≤ δ(ρX0X1B , σX0X1B) + δ(σX0X1B, σ̂X0X1B)

≤ 5ε .

⊓⊔
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F.3 Lemma F1

Lemma F1 Let PXY be a distribution over X × {0, 1}. Then for any PX′ over X , we have

δ(PX|Y =0, PX|Y=1) ≤
δ(PXY , PX′PY )

min(PY (0), PY (1))

Proof. For y ∈ {0, 1}, we have

δ(PX|Y =y, PX′) =
1

2

∑

x

∣

∣

∣

∣

PXY (x, y)

PY (y)
− PX′(x)

∣

∣

∣

∣

=
1

2PY (y)

∑

x

|PXY (x, y) − PX′(x)PY (y)|

≤ 1

min(PY (0), PY (1))

1

2

∑

x

|PXY (x, y) − PX′(x)PY (y)| .

Hence,

δ(PX|Y =0, PX|Y =1) ≤ δ(PX|Y=0, PX′) + δ(PX|Y =1, PX′)

≤ 1

min(PY (0), PY (1))

1

2

∑

xy

|PXY (x, y) − PX′(x)PY (y)|

=
1

min(PY (0), PY (1))
δ(PXY , PX′PY ) .

⊓⊔

F.4 Lemma F2

Lemma F2 Let PXY be a distribution over X×{0, 1}, PX′ over X and PY ′ over {0, 1}. Then δ(PXY , PX′PY ′) ≤
ε implies

δ(PX|Y =0, PX|Y=1) ≤
2ε

min(PY ′(0), PY ′(1)) − ε
.

Proof (Proof of Lemma F2). δ(PXY , PX′PY ′) ≤ ε implies δ(PX , PX′) ≤ ε and hence

δ(PXPY ′ , PX′PY ′) = δ(PX , PX′) ≤ ε .

We get
δ(PXY , PX′PY ) ≤ δ(PXPY , PX′PY ′) + δ(PX′PY ′ , PX′PY ) ≤ 2ε .

δ(PXY , PX′PY ′) ≤ ε also implies δ(PY , PY ′) ≤ ε, from which follows that for y ∈ {0, 1}, |PY (y) −
PY ′(y)| ≤ ε. We get

1

min(PY (0), PY (1))
≤ 1

min(PY ′(0), PY ′(1)) − ε

The statement follows now by applying Lemma F1. ⊓⊔
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