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Abstract

Selective opening attacks against commitment schemes occur when the commitment
scheme is repeated in parallel (or concurrently) and an adversary can choose depending on
the commit-phase transcript to see the values and openings to some subset of the committed
bits. Commitments are secure under such attacks if one can prove that the remaining,
unopened commitments stay secret.

We prove the following black-box constructions and black-box lower bounds for commit-
ments secure against selective opening attacks:

1. For parallel composition, 4 (resp. 5) rounds are necessary and sufficient to build com-
putationally (resp. statistically) binding and computationally hiding commitments.
Also, there are no perfectly binding commitments.

2. For parallel composition, O(1)-round statistically-hiding commitments are equivalent
to O(1)-round statistically-binding commitments.

3. For concurrent composition, ω(log n) rounds are sufficient to build statistically binding
commitments and are necessary even to build computationally binding and computa-
tionally hiding commitments, up to log log n factors.

Our lower bounds improve upon the parameters obtained by the impossibility results of
Bellare et al. (EUROCRYPT ’09), and are proved in a fundamentally different way, by
observing that essentially all known impossibility results for black-box zero-knowledge can
also be applied to the case of commitments secure against selective opening attacks.

Keywords: commitments, black-box lower bounds, zero knowledge, selective opening attacks, parallel

composition, concurrent composition



1 Introduction

Commitment schemes have a wide array of applications in cryptography, one of the most notable
being the construction of zero knowledge protocols [14, 4]. A problem that arises in the use of
commitment schemes is whether their hiding property holds when composed in parallel: if some
subset of the committed messages are opened, do the remaining unopened messages remain
secure? This question arose early in the study of zero knowledge protocols, and whether they
remain zero knowledge when composed in parallel. It is natural in other cryptographic contexts
as well, whenever commitments are used as building blocks for protocols that might be then
used in parallel (e.g. secure multi-party computation, etc.).

Although naively one might think that because commitments are hiding that no additional
information should be leaked by composing them, nevertheless it is unknown how to prove that
standard stand-alone commitments (e.g. [18]) remain hiding when composed.

More formally, a selective opening attack on a commitment scheme allows a cheating receiver
to interact in k parallel (or concurrent) commitments, and then ask the sender to open some
subset I ⊆ [k] of the commitments. The question is whether the unopened messages remain
hidden in the following sense: is there a simulator strategy for every cheating receiver strategy
that outputs a commit-phase transcript, a set I ⊂ [k], and decommitments to (bi)i∈I that is
indistinguishable from the output of the cheating receiver with an honest sender?

In this paper we show that techniques both for constructions and lower bounds from the study
of zero knowledge protocols can be applied to the study of commitments secure against selective
opening attacks. We study the minimal round complexity needed to construct such commit-
ments, and give solutions for commitments secure against selective opening attacks that are
optimal or nearly optimal up to small factors.

1.1 Our results

We let PAR denote parallel composition and CC denote concurrent composition. We let CB

(resp. SB, PB) denote computational (resp. statistical, perfect) binding and CH (resp. SH)
denote computational (resp. statistical) hiding. We give the following constructions:

Theorem 1.1. The following hold via fully black-box reductions:

1. One-way permutations imply 4-round PAR-CBCH commitments exist.
2. t-round stand-alone SH commitments imply (t + 3)-round PAR-SB commitments exist.
3. t-round stand-alone SH commitments imply ω(t log n)-round CC-SB commitments exist.

In particular, Item 2 implies that collision-resistant hash functions (or even just 2-round statis-
tically hiding commitments) suffice to construct 5-round PAR-SB commitments.

Assuming the proof of security for such a commitment scheme is given by a black-box simulator,
we prove the following corresponding lower bounds:

Theorem 1.2 (Impossibility results, informal). The following hold relative to any oracle:

1. There is no 3-round PAR-CBCH commitment.
2. There is no 4-round PAR-SB commitment.
3. There is a black-box reduction that uses a O(1)-round PAR-SB commitment to build a

O(1)-round statistically hiding commitment.
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4. There is no o(log n/ log log n)-round CC-CBCH commitment.

We stress that besides the constraint that the simulator be black-box, these results are otherwise
unconditional. Namely, Theorem 1.2 implies that no such commitments exist in the plain model
(without oracles), but also implies that such commitments do not exist even in say the random
oracle model (or stronger oracle models), where a priori one might have hoped to bypass
impossibility results in the plain model.

Combining the second item of Theorem 1.2 with the main theorem of [15], which proves that
there is no black-box reduction building a o(n/ log n)-round statistically hiding commitment
from one-way permutations, we obtain the following corollary:

Corollary 1.3. There is no black-box reduction that uses a one-way permutation to build a
O(1)-round PAR-SB commitment.

Wee [23] independently proved via different techniques a theorem similar to Corollary 1.3 for
the very closely related case of trapdoor commitments.

In addition to the above impossibility results, we also prove:

Theorem 1.4. Relative to any oracle, there exists no PAR-PB commitments nor receiver public-
coin PAR-CBCH commitments.

1.2 Comparison to previous constructions

Notions related to security against selective opening attacks have previously been studied in
the literature. Security against selective opening is closely related to chameleon blobs [5, 6],
trapdoor commitments [11], and equivocable commitments [2, 9, 8]. Roughly speaking, these
notions all allow a simulator that can generate commit-phase transcripts that can be opened in
many ways. Indeed, our constructions will be based on the equivocable commitment of [8].

Security against selective opening may be weaker than the notions above, and was directly
studied in [10, 3]. Bellare et al. [3] give a construction of a scheme that is CC-SB secure, but
this construction is non-black-box and requires applying a concurrent zero knowledge proof on
a statement regarding the code implementing a one-way permutation. In contrast, all construc-
tions presented in this paper are fully black-box.

Remark 1.5 (Equivalence of statistical hiding and statistical binding). In this work we only
study commitments with computational hiding. [3] already noted that stand-alone SH commit-
ments satisfy a notion of PAR-SH security based on indistinguishability (this notion is different
from ours). Independent of our work, Zhang et al. [24] gave a black-box reduction that uses
t-round stand-alone SH commitments and one-way permutations to construct (t + 3)-round
PAR-SH commitments (under our definition of selective opening security). Their construction
is an extension of a recent trapdoor commitment of Pass and Wee [19].

With Item 2 of Theorem 1.2, this implies that constant-round statistical hiding and constant-
round statistical binding are equivalent via black-box reductions when security against selective
opening attacks is required. This contrasts sharply with the stand-alone case, as 2-round sta-
tistically binding commitments are equivalent to one-way functions, but no black-box reduction
can build o(n/ log n)-round statistically hiding commitment from one-way functions [15].
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1.3 Comparison to previous lower bounds

Bellare et al. [3] proved that non-interactive commitments and perfectly binding commitments
secure against selective opening attacks cannot be based on any black-box cryptographic as-
sumption. Our lower bounds are stronger than theirs in that we can rule out 3- or 4-round
rather than non-interactive commitments, as well as ruling out certain types of commitment
with non-zero statistical binding error. However, our proof technique is incomparable to theirs.

Ways in which our lower bounds are stronger: first, the lower bounds of [3] assume black-
box access to a cryptographic primitive, and therefore do not apply to constructions based on
concrete assumptions (e.g. factoring, discrete log, lattice problems) where one might hope to
exploit the specific structure of those problems to achieve security. In contrast, our results
immediately rule out all constructions in the plain model.

Second, the lower bounds of [3] prove that non-interactive and perfectly binding commitments
secure against selective opening attacks are impossible with respect to a very specific message
distribution that is defined in terms of a random oracle. One could argue that the message
distribution they consider is artificial and would not arise in applications of these commitments.
In particular, it may suffice for applications to build commitments that are secure only for
particular natural message distributions, such as the uniform distribution or the distributions
encountered when using commitments to build zero knowledge proofs for NP. [3] does not rule
out the existence of commitments that are secure only for these message distributions, while our
impossibility results do and in fact apply simultaneously to all message distributions satisfying
what we argue are very natural constraints (see Definition 2.5). In particular, the results of [3]
also use the assumptions in Definition 2.5.

Ways in which our lower bounds are weaker: our results are weaker because they only
apply to constructions with black-box simulators, i.e. we require that there exists a single
simulator that works given black-box access to any cheating receiver. The results of [3] hold
even for slightly non-black-box simulation techniques: they only require that for every cheating
receiver oracle algorithm (Rec′)(·) that accesses the underlying crypto primitive as a black-box,
there exists an efficient oracle algorithm Sim(·) that accesses the underling crypto primitive as
a black box that generates an indistinguishable transcript.1

1.4 Our techniques

Our constructions for parallel composition are essentially the equivocable commitment scheme
of [8], while the case for concurrent composition follows in a straight-forward way by combining
the commitment of [8] with the preamble from the concurrent zero knowledge proof of [21].

Our lower bounds are proven by observing that most known lower bounds for zero knowledge
(e.g. [13, 17, 7, 16, 20]) extend naturally to the case of commitment schemes. Lower bounds
for zero knowledge show that if a zero knowledge proof for L satisfies certain restrictions (e.g.
3 rounds, constant-round public coin [13], etc.), then L ∈ BPP.

As was observed by [10, 3], plugging a t-round PAR-CBCH commitment into the GMW zero
knowledge protocol for NP allows the zero knowledge property to be preserved under parallel
repetition, thus allowing one to reduce soundness error while preserving zero knowledge and

1Because it still requires that the crypto primitive be treated as an oracle, [3] do not rule out techniques such
as Barak’s simulator for constant-round public-coin zero-knowledge [1], because the simulator there includes a
PCP encoding of the code of the underlying cryptographic primitive, and thus treats the crypto primitive itself

(and not just the receiver algorithm calling the crypto primitive) in a non-black-box way.
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without increasing round complexity. Furthermore, the resulting protocol has t + 2 rounds,
and has a black-box simulator if the commitment had a black-box simulator. This immediately
implies the following:

Proposition 1.6 ([13], weak impossibility of PAR-CBCH, informal). In the plain model, there
exist no black-box simulator non-interactive or constant-round public-coin PAR-CBCH commit-
ment schemes.

To see why, suppose there were such a scheme, then by the above discussion one would obtain
either a 3-round or constant-round public-coin zero knowledge argument for NP with a black-
box simulator that remains zero knowledge under parallel repetition. By [13], this implies that
NP = BPP. But this contradicts the existence of a PAR-CBCH commitment scheme, since by
the Cook-Levin reduction we can use an algorithm solving NP to break any commitment.

Our results improve upon Proposition 1.6 as they apply to broader categories of commitments
(e.g. 3-round vs. non-interactive). In addition, Proposition 1.6 uses the Cook-Levin reduction
and therefore does not apply when considering schemes that might use random oracles. In
contrast, Theorem 1.2 does hold relative to any oracle, and in the case of Item 3 of Theorem 1.2,
is black-box. This is important for two reasons: first, Proposition 1.6 does not say whether such
constructions are possible in the random oracle model, which is often used to prove the security
of schemes for which we cannot prove security in the plain model. Second, if we want to compose
our impossibility result with other black-box lower bounds, then our impossibility result had
better also be black-box. For example, in order to obtain Corollary 1.3 we must combine Item
3 of Theorem 1.2 with the black-box lower bound of Haitner et al.. This is only possible if Item
3 of Theorem 1.2 is a black-box reduction, which would not be true using the approach of the
weak impossibility result Proposition 1.6.

To prove Theorem 1.2, we construct what we call “blindfolded senders”: senders that run the
commit phase without knowing the bits that must be revealed. We show that the existence of
such blindfolded senders implies that binding can be broken. We then construct blindfolded
senders for various kinds of protocols by applying the proof strategy for zero knowledge lower
bounds originally outlined by Goldreich and Krawczyk [13]. By arguing directly, we avoid the
Cook-Levin step in Proposition 1.6 and therefore our results hold relative to any oracle.

2 Preliminaries

For a random variable X, we let x ←R X denote a sample drawn according to X. We let Uk

denote the uniform distribution over {0, 1}k . For a set S, we let x ←R S denote a uniform
element of S. Let 2S denote the set of all subsets of S. All security definitions in this paper
are with respect to non-uniform circuits. We say that an event occurs with overwhelming
probability if it occurs with probability 1−n−ω(1), and that it occurs with negligible probability
if it occurs with probability n−ω(1). Two families of random variables (Xn)n∈N, (Yn)n∈N over
{0, 1}n are computationally indistinguishable, or equivalently X ≈c Y , if for all circuits C of
size poly(n) it holds that |Pr[C(X) = 1]− Pr[C(Y ) = 1]| ≤ n−ω(1).

2.1 Commitment schemes

A commitment scheme is a two-phase interactive protocol between a sender and a receiver.
They are a digital analogue of locked safes: in the commit phase, the sender puts his message
inside the safe, locks the safe, and sends it to the receiver without the key. Thus, after the
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commit phase the sender can only reveal the message he committed to (the commitment is
binding), but without the key the receiver has no idea what that message is (the commitment
is hiding). In the opening or decommit phase, the sender reveals the key to the receiver who
can then learn the value of the message and be assured that it was exactly what the sender
originally committed to. It is well-known that a commitment can be statistically binding or
statistically hiding (i.e. secure even against unbounded adversaries), but not both.

We now formally define commitments for single-bit messages; since we will be concerned with
commitments that are composable, multi-bit messages can be handled by just repeating the
single-bit protocol in parallel or concurrently.

Definition 2.1. A t-round (stand-alone) commitment protocol is a pair of efficient algorithms
Send and Rec. Given a sender input b ∈ {0, 1}, we define:

1. The commit phase transcript is τ = 〈Send(b;ωSend),Rec(ωRec)〉 where ωSend, ωRec are the
random coins of the sender and receiver, respectively. Exactly t messages are exchanged
in the commit phase t.

2. The decommit phase transcript consists of Send sending (b, open) to Rec. Rec(τ, b, open) =
1 if open is a valid opening, and outputs 0 otherwise.

Notation and variable definitions: We assume that a commitment scheme is put in a
canonical form, where each party alternates speaking. We assume the number of rounds is even
and the receiver speaks first. If the number of rounds is 2t, then we label the sender’s messages
α1, . . . , αt and the receiver’s messages β1, . . . , βt, and we let α[i] = (α1, . . . , αi) and likewise for
β[i]. For a commitment protocol (Send,Rec), we write that the receiver’s i’th response βi is
given by computing β[i] = Rec(α[i−1];ω) where α[i−1] are the first i− 1 sender messages, and ω
are the receiver’s random coins. We let Rec(⊥;ω) = β1 denote the first receiver message.

Let k denote the number of parallel or concurrent repetitions of a commitment protocol. Let
n denote the security parameter of the protocol. For stand-alone (Send,Rec), let Sendk denote
the k-fold repeated sender (context will determine whether we mean parallel or concurrent
composition). Let Reck denote the k-fold parallel receiver, and let Reck

Σ denote the k-fold
concurrent receiver with schedule Σ. Underlined variables denote vectors of message bits (e.g.
b ∈ {0, 1}k) and plain letters with indices the bit at each coordinate (e.g. bi is the i’th bit of b).

2.1.1 Binding

Definition 2.2 (Binding). A commitment scheme (Send,Rec) is computationally (resp. sta-
tistically) binding if for all polynomial-time (resp. unbounded) sender strategies Send′, only
with negligible probability can Send′ interact with an honest Rec to generate a commit-phase
transcript τ and then produce open, open′ such Rec(τ, 0, open) = 1 and Rec(τ, 1, open′) = 1. A
scheme is perfectly binding if the above probability of cheating is 0.

It is straight-forward to prove that all the variants of the binding property are preserved under
parallel/concurrent composition.

2.1.2 Hiding under selective opening attacks

We only study the case of computational hiding (see Remark 1.5). In the following, I ⊆ 2[k] is a
family of subsets of [k], which denotes the set of legal subsets of commitments that the receiver
is allowed to ask to be opened.
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Definition 2.3 (Hiding under selective opening: k-fold parallel composition security game).
Sender input: b ∈ {0, 1}k . Let Rec′ be the (possibly cheating) sender.

1. Sendk,Rec′ run k executions of the commit phase in parallel using independent random
coins, obtaining k commit-phase transcripts τk = (τ1, . . . , τk).

2. Rec′ chooses a set I ←R I and sends it to Sendk.
3. Sendk sends (bi, ωi) for all i ∈ I, where ωi is an opening of the i’th commitment.

In Item 2, the honest receiver is defined to pick I ∈ I uniformly, while a malicious receiver may
pick I adversarially.

Definition 2.4 (Hiding under selective opening, parallel composition). Let I ⊆ 2[k] be a family
of subsets and B be a family of message distributions over {0, 1}k for all k. Let (Send,Rec) be
a commitment and Simk be a simulator. We say that (Send,Rec) is secure against selective
opening attacks for (I,B) if for all k:

• Let 〈Sendk(b),Rec′〉 = (τk, I, {(bi, ωi)}i∈I) be the complete interaction between Rec′ and
the honest sender, including the commit-phase transcript τk, the subset I of coordinates
to be opened and the openings (bi, ωi)i∈I .

• Let (SimRec
′

k | b) denote the following: first, SimRec
′

k interacts with Rec′ (without knowledge
of b) and outputs a subset I of bits to be opened. Then Simk is given {bi}i∈I . Using this,
Simk interacts with Rec′ some more and outputs a commit-phase transcript τk, the set I,
and the openings {(bi, ωi)}i∈I .

• It holds that (SimRec
′

k | b) ≈c 〈Sendk(b),Rec′〉 where b←R B.

Definition 2.5. We say that (I,B) is non-trivial if (the uniform distribution over) I,B are
efficiently samplable, |I| = kω(1) and also PrI←RI [H∞(BI) ≥ 1/poly(n)] ≥ 1/poly(n).

Here BI is the joint distribution of bits Bi for i ∈ I. Property 1 says that if the receiver asks for a
random set in I to be opened, then the sender cannot guess the set with noticeable probability.
This restriction is natural because in many contexts if the sender can guess the set to be opened
then it can cheat in the larger protocol where the commitment is being used (e.g. in a zero
knowledge proof). Property 2 says that with noticeable probability over the choice of I, there
is non-negligible entropy in the bits revealed. This is very natural as otherwise any receiver
is trivially simulable since it always sees the same constant bits. This non-triviality condition
suffices for all our lower bounds except Item 3 and Item 4 of Theorem 1.2; see their respective
sections for further discussion.

Stronger definitions of hiding Our definitions are chosen to be as weak as possible in order
to make our lower bounds stronger. Nevertheless, our positive results also satisfy a stronger
definition of security, where security should hold simultaneously for all I,B. For such a notion,
we prepend STR to the name of the security property (e.g. STR-PAR-SB).

Definition 2.6 (Security game for k-fold concurrent composition). Identical to the parallel
case, except that the receiver has the power to schedule messages as he wishes, rather than
sending them in parallel. In addition, we allow the receiver to pick the set I incrementally
subject to the constraint that at the end, I ∈ I. For example, the receiver can generate one
commit-phase transcript, ask the sender to decommit that instance, then use this information
in its interaction to generate the second commit-phase transcript, and so forth.
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Definition 2.7 (Hiding under selective opening, concurrent composition). Same as the parallel
case, except that the simulator can incrementally ask for the values (bi)i∈I before completing
all commit-phase executions, subject to the constraint that at the end I ∈ I.

Discussion of definitional choices: One could weaken Definition 2.6 to require that although
all the commit-phase transcripts may be generated concurrently, the openings happen simulta-
neously. Indeed, this was the definition used in [3]. We do not work with this weakening because
it makes the definition not truly concurrent: forcing all the openings to occur simultaneously
“synchronizes” the sessions.

2.2 Inaccessible entropy

All our definitions here are taken from [16], and we refer the reader there for motivation,
intuition, and lemmas regarding how they are manipulated. Let A,B denote interactive TM’s,
and let Ai, Bi be the random variable describing i’th message sent by A,B respectively. We note
that [16] denote “smoothed” versions of entropy that take into account A,B that can abort; for
simplicity we define our notions without this subtlety.

Definition 2.8. Given a 2t-round interactive protocol (A,B), we define the sample-entropy of
a transcript τ = 〈A,B〉 = (a1, b1, . . . , at, bt) from A’s point of view to be

RealHA(τ) =

t
∑

i=1

− log(Pr[Ai = ai | A1 = a1, B1 = b1, . . . , Ai−1 = ai−1, Bi−1 = bi−1])

We say that the A has real min-entropy if

Pr
τ=〈A,B〉

[RealHA(τ) ≥ k] ≥ 1− n−ω(1)

In our setting, typically A will be the receiver and B will be the sender. We write A before B

as this is the convention used in [16].

Definition 2.9. Let (A,B) be a 2t-round interactive protocol. Let A∗ be an interactive TM,
which tosses random coins si in round i. A∗ expects queries (a[i−1], b[i−1]) from B, and replies
with (ai, wi) where a[i] = A(q;wi) is consistent with the a[i−1] contained inside q. We define the
accessible sample-entropy of a view v = (s0, b1, a1, w1, s1, . . . , bt, at, wt, st) as:

AccHA,A∗(v) =
t

∑

i=1

− log

(

Pr
Si

[∃bi, A∗i (v;Si) = (ai, bi) | s0, b1, a1, w1, . . . , bi−1, ai−1, wi−1, si−1]

)

We say that A has context-independent accessible max-entropy at most k if there is no efficient
A∗ and efficient predicate success such that:

1. For any view v, success(v) implies that v is consistent with A (i.e. for all i, A(b[i];wi) =
a[i]).

2. Prv=〈A∗,B〉[success(v)] ≥ 1/poly(n).

3. For all (possibly inefficient) B∗, it holds that

Pr
v=〈A∗,B∗〉

[¬success(v) or AccHA,A∗(v) > k] > 1− n−ω(1)
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3 Constructions

Di Crescenzo and Ostrovsky [8] (see also [9]) showed how to build an equivocable commitment
scheme. Equivocable means that for every cheating receiver Rec′, there exists a simulator
that generates a commit-phase transcript that is computationally indistinguishable from a real
transcript, but which the simulator can decommit to both 0 and 1. Equivocation seems even
stronger than STR-PAR-CBCH security, except that STR-PAR-CBCH explicitly requires security
to hold against selective opening attacks. Although it is not clear how to generically convert
any stand-alone equivocable commitment to an equivocable commitment that is composable
in parallel/concurrently, the particular construction of Di Crescenzo and Ostrovsky can be
composed by using a suitable preamble.

The DO construction consists of a preamble, which is a coin-flipping scheme that outputs a
random string, followed by running Naor’s commitment based on OWF [18] using the random
string of the preamble as the receiver’s first message. Depending on how the preamble is con-
structed, we get either a STR-PAR-CBCH, STR-PAR-SB, or STR-CC-SB commitment. Therefore,
Theorem 1.1 follows from Theorem 3.3 and Theorem 3.5 below.

Protocol 3.1 ([8, 9, 18]). Sender’s bit: b. Let G : {0, 1}n → {0, 1}3n be a PRG.

Preamble: Use a coin-flipping protocol to obtain σ ←R {0, 1}3n.
Commit phase: The sender picks random s←R {0, 1}n and sends c = (σ∧b)⊕G(s)
(where (σ ∧ b)i = σi ∧ b).
Decommit phase: The sender sends b, s. Receiver checks that c = (σ ∧ b)⊕G(s).

We now present three different preambles that when used in the protocol above, provide STR-

PAR-CBCH, STR-PAR-SB, and STR-CC-SB security, respectively.

Protocol 3.2 ([8]). Preambles for STR-PAR-CBCH or STR-PAR-SB:

1. Using the non-interactive stand-alone CH commitment based on one-way permutations
(to achieve STR-PAR-CBCH) or a t-round stand-alone SH commitment (to achieve STR-

PAR-SB), the receiver sends a commitment to α←R {0, 1}3n.

2. The sender replies with β ←R {0, 1}3n.

3. The receiver opens α.

4. Output σ = α⊕ β.

Theorem 3.3. ([8]) Protocol 3.1 with the STR-PAR-CBCH (resp. STR-PAR-SB) version of the
preamble of Protocol 3.2 gives a STR-PAR-CBCH (resp. STR-PAR-SB) commitment.

Proof sketch of Theorem 3.3. We include a proof sketch for the sake of completeness, and refer
the reader to [18, 12, 8] for full proofs.

The binding properties are easy to verify, given the fact that Naor’s commitment scheme is
statistically binding.

The following simulator works to prove security against selective opening attacks for both the
computational and statistical binding variants. Consider the k-fold repetition Sendk,Reck of
the protocol. Following the proof of Goldreich and Kahan [12], one can construct a simulator
such that, by rewinding the first step of the preamble (i.e. Step 1 of Protocol 3.2), can learn
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the value of the α1, . . . αk used in each of the k parallel sessions. Care must be taken to ensure
this finishes in expected polynomial time, but the same technique as in [12] works in our setting
and we refer the reader to that paper for details.

Now for each i ∈ [k] in the i’th session the simulator can sample s0, s1 ←R {0, 1}n and reply
with βi = G(s0)⊕G(s1)⊕ αi. This sets σi = G(s0)⊕G(s1). Then the sender sends c = G(s0).
Now the simulator can decommit to both 0 (by sending s0) and to 1 (by sending s1).

Protocol 3.4 ([21]). Preamble for STR-CC-SB:

1. The receiver picks α ←R {0, 1}3n and for ℓ = ω(log n) picks α0
i,j ←R {0, 1}3n for i, j ∈ [ℓ]

and sets α1
i,j = α ⊕ α0

i,j. The receiver commits in parallel to α,α0
i,j , α

1
i,j via a t-round

statistically hiding commitment.

2. For each j = 1 to ℓ sequentially, do the following:

(a) The sender sends q1, . . . , qℓ ←R {0, 1}.
(b) The receiver opens the commitment to αqi

i,j for all i ∈ [ℓ].

3. The sender sends β ←R {0, 1}3n.

4. The receiver opens the commitment to α,α0
i,j , α

1
i,j for all i, j ∈ [ℓ].

5. The sender checks that indeed α = α0
i,j ⊕ α1

i,j for all i, j ∈ [ℓ]. If so output σ = α ⊕ β,
otherwise abort.

Theorem 3.5 ([21, 22]). Protocol 3.1 using the preamble of Protocol 3.4 gives a STR-CC-SB

commitment.

Proof. Binding is straightforward. For hiding, observe that this is the preamble of the concurrent
zero knowledge proof of Prabhakaran et al. [21]. They prove the following:

Theorem 3.6 (Theorem 5.2 of [21], informal). There is black-box simulator strategy that, given
access to any efficient receiver for Protocol 3.4 with any concurrent scheduling, outputs with
high probability in every session a string α before Step 3 such that the receiver opens to α in
step 5.

Namely, [21] show that by using an appropriate rewinding schedule, the simulator can obtain
the value of α in all of the concurrent executions before the sender is supposed to send β,
regardless of how the receiver schedules the messages. Once the simulator knows α, one can
apply the simulator strategy of [12, 8], as in the proof sketch of Theorem 3.3.

4 Optimality of constructions

We now define our main tool for proving lower bounds, blindfolded senders. Intuitively, a
blindfolded sender must run its commit phase without knowing what it is committing to, so if
it can cause the receiver to accept with non-negligible probability, then it must be able to open
its commitments in many ways.
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4.1 Blindfolded senders

For a pair of algorithms T = (Tcom, Tdecom), define the following game:

1. (τk, I, statecom) = 〈Tcom,Reck〉. Here, statecom is the internal state of Tcom to be transmit-
ted to Tdecom. I is the set Reck asks to be opened. Notice Tcom runs without knowledge
of b, hence T is “blindfolded” during the commit phase.

2. Tdecom(b, τk, I, statecom) = {(bi, openi)}i∈I .

The overall transcript (conditioned on not aborting) is (〈T,Reck〉 | b,NoAbortT ) = (τk, I, {(bi, openi)}i∈I),
where NoAbortT denotes the event that T does not abort. Say that (τk, I, statecom) is δ-openable
if with probability at least δ over the choice of b, Reck accepts (τk, I, {(bi, openi)}i∈I), where
{(bi, openi)}i∈I = Tdecom(b, τk, I, statecom)..

Definition 4.1 (Blindfolded sender). We say that T = (Tcom, Tdecom) form a (k, ε, δ)-blindfolded
sender for (Send,Rec,Simk) if it holds that

Pr[(τk, I, statecom) = 〈Tcom,Reck〉 is δ-openable ∧ NoAbortT ] ≥ ε

We say T is a k-blindfolded sender if it is a (k, 1/poly(n), 1 − n−ω(1))-blindfolded sender.

Using blindfolded senders to break binding. Here we show that secure commitments
cannot admit blindfolded senders. In the next few sections, we will show that certain kinds
of commitments (e.g. 3-round) must admit blindfolded senders, which, combined with the
following theorem, imply that those kinds of commitments cannot be secure. All of these
theorems are proven via black-box reductions.

Theorem 4.2. Fix any non-trivial (I,B) and k-fold repeated commitment scheme (Sendk,Reck)
with a simulator Simk that proves computational hiding. If this commitment has a k-blindfolded
sender T = (Tcom, Tdecom) for any k, then this commitment cannot be statistically binding. If
furthermore T is efficient, then this commitment cannot be computationally binding.

Proof. The idea is to convert a k-blindfolded T sender into a sender Send′ that breaks binding
in a single execution of the commitment, Send′ emulates T internally and chooses one of the k
parallel instances to insert its interaction with the real receiver Rec. By the non-triviality of
(I,B), with high probability over I ←R I the coordinates in I have significant min-entropy, and
in particular some coordinate must have significant min-entropy. Therefore if Send′ picks this
coordinate, then since T is able to open its commitment with non-trivial probability for I ←R I
and b←R B, it follows that Send′ can open its commitment to both 0 and 1 with non-negligible
probability.

We now proceed formally by constructing a malicious sender Send′ and proving that this sender
breaks binding.

Algorithm 4.3.
Malicious sender Send′, interacting with a single honest receiver Rec:

1. Pick a random j. For each j′ 6= j, sample random coins ω(j′) to run an honest receiver.

2. Respond to the i’th message βi from Rec as follows.

(a) If i > 1, let (α
(1)
[i−1], . . . , α

(k)
[i−1]) be Tcom’s response from previous queries.
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(b) For j′ 6= j, compute β
(j′)
i = Rec(α

(j′)
[i−1];ω

(j′)). Set β
(j)
i = βi.

(c) Feed (β
(1)
i , . . . , β

(k)
i ) to Tcom to obtain response (α

(1)
[i] , . . . , α

(k)
[i] ) (assuming Tcom does

not abort).

(d) Forward α
(j)
i back to Rec.

3. If Tcom does not abort, Send′ successfully generates a commit-phase transcript distributed
according to 〈Tcom,Reck〉. Send′ picks a random I ←R I to be opened.

4. If j /∈ I, Send′ aborts. Otherwise, it independently picks two b, b′ ←R B, and runs
Tdecom(b, I) to obtain a decommitment for (bi)i∈I and runs Tdecom(b′, I) to obtain openings
for (b′i)i∈I . In particular, the malicious sender obtains openings for bj and b′j .

Analyzing Send′: By hypothesis, T is a (k, ε, 1 − n−ω(1))-blindfolded server for some ε =
1/poly(n). This implies that with probability at least ε, 〈Tcom,Reck〉 produces an (1− n−ω(1))-
openable (τk, I, statecom). Therefore, since the probability of producing an accepting opening
for a random b at least (1− n−ω(1)), it holds with probability at least ε(1− n−ω(1))2 that Reck

accepts both openings Tdecom(b, τk, I, statecom) and Tdecom(b′, τk, I, statecom).

Since (I,B) is non-trivial, a straightforward calculation implies that Prb,b′,I [∀i ∈ I, bi = b′i] ≤
n−ω(1). Therefore with probability ε(1 − n−ω(1))2 − n−ω(1), T produces accepting openings
for b and b′ and furthermore there exists i such that bi 6= b′i. Since the sender picked at
random the coordinate j that contains the real interaction, with probability 1/k it chooses
j = i and therefore with non-negligible probability produces decommitments for both 0 and 1
in an interaction with the real receiver, breaking binding.

4.1.1 Strong non-triviality

Some of our results require the following stronger notion of non-triviality.

Definition 4.4. (I,B) is strong non-trivial if:

1. I is a product of
√

k large sets: formally, there exists some partition Π = (Π1, . . . ,Π√k)

of [k] into
√

k subsets, and I = I1 × . . . I√k and for each i, it holds that Ii ⊆ 2Πi and

|Ii| = nω(1).

2. For each i ∈ [
√

k], let Ii be the projection of I onto the coordinates in Πi. It holds that

Pr
I←RI

[∀i, H∞(BIi
) ≥ ω(log n)] ≥ 1/poly(n)

This definition strengthens the non-triviality condition on (I,B) in two ways: first we require
that I be a product of

√
k sets, each of which is large. (Here,

√
k is arbitrary, any nε would

be equivalent for our purposes.) Second, we require the amount of entropy in BIi
to be large

(ω(log n) rather than just 1/poly(n)) simultaneously for all i. Notice that it is still satisfied
by natural (I,B), for instance I = 2[k] the set of all subsets of [k], and B = Uk the uniform
distribution over {0, 1}k .

Theorem 4.5. Fix any strong non-trivial (I,B) and k-fold repeated commitment scheme (Sendk,Reck)
with a simulator Simk that proves computational hiding. If this commitment has a (k, 1/poly(n), 1/poly(n))-
blindfolded sender T = (Tcom, Tdecom) for any k = ω(log n), then this commitment cannot be sta-
tistically binding. If furthermore T is efficient, then this commitment cannot be computationally
binding.
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Proof sketch. The proof is identical to Theorem 4.5, the only additional observation is that
because T only guarantees with noticeable probability that the commit-phase (τk, I, statecom)
is 1/poly(n)-openable (rather than (1 − n−ω(1))-openable), we need the stronger non-trivial
guarantee to say that even sampling only from the 1/poly(n) fraction of the message distribution
B that causes Reck to accept, still we will find b, b′ that differ on the subset I of bits to be opened.

4.2 Impossibility results for parallel composition

We construct blindfolded senders using the strategy of Goldreich and Krawczyk [13]. Intuitively,
the idea is to construct a sender T whose output distribution is the same as Sim

Rech

k . Here,
Rech is intuitively a cheating receiver that, for each sender message, uses its hash function h
to generate a response that looks completely random, and therefore Simk gains no advantage
by rewinding Rech. From this cheating property, we will be able to conclude that T satisfies
Definition 4.1

Goldreich and Krawczyk [13] observe that we can make the following simplifying assumptions
w.l.o.g.: (1) Simk makes exactly p(n) = poly(n) queries to its receiver black box, (2) all queries
made by Simk are distinct, and (3) Simk always outputs a transcript τk that consists of queries
it made to the receiver and the corresponding receiver responses.

The following lemma from [13] says that simply by guessing uniformly at random, one can pick
with some probability the queries/responses that the simulator outputs as its final transcript.

Lemma 4.6 ([13]). Fix a black-box simulator Simk for a protocol with t sender messages,
and suppose Simk makes p(n) queries. Draw u1, . . . , ut ←R [p(n)], then with probability ≥
1/p(n)t, the final transcript output by Simk consists of the u1, . . . , ut’th queries (along with the
corresponding receiver responses).

4.2.1 3-round commitments

Theorem 4.7. For all non-trivial (I,B) and relative to any oracle, there exists no 3-round
PAR-CBCH commitment protocol secure for (I,B).

Proof. We construct a polynomial-time k-blindfolded sender for (Send,Rec) for k = n. By
Theorem 4.2, this contradicts the binding property of the commitment.

Algorithm 4.8.
Blindfolded sender T = (Tcom, Tdecom) for 3-round commitments:

1. Tcom picks u1, u2 ←R [p(n)].

2. Tcom internally runs Simk, answering its queries as follows:

• For the u1, u2’th queries, if the u1’th query is a first sender message α1 and the u2’th
query is a second sender message α[2] that extends α1, then Tcom forwards them to
the real receiver and forwards the receiver’s responses to the simulator. Otherwise,
Tcom aborts.

• For all other queries: if the query is α1, then Tcom returns Reck(α1;ω) for uniform
ω. If the query is α[2] then T returns a random I ←R I.

3. When Simk requests that a subset I of bits be revealed, Tcom checks to see if I was the
set that the real receiver asked to be opened. If not, Tcom aborts.

12



4. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and obtains
(τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs these openings.

Analyzing blindfolded sender T . It is clear that T runs in polynomial time.

Lemma 4.6 implies that with probability 1/p(n)2, Simk picks the set to be revealed I using the
guessed queries u1, u2.

Claim 4.9. The probability that Simk makes two queries α[2], α
′
[2] that are both answered with

the same I is negligible

This claim holds because |I| = nω(1) and Simk makes at most p(n) = poly(n) queries. Claim 4.9
implies that when T emulates Simk, Simk cannot pick I using the real receiver’s messages but
then find a different commit-phase transcript that leads to the same set I. Therefore the
probability that T does not abort and outputs the queries to and responses from the real
receiver is at least 1/p(n)2 − n−ω(1) ≥ 1/poly(n).

Claim 4.10. Reck accepts (〈T,Reck〉 | b,NoAbortT ) with overwhelming probability.

This claim combined with the above assertion that T does not abort with non-negligible prob-
ability implies that T satisfies Definition 4.1.

We now prove Claim 4.10 by comparing the output of T to (Sim
Rech

k | b) where Rech is defined
as follows: h is a p(n)-wise indepenent hash function, it responds to first sender queries α1 by
computing β1 = Rec(α1;h(α1)) and to second sender queries α[2] by sampling uniform I ←R I
using h(α[2]) as random coins.2

As observed by [13], (〈T,Rec〉 | b,NoAbortT ) = (Sim
Rech

k | b) for a uniform choice of h. Since
Rech is efficient, by the hiding property this is indistinguishable from 〈Sendk(b),Rech〉, which
in turn by definition is equal to 〈Sendk(b),Reck〉. Since Reck always accepts a real interaction,
therefore Reck accepts (〈T,Rec〉 | b,NoAbortT ) with overwhelming probability.

4.2.2 4-round commitments

Theorem 4.11. For all I,B and relative to any oracle, there exists no 4-round PAR-SB com-
mitment protocol secure for (I,B).

Proof. As before, it suffices to construct a k-blindfolded sender for k = n.

Algorithm 4.12.
Blindfolded sender T = (Tcom, Tdecom) for 4-round PAR-SB commitments:

1. Tcom picks u1, u2 ←R [p(n)].

2. Tcom receives the first message β1 from the receiver.

3. Tcom internally runs Simk, answering its queries as follows:

2The message β1 and the set I are independent, so there is no consistency constraint to ensure between β1

and I . This is why we can handle 3 rounds and not just non-interactive commitments as a naive application of
[13] might suggest.
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• For the simulator’s u1, u2’th queries, if the u1’th query is a first sender message α1 and
the u2’th query is a second sender message α[2] that extends α1, then Tcom forwards
them to the real receiver and forwards the receiver’s responses to the simulator.
Otherwise, Tcom aborts.

• For all other queries: if the query is α1 then Tcom samples a random ω′ ←R {ω |
Rec(⊥;ω) = β1} and returns β2 = Rec(β1, α1;ω

′) to the simulator. If the query is
α[2] then the simulator picks a random I ←R I and returns it to the simulator.

4. When Simk requests that a subset I of bits be revealed, Tcom checks to see if I was the
set that the real receiver asked to be opened. If not, Tcom aborts.

5. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and obtains
(τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs the openings.

Analyzing blindfolded sender T . T may not run in polynomial time because sampling
ω′ ←R {ω | β1 = Rec(⊥;ω)} may be inefficient. This implies the sender breaking binding given
by Theorem 4.2 may be inefficient, which is why we can only handle PAR-SB commitments.

Applying Lemma 4.6, T does not abort with probability ≥ 1/p(n)2. Claim 4.9 applies here for
the same reason as in the proof of Theorem 4.7, therefore it holds with probability 1/p(n)2 −
n−ω(1) ≥ 1/poly(n) that T ’s messages to/from the receiver are exactly those in the output of
its emulation of Simk.

We claim that Claim 4.10 holds in this case as well, which would imply that T satisfies Definition 4.1.

We prove Claim 4.10 in this setting by comparing the output of T to (Sim
Rec

ω1,...,ωs
h

k | b), where
we use the cheating receiver strategy Rec

ω1,...,ωs

h defined by Katz [17]: s will be set below, and
the ωi are random coins for the honest receiver algorithm such that Rec(⊥;ωi) = Rec(⊥;ωj) for
all i, j ∈ [s], and h is a p(n)-wise independent hash function with output range [s]. The first
message of Rec

ω1,...,ωs

h is β1 = Rec(⊥;ω1) and given sender message α1, the second message is
β2 = Rec(β1, α1;ωh(β1,α1)). Given sender messages α[2], the set I to be opened is sampled using
ωh(β[2],α[2]) as random coins.

As observed in [17], for s = 50p(n)2/δ it holds that the statistical distance between (〈T,Reck〉 |
b,NoAbortT ) and (Sim

Rec
ω1,...,ωs
h

k | b) is at most δ, where the randomness is over uniform p(n)-wise
independent h, uniform ω1 and uniform ω2, . . . , ωs conditioned on Rec(⊥;ωj) = Rec(⊥;ω1) for all
j ∈ [s]. By the commitment’s hiding property this is indistinguishable from 〈Sendk(b),Rec

ω1,...,ωs

h 〉,
which in turn is equal to 〈Sendk(b),Reck〉 by the definition of Rec

ω1,...,ωs

h . Finally, since Reck

always accepts a real interaction, therefore it accepts (〈T,Reck〉 | b,NoAbortT ) with probability
1− δ − n−ω(1).

We can apply the above argument for any δ ≥ 1/poly(n) to conclude that Reck accepts
(〈T,Reck〉 | b,NoAbortT ) with probability 1 − δ − n−ω(1) for all δ ≥ 1/poly(n). Therefore
Reck must accept with probability 1− n−ω(1) and so T satisfies Definition 4.1.

4.2.3 Perfectly binding commitments

Theorem 4.13. For all non-trivial (I,B) and relative to any oracle, there exists no PAR-PB

commitment protocol secure for (I,B).

Proof. Let (Send,Rec) be the scheme and let m denote the number of random bits used by Rec.
We construct a (k, 2−mkt, 1)-blindfolded sender for (Send,Rec,Simk). This suffices to prove the
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theorem: although Theorem 4.2 is for the case of statistically binding, looking at its proof the
reduction employed in fact shows that one can use a (k, 2−mk6, 1)-blindfolded receiver to build
a sender strategy that breaks binding with non-zero probability, contradicting perfect binding.
Suppose without loss of generality that Rec sends its random coins as the very last message in
the commit phase.

Building blindfolded sender T : Let p(n) denote the maximum number of queries made by
Simk. Let t be the number of rounds in the commitment.

1. Tcom guesse random coins ω of the real receiver, and also picks a random subset U ⊆ [p(n)]
of size t, let u1 < u2 < . . . < ut be its elements.

2. Tcom internally executes Simk, answering its queries as follows:

• For the uj ’th query, Tcom forwards the query to the real receiver and forwards the
response back to Simk.

• For other queries, Simk computes responses using the coins ω that the sender guessed.

3. At the end of the commit-phase Reck sends all its random coins. Tcom checks whether it
guessed the random coins correctly, and if not it aborts.

4. Simk outputs a set I of bits to be opened. Tcom checks that I was the real receiver’s
response to a query in U , and that the query consists only of simulator queries in U and
the corresponding real receiver responses. If not, Tcom aborts.

5. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and obtains
(τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs the openings.

Analyzing blindfolded sender T : with probability 2−mk, Tcom correctly guesses the re-
ceiver’s random coins. By Lemma 4.6, with probability 1/p(n)t, all messages in the transcript
that the simulator outputs correspond to queries in U , and so Tcom does not abort. Therefore
the probability that T does not abort is at least 2−mk/p(n)t ≫ 2−mkt, and from the defini-

tion of T it is clear that (〈T,Reck〉 | b,NoAbortT ) is identical to (SimRec
k

k | b), so T satisfies
Definition 4.1.

4.2.4 Public-coin commitments

Theorem 4.14. For all strong non-trivial (I,B) and relative to any oracle, there exists no
public-coin PAR-CBCH commitment protocol secure for (I,B).

Proof. Given any public-coin commitment protocol (Send,Rec,Simk) for a strong non-trivial
I, we construct a (ω(log n), 1/poly(n), 1/poly(n))-blindfolded sender, which is implicit in [20].
Combined with Theorem 4.5 this implies that (Send,Rec,Simk) is not PAR-CBCH secure.
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Building the blindfolded sender T : following [20], our blindfolded sender will require
k = poly(t) parallel sessions. Look at the partition of [k] into subsets Π = (Π1, . . . ,Π√k).

Because Ii ⊆ 2Πi and |Ii| = nω(1), therefore it holds that |Πi| = ω(log n).

We consider the coordinates in a single subset of the partition to belong to one session. Tcom

internally execute Simk by randomly choosing one j ∈ [
√

k] of the sessions to forward to the
real receiver, while the rest are internally simulated. [20] describe a strategy for Tcom to rewind
the simulator such that, with high probability, Simk outputs with non-negligible probability
exactly the session that was forwarded to the real receiver. Roughly, for each of the t rounds
of the protocol, Tcom forwards the next message from session k to the receiver and returns the
response to the simulator. It then repeatedly runs many continuations of the simulator until it
finds a continuation where the real receiver’s response is likely to be included in the final output
(and if no such continuation exists, Tcom aborts). We refer the reader to [20] for details.

Tcom also checks that the subset I that Simk asks to be opened is in response to a query that
consists of simulator queries and real receiver responses, and if not Tcom aborts. Otherwise,
Tdecom outputs an opening using the simulator.

Analyzing the blindfolded sender T for computational binding: [20] prove that the
blindfolded sender causes the receiver to accept with non-negligible probability, say ≥ ε. Then
by a standard averaging argument, with probability ≥ ε/2, the 〈Tcom,Rec〉 produces an (ε/2)-
openable commit-phase transcript. Therefore T is a (ω(log n), 1/poly(n), 1/poly(n))-blindfolded
server.

4.3 PAR-SB commitments imply (stand-alone) SH commitments

To prove Item 2 of Theorem 1.2, we show that PAR-SB commitments can be used to generate
a gap between real and accessible entropy [16]. Then we apply the transformation of [16] that
converts an entropy gap into a statistically hiding commitment.

Theorem 4.15. For strong non-trivial (I,B), if there exists O(1)-round (Send,Rec) that is
PAR-SB secure for (I,B), then there exists O(1)-round statistically hiding commitments.

Proof of Theorem 4.15. Assume without loss of generality that Reck sends all his random coins
at the end of the opening phase, and that Rec uses m random coins in a single stand-alone
instance.

Lemma 4.16. Reck has real min-entropy at least km(1− 1/k1/3) and has context-independent
accessible max-entropy ≤ km− k/4.

Let Π be the partition such that I = I1 × . . . × I√k and Ii ⊆ 2Πi . For sufficiently large
k, Lemma 4.16 implies there is an entropy gap for the coordinates in Πi, and by the entropy
gap amplification lemma (Lemma 3.8) of [16] implies that the entropy gap sums over all of
the coordinates. Therefore for large enough k the gap is sufficient to apply the black-box
construction of statistically hiding commitments from entropy gaps given by Lemmas 6.7, 4.7,
and 4.18 of [16].

Proof of Lemma 4.16. The real min-entropy part of the claim follows from the definitions and
amplification by parallel repetition (Proposition 3.8 in [16]). For the accessible entropy part,
we use the following:
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Lemma 4.17. If there exists efficient A∗ (and efficient predicate success, see Definition 2.9)
sampling high context-independent max-entropy for Reck, then there exists a (k, 1/poly(n), 1/poly(n))-
blindfolded sender.

By Theorem 4.5 this contradicts the binding property of the commitment and so A∗ cannot
exist.

Proof of Lemma 4.17. This lemma holds intuitively because we can use A∗ to perform the
same role as Rech and Rec

ω1,...,ωs

h in the analysis of the blindfolded senders in Theorem 4.7
and Theorem 4.11. The fact that A∗ can access high accessible entropy essentially means that
it can sample the i’th message conditioned on a partial transcript of first i − 1 messages. Ap-
plying Theorem 4.2 implies that such a blindfolded sender T would break binding property of
the commitment, and therefore such A∗ cannot exist.

We now proceed formally.

Algorithm 4.18.
Blindfolded sender T = (Tcom, Tdecom) for PAR-SB commitments.

1. Tcom picks a random subset U ⊆ [p(n)] of size t, let u1 < u2 < . . . < ut be its elements.
Tcom stores a table (initially empty) that associates strings with every simulator query.

2. Tcom internally executes the simulator Simk. Let Simk’s j’th query be denoted α[i]. First
Tcom looks up s[i−1] corresponding to α[i−1] in its table (or aborts if no such entry exists).

• For j = ul’th, Tcom checks the query α[i] satisfies i = l and α[l−1] was the ul−1’th
query. If not, Tcom aborts. Otherwise, it forwards the query α[i] to the real receiver
and gets as response βi. Tcom samples si uniformly conditioned on the last output of
A∗(α[i]; s0, . . . , si) being (βi, ωi) for some ωi. (Note this sampling may be inefficient,
and therefore Tcom may be inefficient.)

• For j /∈ U , Tcom samples uniform si, computes A∗(α[i]; s[i]), letting (βi, ωi) denote its
last output.

Then, Tcom returns βi to Simk and adds an entry into its table associating s[i] with α[i].

3. When Simk requests that a subset I of bits be revealed, Tcom checks to see if I was the
set that the real receiver asked to be opened. If not, Tcom aborts.

4. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and obtains
(τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries to/from the real
receiver, and if not aborts. Otherwise it outputs these openings.

Analyzing T : we require the following lemmas:

Lemma 4.19 ([16], Lemma 6.10).

Pr
v=〈Send

k(b),A∗〉
[AccH

Rec
k,A∗(v) > km− k/4 and v is rejecting] ≤ n−ω(1)

By the definition of success(v), this lemma implies

Pr
v=〈Send

k(b),A∗〉
[success(v) and v is accepting] ≥ 1/poly(n)− n−ω(1) ≥ 1/poly(n) (4.1)
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Also, as observed in [16], T is essentially answering queries j /∈ U according to the following
cheating receiver strategy Rech, where h is a uniformly chosen p(n)-wise independent hash
function:

Algorithm 4.20.
Cheating receiver Rech:

1. Generate a first receiver message β1 by computing s0 = h(0) and A∗(⊥; s0) = (β1, ω1).

2. On sender message α[i], generate a response βi by computing si = h(α[i]) and A∗(α[i]; s0, . . . , si) =
(βi, ωi).

It is clear from the definitions that

(〈T,A∗〉 | b,NoAbortT ) = (Sim
Rech

k | b) (4.2)

From Equation 4.1 and the the commitment’s hiding property which says that (Sim
Rech

k | b) ≈c

〈Sendk(b),A∗〉, we deduce

Pr
v=(Sim

Rech
k
|b)

[success(v) and v is accepting] ≥ 1/poly(n)

By Equation 4.2 it follows that

Pr
v=(〈T,A∗〉|b,NoAbortT )

[success(v) and v is accepting] ≥ 1/poly(n)
def
= δ

But success(v) and v is accepting means precisely that Reck accepts v as a valid transcript. Also,
Lemma 4.6 implies that Pr[NoAbortT ] ≥ 1/p(n)t. Therefore, T is a (k, 1/p(n)t, δ)-blindfolded
sender.

4.4 Impossibility results for concurrent composition

Our theorem for the concurrent setting also holds for strong non-trivial (I,B). For the product
set I = I1 × . . . × I√k with partition Π = (Π1, . . . ,Π√k), we run

√
k concurrent sessions, one

for each Πi. In the i’th session we run commitments for the coordinates in Πi in parallel, but
the commitments for different Πi,Πj can be interleaved concurrently. Let us define an honest
receiver Reck to sample I ←R I by having the i’th session of Rec choose the subset of Ii ∈ Ii to
be opened as soon as the i’th session of the commitment terminates.

Theorem 4.21. For strong non-trivial (I,B), and relative to any oracle, no o(log n/ log log n)-
round commitment is CC-CBCH secure for I,B.

Proof. Let ℓ = k1/4. Notice that for non-trivial I = I1×I√k, ℓ2 =
√

k is the number of sessions.

Building the schedule Σ: the message schedule we use is exactly that of [7], which we call Σ
and is defined on ℓ2 sessions. The ℓ2 sessions are numbered 1, . . . , ℓ2 and divided into ℓ block of
ℓ sessions, which are scheduled recursively. Each session consists of executing commitments in
parallel for the bits corresponding to the coordinates given by a set in the partition Π associated
with I. Formally, starting with ℓ′ = ℓ2, we defer the explicit schedule recursively as follows:
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1. If ℓ′ ≤ ℓ, then execute sessions 1, . . . , ℓ sequentially.

2. If ℓ′ > ℓ, then for j = 1, . . . , t:

• (Message exchange) Send two messages (one from sender to receiver and one from
receiver to sender) in each of the first ℓ sessions.

• (Recursive schedule) If j < t, apply the schedule recursively to the next ⌊ ℓ′−ℓ
t−1 ⌋

sessions.

A recursive block is the the set of ℓ sessions whose messages are exchanged together in a message
exchange phase. It is convenient to identify a session i ∈ [ℓ2] with (ib, is) ∈ [ℓ]2 where ib is its
recursive block and is is its position within that block.

A simulator query q consists of sender queries and receiver responses, possibly from many
different concurrent sessions and in an arbitrary order. Suppose that the last sender message
of q (which is what the receiver should respond to) belongs to block j, and belongs to the
i’th message exchange in block j. The block prefix of q, denoted bl-prefix(q), is the set of all
messages in q that occur before the first message in the block j. The iteration prefix of q,
denoted it-prefix(q), is the set of all messages in q that occur before and including the i − 1’th
message exchange in block j. Note that the iteration prefix is only defined if i > 1.

Using Σ to build blindfolded sender: Let p(n) = poly(n) be an upper bound on the
running time of Simk.

1. Tcom picks one session j at random, and picks g, h at random from families of p(n)-wise
independent hash functions.

2. Tcom runs Simk with schedule Σ, responding to the queries q as follows:

(a) Tcom computes the iteration-prefix of it-prefix(q) and checks if g(it-prefix(q)) = 0, and
if so responds to the simulator with a “receiver abort” message (note this does not
mean T aborts, only that the receiver it is emulating aborts).

(b) Otherwise, Tcom checks to see if the query q corresponds to the j’th session that
should be forwarded to the real receiver: if so it forwards it to the real receiver and
responds to the simulator with the real receiver’s response. If the simulator tries to
rewind the receiver in the j’th session, Tcom aborts and halts.

(c) For queries q to sessions besides session j, Tcom computes the block-prefix bl-prefix(q)
and answers as Rech, which is defined as Rech(q) = Rec(q;h(bl-prefix(q))).3

3. When either the real receiver or Rech asks a session i to be opened, then Tdecom is given
bIi

, and computes the opening as computed by Simk.

Analyzing blindfolded sender T : [7] prove the following lemma:

Lemma 4.22 ([7], informal). It holds with non-negligible probability that there exists a “good

session” in the execution of Sim
Rec

k
Σ

k , i.e. a session where Simk does not rewind Reck
Σ.

3In fact it is also required that Simk be modified to never cause too many “receiver abort” messages, but we
leave out the details. The reader is referred to [7, 22] for details.
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The only place where T may abort is if in its emulation of Simk, the simulator tries to rewind the
receiver in session j. Therefore, with probability 1/k, T inserts the real receiver into the good
session that is guaranteed to exist by Lemma 4.22 with non-negligible probability. Furthermore,
since the k concurrent simulation is indistinguishable from a real interaction, it follows that Reck

Σ

accepts (〈T,Reck
Σ〉 | b,NoAbortT ) with overwhelming probability.

Because Ii ⊆ 2Πi and |Ii| = nω(1), therefore it holds for all i that |Πi| = ω(log n). Therefore
T is a (ω(log n), 1/poly(n), 1 − n−ω(1))-blindfolded sender, and we may apply Theorem 4.5 to
conclude that this contradicts the binding property of the commitment.

5 Acknowledgements

The author would like to thank Dennis Hofheinz and Salil Vadhan for helpful conversations.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS, pages
106–115. IEEE, 2001.

[2] D. Beaver. Adaptive zero knowledge and computational equivocation (extended abstract).
In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 629–638, New York, NY, USA, 1996. ACM. ISBN 0-89791-785-5. doi:
http://doi.acm.org/10.1145/237814.238014.

[3] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In A. Joux, editor, EUROCRYPT, volume
5479 of Lecture Notes in Computer Science, pages 1–35. Springer, 2009. ISBN 978-3-642-
01000-2.
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