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Joël Alwen ∗ Yevgeniy Dodis† Moni Naor ‡ Gil Segev § Shabsi Walfish ¶ Daniel Wichs‖

October 21, 2009

Abstract

We construct the first public-key encryption scheme in the Bounded-Retrieval Model (BRM), providing security
against various forms of adversarial “key leakage” attacks. In this model, the adversary is allowed to learn arbitrary
information about the decryption key, subject only to the constraint that the overall amount of “leakage” is bounded
by at most ` bits. The goal of the BRM is to design cryptographic schemes that can flexibly tolerate arbitrarily leakage
bounds ` (few bits or many Gigabytes), by only increasing the size of secret key proportionally, but keeping all the
other parameters — including the size of the public key, ciphertext, encryption/decryption time, and the number of
secret-key bits accessed during decryption — small and independent of `.

As our main technical tool, we introduce the concept of an Identity-Based Hash Proof System (IB-HPS), which
generalizes the notion of hash proof systems of Cramer and Shoup [CS02] to the identity-based setting. We give three
different constructions of this primitive based on: (1) bilinear groups, (2) lattices, and (3) quadratic residuosity. As
a result of independent interest, we show that an IB-HPS almost immediately yields an Identity-Based Encryption
(IBE) scheme which is secure against (small) partial leakage of the target identity’s decryption key. As our main
result, we use IB-HPS to construct public-key encryption (and IBE) schemes in the Bounded-Retrieval Model.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an idealized setting, where an adversary only
sees the specified “input/output behavior” of a scheme, but has no other access to its internal secret state. Unfortunately,
in the real world, an adversary may often learn some partial information about secret state via various key leakage
attacks. Such attacks come in a large variety and include side-channel attacks [Koc96, BDL97, BS97, KJJ99, QS01,
GMO01], where the physical realization of a cryptographic primitive can leak additional information, such as the
computation-time, power-consumption, radiation/noise/heat emission etc. The cold-boot attack of Halderman et al.
[HSH+08] is another example of a key-leakage attack, where an adversary can learn (imperfect) information about
memory contents of a machine, even after the machine is powered down. Lastly, and especially relevant to this work,
we will also consider key-leakage attacks where a remote adversary hacks into a target computer, or infects it with some
malware, allowing her to download large amounts of secret-key information from the system. Schemes that are proven
secure in an idealized setting, without key leakage, may become completely insecure if the adversary learns even a
small amount of information about the secret key. Indeed, even very limited leakage attacks have been shown to have
devastating consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alone block, all of the possible means through
which key leakage can occur in real-world implementations of cryptographic schemes. Therefore, the cryptographic
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community has recently initiated the investigation of increasingly general (formally modeled) classes of leakage attacks,
with the aim of constructing leakage-resilient cryptographic schemes that remain provably secure even in the presence
of such attacks. Of course, if an adversary can get unrestricted information about the secret key (say, of an encryption
scheme), then she can learn the key in its entirety and the security of the system is necessarily compromised. Therefore,
we must first place some “upper bound” on the type or amount of information that the adversary can learn. The nature
of such bounds varies in the literature, as we survey later. For this work, we only restrict the amount, but not the type,
of information that an adversary can learn through a key-leakage attack. In particular, we will assume that the attacker
can learn any efficiently computable function of the secret key, subject only to the constraint that the total amount
of information learned (i.e. the output size of the leakage function) is bounded by ` bits, where ` is some arbitrary
“leakage parameter” of the system. Clearly, at this level of generality, the secret-key size s must be strictly greater than
the leakage-parameter `. In the literature, there seems to be a distinction between two related models of leakage, which
differ in how they treat the leakage-parameter ` in relation to the secret-key size s.

RELATIVE-LEAKAGE MODEL. In the model of relative leakage [AGV09, NS09, DKL09, KV09], the key-size s is
chosen in the same way as in standard (non leakage-resilient) cryptographic schemes: it is based on a security parameter,
and is usually made as small as possible (e.g. 1024 bits) to give the system some sufficient level of security. Once the
key-size s is determined, the allowed leakage ` should be relatively large in proportion to s so that e.g. up to 50% of
the key can be leaked without compromising security. Therefore, the relative-leakage model implicitly assumes that, no
matter what the key-size is, a leakage attack can reveal at most some relatively small fraction of the key. This assumption
is very reasonable for some attacks, such as the cold-boot attack, where all memory contents decay uniformly over time.

BOUNDED-RETRIEVAL MODEL (BRM). The Bounded-Retrieval Model (BRM) [Dzi06, CLW06, CDD+07, DP07,
ADW09] is a generalization of the relative-leakage model. In this model, the leakage-parameter ` is an arbitrary and
independent parameter of the system, which is based on practical considerations about how much leakage the system
needs to tolerate on an absolute scale. The secret-key size s is then chosen flexibly, depending on the security parameter
and the leakage parameter `, so as to simultaneously provide a sufficient level of security while allowing up to ` bits
of leakage. Therefore, we can tolerate settings where the leakage ` might be small (several bits) or huge (several
Gigabytes) by flexibly increasing the secret-key size s depending on (and necessarily exceeding) the leakage parameter
`.1 Of course, the key-size s should be as small as possible otherwise, so that the allowed leakage ` is a large relative
portion of s as well.

With the additional flexibility in secret-key size, the BRM imposes an added efficiency requirement: the public-key
size, ciphertext size, encryption-time and decryption-time must remain small, only depending on the security parameter,
and essentially independent of the leakage-parameter `. In other words, ` could potentially grow to the order of
Gigabytes, and still result in a usable system, where the secret key is huge, but the public-key size, ciphertext size and
encryption/decryption times are not much different from those of standard cryptosystems. This also means that the
number of secret-key bits accessed during decryption (called locality from now on) must remain small and essentially
independent of the flexibly growing secret-key size.

The flexibility of the BRM seems necessary to protect against large classes of key-leakage attacks. For example, if
the key size is (only) proportional to the security parameter, several consecutive side-channel readings of a handful of
bits might already leak the entire secret key. Therefore, for natural side-channel attacks (such as radiation/heat/noise
emission) it might already make sense to make ` moderately large (say on the order of Megabytes) to get security.
The main intention of the BRM in prior works, which we also focus on here, is to offer a novel method for protecting
systems against hacking/malware attacks, where an adversary can download large amounts of information from an
attacked system. It is clear that no security can be achieved using standard-sized (e.g. 1,024 bit) secret keys, as the
adversary can download such keys in their entirety. However, it may be conceivable that the adversary still cannot
download too much (e.g. many Gigabytes) worth of information because: (1) the bandwidth between the attacker and
the system may be too slow to allows this, (2) the operating-system security may detect such large levels of leakage,
or (3) such attacks would simply not be cost-effective. Therefore we can conceivably protect against such attacks
by just making the leakage-parameter ` large enough (e.g. potentially many Gigabytes), and using a proportionally
larger secret-key-size s. Having a large secret key may, by itself, not be a major concern due to the increasing size

1Historically, the BRM setting envisioned ` as being necessarily huge. Here we take a more general view of the BRM, insisting only that the
key size can be set flexibly based on the leakage `.
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and affordability of local storage. On the other hand, it is crucial that the other efficiency measures of the system —
ciphertext and public-key sizes, encryption and decryption times — must not degrade with the growth of `.

1.1 Our Results

As our main contribution, we construct the first leakage-resilient Public-Key Encryption (PKE) scheme in the BRM.
Along the way, we develop new notions and get results of independent interest. In particular, we:

• Develop a new notion of an Identity-Based Hash Proof System (IB-HPS), which naturally yields Identity-Based
Encryption (IBE) schemes.
• Give three constructions of IB-HPS based on the ideas behind three prior IBE schemes: [Gen06, BGH07,

GPV08]. In particular, we show that the notion of IB-HPS unifies these seemingly unrelated constructions under
a single framework. As a result, we get constructions of IB-HPS under (1) a bilinear Diffie-Hellman type assump-
tion (2) the quadratic-residuosity assumption (3) the Learning With Errors (LWE) assumption. The first scheme
is secure in the standard model, while the latter two rely on Random Oracles or, alternatively, non-standard
interactive assumptions.
• Show that an IBE based on IB-HPS can easily be made leakage-resilient, in the relative-leakage model.
• Show how to use IB-HPS to construct public-key encryption (PKE) schemes in the BRM, allowing for arbi-

trary large leakage-bounds, while preserving efficiency. Our techniques also naturally extend to allow for the
construction of IBE schemes in the BRM.
• Develop new information-theoretic tools to analyze our construction of PKE in the BRM. Namely, we define a

new notion of approximate hash functions (where only elements that are far in Hamming distance are unlikely to
collide) and generalize the Leftover-Hash Lemma to approximate hashing.
• Show how to achieve CCA security for our leakage-resilient IBE and PKE in BRM constructions.

Before describing our construction of PKE in the BRM, it is instructive to understand why this problem is non-trivial,
and therefore we begin with some naı̈ve approaches, which we improve in several steps.

NAÏVE APPROACH: INFLATING THE SECURITY PARAMETER. As the first step of getting a PKE in the BRM, we
would like to simply design a leakage-resilient PKE scheme that allows for arbitrarily large leakage-bounds `, without
necessarily meeting the additional efficiency requirements of the BRM. Luckily, there are several recent PKE schemes
in the relative-leakage model [AGV09, NS09] where the leakage-bound `(λ) is a large portion of the key-size s(λ)
which, in turn, depends on a security parameter λ. Therefore, one simple solution is to simply artificially inflate the
security parameter λ sufficiently, until s(λ) and, correspondingly, `(λ) reach the desired level of leakage we would like
to tolerate. Unfortunately, it is clear that this approach gets extremely inefficient very fast – e.g. to allow for Gigabytes
worth of leakage, we may need to perform exponentiations on group elements with Gigabyte-long description sizes.

BETTER APPROACH: LEAKAGE-AMPLIFICATION VIA PARALLEL REPETITION. As an improvement over the previ-
ous suggestion, we propose an alternative which we call parallel-repetition. Assume we have a leakage-resilient PKE
scheme in the relative-leakage model, tolerating `-bits of leakage, for some small `. We can create a new “parallel-
repetition scheme”, by taking n independent copies of the above PKE with key-pairs (pk1, sk1), . . . , (pkn, skn) and
setting the secret-key of the new scheme to be sk = (sk1, . . . , skn) and the public key to be pk = (pk1, . . . , pkn). To
encrypt under the repetition scheme, a user would n-out-of-n secret-share the message m, and, encrypt each share mi

under the public key pki. One may hope to argue that, if an adversary learns fewer than n` bits about the secret-key sk
of the repetition scheme, then there is at least one secret key ski about which the adversary learns fewer than ` bits, thus
maintaining security. Therefore, the hope is that parallel-repetition amplifies leakage-resilience from ` bits to n` bits,
and thus lets us meet any leakage-bound just by increasing n sufficiently. In terms of efficiency, the parallel-repetition
approach will usually be more efficient than artificially inflating the security parameter, but it is still far from the re-
quirements of the BRM: the public-key size, ciphertext size, and encryption/decryption times are all proportional to n,
and therefore must grow as we strive to tolerate more and more leakage.

SECURITY OF PARALLEL-REPETITION? Surprisingly, we do not know how to formalize the hope that parallel-
repetition amplifies leakage-resilience generically via a reduction. Such a reduction would need to use an attacker that
expects a public key and n` bits of leakage on its secret key in the repetition scheme, to break the original scheme with
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` bits of leakage. Unfortunately, it does not seem like there is any way to embed a challenge public key pki into pk,
and faithfully simulate the output of an arbitrary leakage-function f(sk) with n`-bit output, by only learning g(ski) for
some g(·) with ` bit output. In fact, as a subject of future work, we believe that there is a black-box separation showing
that no such reduction can succeed in general. Luckily, we show that (a variant of) parallel-repetition amplifies leakage
for schemes of a special form, which we will discuss later. For now, let us get back to the issue of efficiency, which we
still need to resolve.

IMPROVEMENT I: IMPROVED EFFICIENCY VIA RANDOM SELECTION. To decrease ciphertext size and encryp-
tion/decryption times, the encryptor selects some random subset {r1, . . . , rt} ⊆ {1 . . . n} of t indices, and targets the
ciphertext to the corresponding public keys pkr1 , . . . , pkrt (e.g. t-out-of-t secret-shares the message m and encrypts
each share mi under the public key pkri). Intuitively, if an adversary learns much less than n` bits of leakage about sk,
then there should be many component-keys ski for which the adversary learns less than ` bits. Therefore the encryptor
should select at least one index corresponding to such a key with large probability, when t is made proportional to the
security parameter, and potentially much smaller than n. Although the ciphertext size and encryption/decryption times
(and locality) are now only proportional to the security parameter, the size of the public key still grows with n, and so
this scheme is still not appropriate for the BRM in terms of efficiency.

IMPROVEMENT II: SMALL PUBLIC-KEY SIZE VIA IBE. A natural solution to having a short public key is to use
identity-based encryption (IBE) instead of standard PKE. This way, the public key of the repetition scheme is simply
a short master public key of an IBE scheme, while the secret key sk = (sk1, . . . , skn) consists of secret-keys for some
fixed “identities” ID1, . . . , IDn. Together, the above two improvements yield a scheme which meets the efficiency
requirements of the BRM: the public-key size, ciphertext size, encryption/decryption times are now only proportional
to the security parameter and independent of n, which can grow flexibly.

SECURITY OF THE IBE-BASED PKE IN BRM CONSTRUCTION? In order to show that the resulting scheme, utilizing
the two proposed improvements, is a PKE in the BRM we need to show the following. If we start with a leakage-resilient
IBE that allows for `-bits of leakage, then the construction amplifies this to any desired amount `′ just by increasing the
number of secret keys n sufficiently. Unfortunately, it turns out that this is not the case in general and, in Appendix A,
we construct a counterexaple. That is, we can construct an artificial IBE scheme which is leakage-resilient in the relative
leakage model, with leakage `, but the above construction does not amplify leakage-resilience beyond `′ = `, no matter
how large n is. The problem is that, conceivably, after observing all n secret keys for n identities, it might be possible
to come up with a very short “compressed” key (e.g. whose size is independent of n) which allows one to decrypt
ciphertexts for each one of the given n identities. Our main result is to show that (a variant of) the construction is
secure, if the leakage-resilient IBE has some additional underlying structure, which we call an Identity-Based Hash
Proof System (IB-HPS).

HASH PROOF SYSTEMS AND IDENTITY-BASED HASH PROOF SYSTEMS. Recently, Naor and Segev [NS09] showed
how to use a hash proof system (HPS) to construct leakage-resilient PKE in the relative-leakage model. Following,
[KPSY09, NS09], we view an HPS as a key-encapsulation mechanism (KEM) with special structure.2 A KEM con-
sists of a key-generation procedure (pk, sk) ← KeyGen(1λ), an encapsulation procedure (c, k) ← Encap(pk) which
produces ciphertext/randomness pairs (c, k), and a decapsulation procedure k = Decap(c, sk), which uses the secret
key sk to recover the randomness k from a ciphertext c. A KEM allows a sender that knows pk, to securely agree on
randomness k with a receiver that possesses sk, by sending an encapsulation-ciphertext c. A hash proof system is a
KEM with the following two properties:
• There exists an invalid-encapsulation procedure c ← Encap∗(pk), so that ciphertexts generated by Encap∗(pk)

are computationally indistinguishable from those generated by Encap(pk), even given the secret key sk.
• For a fixed pk and invalid ciphertext c generated by Encap∗(pk), the output of Decap(c, sk) is statistically uni-

form, over the randomness of sk. This property can only hold if a fixed pk leaves statistical entropy in sk.
Notice the difference between valid and invalid ciphertexts. For a fixed pk, a valid c, produced by (c, k)← Encap(pk),
always decapsulated to the same value k, no matter which secret key sk is used to decapsulate it. On other hand, an
invalid c produced by c← Encap∗(pk), decapsulated to a statistically random value based on the randomness of sk.

2 Our informal description and definition of HPS here, which will also be a basis of our formal definition of IB-HPS in Section 3.1, is a
simplified version of the standard one. Although the two are not technically equivalent, the standard definition implies ours, which is in-turn
sufficient for leakage-resilience and captures the main essence of HPS.
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The above two properties are sufficient to prove KEM security, showing that for (c, k) ← Encap(pk), an attacker
given c cannot distinguish k from uniform. The proof proceeds in two steps:

1. We replace the honestly generated (c, k)← Encap(pk) with c′ ← Encap∗(pk) and k′ ← Decap(c′, sk).
2. The value k′ = Decap(c′, sk) is statistically uniform over the choice of sk, which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the presence of leakage since step (1) holds even if
the adversary saw all of sk, and step (2) is information-theoretic, so we can argue that ` bits of leakage about sk will
only reduce the statistical entropy of k′ by at most ` bits. To agree on a uniform value k in the presence of leakage,
we just compose the KEM with a randomness extractor. The main benefit of this proof strategy is that, after switching
valid/invalid ciphertexts in the first step, we can argue about leakage using a purely information-theoretic analysis.

We observe that it is therefore relatively easy to show that (a variant of) parallel repetition amplifies leakage-
resilience, since it amplifies the statistical entropy of the secret key sk = (sk1, . . . , skn). In Section 3, we generalize
the notion of HPS to the identity-based setting by defining Identity-Based Hash Proof System (IB-HPS) in a natural
way. Then, in Section 4, we show how to construct leakage-resilient IBE in the relative-leakage model using IB-HPS.
In Section 5, we show that a variant of our parallel-repetition idea, and random-subset selection ideas, indeed amplify
leakage-resilience of IB-HPS-based constructions. Finally, in Section 6, show how this leads to constructions of PKE
(and IBE) schemes in the BRM.

1.2 Related Work

RESTRICTED MODELS OF LEAKAGE-RESILIENCE. Several other models of leakage-resilience have appeared in the
literature. They differ from the model we described in the that they restrict the type, as well as amount, of information
that the adversary can learn. For example, the work on exposure resilient cryptography [CDH+00, DSS01, KZ03]
studies the case where an adversary can only learn some small subset of the physical bits of the secret key. Similarly,
[ISW03] studies how to implement arbitrary computation in the setting where an adversary can observe a small subset
of the physical wires of a circuity. Unfortunately, these models fail to capture many meaningful side-channel attacks,
such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [MR04a] initiated the formal modeling of side-channel attacks under the
axiom that “only computation leaks information”, where each invocation of a cryptographic primitive leaks a function
of only the bits accessed during that invocation. Several primitives have been constructed in this setting including
stream ciphers [DP08, Pie09] and signatures [FKPR09]. On the positive side, this model only imposes a bound on
the amount of information learned during each invocation of a primitive, but not on the overall amount of information
that the attacker can get throughout the lifetime of the system. On the negative side, this model fails to capture many
leakage-attacks, such as the cold-boot attack of [HSH+08], where all memory contents leak information, even if they
were never accessed.

Certainly, all of the restricted models fail to capture hacking/malware attacks, where it is very conceivable that an
attacker can compute even complicated functions of all information stored on the system.

RELATIVE-LEAKAGE MODEL. Several constructions of primitives in the relative-leakage model have appeared re-
cently. The works of [AGV09, NS09] construct public-key encryption schemes in this model, and [KV09] constructs
signatures. The work of [DKL09] considers a yet-stronger model of leakage-resilience, called the auxiliary input model,
where the leakage-function need only be one-way (and not necessarily length-bounded), and constructs symmetric-key
encryption in this model.

BRM. The Bounded-Retrieval Model was (concurrently) proposed by Di Crescenzo et. al [CLW06] and Dziembowski
[Dzi06], and later studied by [CDD+07, DP07, ADW09]. The name serves as an analogy to the Bounded Storage
Model (BSM) of [Mau92, AR99, ADR02, Lu02, Vad04], which restricts the amount of data that an adversary can store
after observing a huge public random string, rather than the amount of data an adversary can retrieve from a huge secret
key. With the exception of [ADW09], all of the work on the BRM is in the symmetric-key setting, where two parties
share a huge secret key. The recent work of Alwen et. al [ADW09] gave the first public-key results in the BRM,
by constructing identification schemes, (variants of) signatures, and authenticated-key-agreement protocols. However,
these primitives cannot be used to encrypt a message non-interactively, as is done in the current work. Moreover,
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the authenticated-key agreement protocols of [ADW09] required the use of Random Oracles, while we offer (some)
constructions in the standard model. We note that many of the prior schemes in the BRM and BSM employ ideas
similar to the “parallel repetition” and “random-subset selection” that we described in the introduction. However, the
proof-techniques in this paper differ significantly from previous works.

2 Preliminaries

NOTATION. For an integer n, we use the notation [n] to denote the set [n] def= {1, . . . , n}. For a randomized function f ,
we write f(x; r) to denote the unique output of f on input x with random coins r. We write f(x) to denote a random
variable for the output of f(x; r), over the random coins r. For a set S, we let US denote the uniform distribution over
S. For an integer v ∈ N, we let Uv denote the uniform distribution over {0, 1}v, the bit-strings of length v. For a
distribution or random variable X we write x ← X to denote the operation of sampling a random x according to X .
For a set S, we write s← S as shorthand for s← US .

ENTROPY. The min-entropy of a random variable X is H∞(X) def= − log(maxx Pr[X = x]). This is a standard notion
of entropy used in cryptography, since it measures the worst-case predictability of X . We also review a generalization
from [DORS08], called average conditional min-entropy defined by

H̃∞(X|Z) def= − log
(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

This measures the worst-case predictability of X by an adversary that may observe a correlated variable Z. We will use
the following lemmas to reason about entropy.

Lemma 2.1 ([DORS08]) Let X,Y, Z be random variables where Z takes on values in a set of size at most 2`. Then
H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)− ` ≥ H̃∞(X|Z)− ` and, in particular, H̃∞(X|Y ) ≥ H∞(X)− `.

STATISTICAL DISTANCE AND EXTRACTORS. The statistical distance between two random variables X,Y is defined
by SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We write X ≈ε Y to denote SD(X,Y ) ≤ ε, and X ≈ Y to denote

that the statistical distance is negligible. An extractor [NZ96] can be used to extract uniform randomness out of a
weakly-random value which is only assumed to have sufficient min-entropy. Our definition follows that of [DORS08],
which is defined in terms of conditional min-entropy.

Definition 2.1 (Extractors) We say that an efficient randomized function Ext : {0, 1}u → {0, 1}v is an (m, ε)-
extractor if for all X,Z such that X is distributed over {0, 1}u and H̃∞(X|Z) ≥ m, we get (Z,R,Ext(X;R)) ≈ε
(Z,R,Uv) where R is a random variable for the coins of Ext.

We now recall the definition of universal-hashing and the leftover-hash lemma, which states that universal hash functions
are also good extractors.

Definition 2.2 (ρ-Universal Hashing) A family H, consisting of (deterministic) functions h : {0, 1}u → {0, 1}v, is a
ρ-universal hash family if for any m1 6= m2 ∈ {0, 1}u we have Prh←H[h(m1) = h(m1)] ≤ ρ.

Lemma 2.2 (Leftover-Hash Lemma [NZ96]) Assume that the family H of functions h : {0, 1}u → {0, 1}v, is a
ρ-universal hash family. Then the randomized extractor Ext(x;h) = h(x), where h is uniform over H, is an (m, ε)-
extractor as long as m ≥ v + 2 log (1/ε)− 1 and ρ ≤ 1

2v (1 + ε2).

3 Identity-Based Hash Proof System (IB-HPS)

3.1 Definition

An Identity-Based Hash Proof System (IB-HPS) consists of PPT algorithms: (Setup,KeyGen,Encap,Encap∗,Decap).
The algorithms have the following syntax.
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(mpk,msk)← Setup(1λ) : The setup algorithm takes as input a security parameter λ and produces the master public key
mpk and the master secret key msk. The master public key defines an identity set ID, and an encapsulated-key set K.
All other algorithms KeyGen,Encap,Decap,Encap∗ implicitly include mpk as an input.

skID ← KeyGen(ID,msk) : For any identity ID ∈ ID, the KeyGen algorithm uses the master secret key msk to sample an
identity-secret-key skID.

(c, k)← Encap(ID) : The valid encapsulation algorithm creates pairs (c, k) where c is a valid ciphertext, and k ∈ K is the
encapsulated-key.

c← Encap∗(ID) : The alternative invalid encapsulation algorithm which samples an invalid ciphertext c.

k ← Decap(c, skID) : The decapsulation algorithm is deterministic, and takes an identity-secret-key skID and a ciphertext c
and outputs the encapsulated key k.

We require that an Identity-Based Hash Proof System satisfies the following properties.

I. CORRECTNESS OF DECAPSULATION. For any values of mpk,msk produced by Setup(1λ), any ID ∈ ID we have:

Pr
[
k 6= k′

∣∣∣∣ skID ← KeyGen(ID,msk)
(c, k)← Encap(ID) , k′ = Decap(c, skID)

]
≤ negl(λ)

II. VALID/INVALID CIPHERTEXT INDISTINGUISHABILITY. The valid ciphertexts generated by Encap and the invalid
ciphertexts generated by Encap∗ should be indistinguishable even given the identity-secret-key. In particular, we define
the following distinguishability game between an adversary A and a challenger.

VI-IND(λ)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and gives mpk to the adversary A.
Test Stage 1: The adversary A adaptively queries the challenger with ID ∈ ID and the challenger responds with skID.
Challenge Stage: The adversary selects an arbitrary challenge identity ID∗ ∈ ID.

The challenger chooses b← {0, 1}.
If b = 0 the challenger computes (c, k)← Encap(ID∗).
If b = 1 the challenger computes c← Encap∗(ID∗).
The challenger gives c to the adversary A.

Test Stage 2: The adversary A adaptively queries the challenger with ID ∈ ID and the challenger responds with skID.
Output: The adversary A outputs a bit b′ ∈ {0, 1} which is the output of the game. We say that A wins the game if b′ = b.

Note: In test stages 1,2 the challenger computes skID ← KeyGen(ID,msk) the first time that ID is queried and responds to all
future queries on the same ID with the same skID.

Note that, during the challenge phase, the adversary can choose any identity ID∗, and possibly even one for which it
has seen the secret key skID∗ in Test Stage 1 (or the adversary can simply get skID∗ in Test Stage 2). We define the
advantage of A in distinguishing valid/invalid ciphertexts to be AdvVI-IND

IB-HPS,A(λ) def= |Pr[A wins ] − 1
2 |. We require that

AdvVI-IND
IB-HPS,A(λ) = negl(λ).

III. UNIVERSALITY/SMOOTHNESS/LEAKAGE-SMOOTHNESS. Other than properties I and II, we will need one ad-
ditional information theoretic property. Essentially, we want to ensure that there are many possibilities for the decap-
sulation of an invalid ciphertext, which are left undetermined by the public parameters of the system. We define three
flavors of this property as follows.

Definition 3.1 (Universal IB-HPS) We say that an IB-HPS is (m, ρ)-universal if, for any fixed values of mpk,msk
produced by Setup(1λ), and any fixed ID ∈ ID the following two properties hold:

1. Let SK be a random variable for the output of KeyGen(ID,msk). Then H∞(SK) ≥ m.
2. For any fixed distinct values skID 6= sk′ID in the support of SK, we have

Pr
c←Encap∗(ID)

[Decap(c, skID) = Decap(c, sk′ID)] ≤ ρ.
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Notice the significant difference between valid and invalid ciphertexts. For valid ciphertexts c, the correctness of
decapsulation ensures that there is a single value k ∈ K such that Decap(c, skID) = k for (virtually) all choices of skID

(of which there are many by (1)). On the other hand, for invalid ciphertexts c, (2) ensures that it is highly unlikely that
any two distinct secret-keys skID will decapsulate c to the same value k.

Definition 3.2 (Smooth/Leakage-Smooth IB-HPS) We say that an IB-HPS is smooth if, for any fixed values of
mpk,msk produced by Setup(1λ), any ID ∈ ID, we have:

SD( (c, k) , (c, k′) ) ≤ negl(λ)

where c ← Encap∗(ID), k′ ← UK and k is sampled by choosing skID ← KeyGen(ID,msk) and computing k =
Decap(c, skID). We say that an IB-HPS is `-leakage-smooth if, for any (possibly randomized) function f(·) with `-bit
output, we have:

SD( (c, f(skID), k) , (c, f(skID), k′) ) ≤ negl(λ)

where c, k, skID, k
′ are sampled as above. Note, for this property, f need not be efficient.

3.2 Relations Between Universality, Smoothness and Leakage-Smoothness.

We show two simple observations about the relationships between universality, smoothness and leakage-smoothness.
First, we show that a universal IB-HPS is leakage smooth for appropriate parameters.

Theorem 3.1 Assume that an IB-HPS, with key set K = {0, 1}v, is (m, ρ)-universal. Then it is also `-leakage smooth
as long as ` ≤ m− v − ω(log(λ)) and ρ ≤ 1

2v (1 + negl(λ)).

Proof. Follows by the leftover-hash lemma (Lemma 2.2). �

We now also show how to convert a smooth IB-HPS (Setup,KeyGen,Encap,Encap∗,Decap) into a leakage-smooth
IB-HPS using an extractor Ext : K → {0, 1}v. We define:

- Encap2(ID): Choose (c, k)← Encap(ID), k′ ← Ext(k; r). Output c′ = (c, r), k′.
- Encap∗2(ID) : Choose a random seed r and c← Encap∗(ID). Output c′ = (c, r).
- Decap2(c′,msk): Parse c′ = (c, r). Compute k = Decap(c,msk), k′ = Ext(k; r). Output k′.

We show that the transformed system (Setup,KeyGen,Encap2,Encap∗2,Decap2) is leakage-smooth for appropriate
parameters in the next theorem.

Theorem 3.2 Assume that an IB-HPS is smooth and that |K| = 2m. Let Ext : K → {0, 1}v be an (m−`, ε)-extractor
for some ε = negl(λ). Then the above transformation produces an `-leakage-smooth IB-HPS.

Proof. The correctness and valid/invalid ciphertext indistinguishability properties of the modified scheme follow from
those of the original. For leakage-smoothness, let us fix mpk,msk, ID. Let f be any function with ` bit output. We
define the following (correlated) random variables: SKID is distributed according to KeyGen(ID,msk), C is distributed
according to Encap∗(ID), K is distributed according to Decap(C,SKID) and R is a random and independent extractor
seed. Also, we define a (probabilistic, and possibly inefficient) function f ′(c, k) which samples skID from the condi-
tional distribution (SKID | C = c,K = k) and outputs f(skID). Then:

〈 C ′ = (C,R), f(SKID),K ′ = Ext(K;R) 〉 ≡ 〈 C ′ = (C,R), f ′(C,K),K ′ = Ext(K;R) 〉
≈ 〈 C ′ = (C,R), f ′(C,UK),K ′ = Ext(UK;R) 〉 (1)

≈ 〈 C ′ = (C,R), f ′(C,UK), Uv 〉 (2)

≈ 〈 C ′ = (C,R), f ′(C,K), Uv 〉 (3)

≡ 〈 C ′ = (C,R), f(SKID), Uv 〉

Equation (1) follows by the definition of smoothness. For equation (2), notice that

H̃∞(UK|C, f ′(C,UK)) ≥ H̃∞(UK|C)− ` ≥ m− `

by Lemma 2.1, and the fact that C,UK are independent. Then (2) follows from the definition of an extractor, where Uv
is independent of the other variables. Lastly, equation (3) follows by another application of smoothness. �
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3.3 Constructions

We show that the idea of an IB-HPS implicitly forms the backbone of the recent IBE constructions of [Gen06, BGH07,
GPV08]. This gives us three constructions of IB-HPS, which are explicitly described and proven in the appendices.
Here we, just give a short note on each construction and explain its parameters. We will be interested in the following:

1. The actual identity-key size m̂: the number of bits needed to efficiently represent an identity-secret-key skID.
2. The encapsulated-key size v: this is v = log(|K|), where K is the encapsulated-key set.
3. The min-entropy m and the universality ρ. These are the values for which the scheme is (m, ρ)-universal.

An important parameter is the ratio m
m̂ , which determines the amount of relative leakage that our IBE and PKE in BRM

constructions can handle. We note that all of the schemes satisfy the definition of smoothness.

A SCHEME BASED ON BILINEAR GROUPS. In Appendix B, we show that the IBE scheme of Gentry [Gen06],
implicitly contains an IB-HPS construction. The scheme and the proof are essentially the same as those of [Gen06],
and rely on the “truncated augmented bilinear Diffie-Hellman exponent” (TABDHE ) assumption. It does not require
the use of Random Oracles. The scheme is extremely efficient, requiring only a constant (2 or 3) number of group
elements in the master public key, master secret key, identity secret key, and ciphertexts. The parameters of interest are:

m̂ = 2 log(p) +O(1) , m = log(p) ,
m

m̂
≈ 1

2
, v = log(p) , ρ = 0.

where p is the (prime) order of an appropriate bilinear-group G.

A SCHEME BASED ON QUADRATIC RESIDUOSITY. In Appendix C, we show that the IBE scheme of Boneh, Gen-
try and Hamburg [BGH07] contains a IB-HPS. The construction and proof essentially follow [BGH07] (with a minor
modification in how identity-secret-keys are chosen, to get universality). The scheme is secure under the Quadratic
Residuosity assumption in the Random Oracle model, or under a non-standard interactive quadratic residuosity as-
sumption (see Appendix C) in the standard model. The parameters of interest are:

m̂ = log(N) , m = 1 ,
m

m̂
=

1
log(N)

, v = 1 , ρ = 0.

whereN is an appropriately sized RSA modulus. Unfortunately, it is not clear how to make the scheme leakage-smooth
for any ` > 0, since the secret-key entropy m is too small to extract even a single bit. This problem can be fixed, as will
be done in the BRM, by using parallel-repetition to amplify the entropy. Still, the relative leakage of the scheme will be
poor because of the poor ratio of the entropy m to actual-key-size m̂.

A SCHEME BASED ON LATTICES. In Appendix D, we show how to get a construction of IB-HPS using the IBE
scheme of Gentry, Peikert and Vaikuntanathan [GPV08]. Note that this IBE construction was already observed to be
leakage-resilient by [AGV09], but this does not imply that it is an IB-HPS. In fact, we need to make some simple
modifications so that the scheme satisfies our definition. The security of the scheme is based on a (decisional) Learning
With Errors (LWE) assumption, in the random oracle model. Note that this assumption can be reduced to the GapSVP
problem for lattices, using the techniques of [Reg05, Pei09].3 We show that, for any constant ε > 0, there exists some
setting of the actual-key-size m̂ so that:

m = (1− ε)m̂ ,
m

m̂
= (1− ε) , v = 1 , ρ =

1
2

(1 + negl(λ)).

Note that, by Theorem 3.2, this construction is therefore already `-leakage smooth, for any ` ≤ m−ω(log(λ)), without
any need to apply an extractor.

4 Leakage-Resilient IBE

We define what it means for an Identity-Based Encryption (IBE) scheme to be resistant to key leakage attacks and show
how to use an IB-HPS to construct such an IBE scheme. Our notion of leakage-resilience only allows leakage-attacks

3 We note that our construction requires that we use some (slightly) super-polynomial modulus q in the LWE problem, which means that we
need to assume GapSVP is hard against some (slightly) super-polynomial time adversaries.
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against the secret keys of the various identities, but not the master secret key. Also, we only allow the adversary to
perform leakage attacks before seing the challenge ciphertext. As noted by [AGV09, NS09, ADW09], this limitation is
inherent to (non-interactive) encryption schemes since otherwise the leakage function can simply decrypt the challenge
ciphertext and output its first bit.

4.1 Definition

Recall an IBE scheme consists of PPT algorithms (Setup,KeyGen,Encrypt,Decrypt), an identity set ID and a message
spaceM. The syntax of Setup,KeyGen is the same as that in IB-HPS, and Encrypt,Decrypt have the following syntax:

c← Encrypt(ID,m) : The encryption algorithm encrypts m ∈M, and produces a ciphertext c.
m← Decrypt(c, skID) : The decryption algorithm decrypts a ciphertext c using the identity-secret-key skID.

I. CORRECTNESS OF DECRYPTION. For any (mpk,msk) produced by Setup(1λ), any ID ∈ ID, any m ∈ M, we
have

Pr
[
m′ 6= m

∣∣∣∣ skID ← KeyGen(ID,msk)
c← Encrypt(ID,m) , m′ ← Decrypt(c, skID)

]
≤ negl(λ)

II. SEMANTIC SECURITY WITH LEAKAGE. We define the semantic security game, parametrized by a security param-
eter λ and a leakage parameter ` as the following game between an adversary A and a challenger.

IBE-SS(λ, `)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and gives mpk to the adversary A.
Test Stage 1: The adversary A can adaptively ask the challenger for the following queries:

Secret-Key Queries: On input ID ∈ ID, the challenger replies with skID.
Leakage Queries: On input ID ∈ ID, a PPT function f : {0, 1}∗ → {0, 1}, the challenger replies with f(skID).

Challenge Stage: The adversary selects two messages m0,m1 ∈ M and a challenge identity ID∗ ∈ ID which never ap-
peared in a secret-key query and appeared in at most ` leakage queries. The challenger chooses b← {0, 1} uniformly
at random and computes c← Encrypt(ID∗,mb) and gives c to the adversary A.

Test Stage 2: The adversary gets to make secret-key queries for arbitrary ID 6= ID∗. The challenger replies with skID.
Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that the adversary wins the game if b′ = b.

Note: In test stages 1,2 the challenger computes skID ← KeyGen(ID,msk) the first time that ID is queried (in a secret-key or
leakage query) and responds to all future queries on the same ID with the same skID.

The advantage of an adversaryA in the semantic security game with leakage ` is AdvIBE-SS
IBE,A (λ, `) def=

∣∣Pr[A wins ]− 1
2

∣∣.
Definition 4.1 (Leakage-Resilient IBE) An IBE scheme is `-leakage-resilient, if (1) it satisfies the correctness of de-
cryption property, and (2) the advantage of any any PPT adversary A in the semantic security game with leakage `, is
AdvIBE-SS

IBE,A (λ, `) = negl(λ). We define the relative leakage of the scheme to be α def= `/m̂, where m̂ is the number of bits
needed to efficiently store identity secret keys skID.

Remark on Stateful vs. Stateless Key Authority. In the semantic-security game with leakage, we assume that
skID ← KeyGen(ID,msk) is computed only once per identity ID and reused subsequently. In reality, this requires that
the key-authority that issues identity-secret-keys is stateful, and caches the secret keys that it computes. As noted in
[Gen06, BGH07, GPV08], this requirement can be overcome easily and generically to get a stateless key-authority.
We simply add a pseudo-random function f ∈R F , from a PRF family F , to the master secret key msk and always
run KeyGen(ID,msk) using random coins derived from f(ID). That way the output is consistent each time KeyGen is
called.
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4.2 Construction of Leakage-Resilient IBE

The construction of a leakage-resilient IBE from a leakage-smooth IB-HPS is almost immediate, by simply using the
encapsulated key as a one-time-pad to encrypt a message. In particular, given an IB-HPS where the encapsulated key
set K has some group structure (K,+) (e.g. bit-strings with ⊕), we construct an IBE scheme with the same identity-set
ID and message-setM = K. The Setup,KeyGen algorithms are the same for both primitives and Encrypt,Decrypt
are defined by:

Encrypt(ID,m): Choose (c1, k)← Encap(ID) and let c2 = k + m. Output c = (c1, c2).
Decrypt(c, skID): Parse c = (c1, c2) and compute k = Decap(c1, skID). Output m = c2 − k.

Note that the Encap∗ algorithm of the IB-HPS is not used in the construction, but will be used to argue security.

Theorem 4.1 Assume that we start with an `-leakage-smooth IB-HPS. Then the above construction yields an `-
leakage-resilient IBE.

Proof. The correctness of decryption, follows by the correctness of decapsulation. For the security analysis, we us a
series of games argument:

Game 0: Define Game 0 to be the semantic security game with leakage `. Notice that, in the challenge stage of Game
0, the challenger computes c← Encrypt(ID∗,mb) which we expand as c = (c1, c2) where

(c1, k)← Encap(ID∗), c2 = mb ⊕ k.

Game 1: We modify the challenge stage, so that the challenger uses the secret key skID to compute the ciphertext
c = (c1, c2) by: 4

(c1, k1)← Encap(ID∗), k2 ← Decap(c1, skID∗), c2 = mb ⊕ k2

The difference between Game 0 and Game 1 is only the use of k1 versus k2. But, by the correctness of decapsu-
lation, k1 = k2 with all but negligible probability so Games 0 and 1 are (statistically) indistinguishable.

Game 2: In Game 2, we modify the challenge stage still further by having the challenger use a invalid encapsulation
procedure to compute the ciphertext c = (c1, c2):

c1 ← Encap∗(ID∗), k2 ← Decap(c1, skID∗), c2 = mb ⊕ k2.

We claim that Games 1 and 2 are computationally indistinguishable by the valid/invalid ciphertext indistinguisha-
bility of IB-HPS. Notice that, although the valid/invalid ciphertext indistinguishability game does not have leak-
age queries, it allows the adversary to learn all secret-keys, including the secret key skID∗ of the challenge identity
ID∗. Therefore indistinguishability between Games 1,2 holds even if the adversary sees the full challenge identity
secret-key skID∗ , and hence certainly given just some bounded leakage f(skID∗).

Game 3: In Game 3, the challenge ciphertext c = (c1, c2) is computed by:

c1 ← Encap∗(ID∗), c2 ← UK.

We claim that Games 2 and 3 are statistically indistinguishable by the `-leakage-smoothness of IB-HPS. In-
deed, for fixed values of mpk,msk the only values in Game 2 which are correlated to skID∗ are the outputs of
the ` leakage-queries, and k2 ← Decap(c1, skID∗). But, by `-leakage smoothness, (thinking of the ` leakage
queries together as a single randomized function f∗(sk∗ID)), this is (statistically) indistinguishable from choosing
a completely independent k2 ← UK, which is equivalent to Game 3.

Therefore Game 0 and Game 3 are indistinguishable by a PPT adversary. Also, it is clear that the advantage of any
adversary in Game 3 is exactly 0 (since Game 3 is independent of the bit b chosen by the challenger). Therefore the
advantage of any PPT adversary in Game 0 is at most negligibly different from that of Game 3, and hence negligible in
λ, as we wanted to show. �

4The value skID∗ is either already defined if ID∗ was part of a leakage/secret-key query, or chosen fresh from KeyGen(ID∗,msk) and used to
respond to future queries otherwise
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5 Leakage Amplification of IB-HPS

We now show how to construct an `-leakage-smooth IB-HPS, for arbitrarily large values of `, meeting the efficiency
requirements of the BRM. This will be the main step towards building PKE (and IBE) schemes in the BRM. We start
with IB-HPS1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1) and construct an IB-HPS2, where the identity-secret-
keys can be made arbitrarily large, so as to achieve `-leakage-smoothness for a large `. We will assume there is a
one-to-one function H : ID2 × [n] → ID1 where ID1, ID2 are the identity sets of the original and the constructed
schemes respectively. The identity-secret-key of each ID ∈ ID2 is derived by sampling the n identity-secret-keys
for identities H(ID, 1), . . . ,H(ID, n) of the original scheme independently. Here, n will be a key-size parameter,
which gives us flexibility in the size of the identity-secret-key, and will depend on the desired leakage-parameter `. The
encapsulation procedure Encap2(ID) will target a small subset of t-out-of-n of the identitiesH(ID, i), and decapsulation
Decap2 will only need to read the portion of the secret key associated with these t identities. Here t will be a locality-
parameter which can be much smaller than (and essentially independent of) n. A formal description of the construction
appears in Figure 1. The system abstractly in terms of arbitrary parameters n, t. In the theorem that follows we show
how to instantiate these appropriately based on the setting of `, λ.

Let n > t > 0, v > 0. We call n a key-size parameter, t a locality parameter and v a message-size parameter.
Let IB-HPS1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1).
Let H : ID2 × [n]→ ID1 be a one-to-one function for some set ID2.a

Let G be a 1
2v -universal hash function family of functions g : Kt → {0, 1}v .

Setup(1λ): The setup procedure is the same for both schemes.

KeyGen2(ID,msk): For i ∈ [n], sample skID[i]← KeyGen(H(ID, i),msk). Output skID = (skID[1], . . . , skID[n]).

Encap2(ID): Choose t random indices r = (r1, . . . , rt)← [n]t. Choose g ← G.
For i ∈ {1, . . . , t}, compute: (ci, ki)← Encap1(H(ID, ri)). Let c = (c1, . . . , ct).
Output: C = (r, c, g), k = g(k1, . . . , kt).

Encap∗2(ID): Choose t random indices r = (r1, . . . , rt)← [n]t. Choose g ← G.
For i ∈ {1, . . . , t}, compute: ci ← Encap∗1(H(ID, ri)). Let c = (c1, . . . , ct). Output: C = (r, c, g).

Decap2(C, skID): Parse C = (r, c, g). Compute ki = Decap1(ci, skID[ri]) for i ∈ {1, . . . , t}. Output k = g(k1, . . . , kt).

aA collision-resistant hash function (CRHF) would suffice here as well.

Figure 1: Leakage-Amplification of IB-HPS

For the analysis of the construction, we need to define a new parameter called the effective key size m′. This is
the minimal value such that, for any fixed mpk,msk, ID, the number of values that skID ← KeyGen(ID) can take on
is bounded by 2m

′
. If the actual key size is m̂ and the key entropy is m, then m̂ ≥ m′ ≥ m. Note that in all of our

constructions, m/m′ is a constant (even when m/m̂ is not, as is the case for our QR-based construction).

Theorem 5.1 Assume that we start with an IB-HPS1 which is (m, ρ)-universal for some constant ρ < 1, and has
effective key size m′ so that m/m′ is bounded by a constant. Then, for any constant ε > 0 and any polynomials v, `,
there is some setting of polynomials n and t = O(v + λ), so that the above construction of IB-HPS2 is `-leakage
smooth for any ` ≥ (1− ε)nm− v − ω(log(λ)). The encapsulated-key set of the construction is K = {0, 1}v.

It is easy to see that IB-HPS2 satisfies correctness. Also, the valid/invalid ciphertext indistinguishability property
follows by a simple hybrid argument. Therefore, we only need to show `-leakage smoothness, for the ` given by
the theorem statement. It is easy to see that, for a fixed mpk,msk, ID in the constructed scheme, the entropy of the
random variable SKID, distributed over KeyGen2(ID,msk), is amplified to H∞(SKID) ≥ nm, since it consists of n
independently sampled secret keys of the basic scheme. If we could show that the scheme is also ρ′-universal, for some
small ρ′ ≤ ( 1

2v + negl(λ)), then we could rely on Theorem 3.1 to show leakage-smoothness. Unfortunately, this is
not the case. The problem is that, if two values skID 6= sk′ID in the constructed scheme differ in only one position j,
then Decap2(C, skID) = Decap(C, sk′ID) as long as the ciphertext C does not “select” j, which happens with large
probability. We analyze the leakage smoothness of the construction in Appendix E. First, we define a new notion called
approximately universal hashing (Definition E.3), where we only insist that values which are far from each other in

12



Hamming distance (over some alphabet) are unlikely to collide. We then show a variant of the leftover-hash lemma
(Lemma 2.2), called the approximate leftover-hash lemma (Theorem E.2) holds for approximate hashing. Lastly, in
Appendix E.3, we show that the decapsulation procedure Decap2(C, skID) is approximately universal, for appropriate
parameters, when C ← Encap∗(ID).5 Combining these results, we get the parameters of the theorem.

6 Public-Key Encryption and IBE in the BRM

A public-key encryption (PKE) scheme in the BRM consists of the algorithms (KeyGen,Encrypt,Decrypt), which are
all parameterized by a security parameter λ and a leakage parameter `. The syntax and the correctness property of
an encryption scheme follow the standard notion of public-key encryption. We define the following semantic-security
game with leakage ` between an adversary A and a challenger.

SemS(λ, `)

Key Generation: The challenger computes (pk, sk)← KeyGen(1λ, 1`) and gives pk to the adversary A.
Leakage: The adversary A selects a PPT function f : {0, 1}∗ → {0, 1}` and gets f(sk) from the challenger.
Challenge: The adversary A selects two messages m0,m1. The challenger chooses b ← {0, 1} uniformly at random and

gives c← Encrypt(mb, pk) to the adversary A.
Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins the game if b′ = b.

For any adversary A, the advantage of A in the above game is defined as AdvSemS
PKE,A(λ, `) def=

∣∣Pr[A wins ]− 1
2

∣∣.
Definition 6.1 (Leakage-Resilient PKE) A public-key encryption scheme PKE is leakage-resilient, if for any polyno-
mial `(λ) and any PPT adversary A, we have AdvSemS

PKE,A(λ, `(λ)) = negl(λ).

Definition 6.2 (PKE in the BRM) We say that a leakage-resilient PKE scheme is a PKE in the BRM, if the public-key
size, ciphertext size, encryption-time and decryption-time (and the number of secret-key bits read by decryption) are
independent of the leakage-bound `. More formally, there exist polynomials pksize, ctsize, encT, decT, such that, for
any polynomial ` and any (pk, sk)← KeyGen(1λ, 1`(λ)), m ∈M, c← Encrypt(m, pk), the scheme satisfies:

1. Public-key size is |pk| ≤ O(pksize(λ)), ciphertext size is |c| ≤ O(ctsize(λ, |m|)).
2. Run-time of Encrypt(m, pk) is ≤ O(encT(λ, |m|)).
3. Run-time of Decrypt(c, sk), and the number of bits of sk accessed, is ≤ O(decT(λ, |m|)).

The relative-leakage of the scheme is α def= `/|sk|.

We can generalize the above definition to IBE schemes, and say that a leakage-resilient IBE is an IBE in the BRM
if the master-public-key size, master-secret-key size, ciphertext size and encryption/decryption times are bounded by
polynomials independent of `.

Theorem 6.1 (PKE and IBE in BRM) Assume that we start with an IB-HPS with identity-secret-key entropy m and
actual-key-size m̂, satisfying the conditions of Theorem 5.1. Then, for any constant ε > 0 and any polynomial v, we get
PKE (resp. IBE) schemes in the BRM with message spaceM = {0, 1}v and:

1. Public-key (resp. master-public-key) size is the same as the master-public-key size of the underlying IB-HPS.
2. The locality-parameter is t = O(v + λ). The # of secret-key bits accessed during decryption is tm̂.
3. Ciphertext-size/encryption-time/decryption-time differ by a factor of t from those of the underlying IB-HPS.
4. Relative leakage is α ≥ m

m̂(1− ε), for sufficiently large values of the leakage-parameter `.
In particular, for large enough `, the secret-key size (resp. identity secret-key size) is ≤ m̂

m(1 + ε)`.

5For approximate universality, we think of skID as consisting of n symbols of an alphabet Σ, with one symbol for each component key skID[i].
For the size q = |Σ|, we can consider an abstract (not necessarily efficient) representation of the keys skID[i], so q ≤ 2m

′
.
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Proof. Follows from leakage-amplification (Theorem 5.1) which shows us how to construct a scheme IB-HPS2 with
the given efficiency measures, for ` ≥ (1−ε′)nm−v−ω(log(λ)) and identity-secret-key size |skID| = nm̂. Therefore,
α ≥ (1 − ε)mm̂ as n gets large enough. By Theorem 4.1, this gives us an `-leakage-resilient IBE scheme, for arbitrary
choice of `, and with the parameters appropriate for the BRM, as outlined in the theorem statement. Lastly, an IBE
scheme gives us a PKE, just by ignoring all identities except for one. �

7 Extensions

CCA SECURITY. In Appendix F we show that the main ideas underlying our approach can be extended to deal with
chosen-ciphertext attacks. We present constructions of encryption schemes that are resilient to leakage even under
chosen-ciphertext attacks. That is, these schemes are semantically secure even against an adversary that is allowed to
submit both leakage queries and decryption queries. We first consider identity-based encryption, and show that the
CCA-secure variant of Gentry’s scheme [Gen06] can be generalized to deal with leakage. We then consider public-key
encryption in the BRM, and observe that the generic transformation from chosen-plaintext security to chosen-ciphertext
security, using the Naor-Yung paradigm [NY90], also applies in the BRM.

SHORTER CIPHERTEXTS VIA ANONYMOUS ENCAPSULATION. We notice that two of our IB-HPS constructions,
based on lattices and quadratic residuosity, have additional structure, which allows for a more efficient version of
leakage-amplification. In our current construction of leakage-amplification in Section 5, the ciphertext C of the con-
structed scheme contains t ciphertexts c1, . . . , ct of the underlying scheme, where t = O(λ + v). We show how to
reduce this to a single ciphertext if we start with an IB-HPS construction that has an additional property, which we call
anonymous encapsulation. Such a scheme has two additional procedures:

• (c, s)← EncapC(), which samples a ciphertext c together with a trapdoor s without knowing the target ID.
• k = EcnapK(c, s, ID), which (deterministically) computes k for any ID, given c and a trapdoor s.

Note that the procedures EncapC,EcnapK (like Encap) are implicitly parameterized by the master public key mpk.

Definition 7.1 (Anonymous Encapsulation) An IB-HPS has anonymous encapsulation if there exist efficient proce-
dures EncapC,EcnapK as above, such that, for any fixed mpk,msk, ID, sampling (c, k) ← Encap(ID) is equivalent to
sampling (c, s)← EncapC() and computing k = EcnapK(c, s, ID).

For our lattice-based and quadratic-residuosity based constructions, the procedures EncapC,EcnapK are already im-
plicitly defined by Encap, which first samples c anonymously (independently of ID) and then computes k for a given ID
using the randomness s that was used to generate c.

There are several advantages to IB-HPS schemes that have the anonymous-encapsulation property. Firstly, it’s
easy to see that IBE constructed from such schemes has anonymity, in that the ciphertext does not reveal the target
identity. Perhaps more importantly, anonymous encapsulation can be used to get an improved leakage-amplification
scheme with shorter ciphertexts.6 In particular, we modify the procedure Encap2(ID) of the constructed IB-HPS2

scheme, so that it samples a single ciphertext/trapdoor pair (c, s)← EncapC1() of the underlying scheme, and computes
ki = EcnapK1(c, s,H(ID, ri)) for each of of the t random indices ri ∈ [n]. The ciphertexts of the constructed scheme
therefore consist of C = (r, c, g), and contain only a single ciphertext c of the underlying scheme. To reduce the
ciphertext size still further, we can employ the following optimizations:

1. Instead of sampling the indices r ← [n]t uniformly at random, and communicating this choice in the ciphertext,
we use use a hitting sampler, or hitter (see Definition E.2) to sample r ∈ [n]t efficiently. This choice can then
be communicated using a seed of description size log(n) + O(λ + v), rather than the previous size t log(n) =
O((λ+ v) log(n)) needed to communicate r explicitly.

2. Use a γ-universal, instead of fully universal, hash function g, where γ = 1
2v (1 + negl(λ)). As observed in

[SZ99], such hash functions can have description sizes O(v+λ), only proportional to the output size, and not the
somewhat larger input size.

6 A similar technique is implicitly used to get shorter ciphertexts relative to the message length in the IBE constructions of [BGH07, GPV08].
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In Appendix E.4, we show that leakage-amplification still holds for the modified constructions, by showing that
Decap2(C, ·) is an approximately-universal hash function when C ← Encap∗(ID), with appropriate parameters. Un-
fortunately, the setting of the parameters requires that ρ ≤ 1

2v in the original scheme, which is only the case for our
QR-based scheme but not the lattice-based scheme.

8 Comparison of PKE (and IBE) in BRM Constructions

In Table 1, we compare the efficiency and relative-leakage of our various IBE and PKE in BRM constructions. We
assume that the plaintext size is v = O(λ).7 In all of the schemes, the leakage-parameter ` can be arbitrarily large and
the relative leakage column indicates the ratio of leakage to secret-key size. The public-key size of all schemes is the
same as the master-public-key size of the corresponding IB-HPS and the encryption/decryption times (and the number
of bits accessed) differ by a multiplicative factor of t = O(λ). The “CT expansion” column indicates the ratio of the
ciphertext size in the BRM to that of the underlying IB-HPS. The “CT size in BRM” column measures the size of the
ciphertext in the BRM on an absolute scale.8 The value ε > 0 can be an arbitrary constant.

Scheme Assumption Relative Leakage CT Size in BRM CT Expansion Locality
Bilinear-Groups

[Gen06] TABDHE ( 1
2 − ε) O(λ2) O(λ) O(λ)

Quadratic Residuosity
[BGH07] QR † 1

O(λ) O(λ) O(1) O(λ)

Lattices
[GPV08] LWE/GapSVP † (1− ε) O(λ4) O(λ) O(λ)

† = Random Oracle Model/Interactive Assumption

Table 1: Comparison of Our PKE in BRM Constructions
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[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In Susanne Albers and Jean-
Yves Marion, editors, STACS, volume 09001 of Dagstuhl Seminar Proceedings, pages 75–86. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2009.

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically secure communication in the limited storage space
model. In Wiener [Wie99], pages 65–79.

7To encrypt larger messages, it is sufficient to encrypt a short O(λ) sized key for a symmetric-key encryption scheme.
8Note that, to make a fair comparison, we assume that RSA moduli and bilinear-group elements have description sizes O(λ). For our LWE

based construction, the modulus q needs to be (slightly) super-polynomial, and we are pessimistic by just bounding its description size by O(λ).

15

http://eprint.iacr.org/


[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking cryptographic protocols for
faults (extended abstract). In EUROCRYPT, pages 37–51, 1997.

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption without pairings. In FOCS,
pages 647–657, 2007.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S. Kaliski Jr., editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[CDD+07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi Walfish. Intrusion-resilient
key exchange in the bounded retrieval model. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in
Computer Science, pages 479–498. Springer, 2007.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-resilient functions and all-or-
nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password protocols in the bounded
retrieval model. In Halevi and Rabin [HR06], pages 225–244.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
45–64. Springer, 2002.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM Journal on Computing, 30(2):391–
437, 2000.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary input. In STOC, 2009.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS, pages 227–237. IEEE
Computer Society, 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302. IEEE Com-
puter Society, 2008.

[DSS01] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive security in exposure-resilient cryptography.
In EUROCRYPT, pages 301–324, 2001.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Halevi and Rabin [HR06], pages 207–
224.

[FKPR09] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy Rothblum. Leakage-resilient signatures. Cryptology ePrint
Archive, Report 2009/282, 2009. http://eprint.iacr.org/.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor, EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 445–464. Springer, 2006.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Concrete results. In Çetin
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A Counterexample to PKE in BRM Construction
from General Leakage-Resilient IBE

We give a counterexample showing that a generic construction of PKE in the BRM from a leakage-resilient IBE, via
parallel repetition, does not work. More specifically we construct an IBE with leakage `, such that parallel-repetition
does not amplify leakage-resilience beyond some small value, no matter how many “repetitions” n are taken.

As a start, assume that I is any IBE scheme. We first construct an IBE I ′ where the set of identities is exactly
[n] (which is only polynomial). The scheme is the same as I otherwise, except that the identity-secret-key generation
procedure also gives a share Si of the master secret key msk to each identity i ∈ [n], along with its identity secret
key. We assume the share is computed using an n-out-of-n secret sharing scheme. The resulting scheme I ′ is still and
IBE (albeit with a small, polynomially size identity set) since, after observing the identity secret key of up to n − 1
identities, the master secret key is still perfectly hidden. Moreover, the scheme is leakage-resilient, at least for some
small (logarithmic in the security parameter) leakage ` (this must be the case for any IBE/PKE since a logarithmic
number of bits of leakage can be efficiently guessed with polynomial probability). Nevertheless, the PKE construction
that results from n-wise parallel-repetition is not leakage-resilient for any ` greater than the size of the master secret key
of I , no matter how large n is. Indeed a valid leakage attack can look at all shares S1, . . . , Sn, and output the master
secret key.

One objection to the counterexample, is that the IBE scheme I ′ only has a polynomial number of identities, and
so it is not a legitimate IBE. We can get around this by defining a scheme I ′′ which runs one copy of I ′ for identities
{1, . . . , n} and an independent copy of the original scheme I for all other (exponentially many) identities. Then I ′′ is a
proper IBE, but leakage-amplification still fails.

B A Construction of IB-HPS Based on Bilinear Groups

B.1 Review of Bilinear Groups and Assumptions

Let G,GT be two (multiplicative) groups of prime order p and let g be a generator of G. Let e : G × G → GT be a
map from G to the target group GT . We say that the group G is bilinear if we have

1. Bilinearity: For all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: For the generator g of G, we get e(g, g) 6= 1.

3. Efficiency: Operations (multiplication, exponentiation) in G,GT and the map e can be computed efficiently.

We assume the existence of a group-generation algorithm G(1λ) which, on input 1λ, outputs a tuple (G,GT , g, e(·, ·), p)
where G is a bilinear group of prime order p.

We will rely on the truncated augmented bilinear Diffie-Hellman exponent assumption (q-TABDHE ) from [Gen06].
We define the two distributions

D
(0)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(α

q+2), e
(
g(q+1), g′

))
and

D
(1)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(α

q+2), Z
)

where (G,GT , g, e(·, ·), p) ← G(1λ), g′ ← G, α ← Zp, and Z ← GT . For any algorithm B, the distinguishing

advantage of B in the q-TABDHE problem is AdvTABDHE
B (λ, q) def=

∣∣∣Pr
[
B
(
D

(0)
λ,q

)
= 0
]
− Pr

[
B
(
D

(1)
λ,q

)
= 0
]∣∣∣ .

Definition B.1 We say that the q-TABDHE assumption holds if, for any PPT B, AdvTABDHE
B (λ, q) = negl(λ). We say

that the TABDHE assumption holds if q-TABDHE holds for all polynomial q.
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B.2 Construction of IB-HPS based on Gentry’s IBE [Gen06].

We now present the construction of IB-HPS which is based directly on Gentry’s IBE [Gen06].

Setup(1λ) : Let (G,GT , g, e, p)← G(1λ). Let h← G, α← Zp and g1 := gα.
Set mpk = (G,GT , g, e, p, g1, h) and set msk = α.
The identity set is ID = Zp \ {α} and the encapsulated-key set is K = GT . a

KeyGen(ID,msk) : For ID ∈ ID, choose rID ← Zp and compute hID = (hg−rID)1/(α−ID). Output skID = (rID, hID).

Encap(ID) : Choose random s ∈ Zp and compute u = gs1g
−sID, v = e(g, g)s and output c = (u, v), k = e(g, h)s.

Encap∗(ID) : Choose a random pair (s, s′) ∈ Zp subject to the constraint s 6= s′. Let u = gs1g
−sID, v = e(g, g)s

′
and output

c = (u, v).

Decap(c, skID) : Parse c = (u, v) and output k = e(u, hID)vrID .

aThe set ID is defined in terms of the secret α. Given ID ∈ Zp, one can efficiently check if ID ∈ ID by checking if gID ?
= g1.

Essentially, various parts of Gentry’s proof already show that the scheme satisfies the properties of IB-HPS. For com-
pleteness, we include the proof tailored to our presentation and terminology below.

Theorem B.1 Under the TABDHE assumption, the above construction is an IB-HPS which is simultaneously smooth
and (m, ρ)-universal for ρ = 0. More precisely, the valid/invalid ciphertext indistinguishability property holds under
the q-TABDHE assumption for any adversary making at most q queries in test stages 1,2. Moreover:

1. The identity-key entropy is m = log(p).
2. The actual identity-key size is m̂ = 2 log(p) +O(1).9

3. The effective-key size (logarithm of the number of values that any skID can take on) is m′ = log(p).
4. The encapsulated-key size is v = log(p).

Proof. Let us write h = gβ for some β ∈ Zp, so that hID = g(β−rID)/(α−ID) for each ID ∈ Zp.
I. For correctness we see that, for any ID ∈ Zp, any correctly generated mpk,msk, skID, if a pair (c = (u, v), k) is
generated by Encap(ID) then u = gs1g

−sID = gs(α−ID), v = e(g, g)s for some s ∈ Zp and k = e(g, h)s. Correctness
follows since:

Decap(c, skID) = e(u, hID)vrID

= e
(
gs(α−ID), g(β−rID)/(α−ID)

)
e(g, g)srID

= e(g, g)sβ = e(g, h)s = k.

II. For valid/invalid ciphertext indistinguishability, we show how to use an adversary A, which distinguishes valid and
invalid ciphertexts using q queries, to create an adversary B which is a distinguisher for the q-TABDHE problem. In
particular, the algorithm B receives as input (g, g1, . . . , gq, g

′, g′q+2, Z) where gi = g(αi), g′i = g′(α
i) for an unknown

α, and Z is either e(gq+1, g
′) or a random element of GT . The algorithm B simulates the valid/invalid ciphertext

distinguishability game for A as follows:

Setup: The algorithm B chooses a polynomial f(x) ∈ Zp[x] of degree q uniformly at random, and computes h = gf(α)

using g1, . . . , gq (and without knowledge of α). The value mpk = (g, g1 = gα, h = gf(α)) is given to A.

Test Stage 1: Whenever A makes a query for a new value of ID ∈ Zp, the algorithm B computes rID = f(ID) and sets
hID = gFID(α) where FID(x) = (f(x) − f(ID))/(x − ID) is a polynomial of degree q − 1 and thus hID can be
efficiently computed using g1, . . . , gq−1 without knowing α. B gives skID = (rID, hID) to the attacker A.

9We use the fact that many elliptic-curves with pairings have source groups whose representation size is not much larger than its order.
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Challenge Stage: The attacker A chooses an identity ID∗. Let skID∗ = (rID∗ , hID∗) be computed as in the Test Stage.
LetHID(x) = (xq+2− IDq+2)/(x− ID) be the polynomial of degree q+1, in which the xq+1 term has coefficient
1. Let H−ID(x) = HID(x)− xq+1 be the polynomial of degree q. Then B sets:

u =
g′q+2

g′((ID
∗)q+2)

= g′(α
q+2−(ID∗)q+2), v = Z ·

(
g′, gH

−
ID∗ (α)

)
where gH

−
ID∗ (α) is computed using g1, . . . , gq, and gives c = (u, v) to A.

Test Stage 2: The algorithm B responds to ID queries the same way as in Test Stage 1.

Output: If the adversary A outputs b′ = 0 (indicating a valid ciphertext), the algorithm B outputs 0 (indicating that
Z = e(gq+1, g

′)) and if A outputs 1 then B also outputs 1.

We show that the view of A is statistically close to a run of the valid/invalid ciphertext indistinguishability game.
Firstly, since f is random degree q polynomial,and is evaluated at at most q + 1 values (the ID queries of A and at
α) all of the outputs are mutually independent and uniform over Zp. In particular, letting β = f(α), this means that
mpk = (g, g1 = gα, h = gβ) and the identity secret keys skID = (rID, hID = g(β−rID)/(α−ID)) seen during the Test
Stages are (mutually) chosen from the same distribution as in the valid/invalid ciphertext indistinguishability game.

Now let us look at the challenge key-ciphertext. We write g′ = gγ for a random (unknown) γ. WhenZ = e(gq+1, g
′)

then the challenge ciphertext is u = gs(α−ID∗) for s = γHID∗(α), which is uniformly random for a random γ. Also,

v = e(g′, g)HID∗ (α) = e(g′, g)s/γ = e(g, g)s.

Therefore this (perfectly) corresponds to the distribution seen by A when the challenger chooses b = 0 (i.e. a valid
key-ciphertext). On the other hand, when Z is uniformly random, then v = e(g, g)s

′
for a random s′, independent of s

so that (u, v) are uniform over G × GT . This is 1/p statistically close to the distribution of invalid ciphertexts output
by Encap∗(ID∗) and thus the case where the challenger chooses b = 1 (i.e. an invalid key-ciphertext). Therefore the
advantage of B in the q-TABDHE game is negligibly close to the advantage ofA in the valid/invalid indistinguishability
game.

III. To show smoothness and ρ-universality, fix any mpk,msk, ID. Let c be some output of Encap∗(ID), so that c =
(u, v) for u = gs(α−ID) and v = e(g, g)s

′
where s 6= s′. Then, for any secret key skID = (rID, hID = g(β−rID)/(α−ID))

we get:

Decap(c, skID) = e(u, hID)vrID

= e
(
gs(α−ID), g(β−rID)/(α−ID))

)
vrID

= e(g, g)s(β−rID)e(g, g)s
′rID

= e(g, g)sβ+(s′−s)rID

Therefore:

1. For any fixed c output by Encap∗(ID), the distribution of Decap(c, skID) (over a uniform skID ← KeyGen(ID,msk))
is uniform over K = GT . This implies smoothness.

2. If Decap(c, skID) = Decap(c, sk′ID) and skID, sk
′
ID are outputs of KeyGen(ID,msk) then skID = sk′ID. This implies

0-universality.

�

C A Construction of IB-HPS Based on Quadratic-Residuosity

C.1 Review of Terminology, the QR Assumption, Background

For a positive integerN , let J (N) denote the set J (N) def= {x ∈ ZN :
(
x
N

)
= 1}where

(
x
N

)
denotes the Jacobi symbol

of x in ZN . Let QR(N) ⊆ J (N) denote the set of quadratic residues modulo N .
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Let PrimeGen(1λ) be an algorithm which, given security parameter λ, outputs two primes (p, q) of length which is
exponential in λ. We define the distributions:

DQRλ : Choose (p, q)← PrimeGen(1λ), N = pq, S ← QR(N). Output (N,S).
DNQRλ : Choose (p, q)← PrimeGen(1λ), N = pq, S ← J (N) \QR(N). Output (N,S).

The quadratic residuosity assumptions states that no PPT adversary can distinguish the distributions DQRλ and DNQRλ.

Definition C.1 (QR Assumption) The quadratic residuosity assumptions states that for any PPT algorithm A,

|Pr [A (DQRλ) = 1]− Pr [A (DNQRλ) = 1]| ≤ negl(λ).

Recall the following elementary property of the Jacobi symbol.

Lemma C.1 For any x, y ∈ ZN ,
(
x
N

) ( y
N

)
=
(xy
N

)
. Therefore, if xy ∈ J (N). Then

(
x
N

)
=
( y
N

)
.

We will also rely on the following two lemmas shown in [BGH07].

Lemma C.2 ([BGH07]) Let N be a product of two primes, let X ∈ QR(N), and S ∈ J (N). Let x1, x2 ∈ Zn be any
two square roots of X . Let f be a polynomial such that f(x)f(−x)S is a quadratic residue for all four square roots x
of X . Then:

• When S 6∈ QR(N), the Jacobi symbols of x1, x2 are different
(
f(x1)
N

)
6=
(
f(x2)
N

)
iff x1 6= −x2.

• When S ∈ QR(N), the Jacobi symbols of x1, x2 are always the same
(
f(x1)
N

)
=
(
f(x2)
N

)
.

Lemma C.3 ([BGH07]) There exists an efficient and deterministic algorithm Q which takes as input (N, u,R, S),
where N ∈ Z+, u,R, S ∈ ZN , and outputs polynomials f, f , g, τ ∈ ZN [x] satisfying the following conditions:

1. If R,S ∈ QR(N), then f(r)g(s) ∈ QR(N) for all square roots r of R and s of S.
2. If uR, S ∈ QR(N), then f(r)g(s)τ(s) ∈ QR(N) for all square roots r of uR and s of S.
3. If R ∈ QR(N), then f(r)f(−r)S ∈ QR(N) for all square roots r of R.
4. If uR ∈ QR(N), then f(r)f(−r)S ∈ QR(N) for all square roots r of uR.
5. If S ∈ QR(N), then τ(s)τ(−s)u ∈ QR(N) for all square roots s of S.
6. For any fixed values of N, u, S, the polynomial τ output by Q(N, u,R, S) is the same for all choices of R.

Lastly, we review the interactive QR (IQR) assumption of [BGH07]. Let PrimeGen be as before, and letHN : {0, 1}∗ →
J (N). We define two IQR oracles OQR

λ and ONQR
λ which work as follows:

• The oracle selects (p, q)← PrimeGen(1λ) and outputs N = pq.
• The oracle selects u← J (N) \QR(N) and outputs u.
• The oracle OQR

λ selects S ← QR(N) while ONQR
λ selects S ← J (N)/QR(N). The oracle outputs S.

• On each input x ∈ {0, 1}∗, the oracle computes R = HN (x) and outputs a random square-root of either R or
uR, depending on which one is a residue.

Definition C.2 (IQR Assumption of [BGH07]) The IQR assumption for a pair (PrimeGen, HN ) states that no PPT
adversary A can distinguish oracle access to OQR

λ from that to ONQR
λ . That is,∣∣∣Pr

[
AO

QR
λ (1λ) = 1

]
− Pr

[
AO

NQR
λ (1λ) = 1

]∣∣∣ ≤ negl(λ).

It is easy to see (as was shown in [BGH07]) that the IQR assumption follows from the standard QR assumption when
the hash-function HN is modeled as a Random Oracle.
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C.2 Construction of IB-HPS Based on the IBE of Boneh Gentry and Hamburg [BGH07]

We now present the construction of IB-HPS which is based on an IBE scheme of Boneh Gentry and Hamburg [Gen06],
with some small modifications. In the description, Q is the algorithm defined by Lemma C.3 and PrimeGen is the
prime-generation of Definition C.1.

Setup(1λ) : Choose (p, q)← PrimeGen(1λ) and set N = pq. Sample u← J (N) \QR(N). Let H : {0, 1}∗ → J (N).
Output mpk = (N, u,H) and msk = (p, q). The identity set is ID = {0, 1}∗. The encapsulate-key set is K = {±1}.

KeyGen(ID,msk) : Let R = H(ID). Let a ∈ {0, 1} be the unique choice for which uaR ∈ QR(N). Let {±r1,±r2} be
a labeling of the four square-roots of uaR so that +r1 < −r1 and +r2 < −r2 in Z. Choose r ← {r1, r2}, output
skID = r.

Encap(ID) : Choose s← ZN and set S = s2. Run Q(N, u, 1, S) to obtain τ and compute b =
(
τ(s)
N

)
. Set c = (S, b).

Let R = H(ID). Run Q(N, u,R, s) to obtain a polynomial g, set k =
(
g(s)
N

)
. Output (c, k).

Encap∗(ID) : Choose S ← J (N) \QR(N), b← {±1}. Outputs c = (S, b).

Decap(c, skID) : Let r = skID, R = H(ID). Parse c = (S, b). If r2 = R, output k =
(
f(r)
N

)
else output k = b

(
f(r)
N

)
,

where f, f are the polynomials output by Q(N, u,R, S).

Theorem C.1 Under the IQR assumption on the pair (PrimeGen, H), the above construction is (m, ρ)-Universal and
smooth IB-HPS with ρ = 0. In particular, this is also the case under the QR assumption, when the function H is
modeled as a Random Oracle. Moreover:

1. The identity-key entropy is m = 1.
2. The actual identity-key size is m̂ = log(N).
3. The effective-key size (logarithm of the number of values that any skID can take on) is m′ = 1.
4. The encapsulated-key size is v = 1.

Proof. We show correctness, valid/invalid ciphertext indistinguishability and universality separately.

I. CORRECTNESS Let S ∈ QR(N) and s be an arbitrary square-root of S. Let R ∈ J (N). Let g, f, f , τ be outputs of
Q(N, u,R, S), which results in the same τ as that output by Q(N, u, 1, S) by property 6 of Q. To show correctness, it
suffices to show that:

• If R ∈ QR(N) then k =
(
g(s)
N

)
=
(
f(r)
N

)
for any square-root r of R.

• If R 6∈ QR(N) then k =
(
g(s)
N

)
=
(
τ(s)
N

)(
f(r
N

)
where r is any square-root of uR.

For the first bullet, we get f(r)g(s) ∈ QR(N) by property 1 of the algorithmQ (Lemma C.3) and so correctness follows
by Lemma C.1. For the second bullet, we get f(r)g(s)τ(s) ∈ QR(N) by property 2 of the algorithm Q. Correctness
then follows by Lemma C.1.

II. VALID/INVALID CIPHERTEXT INDISTINGUISHABILITY Assume that there is a PPT adversaryA that distinguishes
valid and invalid ciphertexts with non-negligible probability. We use A to construct an adversary B for the IQR as-
sumption. Essentially, B gets oracle access to some oracle O which is either OQR

λ or ONQR
λ . As a first step, B receives

(N, u, S) from its oracle. Then B simulates the valid/invalid ciphertext indistinguishability game for A as follows:

Key Setup: Give mpk = (N, u,H) to the adversary A.
Test Stage 1: For each query to ID ∈ {0, 1}∗, the adversary B submits ID to its oracle O and receives an output r. It

then outputs either r or −r depending on the which one is smaller in Z.
Challenge Stage: No matter what the challenge ID is, choose b← {±1} and give (S, b) to A.
Test Stage 2: Same as Test Stage 1.

At the end B outputs whateverA does. It is easy to see the the key setup, and the test stages 1,2, are simulated correctly.
For the challenge phase:
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• If the oracle O is ONQR
λ then the ciphertext c = (S, b) is uniform over (J (N) \ QR(N), {±1}), which is the

same as when the challenger samples c← Encap∗(ID).
• If the oracle O is OQR

λ then the ciphertext c = (S, b) is uniform over (QR(N), {±1}). We claim this is the same

as when the challenger samples c ← Encap(ID), where S ← QR(N) and b =
(
τ(s)
N

)
for a random square-root

s of S. This follows by property 5 of Q in conjunction with Lemma C.2 which tells us that, for a fixed S, b is
uniformly random over {±1} over a random square-root s of S.

Therefore the distinguishing advantage of A in the valid/invalid ciphertext indistinguishability game is the same as
the advantage of B in the IQR game, which proved the theorem.

III. UNIVERSALITY For any fixed mpk = (N, u,H),msk = (p, q), ID there is a fixed R = H(ID) and there are
only two possibilities for skID = r ∈ {r1, r2}. For any c = (S, b) output by Encap∗(ID) we claim that, if k1 =
Decap(c, r1), k2 = Decap(c, r2) then k1 6= k2. We do this in two cases:

Case R ∈ QR(N): Then k1 =
(
f(r1)
N

)
, k2 =

(
f(r2)
N

)
where f is output by Q(N, u,R, S). By property 3 of Q, we

have f(r)f(−r)S ∈ QR(N) for all square roots r of R. By Lemma C.2, since S 6∈ QR(N), and r1 6= −r2, we
see that k1 6= k2.

Case uR ∈ QR(N): Then k1 = b
(
f(r1)
N

)
, k2 = b

(
f(r2)
N

)
where f is output by Q(N, u,R, S). By property 4 of Q,

we have f(r)f(−r)S ∈ QR(N) for all square roots r of uR. By Lemma C.2, since S 6∈ QR(N), and r1 6= −r2,
we see that

(
f(r1)
N

)
6=
(
f(r2)
N

)
and so k1 6= k2.

Therefore, we get 0-universality and, since r chosen uniformly from {r1, r2}, we also get smoothness. Lastly, we see
that the min-entropy of r is exactly 1 bit. �

D A Construction of IB-HPS Based on Lattices

As this section will use lattice and LWE based tools we keep to the standards common in these areas. In particular we
use n to denote the security parameter. We will also use the following (slight abuse of) notation. For set S we write
x ← S to denote sampling variable x uniformly from S. Finally for random variable y and we write y ∼ D to denote
that y is distributed according to D.

D.1 Learning with Errors

Following [GPV08] we briefly review some important definitions and facts concerning learning with errors (LWE). For
fixed integers n and q = q(n), vector s ∈ Znq and error distribution χ = χ(n) over Zq define the LWE oracle As,χ as
follows. At each invocation As,χ samples a ← Znq and error term x ← χ and outputs (a,aT s + x). For s ← Znq the
decision variant (DLWEq,n,χ) is the problem of distinguishing between oracle access to As,χ and access to an oracle
which simply samples UZnq×Zq . The LWEq,n,χ on the other hand is defined as the problem of finding s when given
oracle access to Aq,χ.

Gaussian Error Distribution. To base our construction on a concrete DLWE assumption we must specify a particular
error distribution. We write Ψα to denote the Gaussian (normal) distribution with mean 0 and variance α2. The error
distribution we are interested in (which we denote with Ψα) is called the one-dimensional discrete Gaussian over Zq
for some positive integer q. It can be sampled by selecting x ← Ψα and outputting dq · xc mod q. We will also need
the standard tail inequality for the continuous Gaussian. That is if x ∼ Ψα and t > 1 then

Pr[|x| > tα] ≤ 1
t
e
−t2
2 (4)
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Reductions to Lattice Problems. The security of our scheme is based on the hardness of average-case DLWE. Ideally
we would like use the results of [Reg05, Pei09] to further reduce to some worst case lattice problem such as the GapSVP
or one of it’s variants. While the reduction from average-case DLWE to worst-case apply directly, the reduction from
worst-case DLWE to worst-case LWE runs in time polynomial in length of the prime factors of q (ref. [Pei09], Lemma
3.3). Yet for our construction we will require q = 2ω(logn) to be prime. Thus we must make an exponential hardness
assumption for the worst-case LWE problem which in turn implies a similar assumption for GapSVP. Note that for
q ≥ 2n/2 such a hardness assumption then suffices for a classic reduction to the standard GapSVP problem while for
smaller q [Pei09] shows a classic probabilistic poly-time reduction to the ζ-to-γ-GapSVP variant.

D.2 Preimage Sampleable Functions

We will use the preimage sampleable functions of [GPV08]. That is the set of functions fA, indexed by matrix A ∈
Zn×mq , which map vector x ∈ Zmq to fA(x) = Ax ∈ Znq . Further the trapdoor sampling algorithms of [Ajt99, AP09]
efficiently generate an (almost) uniform A ∈ Zn×mq together with a trapdoor T which is used to invert fA.

Of particular interest to us is the preimage distribution e ∼ Dm,r (over Zm) which the authors of [GPV08] describe
in detail. For the purpose of our construction we will require a special case of a Lemma 4.4 of [MR04b] which bounds
the length of e← Dm,r for large enough r together with Lemma 5.3 of [GPV08] which describes a concrete bound on
r for our choice of lattices (i.e. ones defined as the null space of left multiplication by a matrix A as defined above).

Lemma D.1 Let m ≥ 2n log q, r > ω(
√

logm) and ε > 0. Then we have:

Pr
e∼Dm,r

[
‖e‖ > r

√
m
]
≤ 1 + ε

1− ε
· 2−m

We will also need their efficient probabilistic algorithm SampleISIS which uses trapdoor T to sample from the
preimage of f−1

A (e) such that for random variables e ∼ Dm,r and y ∼ UZnq

SD [(e, fA(e)) , (SampleISIS (y) ,y)] ≤ negl(n).

Finally we will need a lower bound on the min-entropy the output of SampleISIS. For general lattices, Lemma 2.11
of [PR06] provides such a bound but we will use the refined version of [Vai09]. For our case it is summarized in the
following lemma:

Lemma D.2 For constant c > 0, fixed A and T as generated by Setup and fixed u ∈ Znq let e← SampleISIS(u). The
H∞(e) ≥ m(log(r)− log(mc)).

D.3 The Construction

We now describe a Universal Identity-Based Hash Proof System based on the DLWE which is a slight variant of the
IBE scheme in [GPV08] which is in turn based on a variant of the encryption scheme of [Reg05].

Let m and n be positive integers, q be a prime. Further let χ be an LWE error distribution. Finally let H : {0, 1}∗ −→ Znq be
a hash function mapping identities to integer vectors.

Setup() : Run the trapdoor sampling algorithm of [Ajt99, AP09] to generate A ∈ Zn×mq together with a trapdoor T. If the
columns of A do not generate Znq repeat. Otherwise set mpk = A and msk = T.

KeyGen(ID,msk) : Set u = H(ID). Use msk = T to run SampleISIS sampling e ∈ f−1
A (u). Output skID = e.

Encap(ID) : Set u = H(ID). Sample s ← Znq , error vector x ← χm and integer v ← Zq . Compute p = AT s + x ∈ Zmq .
If
∣∣v − uT s

∣∣ ≤ q−1
4 then set k = 1 else set k = 0. Output ciphertext c = (p, v) and key k.

Encap∗(ID) : Sample p← Zmq and v ← Zq . Output ciphertext c = (p, v).

Decap(c, skID) : Parse c = (p, v) and set e = skID. If
∣∣v − eTp

∣∣ ≤ q−1
4 then output k = 1. Otherwise output k = 0.
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The construction is parametrized by an ε ∈ (0, 1). The reason being that later we will use the IB-HPS to create a
leakage resilient IBE which supports leakage of up to a 1− ε fraction of the secret key. Thus most of the settings of our
parameters will depend on this ε.

The remainder of this section focuses on proving the following theorem.

Theorem D.1 Let ε ∈ (0, 1) be a constant and n be the security parameter. Let prime q = 2ω(logn), m ≥ 2n log q and
let r ≥ m

1
ε . Let α ≤ 1

r
√

2mn
. Then, under the DLWEq,Ψα assumption, the following holds in the Random Oracle model

for the above construction:

1. It is an (m∗, ρ)-Universal IB-HPS for m∗ = 1−ε2
ε m log(m) and for ρ = 1

2 + 1
2q2

.

2. The actual key size (number of bits needed to represent skID) is m̂ = 1+ε
ε m log(m).

3. As a consequence m∗

m̂ ≥ 1− ε.

Proof. The non-trivial part of the theorem is the first statement. It’s proof has been broken up into three lemmata; one
for each of the three following three properties of a Universal IB-HPS: correctness, indistinguishability and universality.

Lemma D.3 (Correctness) For the choice of parameters above, the construction is correct.

Proof. The crux of showing correctness is captured by the following claim. Intuitively it tells us that the distance
between uT s which is used to compute the value of k during encapsulation is very close to the value of eTp which
is used to guess k during decapsulation. Indeed, using this claim we can then argue that the error this discrepancy
introduces is small enough to only have a negligible probability of causing decapsulation to fail at guessing k correctly.

Claim D.1 For honestly generated parameters, secret key and encapsulation in the above scheme there exists a poly-
nomial p such that

∣∣eTp− uT s
∣∣ ≥ p(n) with at most negligible probability.

Proof. Essentially we follow the proof of Lemma 8.2 in [GPV08] however for a different choice of parameters which
results in a distance negligible in n. We first note that eTp − uT s = eT (AT s + x) − uT s = eTx. Thus we are
interested in bounding the length of eTx.

By definition χ = Ψα and so xi = dq · yic mod q where yi ← Ψα independently of all yj for j 6= i. Thus
||x− y|| ≤

√
m/2 and we get

|eTx| = |〈e,x〉|
= |〈e,y + (x− y)〉|
≤ |〈e,y〉|+ |〈e,x− y〉|
≤ |〈e,y〉|+

√
m/2 · r

√
m

= |〈e,y〉|+ (rm)/2

where the 4-th line follows from Cauchy-Schwarz inequality.
It remains to estimate the size eTy. The components of y are independently normally distributed therefor (yTe) ∼

Ψ||e||α. By Lemma D.1 we have ||e||α ≤ r
√
m·α ≤ 1√

2n
with overwhelming probability over the choice of e and for our

constraint on α. Then the standard tail inequality (equation 4) with t =
√

2n implies that Pr
[
||eTy|| > 1

]
≤ negl(n).

�

For correctness it remains to show that with at most negligible probability Decap will output a bad guess for k. This
happens if and only if exactly one of the values eTp and uT s is further then q−1

4 from v. Let d =
∣∣eTp− uT s

∣∣, then
for fixed e,p,u and s there are 2d values of v such that Decap produces a bad guess for k. By Claim D.1 we have that
d is a polynomial in n and so since q = 2ω(logn) the probability 2d/q that an independent v ← Zq takes on one of those
values in a negligible function in n. �

Lemma D.4 (Indistinguishability) For our choice of parameters, the construction satisfies valid/invalid ciphertext
indistinguishability.
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Proof. We need to show that for fixed e the ciphertexts output by Encap and Encap∗ have indistinguishable distribu-
tions. We do this by reducing to the DLWEq,n,χ assumption. That is we give a black-box construction of an efficient
DLWE adversary B from any distinguishability adversary A such that B’s advantage in the DLWE game is negligibly
close to A’s advantage at distinguishing outputs of Encap from those of Encap∗.

DLWE attacker B is given access to A (which expects to play the indistinguishability attack game) and to an oracle
O which returns elements (a, b) ∈ Zmq ×Zq. B’s goal is to decide whetherO is an LWE oracle or not. We now describe
B’s behavior during each of the steps of the indistinguishability attack game.

Setup: B makes m queries to O receiving {(ai, bi)}i∈[m]. It sets the i-th column of matrix A ∈ Zn×mq to ai and gives
mpk = A to A.

Test Stage 1: B initializes an empty table of triples of the form (ID,u, e) ∈ {0, 1}∗ × Znq × Zmq . For each extraction
query ID made by A, B first checks whether a triple of the form (ID, ·, ·) is already in the table. If so then it
returns skID = u for the corresponding value of u in the triple. If not then B selects a fresh e ← DZm,r, stores
(ID,Ae, e) and returns skID = e to B.

Random Oracle Calls: Upon receiving call H(ID), B checks if it has already stored a triple for ID. If so it returns the
corresponding u. Otherwise it samples a fresh e← DZm,r, stores (ID,Ae, e) and returns Ae as a response toA.

Challenge Stage: B returns the string c = b1b2 · · · bm as a challenge ciphertext.

Test Stage 2: B answers key extraction and random oracle queries as in Test Stage 1.

Output: B receives b′ from A and forwards it the the DLWE challenger.

It remains to argue the correctness of B. First we point out that the view of A is identical to that of the real
indistinguishability attack game. This follows from the fact that the distribution of A in the real game is statistically
close to uniform while both types of oracles O output truly uniform A. Further the joint distributions of (H, ID, e) are
indistinguishable by the correctness of the SampleISIS algorithm10.

Next we analyze the distribution of challenge ciphertext c in the game run byB. WhenO = Aq,χ then c is distributed
exactly like the output of Encap(ID∗). On the other hand, when O samples UZnq×Zq , then c is distributed exactly like
the output of Encap∗(ID∗). Therefor the game run by B essentially imitates the game A expects to play and the bit b′

output by B depends on which type of oracle A has access to. �

Lemma D.5 (Universality) For the choice of parameters above the construction is (m∗, ρ)-universal for
m∗ = 1−ε2

ε m log(m) and ρ = 1
2 + 1

2q2
.

Proof. To show (m∗, ρ)-universality we need two properties. First, for fixed A, H11 and u = H(ID) we need to show
that the min-entropy of e as output by KeyGen(ID,A) is at least m∗ ≥ 1−ε2

ε m log(m). Set c = ε and r ≥ m
1
ε then the

result follows directly from Lemma D.2.
To show the second property fix ID and e 6= e′ with H(ID) = Ae = Ae′. We wish to compute

ρ = Pr
c←Encap∗(ID)

[
Decap(c, e) = Decap(c, e′)

]
This is done in two steps. Recall that c = (p, v). For random variable p define variable D =

∣∣eTp− e′Tp
∣∣. First we

show that D ∼ UZq . Then we use that fact to explicitly calculate the collision probability ρ of Decap.
Let i ∈ [m] be the index of a component where e and e′ differ. Fix all pj with j 6= i and let

a =

∣∣∣∣∣∣
∑
j 6=i

(ej − e′j)pj

∣∣∣∣∣∣
10In particular the upper-bound on ||T|| from [AP09] implies that our choice of r is enough to satisfy the conditions of SampleISIS.
11Note that for the proof of Universality we do not need to model H as a Random Oracle.
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Now as q is prime addition (of a) in Zq is a bijection and multiplication by the non-zero value (ei−e′i) is also a bijection
in Zq. Thus there is a bijection between values taken by pi ∼ UZq and D implying D ∼ UZq .

We are now ready to calculate the value of ρ. A collision occurs if and only if exactly one of the two quantities
eTp and e′Tp is more then q−1

4 from v. Let ρd be the collision probability for a given distance D = d, then for
d ∈ [(q − 1)/2] we have ρd = 1− (2d)/q because v ← Zq is independent of e, e′ and p. Then we can have:

ρ =
q−1∑
d=0

ρd · Pr[D = d] =
1
q

+ 2
(q−1)/2∑
d=1

ρd · Pr[D = d] =
1
q

+
2
q

(q−1)/2∑
d=1

ρd

=
1
q

+
2
q

(q−1)/2∑
d=1

1− 2d
q

=
1
q

+
2
q

q − 1
2
− 2
q

(q−1)/2∑
d=1

d


=

1
2

+
1

2q2

�

Taken together the previous three lemmata conclude the proof of the first statement of Theorem D.1.
The second statement follows directly form Lemma D.1. If the norm of e is bounded by r

√
m (with overwhelming

probability) then so too of course, are it’s components. Thus log(r) + log(m) bits suffice to represent each component
of which there are m. In particular for r ≥ m

1
ε no more then m̂ = 1+ε

ε m log(m) bits are needed.
Finally the third statement of the theorem follows from the calculation:

m∗

m̂
=

1−ε2
ε m log(m)

1+ε
ε m log(m)

=
(1− ε)(1 + ε)

1 + ε
= 1− ε

�

E Approximate Hashing and Approximate Leftover-Hash Lemma

E.1 Background.

First, we review several standard notions which we will need in the remainder of the section.

Definition E.1 The q-ary Shannon entropy function is defined asHq(x) def= x logq(q−1)−x logq(x)−(1−x) logq(1−x).

Lemma E.1 (Volume of Hamming Ball) Let x ∈ Σn be an arbitrary value, where Σ is some alphabet of size |Σ| = q,
and let δ be an arbitrary value in the range 1/n < δ ≤ 1 − 1/q. Define Vq(n, δ, x) def= |{x′ ∈ Σn : dH(x, x′) ≤ δn}|
to be the volume of the hamming ball of radius δn centered at x. Then there is a function Vq(n, δ) such that Vq(n, δ) =
Vq(n, δ, x) for all x ∈ Σn, and Vq(n, δ) ≤ qHq(δ)n.

See e.g. [Sho05] for the following Lemma.

Lemma E.2 (Collision Probability and Statistical Distance) Suppose X is a random variable that takes values from
a set Π of size |Π| = p. We define the collision probability β def= Pr[x = x′] where x, x′ are independently sampled
according to X . Then SD(X,UΠ) ≤ 1

2

√
pβ − 1.

Definition E.2 (Hitter) Let Hit : {0, 1}w → [n]t be a function and interpret the output Hit(e) as a sample of t
elements in [n]. We say that Hit(e) hits S ⊆ [n] if it includes at least one member of S. A function Hit is a (δ, ψ)-hitter
if for every subset S ⊆ [n] of size |S| ≥ δn, Pre←Uw [Hit(e) hits S] ≥ (1− ψ).

A simple hitter construction involves choosing t uniformly random and independent elements of [n]. This results
in a (δ, τ)-hitter with τ = (δ)t for any 0 < δ < 1. Alternatively, for any 0 < δ < 1, 0 < ψ we get a (δ, ψ)-hitter
with sample complexity t = O(log(1/ψ)/δ) and randomness complexity w = t log(n). Interestingly, the randomness
complexity can be reduced significantly by using a more clever construction. Indeed, the survey of Goldreich [Gol97]
shows how to achieve the following parameters using a construction based on expander graphs.
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Theorem E.1 ([Gol97]) There exists an efficient ensemble of hitters Hit : {0, 1}w → [n]t such that, for any integer
n and any δ, ψ with 0 < δ < 1 , 0 < ψ, we get sample complexity t = O(log(1/ψ)/δ) and randomness complexity
w = log(n) + 3 log(1/ψ).

E.2 Definition and Results.

We define a new notion of universal hashing, which relaxes ρ-universality, by only insisting that values which are far
from each other (over the Hamming metric) are unlikely to collide.

Definition E.3 (Approximately Universal Hashing) A function-family H, consisting of functions h : Σn → Π, is
called (δ, ρ)-approximately universal if for all x, x′ ∈ Σn with dH(x, x′) ≥ δn we have Prh←H[h(x) = h(x′)] ≤ ρ.

Now we are ready to prove a generalized version of the leftover-hash lemma for approximate universal hashing.

Theorem E.2 (Approximate Leftover-Hash Lemma) Assume that a family F of functions f : Σn → Π is (δ, ρ)-
approximately universal. Define q def= |Σ|, v def= log(|Π|). Let δ be in the range 1/n ≤ δ ≤ (1− 1

q ). LetX,Z be arbitrary

random variables where X is distributed over Σn and m def= H̃∞(X|Z). Let F be uniform over F . Then

SD( (F,Z, F (X)) , (F,Z, UΠ) ) ≤ 1
2

√
2Hq(δ)n log(q)+v−m + ρ2v − 1

where Hq is q-ary Shannon entropy function. In particular, the statistical distance above is at most ε as long as:

m ≥ Hq(δ)n log(q) + v + 2 log (1/ε)− 1 and ρ ≤ 1
2v

(1 + ε2).

Proof. For each value z in the support of Z, define the random variable Xz = (X | Z = z). We start by computing
the collision probability β def= Pr[(f, f(x)) = (f ′, f ′(x′))] where f, f ′ are independently sampled from F and x, x′ are
independently sampled according to Xz . Then

β = Pr[(f, f(x)) = (f ′, f ′(x′))] = Pr[f = f ′] Pr[f(x) = f(x′)]

≤ 1
|H|

(
Pr[dH(x, x′) < δn] + ρ

)
≤ 1
|H|

(
Vq(n, δ)
2H∞(Xz)

+ ρ

)
≤ 1
|H|

(
qHq(δ)n

2H∞(Xz)
+ ρ

)
(5)

≤ 1
|H|2v

(
2Hq(δ)n log(q)+v−H∞(Xz) + ρ2v

)
where (5) follows by Lemma E.1. We now apply Lemma E.2 to the random variable (F, F (Xz)), which gives us:

SD( (F, F (Xz)) , (F,UΠ) ) ≤ 1
2

√
2Hq(δ)n log(q)+v−H∞(Xz) + ρ2v − 1

Now, by averaging over z ← Z, we get:

SD( (F,Z, F (X)) , (F,Z, UΠ) ) = Ez [ SD( (F, F (Xz)) , (F,UΠ) )]

≤ Ez
[

1
2

√
2Hq(δ)n log(q)+v−H∞(Xz) + ρ2v − 1

]
≤ 1

2

√
Ez
[
2Hq(δ)n log(q)+v−H∞(Xz)

]
+ ρ2v − 1

=
1
2

√
2Hq(δ)n log(q)+v−H̃∞(X|Z) + ρ2v − 1

=
1
2

√
2Hq(δ)n log(q)+v−m + ρ2v − 1
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which proves the first part of theorem. For the second part of the theorem, SD( (F,Z, F (X)) , (F,Z, UΠ) ) ≤ ε if

ε ≥ 1
2

√
2 max

(
2Hq(δ)n log(q)+v−m , ρ2v − 1

)
which is satisfied by the conditions of the second part of the theorem. �

E.3 Analysis of a Concrete Approximately Universal Function.

We now explore a concrete example of an approximately universal hash function with locality, which will be used in
our construction PKE in the BRM. Let Σ,Ψ be some alphabets, and let F be a family of ρ-universal hash functions
f : Σ→ Ψ. For integers n, t, v > 0 we define the familyH(n,t,v) of hash function h : Σn → {0, 1}v as follows:

• Each h inH(n,t,v) is uniquely described by:

1. A vector r = (r1, . . . , rt) of (not necessarily distinct) indices ri ∈ [n].
2. A vector f of functions (f1, . . . , ft) where fi ∈ F .
3. A function g ∈ G, where G is some (1/2v)-universal-hash function family of functions g : Ψt → {0, 1}v.

In particular, a random h fromH consists of a uniformly random choice of (r, f , g) ∈R ([n]t,F t,G).

• For x ∈ Σn, we define h(x) = g( ( f1(x[r1]), . . . , ft(x[rt]) ) ).

The family H(n,t,v) will be useful as it will form the backbone of our construction of PKE in the BRM. Note that,
although the above definition of H might appear overly complicated and unnatural, it arises from our need to work
with an existing IB-HPS (which, in turn, is delicately designed based on some underlying computational assumptions)
and thus we do not, in general, have the freedom to choose all the components of H. In particular, the alphabets Σ,Ψ
and the function family F will be a part of the underlying IB-HPS and thus not in our control, while we will have the
freedom to choose n, t, v.

Lemma E.3 Let Σ,Ψ be alphabets, and let F be a family of ρ-universal hash functions f : Σ → Ψ. For integers
n, t, v > 0 let H(n,t,v) be the family of functions h : Σn → {0, 1}v as defined above. Then the family H is (δ, τ)-
approximately universal for any δ > 0 with τ ≤ (1− δ(1− ρ))t + 1/2v.

Proof. For any x, x′ ∈ Σn where dH(x, x′) ≥ δn, we have

Pr
h←H

[h(x) = h(x′)] ≤ Pr
h←H

[ ( f1(x[r1]), . . . , ft(x[rt] ) = ( f1(x′[r1]), . . . , ft(x′[rt] ) ] + 1/2v

≤
t∑
i=0

(
Pr[dH( (x[r1], . . . , x[rt]) , (x′[r1], . . . , x′[r′t]) ) = i]ρi

)
+ 1/2v

≤
t∑
i=0

[(
t

i

)
δi(1− δ)t−iρi

]
+ 1/2v

≤ (1− δ(1− ρ))t + 1/2v

�

Corollary E.1 Let Σ,Ψ be alphabets where |Σ| = q and F be a ρ-universal family of hash functions. Let λ, n, t, v > 0
be integers, and 1/n < δ < 1/2. Let H be uniform over H(n,t,v) and X,Z be arbitrary correlated random variables
where X is distributed over Σn. Then SD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−λ as long as:

t ≥ (v + 2λ)/(δ(1− ρ)) , H̃∞(X|Z) ≥ Hq(δ)n log(q) + v + 2λ− 1.

In particular, for any constants ρ, ε > 0, any q ≥ 2, any polynomials v(λ), n(λ), there exists some t = O(v + λ)
such that, for any X,Z as above the following holds:

If H̃∞(X|Z) ≥ εn log(q) + v + Ω(λ) then SD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−Ω(λ)

where H is uniform overH(n,t,v).
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E.4 An Alternative Approximately Universal Function (For Anonymous Encapsulation Scheme)

We also explore another example, which is used by our “short ciphertext” scheme based on “anonymous encapsulation”.
Let Σ,Ψ be some alphabets, and let F be a family of ρ-universal hash functions f : Σ→ Ψ. Let Hit : {0, 1}w ← [n]t

be a (δ, τ)-hitter and G be a family of γ-universal hash functions g : Ψt → {0, 1}v. For integers n, v > 0 we define
the familyH∗(n,v) of hash function h : Σn → {0, 1}v as follows:

• Each h inH∗(n,v) is uniquely described by:

1. A seed e ∈ {0, 1}w for the hitter.

2. A function f ∈ F .

3. A function g ∈ G.

In particular, a random h fromH∗(n,v) consists of a uniformly random choice of (e, f, g) ∈ ({0, 1}w,F ,G).

• For x ∈ Σn, we define h(x) = g( ( f(x[r1]), . . . , f(x[rt]) ) ) where (r1, . . . , rt) = Hit(e).

Lemma E.4 Let Σ,Ψ be alphabets, and letF be a family of ρ-universal hash functions f : Σ→ Ψ. Let Hit be a (δ, ψ)
hitter and G be a γ-universal hash family. For integers n, v > 0 letH∗(n,v) be the family of functions h : Σn → {0, 1}v

as defined above. Then the familyH∗(n,v) is (δ, τ)-approximately universal for any δ > 0 with τ ≤ ψ + ρ+ γ.

Proof. For any x, x′ ∈ Σn where dH(x, x′) ≥ δn, we have

Pr
h←H

[h(x) = h(x′)] ≤ Pr
h←H

[ ( f(x[r1]), . . . , f(x[rt] ) = ( f(x′[r1]), . . . , f(x′[rt] ) ] + γ

≤ Pr
h←H

[ ( x[r1], . . . , x[rt] ) = ( x′[r1], . . . , x′[rt] ) ] + ρ+ γ

≤ ψ + ρ+ γ

where (r1, . . . , rt) = Hit(e) and h = (e, g, f). �

Corollary E.2 For any family F of 0-universal functions, any ε > 0, any q ≥ 2, any polynomials v(λ), n(λ), there
exists some some instantiation of the hitter Hit and the family G so that the following holds about the resulting family
H∗(n,v). For any X,Z

If H̃∞(X|Z) ≥ εn log(q) + v + Ω(λ) then SD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−Ω(λ)

whereH is uniform overH∗(n,v). Moreover, the description size of h ∈ H∗n,v isO(v+λ)+|f | where |f | is the description
size of f ∈ F . Lastly, the locality of h ∈ H∗n,v (the number of xi accessed) is t = O(v + λ).

F Chosen-Ciphertext Security

F.1 A Leakage-Resilient CCA-Secure IBE

Following the approach presented in Appendix Appendix B, we show that the CCA-secure variant of Gentry’s IBE
scheme [Gen06] can used for constructing an IBE scheme that is resilient to any leakage of length roughly ` = s/6 bits,
where s is the length of the secret key of each identity. We begin by providing a formal definition of a leakage-resilient
IBE, and then present our construction.

F.1.1 Definition

The following definition is a natural generalization of the definition presented in Section 4. Given a security parameter
λ and a leakage parameter `, we define the following game between an adversary A and a challenger:
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IBE-SS-CCA(λ, `)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and gives mpk to the adversary A.

Test Stage 1: The adversary A can adaptively ask the challenger for the following queries:

Secret-Key Queries: On input ID ∈ ID, the challenger replies with skID.
Leakage Queries: On input ID ∈ ID and a PPT function f : {0, 1}∗ → {0, 1}, the challenger replies with f(skID).
Decryption Queries: On input ID ∈ ID and a ciphertext c, the challenger replies with Decrypt(c, skID).

Challenge Stage: The adversary selects two messages m0,m1 ∈ M and a challenge identity ID∗ ∈ ID which never ap-
peared in a secret-key query and appeared in at most ` leakage queries. The challenger chooses b← {0, 1} uniformly
at random, computes c∗ ← Encrypt(ID∗,mb), and gives c∗ to the adversary A.

Test Stage 2: The adversary can adaptively submit secret-key queries with any ID 6= ID∗, and decryption queries with any
(ID, c) 6= (ID∗, c∗).

Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that the adversary wins the game if b′ = b.

Note: In test stages 1 and 2 the challenger computes skID ← KeyGen(ID,msk) the first time that ID is queried (in a secret-key,
leakage, or decryption query) and responds to all future queries on the same ID with the same skID.

For any adversary A, its advantage in the above game with an identity-based encryption scheme IBE is defined as
AdvIBE-SS-CCA

IBE,A (λ, `) def=
∣∣Pr[A wins ]− 1

2

∣∣. We say that an identity-based encryption scheme IBE is `-leakage-resilient
under a chosen-ciphertext attack if for any PPT adversary A it holds that AdvIBE-SS-CCA

IBE,A (λ, `) is negligible in λ.

F.1.2 The Construction

Let G and GT be cyclic groups of prime order p, and let e : G×G→ GT be a bilinear map. Let Ext : GT ×{0, 1}d →
{0, 1}m be an average-case (log p−`, ε)-strong extractor for some negligible ε = ε(λ), where ` ≤ log p−ω(log λ)−m,
and letH = {H : G×GT×{0, 1}d×{0, 1}m → Zp} be a collection of universal one-way hash functions. The following
describes an identity-based encryption scheme IBE = (Setup,KeyGen,Encrypt,Decrypt):

Setup: Choose random generators g, h1, h2, h3 ∈ G, a random α ∈ Zp, and a sample a function H ∈ H. Let g1 = gα and
output

mpk = (g, g1, h1, h2, h3, H), msk = α .

Key generation: On input an identity ID ∈ Zp \ {α} sample rID,i ∈ Zp uniformly at random for i ∈ {1, 2, 3}, and output
the secret key skID = {(rID,i, hID,i)}3i=1 where

hID,i =
(
hig
−rID,i

)1/(α−ID)
.

If ID = α then the algorithm aborts without producing a secret key.

Encryption: On input a message m ∈ {0, 1}m and an identity ID ∈ Zp, choose r ∈ Zp and s ∈ {0, 1}d independently and
uniformly at random, and output the ciphertext c = (u, v, s, w, y), where:

u = gr1g
−r·ID, v = e(g, g)r, w = Ext (e(g, h1)r, s)⊕m, y = e(g, h2)re(g, h3)rβ ,

and β = H(u, v, s, w).

Decryption: On input a ciphertext (u, v, s, w, y) and a secret key skID, if y = e(u, hID,2hID,3
β)vrID,2+rID,3β where β =

H(u, v, s, w), then output w ⊕ Ext (e(u, hID,1)vrID,1 , s), and otherwise output ⊥.

Theorem F.1 Fix any polynomials qID, qL, qC , and let q = qID + qL + 3. Assuming the hardness of the q-TABDHE
problem, AdvIBE-SS-CCA

IBE,A (λ, `) is negligible for any PPT adversary A submitting at most qID secret-key queries, qL
leakage queries, and qC decryption queries.

Proof. We show that any efficient adversary A for which AdvIBE-SS-CCA
IBE,A (λ, `) is noticeable can be used to either solve

the q-TABDHE problem with a noticeable advantage or the break the security of the collectionH of universal one-way
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hash functions. Let D be a distinguisher for the q-TABDHE problem that receives as input a challenge of the form(
g′, g′q+2, g, g1, . . . , gq, Z

)
(recall that gi = g(αi), g′q+2 = g′(α

q+2), and that Z is either e(gq+1, g
′) or a random element

of GT ), and simulates the game IBE-SS-CCA(λ, `) to the adversary A as follows:

• Setup: For i ∈ {1, 2, 3} the distinguisher D generates a random polynomial fi(x) ∈ Zp[x] of degree q, and
sets hi = gfi(α) (note that hi is efficiently computable from g, g1, . . . , gq). In addition, D samples H ∈ H, and
outputs mpk = (g, g1, h1, h2, h3, H).

• Secret-key queries: If A ever submits a secret-key query with ID = α then D solves the q-TABDHE problem.
Otherwise, whenever A submits a secret-key query with ID 6= α, for every i ∈ {1, 2, 3} let FID,i(x) denote the
(q − 1)-degree polynomial (fi(x)− fi(ID))/(x− ID), and D outputs skID = {(rID,i, hID,i)}3i=1 where

rID,i = fi(ID), hID,i = gFID,i(α) .

• Leakage queries: If A ever submits a leakage query with ID = α then D solves the q-TABDHE problem.
Otherwise, whenever A submits a leakage query with ID 6= α then D computes skID as in the simulation of
secret-key queries, and outputs the value of the given leakage function when applied to skID.

• Decryption queries: If A ever submits a decryption query (ID, c) with ID = α then D solves the q-TABDHE
problem. Otherwise, whenever A submits a decryption query with ID 6= α then D computes skID as in the
simulation of secret-key queries, and outputs the result of the decryption algorithm applied to skID and c.

• Challenge stage: IfA submits (ID,m0,m1) such that ID = α thenD solves the q-TABDHE problem. Otherwise,
D chooses b ∈ {0, 1} uniformly at random, and computes skID as in the simulation of secret-key queries. Let
f̄(x) = xq+2, F̄ID(x) = (f̄(x) − f̄(ID))/(x − ID). Then, D chooses s ∈ {0, 1}d uniformly at random, and
computes

u = g′f̄(α)−f̄(ID)

v = Z · e

(
g′,

q∏
i=0

gF̄ID,iα
i

)
w = Mb ⊕ Ext (e(u, hID,1)vrID,1 , s)
y = e(u, hID,2hID,3

β)vrID,2+rID,3β ,

where F̄ID,i is the coefficient of xi in F̄ID(x), and β = H(u, v, s, w). Finally, D outputs the challenge ciphertext
(u, v, s, w, y).

• Output: If A outputs b′ such that b′ = b then D outputs 1, and otherwise D outputs 0.

In the remainder of the proof we say that a ciphertext (u, v, s, w, y) is well-formed for identity ID if it holds that
y = e(u, hID,2hID,3

β)vrID,2+rID,3β , where β = H(u, v, s, w). Note that by the definition of the decryption algorithm, it
accepts a ciphertext if and only if it is a well-formed ciphertext. In addition, we say that a ciphertext (u, v, s, w, y) is
valid for identity ID if it holds that v = e(u, g)1/(α−ID), and otherwise we say that it is invalid.

Without loss of generality we assume that if the adversary submits more than ` leakage queries with the same
identity, then in query `+ 1 he is given the secret key of this identity. That is, we replace query `+ 1 with a secret-key
query. This assumption is valid since such an identity cannot be chosen as the challenge identity, and therefore the
adversary can might as well ask for the corresponding secret key. In addition, we assume that the adversary never
submits a decryption query with an identity to which he already knows the secret key. This assumption is valid since the
challenger in the IBE-SS-CCA(λ, `) game simply invokes the decryption algorithm, and this can be simulated internally
by the adversary.

The proof consists of two main arguments. First, we prove that if Z = e(gq+1, g
′) then A’s view in the simulated

attack (i.e., in the interaction withD) is statistically-close toA’s view in the actual attack (i.e., in the IBE-SS-CCA(λ, `)
game). Then, we prove that if Z is random then A has only a negligible advantage in outputting the bit b. These two
arguments are proved in Lemmata F.1 and F.2, respectively, and conclude the proof of the theorem.
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Lemma F.1 If Z = e(gq+1, g
′) then A’s view in the simulated attack is statistically-close to A’s view in the actual

attack.

Proof. Assuming that in both the simulated attack and the actual attack all decryption queries with invalid ciphertexts
are rejected, the views of the adversary are identical in both cases. This follows from the fact that the adversary learns
the value of f1, f2, and f3 on at most q − 1 = qID + qL + 1 points (these include qID secret-key queries, qL leakage
queries, the point α, and the challenge identity), and that decryption queries with valid ciphertext reveal no information
on the secret key that is used to decrypt the ciphertext. Therefore, the fact that the polynomials f1, f2, and f3 are of
degree q implies that the above q − 1 values are independent and uniformly distributed from the adversary’s point of
view (note that here it in fact suffices that these polynomials are of degree q−2, but we will need them to be of degree q
to argue that invalid ciphertexts are rejected). In the following claim we argue that in the simulation all invalid ciphertext
are rejected with overwhelming probability. A similar and much simpler claim holds for the actual attack as well (see
[Gen06]).

Claim F.1 If Z = e(gq+1, g
′) then the decryption algorithm rejects all invalid ciphertexts, except with a negligible

probability.

Proof. We bound the probability that the adversary submits a decryption query with an invalid ciphertext and
this query is accepted by the decryption algorithm (i.e., the ciphertext is well-formed). We analyze this probably
by considering the joint distribution of the coefficients of the polynomials f2 and f3 from the adversary’s point of
view. Denote by (ID, (u, v, s, w, y)) the first decryption query submitted by A with an invalid ciphertext. Denote by
skID = {(rID,i, hID,i)}3i=1 the secret key for ID as computed byD when answering this decryption query. In order for the
ciphertext (u, v, s, w, y) to be accepted by the decryption algorithm it must hold that y = e(u, hID,2hID,3

β)vrID,2+rID,3β ,
where β = H(u, v, s, w). By letting au = logg u, av = loge(g,g) v, and ay = loge(g,g) y, this condition can be written
as

ay = au
(
logg hID,2 + β logg hID,3

)
+ av (rID,2 + βrID,3) . (6)

In addition, from the public parameters we obtain the following equations:

logg h1 = (α− ID) logg hID,1 + rID,1 (7)

logg h2 = (α− ID) logg hID,2 + rID,2 (8)

logg h3 = (α− ID) logg hID,3 + rID,3 . (9)

Combining Equations (6), (8), and (9), in order for the ciphertext to be accepted the adversary A has to compute y such
that

ay =
au

α− ID
·
(
logg h2 + β logg h3

)
+
(
av −

au
α− ID

)
· (rID,2 + βrID,3) . (10)

Up to this point the view of the adversary contains the public parameters (which we already took into consideration
in Equations (7), (8), and (9)), the result of at most qID secret-key queries and qL key-leakage queries, the result of
decryption queries with valid ciphertexts (these do not reveal any more information on f2 and f3), and possibly also the
challenge ciphertext. For the sake of this proof we can even assume that the adversary actually obtains all the secret
keys for which it requested leakage information, the secret key of the challenge identity, and an additional ` bits of
leakage on the secret key of ID. Ignoring these ` bits of leakage for now, this means that the adversary knows the values
of f2 and f3 at the point α (this is from h2 and h3), and at no more than qID + qL + 1 = q− 2 distinct identities that we
denote by x1, . . . , xq−2. Letting fi(x) =

∑q
j=0 fi,jx

j for i ∈ {2, 3}, and xq−1 = α, the knowledge of the adversary
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can be represented by the following product:

(
f2,0 · · · f2,q f3,0 · · · f3,q

)



1 · · · 1 0 · · · 0
x1 · · · xq−1 0 · · · 0
...

. . .
...

...
. . .

...
xq1 · · · xqq−1 0 · · · 0
0 · · · 0 1 · · · 1
0 · · · 0 x1 · · · xq−1
...

. . .
...

...
. . .

...
0 · · · 0 xq1 · · · xqq−1


(11)

Let f denote the vector on the left, and let V denote the matrix on the right. Note that V contains two (q+ 1)× (q− 1)
Vandermonde matrices and its columns are linearly independent. Therefore, fromA’s view, since V has four more rows
than columns, the solution space for f is four-dimensional.

Let γID denote the vector (1, ID, . . . , IDq), then Equation (10) can be re-written as follows:

ay =
au

α− ID
·
(
logg h2 + β logg h3

)
+
(
av −

au
α− ID

)
· 〈f , γID||βγID〉 , (12)

where 〈·, ·〉 denotes inner-product in Zp, and γID||βγID is the vector of length 2(q+1) that consists of the concatenation
of γID and βγID. Note that the vector γID||βγID is not contained in the linear span of the columns of the matrix V , and
therefore even given all the above knowledge the value 〈f , γID||βγID〉 is still uniformly distributed in Zp. In addition, the
assumption that the ciphertext is invalid is equivalent to av − au/(α− ID) 6= 0, and therefore the value ay is uniformly
distributed as well. Now, assuming that the adversary obtains at most ` bits of leakage, then from the adversary’s view
the value ay has average min-entropy at least log p − `, and this implies that the probability that this invalid ciphertext
is accepted (i.e., the probability that the adversary computes y that passes the validity test) is at most 2`/p.

An almost identical argument holds for all the subsequent invalid decryption queries. The only difference is that
each time the decryption oracle rejects an invalid ciphertext the adversary can rule out one more value of f . This
shows that the decryption algorithm accepts the i-th invalid ciphertext with probability at most 2`/(p − i + 1). The
claim now follows from the fact that the number qC of decryption queries is polynomial, and from the restriction
` ≤ log p− ω(log n). �

�

Lemma F.2 If Z is random then A has only a negligible advantage in outputting the bit b.

Proof. We denote by (u∗, v∗, s∗, w∗, y∗) and ID∗ the challenge ciphertext and challenge identity, respectively, and
denote by Collision the event in which for one of A’s decryption queries (u, v, s, w, y) it holds that (u, v, s, w) 6=
(u∗, v∗, s∗, w∗) and H(u, v, s, w) = H(u∗, v∗, s∗, w∗). We prove Lemma F.2 in a sequence of three claims. First,
we prove that assuming that the event Collision does not occur, the decryption algorithm rejects all invalid ciphertexts
except with a negligible probability. Then, we show that if the decryption algorithm rejects all invalid ciphertexts, then
A has only a negligible advantage in outputting the bit b (we note that this is essentially the only part in the proof of
this lemma that differs from [Gen06], given our analysis from the proof of Lemma F.1). Finally, we prove that the event
Collision occurs with only a negligible probability.

Claim F.2 If Z is random and the event Collision does not occur, then the decryption algorithm rejects all invalid
ciphertexts except with a negligible probability.

Proof. Suppose thatA submits a decryption query (ID, (u, v, s, w, y)) with an invalid ciphertext. Let β = H(u, v, s, w)
and β∗ = H(u∗, v∗, s∗, w∗). For any such query that is submitted prior to the challenge phase the analysis of Claim F.1
still applies, since the view of the adversary up to this point is independent of whether Z is e(gq+1, g

′) or random. For
any such query that is submitted after the challenge phase it holds that (ID, (u, v, s, w, y)) 6= (ID∗, (u∗, v∗, s∗, w∗, y∗)),
and therefore there are three cases to consider:
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Case 1: (u, v, s, w) = (u∗, v∗, s∗, w∗). If ID = ID∗ then y 6= y∗ and therefore the ciphertext (u, v, s, w, y) is not
well-formed for ID and will be rejected. If ID 6= ID∗, then the adversary has to compute the y that satisfies
Equation (12) in order for the ciphertext to be well-formed. However, we claim that the vector γID||βγID (from
Equation (12)) is linearly independent of the vector γID∗ ||βγID∗ (from the challenge ciphertext) and the columns
of the matrix V , and therefore (as in the proof of Claim F.1) A cannot generate such a y except with probability
2`/(p− i+ 1), where (u, v, s, w, y) is the i-th invalid ciphertext.

To see that these vectors are indeed linearly independent, denote by V1, . . . , V2q−2 the columns of the ma-
trix V , and suppose that there exist integers a1, . . . , a2q, not all zero, such that a1V1 + · · · + a2q−2V2q−2 +
a2q−1(γID||βγID) + a2q(γID∗ ||βγID∗) is the zero vector in Z2(q+1)

p . Then, either a1, . . . , aq−1, a2q−1, a2q or
(aq, . . . , a2q−2, a2q−1, a2q) is not all zeros. In the first case, note that the first q + 1 coordinates of the vec-
tors V1, . . . , Vq−1, ID, ID

∗ form a invertible matrix, but the first q + 1 coordinates of a1V1 + · · · + aq−1Vq−1 +
a2q−1(γID||βγID) + a2q(γID∗ ||βγID∗) is the zero vector in Zq+1

p and this is not possible. The second case is
similarly analyzed.

Case 2: (u, v, s, w) 6= (u∗, v∗, s∗, w∗) and β = β∗. This case is not possible since we assume that the event
Collision does not occur.

Case 3: (u, v, s, w) 6= (u∗, v∗, s∗, w∗) and β 6= β∗. In this case the adversary has to compute the y that satisfies
Equation (12) in order for the ciphertext to be well-formed. If ID 6= ID∗ then the same analysis as in case 1
shows that the adversary has only a negligible probability in computing such y. If ID = ID∗, then the vectors
V1, . . . , V2q−2, (γID||βγID), (γID∗ ||β∗γID∗) are linearly independent and the same analysis applies.

�

Claim F.3 If Z is random and the decryption algorithm rejects all invalid ciphertexts, then A has only a negligible
advantage in outputting the bit b.

Proof. We prove the claim by analyzing the distribution of e(u∗, hID∗,1)v∗rID∗,1 from the adversary’s point of view.
Ignoring any leakage information from the secret key skID∗ of the challenge identity for now, we argue that rID,1 is
uniformly distributed and independent from the adversary’s view: the adversary’s view contains the values of f1 on at
most qID + qC identities, and therefore secret-key queries and leakage queries on any ID 6= ID∗ do not restrict rID,1
due to the degree of the polynomial f1, decryptions of valid ciphertexts do not reveal any additional information, and
all invalid ciphertexts are assumed to be rejected. The adversary may obtain at most ` bits of leakage on skID∗ , and
therefore from the adversary’s point of view prior to the challenge phase (and, in particular, before the seed s∗ is chosen)
it holds that rID∗,1 has average min-entropy at least log p − ` (note that after the challenge phase the adversary obtains
no information on rID∗,1).

In addition, observe that

e
(
u∗, hID∗,1

)
v∗rID∗,1 = e

(
u∗,
(
h1g
−rID∗,1

)1/(α−ID∗)
)
v∗rID∗,1

= e (u∗, h1)α−ID∗
(

v∗

e(u∗, g)1/(α−ID∗)

)rID∗,1
,

and since Z is completely random and independent of all other parameters then with probability 1 − 1/p it holds
that v∗ 6= e(u∗, g)1/(α−ID∗). Therefore, with probability 1 − 1/p also the value e(u∗, hID∗,1)v∗rID∗,1 has average min-
entropy at least log p − ` conditioned on the adversary’s view. Thus, the average-case strong extractor guarantees that
the challenge message is masked statistically. �

Claim F.4 The event Collision occurs with only a negligible probability.

Proof. Given an adversary A for which the event Collision occurs with a noticeable probability, we construct an
algorithm A′ that breaks the security of the collectionH of universal one-way hash functions:

1. A′ chooses u ∈ G, v ∈ GT , s ∈ {0, 1}d and w ∈ {0, 1}m uniformly at random, and announces (u, v, s, w).
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2. A′ is given a randomly chosen function H ∈ H.

3. A′ chooses random generators g, h1, h2, h3 ∈ G and a random α ∈ Zp. Then, A′ lets g1 = gα, mpk =
(g, g1, h1, h2, h3, H), msk = α, and sends mpk to A.

4. A′ simulates the secret-key, leakage, and decryption queries to A using msk.

5. In the challenge phase A′ ignores the two messages m0,m1 ∈ {0, 1}m, computes

β = H(u, v, s, w), y = e(u, hID∗,2hID∗,3
β)vrID∗,2+rID∗,3β ,

and sends A the challenge ciphertext (u, v, s, w, y).

6. If at some point A submits a decryption query with (u′, v′, s′, w′) such that (u′, v′, s′, w′) 6= (u, v, s, w) and
H(u′, v′, s′, w′) = H(u, v, s, w) then A′ outputs (u′, v′, s′, w′). Otherwise A′ outputs ⊥.

Claims F.2 and F.3 guarantee that as long as the event Collision does not occur, thenA cannot distinguish betweenA′
andD. Specifically, both in the interaction withA′ and in the interaction withD the component in the challenge cipher-
text that depends on the bit b is ε-close to uniform given the adversary’s view (for some negligible ε). Therefore, with a
non-negligible probability A submits a decryption query with (u′, v′, s′, w′) such that (u′, v′, s′, w′) 6= (u, v, s, w) and
H(u′, v′, s′, w′) = H(u, v, s, w), and in this case A′ finds a collision. �

�

�

F.2 A Generic Transformation in the BRM

In the setting of relative leakage Naor and Segev [NS09] proved that the Naor-Yung “double encryption” paradigm
[DDN00, NY90, Lin06, Sah99] can be used to construct a CCA-secure public-key encryption scheme from any CPA-
secure one using non-interactive zero-knowledge proofs. The key property of the transformation is that the size of the
secret key in the resulting CCA-secure scheme is exactly the same as in the underlying CPA-secure scheme, and this
in turns enables to preserve the relative amount of leakage to which the scheme is resilient. Moreover, we point out
that since the resulting scheme also preserves the efficiency of the underlying scheme (when ignoring computations
that are independent of the amount of leakage), this implies that the same transformation extends to the BRM as well.
For completeness we provide here the description of the transformation, and refer the reader to [NS09] for the proof of
security.

Let Π0 = (KeyGen0,Encrypt0,Decrypt0) be a public-key encryption scheme that is semantically secure in the
BRM against chosen-plaintext attacks with leakage `, and let Π1 = (KeyGen1,Encrypt1,Decrypt1) be any public-key
encryption scheme that is semantically secure against chosen-plaintext attacks (note that Π1 is not required to be resilient
to leakage). Let (P,V) be a one-time simulation-sound adaptive NIZK proof system for the following NP-language12:

L = {(c0, c1, pk0, pk1) | ∃m, r0, r1 s.t. c0 = Encrypt0(m, pk0; r0) and c1 = Encrypt1(m, pk1; r1)} .

The following scheme is semantically secure against chosen-ciphertext attacks in the BRM with leakage `:

Key generation: Sample (sk0, pk0)← KeyGen0(1λ) and (sk1, pk1)← KeyGen1(1λ), and a reference string σ for the NIZK
proof system. Output sk = sk0 and pk = (pk0, pk1, σ).

Encryption: On input a message m choose r0, r1 ∈ {0, 1}∗, and compute c0 = Encrypt0(m, pk0; r0) and c1 =
Encrypt1(m, pk1; r1). Then, invoke the NIZK prover P to obtain a proof π for the statement (c0, c1, pk0, pk1) ∈ L
with respect to the reference string σ. Output the ciphertext (c0, c1, π).

Decryption: On input a ciphertext (c0, c1, π), invoke the NIZK verifier V to verify that π is an accepting proof with respect
to the reference string σ. If V accepts then output Decrypt0(c0, sk0), and otherwise output ⊥.

12We refer the reader to [Lin06, Sah99] for the definition of a one-time simulation-sound adaptive NIZK proof system.
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