
Universally Composable Inoeribility∗Dominique UnruhSaarland University Jörn Müller-QuadeUniversität KarlsruheOtober 27, 2009AbstratWe present the UC/ framework, a general de�nition for seure and inoerible multi-partyprotools. Our framework allows to model arbitrary reative protool tasks (by speifyingan ideal funtionality) and omes with a universal omposition theorem. We show thatgiven natural setup assumptions, we an onstrut inoerible two-party protools realisingarbitrary funtionalities (with respet to stati adversaries).
Contents1 Introdution 21.1 The intuition behind UC/ . 31.2 Related work 42 The Composable InoeribilityFramework (UC/) 52.1 The UC framework 52.2 The Composable Inoeribil-ity framework (UC/) 62.3 Corruption shedules 72.4 Erasing and non-erasing parties 92.5 Basi properties 92.6 Universal omposition 12

3 Voting shemes 144 Inoerible two-party protools 184.1 Externalized UC framework . 184.2 EUC seurity implies UC/ se-urity 205 Conlusions and open problems 27Referenes 27Index 29
∗Partially funded by the Cluster of Exellene �Multimodal Computing and Interation�. Errata will bepublished on http://rypto.m2i.org/unruh/publiations/errata/u-errata.pdf.1

http://crypto.m2ci.org/unruh/publications/errata/ucc-errata.pdf

1 IntrodutionCommonly, seurity of a ryptographi protool enompasses (very roughly) two aspets: Theprotool should guarantee that the private data of the parties stays seret (privay), and itshould ensure that all data transferred or omputed is orret (integrity). Most seurity de�ni-tions ensure one or both of these requirements, and many protools are known to satisfy thesede�nitions (e.g., [GMW87, BOGW88, CCD88, CFGN96, CLOS02℄).There is, however, a requirement that does not fall into either ategory: oerion resistane(�rst noted by [Her91, BT94℄). To illustrate this property, we use the example of a voting sheme.In a voting sheme, it might be possible for a voter to aquire a reeipt that he ast a spei�vote. This does not violate the anonymity of the voter sine the voter is not required to revealor even aquire suh a reeipt. Thus privay is maintained. And getting a reeipt does not allowto falsify the outome of the eletion. Thus the integrity of the sheme is maintained. Yet themere possibility of aquiring a reeipt may make a party oerible. A oerive adversary maythreaten ertain reprisals if the party does not ast a spei� vote and proves this by deliveringa reeipt to the adversary. Thus suh an eletion protool would not be oerion resistant (short:inoerible).Inoeribility is an important property in any setting in whih some maliious agent has thepower to harm and thus threaten other protool partiipants. Clearly, this is not restrited tothe setting of voting but may be the ase in other settings, too (e.g., when �nanial transationsare involved). Unfortunately, inoeribility turns out to be both di�ult to de�ne and to ahieve.Previous de�nitions of inoeribility are usually restrited to speial domains suh as voting(e.g., [BT94, JCJ05, DKR09℄). An exeption are the models by Canetti and Gennaro [CG96℄ andby Moran and Naor [MN06℄ whih give general de�nitions of inoerible multi-party omputation.Their de�nitions are, however, restrited to the ase of seure funtion evaluation. That is, theyonly onsider protools in whih all parties need to �rst ontribute their inputs, and then fromthese inputs the outputs for the parties are omputed. Reative protools, protools that havemultiple phases and where the inputs in one phase an depend on the outputs of an earlierphase, are exluded. For example, the seurity of a ommitment protool ould not be modelledin their settings.Besides the problem of reative protools, the issue of omposability arises. When buildinga omplex protool, it is often neessary to abstrat from ertain subprotools in the analysisto make the analysis manageable. For example, one might �rst analyse the protool assuming aperfetly seure mehanism for performing ommitments (modelled by a trusted mahine), andthen later on prove the seurity of the subprotool that is atually used for the ommitments. Todo so, and also to have a guarantee that the protool does not beome inseure when exeutedtogether with other protools or instanes of itself, one needs a seurity notion that omes witha omposition theorem.In the ase of normal seure multi-party omputation (i.e., without inoeribility) both theproblem of modelling reative protools and of giving strong ompositionality guarantees hasbeen solved by Canetti's UC model [Can01℄. In this model, we an de�ne a protool task byspeifying a trusted mahine, the ideal funtionality, whih by de�nition performs the requiredprotool task. Sine this mahine an interat with its environment in arbitrary ways, the seu-rity of very general reative protools an be modelled. Furthermore, the UC model guaranteesthat if a protool is seure when using (as opposed to realising) an ideal funtionality, then theprotool stays seure when instead of the ideal funtionality, a subprotool that seurely realisesthe ideal funtionality is used. The UC model, however, does not guarantee inoeribility.Our ontribution. We de�ne the Composable Inoeribility framework (UC/) whih is anextension of the UC framework. Like UC, UC/ allows to model very general reative protool2

tasks and gives strong ompositionality guarantees (universal omposition). Additionally, proto-ols seure with respet to UC/ are inoerible. To illustrate the model, we show that a votingsheme that is UC/ seure is also inoerible with respet to a de�nition tailored spei�allyto voting. Finally, we show that in the restrited ase of stati oerions/deeptions (all orrup-tions and oerions happen at the beginning of the protool), arbitrary UC/ seure two-partyomputation is possible assuming the availability of seure hannels.Organisation. In Setion 1.1, we explain the intuition behind the UC/ framework. In Setion 2we de�ne the UC/ framework and present the universal omposition theorem. In Setion 3 weillustrate our model by applying it to the setting of voting protools. In Setion 4 we showthat UC/ seure two-party protools exist for arbitrary funtionalities. In Setion 5 we givediretions for further work.1.1 The intuition behind UC/To understand the UC/ model, we �rst need to get an intuition of how inoeribility is ahieved.The goal of an inoerible protool is the following: When an adversary tries to oere a partyinto performing a ertain ation (suh as asting a partiular vote v∗), the party should be ableto perform the ation it originally intended to perform (asting a vote v) without the adversarynotiing. That is, the adversary should not be able to tell the di�erene between a party P thatfollows the adversary's instrutions (a orrupted party, asting the vote v∗) and a party P thatonly tries to make the adversary believe that it follows the adversary's instrutions (a deeivingparty, asting the vote v and giving fake evidene to the adversary that it ast the vote v∗).The most natural way to de�ne inoeribility would be to require that the adversary annotdistinguish between a oered and a deeiving party. This, however, usually annot be ahieved.For example, in a voting protool the adversary will eventually learn the tally. The distributionof the tally will, sine there are only polynomially many voters, slightly but notieably hangewhen the vote of P hanges from v to v∗. The adversary an hene distinguish oered anddeeiving parties by observing the tally.Thus, we have to weaken the requirement. The adversary should not be able to distinguish aoered and a deeiving party any better than he ould do given only information that is �legally�available to him (the tally in our example). In general, however, it is not straightforward tode�ne what information is �legally� available to the adversary in any partiular situation. Neitheris it straightforward to determine how muh distinguishing advantage the adversary would getgiven only that information.In order to irumvent this problem, we use a slightly di�erent approah: We �rst de�nean ideal model in whih the adversary has, by de�nition, only aess to the �legally� availableinformation. In the ase of voting, suh an ideal model would onsist of a trusted mahine (theideal voting funtionality F) that ollets the votes from all parties and gives only the tally tothe adversary. In the ideal model, the distinguishing advantage between a oered party (thatgives v∗ to F) and a deeiving party (that gives v to F) is, by de�nition, exatly the advantagethe adversary gets from the �legally� available information (the tally).To make this de�nition more formal, we introdue an additional entity, the deeiver [For91℄.The task of the deeiver is to instrut a deeiving party what it should do (i.e., how to deeive theadversary). More formally, a deeiving party will not run any program of its own, but insteadfollow the instrutions of the deeiver. (In a sense, the deeiver models the party's free will.) Inpartiular, the deeiver may instrut a party to ast a vote v and to send to the adversary thefake noti�ation that it ast vote v∗. (Sine we are in the ideal model, no ryptographi reeiptsor similar need to be faked.) A orrupted party, on the other hand, will follow the adversariesinstrutions. 3

The ombination of adversary and deeiver in the ideal model now allows to model any oer-ion situation that an our in the ideal model. To de�ne what it means that the real protoolis inoerible (or more preisely, as inoerible as the ideal model), we will use the onept ofsimulation that underlies many ryptographi de�nitions suh as multi-party omputation andzero-knowledge: We show that for any adversary in the real model that performs some oerionattak, there is another adversary in the ideal model (alled the adversary-simulator) that per-forms a orresponding attak with as muh suess. In other words, we require that for anydeeiver (speifying what a party would ideally want to do), and for any adversary in the realmodel (trying to oere parties), there is an adversary-simulator in the ideal model suh thatthe real and the ideal model are indistinguishable.We are, however, missing one ingredient: We need to speify how the ideal deeptions (spe-i�ed in terms of inputs to the ideal funtionalities) translate into real deeptions (spei�ed interms of faked messages et.). This is done by introduing a deeiver in the real model, too,alled the deeiver-simulator. We then require that for any deeiver in the ideal model (rep-resenting a possible deeption) there is a deeiver-simulator in the real model (that performsthe orresponding real deeptions) suh that for any adversary in the real model there is aadversary-simulator in the ideal model suh that the two models are indistinguishable.Finally, to model the indistinguishability of the two models, we follow the ideas from theUC framework and introdue a further mahine, the environment, that either ommuniateswith the mahines in the real model or with the mahines in the ideal model and that has toguess whih model it is in. (For details on how this indistinguishability atually ensures thatthe adversary's advantage in distinguishing orrupted and deeiving parties arries over fromthe ideal to the real model we refer to the example in Setion 3.)1.2 Related workWe are aware of only two works that takle the problem of de�ning inoeribility or a similarproperty in a general fashion (i.e., not speialised to a partiular protool task suh as voting).Inoerible seure funtion evaluation. Canetti and Gennaro [CG96℄ present a model forde�ning inoerible seure funtion evaluation whih was subsequently re�ned by Moran andNaor [MN06℄. The model by Moran and Naor is based on the so-alled stand-alone model[Can00, Gol04, Ch. 7℄. In this model, one assumes that the inputs of all honest parties are �xedbefore the beginning of the protool. This has several impliations: First, reative protoolswhere parties may deide on their inputs in later phases annot be modelled. Seond, whenatually deploying the protool, one would have to ensure very strong synhronisation: In ordernot to introdue possibilities for attaks not overed by the model, we have to ensure that noprotool message is sent until all honest parties have deided on their input. Third, the stand-alone model only guarantees sequential omposability.1 That is, we have no guarantee that theprotool stays seure when running onurrently with other protools (whih usually happensin real-life networks).Sine the model by Moran and Naor is based on the stand-alone model, in this model oeredparties only need to lie about their initial inputs. Beause of this, Moran and Naor do not needto introdue an expliit deeiver; any deeption a party might want to perform an be enodedby speifying a seond input, the so-alled �fake input�. In ontrast, the more omplex deeptionsthat are possible in our setting neessitate the introdution of an expliit mahine, the deeiver,to speify the deeptions.1Note that it has not been shown that the variant of the stand-alone model presented by Moran and Naordoes ompose sequentially. But it does not seem unlikely that this ould be shown.4

Everything we said about the work by Moran and Naor also applies to the earlier work byCanetti and Gennaro [CG96℄. Furthermore, the model by Canetti and Gennaro only modelsa very weak form of oerion-resistane; the adversary may instrut a oered party to use adi�erent input, but he may not instrut that party to deviate from the protool. For a disussionof the di�erene between the models by Moran and Naor and by Canetti and Gennaro, we referto [MN06℄.Externalized UC. Another approah to de�ne properties similar to inoeribility for generalprotools is the Externalized UC (EUC) framework proposed by Canetti, Dodis, Pass, andWal�sh [CDPW07℄ (also known as Generalized UC, UC with global setup, or, proposed inde-pendently by Hofheinz, Müller-Quade, and Unruh [HUMQ07℄, UC with atalysts).This framework is, like ours, an extension of the UC framework and inherits its supportfor reative protools and its universal omposition theorem. The EUC framework di�ers fromthe UC framework by allowing the environment to diretly aess the ideal funtionality usedin the real protool. As explained in [CDPW07℄, seurity in the EUC framework implies aproperty alled deniability. This means that no (maliious) protool party P an ollet anyinformation during the protool run that an later be used to prove to an outsider that someparty Q partiipated in the protool. (An example for suh inriminating information wouldbe a message signed by Q.) In other words, Q an plausibly laim that the whole protool didnot take plae. Obviously, suh a laim is only realisti with respet to an outsider who didnot himself ommuniate with Q during the protool exeution. In ontrast, inoeribility asunderstood by this paper means that a party an lie about its ations towards an insider (e.g.,a party ould lie even towards another voter about the vote it has ast).Thus the two models (EUC and UC/) have very di�erent aims. Tehnially they are,however, related: In Setion 4.2 we show that under ertain onditions, EUC seurity impliesUC/ seurity.2 The Composable Inoeribility Framework (UC/)2.1 The UC frameworkOur model is based on the Universal Composability (UC) framwork [Can01℄. For self ontain-ment and to �x notation, we give a short overview over the UC framework. An interativeTuring mahine (ITM) is a Turing mahine that has additional tapes for inoming and for out-going ommuniation. An ITM may be ativated by a message on an inoming ommuniationtape. At the end of an ativation, the ITM may send a message on an outgoing ommuniationtape to another ITM. The reipient of a message is addressed by the unique identity of thatITM. The ations of an ITM may depend on a global parameter k ∈ N, the so-alled seurityparameter.A network is modeled as a (possibly in�nite) set of ITMs.2 We all a network S exeutableif it ontains an ITM Z with distinguished input and output tape and with the speial identity
env. An exeution of S with input z ∈ {0, 1}∗ and seurity parameter k ∈ N is the followingrandom proess: First, Z is ativated with the message z on its input tape. Whenever an ITM
M1 ∈ S �nishes an ativation with an outgoing message m addressed to another ITM M2 ∈ S onits outgoing ommuniation tape, the other ITM M2 is invoked with inoming message m on itsinoming ommuniation tape (tagged with the identity of the sender M1). If an ITM terminatesits ativation without an outgoing message or sends a message to a non-existing ITM, the ITM2In the ase of in�nite networks we require the network to be uniform in the sense that given the identity ofan ITM, we an ompute the ode of that ITM in deterministi polynomial-time.5

Z is ativated. When the ITM Z sends a message on its output tape (not the ommuniationtape!), the exeution of S terminates. The output of Z we denote by EXECS(k, z). An ITM Zwith identity env we all an environment and an ITM A with identity adv we all an adversary.A protool is a network that does not ontain an environment or an adversary.We all networks S, S′ indistinguishable if there is a negligible funtion µ suh that for all
k ∈ N, z ∈ {0, 1}∗, we have that |Pr[EXECS(k, z) = 1] − Pr[EXECS′(k, z) = 1]| ≤ µ(k). Weall S, S′ perfetly indistinguishable if µ = 0.Using the above network model, seurity is de�ned by omparison. We �rst de�ne an idealprotool ρthat spei�es the intended protool behaviour. Then we de�ne what it means thatanother protool π (seurely) emulates ρ:De�nition 1 (UC [Can01℄) Let π and ρ be protools. We say that π UC emulates ρ if forany polynomial-time adversary A there exists a polynomial-time adversary S (the adversary-simulator) suh that for any polynomial-time environment Z the networks π∪{A,Z} (alled thereal model) and ρ ∪ {S,Z} (alled the ideal model) are indistinguishable.In the UC framework, one an model seure hannels (that do not even leak the length of thetransmitted message) by diret ommuniation between the ITMs; inseure hannels an bemodelled by sending messages to the adversary; seure hannels that leak the length of themessage, as well as authentiated hannels an be modelled as an ideal funtionality.Corruptions are modelled as follows: The environment Z an send speial orruption requeststo protool parties (whih are ITMs in π). If a protool party reeives suh a request, it sends itsurrent state to the adversary and from then on is ontrolled by the adversary (i.e., it forwardsall inoming ommuniation to the adversary and vie versa).Usually, the ideal model will be desribed by a so-alled ideal funtionality. Suh an idealfuntionality is an inorruptible ITM that an be seen as a trusted third party aessible tothe protool parties. The ideal protool orresponding to F onsists of F itself and a so-alleddummy-party P̃ for eah party P in the real model. The dummy-party P̃ simply forwardsall messages reeived from the environment to F and vie versa. In slight abuse of notation,we write F for the ideal protool orresponding to F . Note that the dummy-parties an beorrupted, hene the inputs and outputs to F from orrupted parties an be in�uened by theadversary-simulator. Using the onept of an ideal funtionality, we an express many protooltasks by �rst speifying an ideal funtionality F that ful�ls the protool task by de�nition, andthen requiring that the protool π UC emulates F .We an also onsider real protools π whih ontain ideal funtionalities F (e.g., a funtion-ality modelling a CRS). These funtionalities an then be aessed by all parties. We then saythat π is a protool in the F-hybrid model.For more details, we refer the reader to the full version of [Can01℄.2.2 The Composable Inoeribility framework (UC/)In our framework (UC/) the possibility of oerions is modelled by the presene of an additionaladversarial entity, alled the deeiver. Formally, a deeiver is an ITM D with the speial identity
dec. We further re�ne the notion of a protool: A protool is a network that does not ontainan environment, adversary, or deeiver.A typial network would onsist of a protool π, an adversary A, a deeiver D, and anenvironment Z (where the adversary and the deeiver may also be alled adversary-simulatorand deeiver-simulator for larity depending on their role in the protool). Both the adversaryand the deeiver may ontrol parties. The exat mehanism of this is the following:6

A protool party may be in one of three orruption states: Unontrolled , orrupted , anddeeiving . We say a party is ontrolled if it is orrupted or deeiving. Initially, all mahinesare unontrolled. Unontrolled parties behave aording to the protool spei�ation. If theenvironment Z sends a orruption request to an unontrolled party, the party beomes orrupted.If the environment sends a deeption request to an unontrolled or a orrupted party, the partybeomes deeiving. When a party beomes orrupted or deeiving, it sends its state to theadversary or the deeiver, respetively. From then on, it is ontrolled by the adversary or thedeeiver, respetively (that is, it forwards all inoming ommuniation to the ontrolling mahineand sends messages as instruted by the ontrolling mahine). The only exeption is that if aorrupted mahine reeives a deeption request, it will not forward that request to the adversary,beause in that moment, it will beome deeiving and hene be under the ontrol of the deeiver.We assume the existene of a globally readable register that ontains the state of eah party(whether it is unontrolled, orrupted, or deeiving). However, when the adversary reads thisregister, the state of any deeiving mahine will be reported as orrupted. (This re�ets the fatthat the adversary should not be able to know whih mahine is deeiving.) Protool partieswill not usually read this register; in some ases, however, it might be useful if the behaviour ofan ideal funtionality an depend on whether a mahine is ontrolled or not.3We are now ready to speify the notion of UC/ seurity. In this notion, we do not onlyrequire the adversary-simulator (in the ideal model) to simulate the adversary's ations (in thereal model), but simultaneously require that the deeiver-simulator (in the real model) simulatesthe ations of the deeiver (in the ideal model).De�nition 2 (UC/) Let π and ρ be protools. We say that π UC/ emulates ρ if for anypolynomial-time deeiver D there exists a polynomial-time deeiver DS (the deeiver-simulator)suh that for any polynomial-time adversary A there exists a polynomial-time adversary AS (theadversary-simulator) suh that for any polynomial-time environment Z the following networksare indistinguishable:
π ∪ {A,DS ,Z} and ρ ∪ {AS ,D,Z}.Why is the adversary not informed about deeiving parties? The reader may notiean asymmetry in the de�nition: While the deeiver learns whih party is orrupted and whihparty is deeiving, the adversary will be told that a party is orrupted even if it is deeiving.This is neessary beause during a deeption, the goal is to heat the adversary into thinkingthat one behaves as he instruts (i.e., that one is orrupted). Therefore orrupted and deeivingparties should be indistinguishable from the point of view of the adversary.Why an deeiving party not beome orrupted? Another asymmetry is that a orruptedparty an later beome deeiving while the model does not allow to orrupt parties that aredeeiving. Although formally both diretions ould be allowed, we have exluded the latterbeause we ould not �nd an interpretation for suh a senario. For an interpretation of theformer diretion (bad-guy oerions), see the next setion.2.3 Corruption shedulesThe notion of UC/ (De�nition 2) allows the environment to orrupt or oere any party at anypoint of time. This leads to a very strit de�nition. To get a de�nition that is more lenient3A typial example is the key exhange funtionality, whih returns a random key for both parties [Can05℄. Ifone of the parties is orrupted, the key is instead hosen by the adversary. Thus the funtionality needs to knowwhih parties are orrupted. 7

but easier to ful�l, one an impose ertain restritions on the orruption and deeption requestsperformed by the environment. We all suh a restrition a orruption shedule.Bad-guy oerions. There are no restritions on the environment (exept that the environmentannot orrupt a deeiving party, this is impliit in the modelling of the orruption mehanism).We all this notion bad-guy oerions beause the environment may �rst orrupt a party(make it a �bad-guy�) and then later oere it. It is very di�ult to design protools that areseure against bad-guy oerions beause a orrupted party may be instruted by the adversaryto atively deviate from the protool to produe evidene against itself and thus thwart its owndeniability. (In ontrast, a deeiving party would, given the same instrutions, only try to makethe adversary believe that it follows these instrutions.)For example, in some protool the ability to deeive the adversary (and thus the inoeribilityof the protool) might be based on the following fat: When the adversary requests a privateseret m of some party, that party may send a di�erent seret m′ instead whih ontains atrapdoor. This trapdoor then is later essential for ahieving inoeribility. In the setting ofbad-guy oerions, a party might �rst be orrupted and then reveal the true seret m to theadversary. This seret m does not ontain a trapdoor. Then later, if the party beomes deeiving,it will be unable to follow its deeption strategy beause it does not know any trapdoor for m.In a nutshell, while orrupted, a party may atively try to prevent its own inoeribility. Thuswe expet that UC/ seurity with respet to bad-guy oerions is very hard to ahieve.In pratise, bad-guy oerions are arguably a very rare event. A possible motivation forbad-guy oerions is the following thought experiment: A member (say, Bob) of a riminal or-ganisation is required by the rules of that organisation to atively produe and deliver someevidene (e.g., ertain keys) against himself to that organisation. While Bob still works for theorganisation, he will not try to irumvent these rules and will deliver this evidene. But ifBob later deides to leave the riminal organisation and to ooperate with the polie (under-over), Bob may have to onviningly at as if he was still following the riminal organisation'sinstrutions. This is exatly the ase that is modelled by bad-guy oerions.In most ases, however, UC/ with bad-guy oerions will be muh to strong a notion, andthe notion of good-guy oerions (below) will be preferred.Good-guy oerions. The environment may orrupt parties at any time and may send de-eption requests to unontrolled parties at any time. The environment may not send deeptionrequests to orrupted parties.Reeipt-freeness. The environment may orrupt parties at any time, and may send deeptionrequests to unontrolled parties after the end of the protool (so that the adversary gets theirstate). The environment may not send deeption requests to a orrupted party. Reeipt-freenessimplies that an honest party does not learn any data during the protool that ould later beused to prove after the protool exeution that the party performed a ertain ation. (Note thatwith erasing parties, reeipt-freeness is probably easy to ahieve: an honest party simply erasesall intermediate protool data.)Stati orruptions/deeptions. All orruption and deeption requests must be sent at thevery beginning of the protool exeution. In partiular, this implies that the environment annothoose whih parties to orrupt depending on messages it observes during the protool exeution.Only orruptions. The environment may not send deeption requests. UC/ with only or-ruptions is equivalent to the UC notion from [Can01℄.Combinations. The above orruptions shedules may be ombined by requiring that the envi-ronment obeys a ertain shedule with respet to some parties and another with respet to other8

parties. For example, one might have protools that are UC/ seure with reeipt-freeness forAlie and good-guy oerions for Bob.2.4 Erasing and non-erasing partiesWe an distinguish two kinds of honest parties: Erasing and non-erasing parties. An erasingparty is able to delete information when the protool instruts it to do so. In ontrast, a non-erasing party will make a snapshot of its whole memory in every omputation step in a speiallog; when the party beomes oered/deeiving, the adversary/deeiver gets the whole log. Non-erasing parties model the fat that it may be di�ult to reliably erase information, a seret mayend up, e.g., in the swap partition. However, we allow orrupted parties to erase their state.This is due to the fat that we also annot expet to reliably reover state whih the adversaryhas ordered destroyed. Sine a deeiving party will stay in that state forever (the environmentis not allowed to send orruption requests to a deeiving party), it does not matter whether adeeiving party may or may not erase information. For onreteness, we �x that a deeivingparty may erase information.Summarising, a non-erasing party stores all its states when unontrolled, and may erase itsstate when ontrolled. An erasing party may erase its state at any point.In the following, we onsider non-erasing parties. We wish to stress, however, that ourmodelling applies to erasing parties as well. Being able to erase data may be very helpful in thedesign of inoerible protools: If a party deletes some data, it may later redibly laim thatit annot reveal that data. However, one should keep in mind that implementing non-erasingprotools may be more di�ult beause one needs to atively keep trak of all opies of a ertaindatum in memory and on disk.It is also possible to imagine a setting in whih a mahine is partially erasing. Suh a mahinewould have a ertain memory area that an be erased, while the main part of the memory isassumed to be non-erasable. Suh a modelling might be motivated, e.g., by the use of trustedplatform modules [Tru07℄, or by operating system extensions that alloate bloks of memorythat are guaranteed never to be written to the disk.2.5 Basi propertiesTransitivity, re�exivity. The following lemma states that UC/ emulation is a re�exive andtransitive relation. Re�exivity an be seen as a sanity hek for the de�nition � if a protoolwould not UC/ emulate itself, something would probably be wrong. Transitivity is neessaryto use the universal omposition theorem, see Corollary 8 below.Lemma 3 (Re�exivity, transitivity) Let π, ρ, and σ be protools. Then π UC/ emulates π.If π UC/ emulates ρ, and ρ UC/ emulates σ, then π UC/ emulates σ.Proof. For any polynomial-time deeiver D, any polynomial-time adversary A, and anypolynomial-time environment Z, we have with DS := D, and AS := A that π ∪ {A,DS ,Z}and π ∪ {AS ,D,Z} are equal and thus (perfetly) indistinguishable. Hene π UC/ emulates ρ.Assume now that π UC/ emulates ρ, and ρ UC/ emulates σ. Then, by de�nition, for anypolynomial-time deeiver Dρ, there is a polynomial-time deeiver-simulator Dπ
S(Dρ), and forany polynomial-time deeiver Dρ and any polynomial-time adversary Aπ, there is an adversary-simulator Aρ

S(Dρ,Aπ) suh that for all polynomial-time environments Z,
π ∪ {Aπ,Dπ

S(Dρ),Z} and ρ ∪ {Aρ
S(Dρ,Aπ),Dρ,Z} (1)9

are indistinguishable. Similarly, for any polynomial-time deeiver Dσ, there is a polynomial-timedeeiver-simulator Dρ
S(Dσ), and for any polynomial-time deeiver Dσ and any polynomial-timeadversary Aρ, there is an adversary simulator Aσ

S(Dσ,Aρ) suh that for all polynomial-timeenvironments Z,
ρ ∪ {Aρ,Dρ

S(Dσ),Z} and σ ∪ {Aσ
S(Dσ,Aρ),Dσ,Z} (2)are indistinguishable.Then, for a given polynomial-time deeiver D̂σ and a given polynomial-time adver-sary Âπ, set D̂π

S(Dσ) := Dπ
S(Dρ

S(D̂σ)) and Âσ
S(D̂σ, Âπ) := Aσ

S(D̂σ,Aρ
S(Dρ

S(D̂σ), Âπ)).From (1), we have that for all polynomial-time environments Z, π ∪ {Âπ, D̂π
S(D̂σ),Z}and ρ ∪ {Aρ

S(Dρ
S(D̂σ), Âπ),Dρ

S(D̂σ),Z} are indistinguishable. And from (2), we havethat for all polynomial-time environments Z, ρ ∪ {Aρ
S(Dρ

S(D̂σ), Âπ),Dρ
S(D̂σ),Z} and σ ∪

{Âσ
S(D̂σ, Âπ), D̂σ,Z} are indistinguishable. Sine indistinguishability is transitive, π ∪

{Âπ, D̂π
S(D̂σ),Z} and σ ∪ {Âσ

S(D̂σ, Âπ), D̂σ,Z} are indistinguishable for all polynomial-time Z.Thus, for every polynomial-time deeiver Dσ there exists a polynomial-time deeiver-simulator
D̂π

S := D̂π
S(D̂σ) suh that for every polynomial-time adversary Âπ there exists a polynomial-time adversary-simulator Âσ

S := Âσ
S(D̂σ, Âπ) suh that for all polynomial-time environments Z,

π ∪ {Âπ, D̂π
S ,Z} and σ ∪ {Âσ

S, D̂σ,Z} are indistinguishable. Thus π UC/ emulates ρ. �Dummy adversary and deeiver. A dummy-adversary is an adversary that just followsthe instrutions of the environment. More preisely, it forwards all messages it reeives to theenvironment, and sends only the messages the environment instruts it to send. It was shownby Canetti [Can01℄ in the UC setting that the dummy-adversary is omplete, that is, withoutloss of generality we an onsider only the dummy-adversary. Therefore we only have to speifythe adversary-simulator for the dummy-adversary instead of having to speify the adversary-simulator for every possible adversary. This simpli�es proofs.In the setting of UC/, we an additionally onsider the dummy-deeiver that just followsthe instrutions of the environment. Below, we will show that both the dummy-adversary andthe dummy-deeiver are omplete. Besides strongly simplifying proofs, the ompleteness of thedummy-deeiver has an additional oneptual advantage. The deeiver-simulator orrespondingto the dummy-deeiver enodes a universal deeption strategy. That is, for any �ideal deeption�,it tells us how to perform this deeption in the real protool. The existene of suh a universaldeeption strategy is very important in real life, protool users need to have an expliit strategyhow to lie in whih situation; it is not su�ient that suh a strategy exists for eah situation.De�nition 4 (Dummy-adversary, dummy-deeiver) The dummy-adversary Ã is an ad-versary that, when reeiving a message (id ,m) from the environment, sends m to the partywith identity id , and that, when reeiving m from a party with identity id , sends (id ,m) to theenvironment. The dummy-deeiver D̃ is de�ned analogously.De�nition 5 (UC/ with respet to dummy-adversary/deeiver) Let π and ρ be proto-ols. We say that π UC/ emulates ρ with respet to the dummy-adversary/deeiver if thereexists a polynomial-time deeiver D̃S (the dummy-deeiver-simulator) and a polynomial-time ad-versary ÃS (the dummy-adversary-simulator) suh that for any polynomial-time environment Zthe following networks are indistinguishable:
π ∪ {Ã, D̃S ,Z} and ρ ∪ {ÃS , D̃,Z}Lemma 6 (Completeness of dummy-adversary and dummy-deeiver) Let π and ρ beprotools. Then π UC/ emulates ρ i� π UC/ emulates ρ with respet to the dummy-adversary/deeiver. 10

(a)
Z A

D

D̃S π

DS ≈ (b)
Z A Ã

D

D̃S π

ZD,A

≈ ()
Z A ÃS

D

D̃ ρ

ZD,A

≈ (d)
Z A ÃS

D ρ

AS

Figure 1: Networks in the proof of Lemma 6. Dashed lines denote mahines that internallysimulate other mahines.Proof. If π UC/ emulates ρ, then we immediately have that π UC/ emulates ρ with respetto the dummy-adversary/deeiver. For the opposite diretion, assume that π UC/ emulates ρwith respet to the dummy-adversary/deeiver.Let D̃ and Ã be the dummy-deeiver and the dummy-adversary. Let D̃S and ÃS be thedummy-deeiver-simulator and the dummy-adversary-simulator (as in De�nition 5).For an environment Z, a deeiver D, and an adversary A, we de�ne the environment ZD,Aas follows (see also Figures 1(b) and ()): ZD,A internally simulates Z, D, and A. All ommu-niation between the internally simulated Z and the (external) protool is forwarded. Messagessent from Z to the deeiver and adversary are forwarded to the internally simulated D and A.Inoming ommuniation for Z from D and A is is forwarded to Z. Messages m that D and Asend to a protool party with identity id are sent by ZD,A as (id ,m) to the external deeiveror adversary. That is, assuming the external deeiver or adversary is the dummy-deeiver ordummy-adversary, ZD,A instruts the dummy-deeiver/adversary to deliver the message sent bythe internally simulated D orA. Inoming messages (id ,m) from the external adversary/deeiverare passed to the internally simulated D and A as m.For an adversary A, we de�ne the adversary-simulator AS = AS(A) as follows (see alsoFigure 1(d)): AS internally simulates A and ÃS. Communiation between the external envi-ronment and the internally simulated A is forwarded. Communiation between the externalprotool and the internally simulated ÃS is forwarded. When A sends a message m to a proto-ol mahine with identity id , (id ,m) is instead passed to ÃS as oming from the environment.Messages (id ,m) from the internally simulated ÃS to the environment are passed to A as m.(This is analogous to how ZD,A reroutes between A and the protool.)For a deeiver D, DS(D) is de�ned analogously to AS(A). See Figure 1(a).We then have that the following networks are perfetly indistinguishable for all environments
Z: π ∪ {A,DS ,Z} and π ∪ {Ã, D̃S ,ZD,A} (Figures 1(a) and (b)). This is due to the fat thatthe dummy-adversary Ã just forwards the messages between π and the adversary A simulatedby ZD,A, and that DS by de�nition onsists of D (simulated by Z in the seond network) and
D̃S .Analogously, the following networks are perfetly indistinguishable for all environments Z:
ρ ∪ {AS ,D,Z} and ρ ∪ {ÃS , D̃,ZD,A}. Cf. Figures 1(d) and ().Furthermore, sine π UC/ emulates ρ with respet to the dummy-adversary/deeiver, forall polynomial-time environments ZD,A, π ∪ {Ã, D̃S ,ZD,A} and ρ ∪ {ÃS , D̃,ZD,A} are indistin-guishable. Cf. Figures 1(b) and ().Sine indistinguishability is transitive, π∪{A,DS ,Z} and ρ∪{AS,D,Z} are indistinguishablefor all polynomial-time environments Z. Furthermore, DS and AS are polynomial-time, andtheir onstrution does not depend on Z, and the onstrution of DS does not depend on D.Thus π UC/ emulates ρ. �11

Z σ

Ãσ

D̃σ

π1

Ã1

D̃1
S

· · · πi−1

Ãi−1

D̃i−1
S

π

Ã

D̃S

ρi+1

Ãi+1
S

D̃i+1

· · · ρn

Ãn
S

D̃n

Zi

Figure 2: Hybrid network π∪{Ã, D̃S ,Zi} in the proof of Theorem 7. The hybrid environment Ziis depited by the dashed line. Connetions between Z and the deeivers, as well as onnetionsbetween σ and the instanes of π are omitted. The onnetions between Z and the deeiversare analogous to those between Z and the adversaries.2.6 Universal ompositionOne of the main advantages of the UC framework is the universal omposition theorem. Thistheorem guarantees that a UC seure protool π an be seurely used as a subprotool of arbitraryother protools σ, even when σ and polynomially many instanes of π run onurrently. Thesame ompositionality result also holds for the UC/ seurity notion.To formulate the omposition theorem, we introdue some notation. Let π and σ be protools.Then let σπ denote the protool where σ invokes a polynomial number of instanes of thesubprotool π. That is, mahines in σ may give inputs to mahines in π, these inputs aretreated by π as oming from the environment. When the mahines in π give output bak to theenvironment, these are sent to the invoking mahines in σ. Thus, in a sense, in σπ, the protool σplays the role of the environment for the instanes of π. For example, if σF is a protool usinga ommitment funtionality F (i.e., σF is a protool in the F-hybrid model), then σπ would bethe protool that uses the subprotool π instead of using the ommitment funtionality F . Thefollowing theorem guarantees that, if π UC/ emulates some other protool ρ (e.g., ρ = F), wedo not loose seurity if we replae subprotool invoations of ρ by subprotool invoations of π.Theorem 7 (Universal omposition) Let π, ρ, and σ be polynomial-time protools. Assumethat π UC/ emulates ρ. Then σπ UC/ emulates σρ.Proof. Let Ã and D̃ denote the dummy-adversary and the dummy-deeiver. Due to Lemma 6,it is su�ient to onstrut a polynomial-time deeiver-simulator D̃∗
S and a polynomial-timeadversary-simulator Ã∗

S suh that for all polynomial-time environments Z, the networks σπ ∪
{Ã, D̃∗

S ,Z} and σρ∪{Ã∗
S, D̃,Z} are indistinguishable. (We write Ã∗

S and D̃∗
S to distinguish fromthe simulators ÃS and D̃S de�ned below.)By assumption, there are a polynomial-time deeiver-simulator D̃S and a polynomial-timeadversary-simulator ÃS suh that for all polynomial-time environments Z, the networks π ∪

{Ã, D̃S ,Z} and ρ ∪ {ÃS , D̃,Z} are indistinguishable.Let n be a polynomial upper bound on the number of instanes of π or ρ that are invokedby σ.Given an environment Z, we de�ne the hybrid environment Zi. Zi is depited in Figure 1by the area enlosed by a dashed line. Zi internally simulates the following mahines: Theoriginal environment Z; an instane of σ; i − 1 instanes of π, denoted π1, . . . , πi−1; n − i − 1instanes of ρ, denoted ρi+1, . . . , ρn; an instane of Ã, denoted Ãσ; i−1 instanes of Ã, denoted
Ã1, . . . , Ãi−1; n − i − 1 instanes of ÃS, denoted Ãi+1

S , . . . , Ãn
S ; an instane of D̃, denoted Dσ;

i − 1 instanes of D̃S , denoted D̃1
S , . . . , D̃i−1

S ; n − i − 1 instanes of D̃, denoted D̃i+1, . . . , D̃n.12

For the sake of onreteness in the following spei�ation of the behaviour of Z, assumethat Z is exeuted in a network with the protool π, the dummy-adversary Ã, and the dummy-deeiver-simulator D̃S .Messages of the form (id ,m) that Z sends to the adversary (meaning that Z instruts theadversary to deliver m to the mahine with identity id) are routed to one of the instanes of Ã or
ÃS: If id is a mahine in σ, the message (id ,m) is passed to the internally simulated Ãσ. If id isa mahine in the j-th instane of π, we distinguish three ases: If j < i, then (id ,m) is passed tothe internally simulated Ãj. If j = i, then (id ,m) is passed to the external adversary A. If j > i,then (id ,m) is passed to the internally simulated Ãj

S. Similarly, we proeed for messages from
Z to the deeiver: These messages are forwarded to D̃σ, D̃j

S (j < i), the external D̃S (j = i),or D̃j (j > i). Messages in the opposite diretion are handled analogously. Communiationbetween σ and Z is forwarded normally. Communiation between σ and some instane of π or ρis forwarded to the orresponding instane of π. That is, if σ sends a message to a mahine in the
j-th instane of π or ρ, this message is forwarded to the orresponding mahine in the internallysimulated πj if j < i, in the external protool π if j = i, and in the internally simulated ρj if
j > i.We observe the following fats about Zi.First, by onstrution, the networks π ∪ {Ã, D̃S ,Zi} and ρ ∪ {ÃS , D̃,Zi+1} are perfetlyindistinguishable.Furthermore, sine the dummy-adversary only forwards messages between Z and the pro-tool, we an replae a single instane of the dummy-adversary that handles all instanes of
π and σ (as in the network σπ ∪ {Ã, D̃∗

S ,Z}) by individual instanes of the dummy-adversaryfor eah protool instane (as in the network π ∪ {Ã, D̃S ,Zn}). More preisely, the networks
π ∪ {Ã, D̃S ,Zn} and σπ ∪ {Ã, D̃∗

S ,Z} are perfetly indistinguishable if we de�ne D̃∗
S to be the(polynomial-time) deeiver-simulator that internally simulates D̃σ, D̃1

S , . . . , D̃n−1
S , D̃S .Similarly, we have that networks ρ ∪ {ÃS , D̃,Z1} and σρ ∪ {Ã∗

S , D̃,Z} are perfetly indis-tinguishable if we de�ne Ã∗
S to be the (polynomial-time) adversary-simulator that internallysimulates Ãσ, ÃS, Ã2

S , . . . , Ãn
S .Finally, we laim that the networks π∪{Ã, D̃S ,Zn} and ρ∪{ÃS , D̃,Z1} are indistinguishable(we show this below). If we have shown this laim, Theorem 7 follows sine then σπ∪{Ã, D̃∗

S ,Z}and σρ ∪ {Ã∗
S , D̃,Z} are indistinguishable, and Ã∗

S and D̃∗
S are onstruted independently of Zand polynomial-time.We proeed to show that π ∪ {Ã, D̃S ,Zn} and ρ ∪ {ÃS , D̃,Z1} are indistinguishable.Let Z∗ be the environment whih on input (i, z) simulates Zi with input z. By de�nitionof D̃S and ÃS, the networks π ∪ {Ã, D̃S ,Z∗} and ρ ∪ {ÃS , D̃,Z∗} are indistinguishable. Thus,there is a negligible funtion µ suh that

|Pr[EXECπ∪{Ã,D̃S ,Z∗}(k, (i, z)) = 1] − Pr[EXECρ∪{ÃS ,D̃,Z∗}(k, (i, z)) = 1]| ≤ µ(k)for all k, i ∈ N, z ∈ {0, 1}∗. By onstrution of Z∗, this implies that
|Pr[EXECπ∪{Ã,D̃S ,Zi}

(k, z) = 1] − Pr[EXECρ∪{ÃS ,D̃,Zi}
(k, z) = 1]| ≤ µ(k)for all k, i ∈ N, z ∈ {0, 1}∗. Using the triangle inequality and the fat that π ∪ {Ã, D̃S ,Zi} and

ρ ∪ {ÃS , D̃,Zi+1} are perfetly indistinguishable, we get
|Pr[EXECπ∪{Ã,D̃S ,Zn}

(k, z) = 1] − Pr[EXECρ∪{ÃS ,D̃,Z1}
(k, z) = 1]| ≤ nµ(k).Sine n is a polynomial, nµ is negligible. Thus the networks π∪{Ã, D̃S ,Zn} and ρ∪{ÃS, D̃,Z1}are indistinguishable. �The most ommon use ase of the omposition theorem is given by the following orollary:13

Corollary 8 Let π and σ be polynomial-time protools, and F and G be polynomial-time fun-tionalities. Assume that π UC/ emulates F and that σF UC/ emulates G. Then σπ UC/emulates G.Proof. Immediate from the universal omposition theorem (Theorem 7), and the transitivity ofUC/ emulation (Lemma 3). �3 Voting shemesIn this setion we illustrate the UC/ seurity notion by applying it to the speial ase of votingshemes. We give a de�nition of inoeribility that is tailored to the spei� ase of votingprotools and show that this de�nition is implied by the UC/ seurity notion.De�nition 9 (Voting sheme) Fix sets V (the set of votes), T (the set of tallies), P (the setof voters). A tally funtion is an e�iently omputable funtion tally : (V ∪ {⊥})P → T .A voting sheme for tally is a two-stage protool. We all the stages voting phase and tallyingphase. In suh a protool, eah party Pi ∈ P gets an input vi ∈ V ∪{⊥} (the vote of Pi). vi = ⊥means that the Pi does not partiipate in the protool (abstention). In the end of the tallyingphase a distinguished party T outputs a value t ∈ T .Typially, V would be the set of all andidates. In more omplex shemes, elements of Vmight be, e.g., ordered lists of andidates in order of dereasing preedene. The set of tallies
T usually is the set of all funtions V → N0. Alternatively, in a voting sheme whih onlyannounes the winner, we would have have T = V. The tally funtion tally(v1, . . . , vn) spei�eswhat the orret tally is for the votes vi ∈ V ∪ {⊥} where vi = ⊥ denotes abstention.Note that we do not require that the parties Pi 6= T are aware whether they are in the tallyingor the voting phase. Suh a requirement might be di�ult to ensure in an asynhronous envi-ronment. In partiular, votes ast during the tallying phase (but before the tally is announed)might or might not be ounted.An ideal voting sheme is given by the following funtionality:De�nition 10 (Voting funtionality) The voting funtionality Fvote = F tally

vote expets (atmost one) message vi ∈ V from eah party Pi ∈ P. When reeiving tally from T , Fvotesets vi := ⊥ for all Pi ∈ P from whih it did not reeive a message vi ∈ V yet. Then Fvote om-putes t := tally(vi, i ∈ P) (the tally) and sends t to the adversary. Then, when Fvote reeives
deliver from the adversary, it sends t to the party T .This funtionality models that the tally output by T is orretly omputed using the tallyfuntion (as long as T itself is not orrupted) and that the individual votes are seret (even if Tis orrupted).Natural properties of voting shemes are, e.g., orretness (the tally is orret even in thepresene of an adversary) and anonymity (the adversary annot tell who voted for whom, exeptas deduible from the tally itself). We will not formalise these properties here, but it is easyto see that a voting sheme that UC emulates the voting funtionality Fvote satis�es reasonableformalisations of these properties. Sine the UC/ seurity notion is stronger than UC, thisimplies that these elementary properties are satis�ed by UC/ seure voting sheme, too.In our ontext, the most interesting property of a voting sheme is inoeribility. We will �rstformalise what inoeribility means for voting shemes (independently of our framework). Thenwe will show that inoeribility of voting shemes is implied by seurity in the UC/ framework.Assume some party P that wants to ast a vote v. In an inoerible voting sheme, we expet14

that if the adversary A fores a party P to deviate from the protool, A should not be ableto tell the di�erene between P obeying the adversary A, or the party P asting the vote vanyway (we say P deeives the adversary). Of ourse, sine the adversary learns the tally, thisgoal is unahievable � the tally always leaks a non-negligible amount of information about thevote of P (at least if the number of voters is polynomial). We an only ahieve the following:The adversary's advantage in distinguishing between P obeying and P deeiving is not greaterthan the advantage with whih the adversary ould distinguish these two ases given only thetally. To formulate this de�nition, we �rst introdue some notation:Fix a voter P ∈ P and a vote v ∈ V ∪ {⊥}. Fix a distribution B on (V ∪ {⊥})P\{P}. (Brepresents the distribution of the votes of the other voters.) Given a vote v, let Bv denote thedistribution over (V ∪{⊥})P that hooses the votes for all Pi ∈ P \{P} aording to B and usesthe vote v for P . Aordingly, tally(Bv) denotes the tally resulting from votes hosen aordingto Bv. Let Advideal (B, v) := maxv∗ ∆(Bv,Bv∗) where v∗ ranges over V ∪ {⊥} and ∆ denotes thestatistial distane. (Advideal desribes how well an adversary an distinguish between beingobeyed and being deeived using only the tally.)A voting adversary is an adversary that ontrols a party P (however, depending on thesetting, P may hoose to ignore the instrutions given by the adversary) and that may deidewhen the tallying phase starts. We require that a voting adversary eventually starts the tallyingphase. Furthermore, when the party T outputs the tally, the tally is given to the voting adversary.In the end, the voting adversary output a bit b.Given a voting adversary A, let Probey(A,B) be the probability that A outputs 1 in the asethat the party P follows the instrutions of the adversary (i.e., P is orrupted) and all otherparties honestly follow the protool (with inputs hosen aording to B).Given some program ode d (the deeption strategy for P), let Prdeceive(A, d,B) denote theprobability that the adversary A outputs 1 if P follows the instrutions in d and all other partieshonestly follow the protool (with inputs hosen aording to B). (Intuitively, d is a strategythat tells P how to vote for v and simultaneously make the adversary believe that P obeys theadversary.) We assume that d gets v and the identity of P as input. In the same setting, let
Tallydeceive(A, d,B) denote the tally output by T .De�nition 11 (Inoerible voting shemes) A voting sheme is inoerible if there is a de-eption strategy d suh that for every polynomial-time voting adversary, every voter P ∈ P, everyvote v ∈ V, and every e�iently sampleable distribution B the following holds:

• The deeption strategy asts the right vote: The random variables Tallydeceive(A, d,B) and
tally(Bv) are omputationally indistinguishable.

• The adversary annot distinguish between being obeyed and being deeived: For somenegligible funtion µ we have that
∣

∣Probey(A,B) − Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.Many variants of this de�nition are possible. For example, one ould allow the voting ad-versary to orrupt additional parties from P \ {P}. (In this ase, one would have to adapt thede�nition of Advideal .) For the sake of simpliity, we do not strive to �nd the most generalformulation of De�nition 11, espeially in view of the fat that the UC/ framework alreadyprovides us with a very general de�nition of inoeribility.We will now show that inoeribility in the sense of De�nition 11 is already implied byUC/ seurity. We �nd that the proof of the following theorem is very instrutive beause itgives some intuition for the UC/ framework, and beause it illustrates how appliation-spei�15

inoeribility de�nitions (not restrited to the appliation of voting) an be proven to be impliedby UC/ seurity.Theorem 12 Let π be a voting sheme for the tally funtion tally. Assume that π UC/ emu-lates F tally
vote with stati orruption/deeption. Then π is an inoerible voting sheme.Proof. Fix a voting adversary A. We de�ne the UC/ adversary A′ to behave like A, exeptthat when A starts the tallying phase, A′ instead sends tally to the environment. When Awould give an output b, A′ sends b to the environment.We de�ne an environment Zobey := ZP,v,B

obey as follows: Initially, Zobey sends a orruptionrequest to the party P . Then Zobey hooses votes v1, . . . , vn aording to the distribution B andgives these votes as input to the parties Pi ∈ P \{P} (or, if vi = ⊥, sends no input to Pi). Whenthe adversary sends tally to Zobey , Zobey sends tally to the party T . When the adversarysends b to Zobey , Zobey terminates with output b.Furthermore, we de�ne Zdeceive := ZP,v,B
deceive as follows: Initially, Zdeceive sends a deeptionrequest to the party P . Then Zdeceive hooses votes v1, . . . , vn aording to the distribution Band gives these votes as input to the parties Pi ∈ P \ {P} (or, if vi = ⊥, sends no input to Pi).Then it sends v to the deeiver. (This will make the deeiver D de�ned below instrut P toast vote v.) When the adversary sends tally to Zdeceive , Zdeceive sends tally to the party T .When the adversary sends b to Zdeceive , Zdeceive terminates with output b.We de�ne the deeiver D as follows: When reeiving a state from party P , D instruts P tosend this state to the adversary. (This is neessary only for formal reasons: sine the adversaryshould believe that P is orrupted, he expets a state from P . Sine we are in the ase of statiorruptions/deeptions, the state is only sent before the start of the protool and is thus empty.)When D reeives v from the environment, D instruts P to send v to the funtionality Fvote.(I.e., P should ast the vote v.) Messages oming from the adversary are ignored. In partiular,when the adversary instruts P to ast some other vote, this is ignored.Sine π UC/ emulates Fvote := F tally

vote , there exist a polynomial-time deeiver-simulator DSand a polynomial-time adversary-simulator A′
S suh that for all polynomial-time environments

Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪ {A′
S ,D,Z} are indistinguishable. (We write Fvotefor the protool ontaining Fvote and the dummy parties.)By onstrution,

Probey(A,B) = Pr[EXECπ∪{A′,DS ,Zobey} = 1]. (3)(We omit the arguments k, z from EXEC for brevity.) Note that sine no party is deeiving, thedeeiver-simulator DS does nothing.We de�ne the deeption strategy d as follows: A party P following d and wishing to ast thevote v internally simulates DS . Then P sends the empty state to DS . (This is done for formalreasons: in the UC/ framework, DS would get suh an empty state when P is deeiving fromthe start. Hene this message informs DS that P is deeiving.) Then P sends v to the internallysimulated DS as oming from the environment. Then P follows the instrutions that DS givesto it. In the ase that only P is deeiving, DS only sends instrutions to P . Thus it is notneessary that P simulates any other mahines ommuniating with DS .Then, by onstrution,
Prdeceive(A, d,B) = Pr[EXECπ∪{A′,DS,Zdeceive} = 1]. (4)Compare the networks Fvote ∪{A′

S ,D,Zdeceive} and Fvote ∪{A′
S ,D,Zobey}. In the �rst network,

Zdeceive instruts the dummy-party P̃ (via the deeiver D) to send the vote v to Fvote. In theseond network, A′
S instruts P̃ to send some other vote v∗ to Fvote (where we write v∗ = ⊥ to16

indiate that A′
S does not instrut P̃ to vote before A′

S sends tally to the environment). Inthe ideal model, P̃ does not reeive any inoming messages from other parties. Thus, in bothnetworks, A′
S does not get any messages from P̃ . Thus, A′

S an only use the tally to distinguishthe networks. The distribution of the tally in the network Fvote ∪ {A′
S ,D,Zobey} is tally(Bv∗),and the distribution of the tally in the network Fvote∪{A′

S,D,Zdeceive} is tally(Bv). Sine Zobeyand Zdeceive output the bit b reeived from A′
S, it follows that

∣

∣Pr[EXECFvote∪{A′

S
,D,Zobey} = 1] − Pr[EXECFvote∪{A′

S
,D,Zdeceive} = 1]

∣

∣

≤ max
v∗∈V∪{⊥}

∆(Bv,Bv∗) = Advideal (B, v).Sine for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪ {A′
S ,D,Z} are indis-tinguishable, it follows that

∣

∣Pr[EXECπ∪{A′,DS ,Zobey} = 1] − Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]
∣

∣ ≤ Advideal (B, v) + µfor some negligible funtion µ. Then with (3) and (4) we get that
∣

∣Probey(A,B) − Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.This shows that the protool π satis�es the seond ondition in De�nition 11. (Notie that theonstrution of the deeption strategy d is independent of A and B.)We are left to show that Tallydeceive(A, d,B) and tally(Bv) are indistinguishable (�rst ondi-tion of De�nition 11).Let t denote the message reeived by Zdeceive from the party T (t is the tally). In the network
Fvote ∪ {A′

S ,D,Zdeceive}, t is the output of Fvote. Thus the distribution of t is tally(Bv): Theparty P is instruted by D to send the vote v, all other parties ast votes hosen aording tothe distribution B.In the network π ∪ {A′,DS ,Zdeceive}, by onstrution of Zdeceive and of d, the distributionof t is Tallydeceive(A, d,B).For ontradition, assume that Tallydeceive(A, d,B) and tally(Bv) were not omputationallyindistinguishable. Then there is an e�iently omputable funtion f : {0, 1}∗ → {0, 1} suhthat |Pr[f(Tallydeceive(A, d,B)) = 1] − Pr[f(tally(Bv)) = 1]| is not negligible. Then we de-�ne Z∗
deceive like Zdeceive , exept that Z∗

deceive outputs f(t). Then |Pr[EXECπ∪{A′,DS,Z∗

deceive
} =

1] − Pr[EXECFvote∪{A′

S
,D,Z∗

deceive
} = 1]| is not negligible. This is a ontradition to the fat thatfor all polynomial-time Z, the networks π∪{A′,DS ,Z} and Fvote∪{A′

S,D,Z} are indistinguish-able. Thus Tallydeceive(A, d,B) and tally(Bv) are omputationally indistinguishable and the �rstondition of De�nition 11 is satis�ed by π. �The design of voting protools that are UC/ seure is, of ourse, an open problem. Webelieve designing UC/ seure remote voting shemes to be a hallenging problem that mayinvolve novel ryptographi tehniques. In the ase of non-remote voting (i.e., involving votingbooths and other partially trusted setup suh as in, e.g., [Cha04, CRS05, MN06, BMQR07℄),realising UC/ seurity might be muh easier. We therefore partiularly propose UC/ as aseurity de�nition for that setting.Fored-abstention attaks. A protool that UC/ emulates the funtionality Fvote is alsoseure against fored-abstention attaks: In the ideal model, a deeiving party an ast a votewithout the adversary notiing. Thus in the real model, a party an also vote without theadversary notiing. In some settings, seurity against fored-abstention attaks is impossible toahieve: If the adversary ontrols the network and an observe all ommuniation of a party P ,the adversary will always notie when a party partiipates in the protool. To model a weaker17

form of inoeribility that does not imply seurity against fored-abstention attaks, one anhange the de�nition of Fvote suh that Fvote informs the adversary whenever a vote has beenast (revealing the identity of the voter, but note the vote itself).4 Inoerible two-party protoolsIn this setion, we show that at least with respet to stati orruptions/deeptions, UC/ seuretwo-party omputation is possible using natural setup assumptions (suh as, e.g., a publi keyinfrastruture). We show this by proving that under ertain onditions, protools seure in theso-alled Externalized UC framework are also UC/ seure. This allows us to reuse existingresults in that framework.4.1 Externalized UC frameworkWe �rst give a short overview over the Externalized UC (EUC) framework as proposed byCanetti, Dodis, Pass, and Wal�sh [CDPW07℄ (also known as Generalized UC, UC with globalsetup, or, proposed independently by Hofheinz, Müller-Quade, and Unruh [HUMQ07℄, UC withatalysts).First, onsider the UC framework and assume that some real protool π uses a funtionality
F , say a CRS funtionality. Then only the adversary and the protool parties have diret aessto the CRS. The environment learns the CRS only through the adversary. In the real model,this is as good as having diret aess beause without loss of generality, the adversary will notlie to the environment. In the ideal model, however, the simulator an hoose an arbitrary (fake)value for the CRS instead (ontaining a trapdoor); the environment will not be able to notiethat the CRS was hosen di�erently. The seurity proof of most UC seure protools in theCRS-hybrid model are based on a simulator that hooses suh a fake CRS. However, there aretwo disadvantages in letting the simulator hoose the value of the CRS. First, when omposingdi�erent protools that all use a CRS, eah of them needs its own CRS. Seond, as pointed outby Pass [Pas03℄, a seurity de�nition where the simulator may hoose the value of the CRS doesnot guarantee deniability.The EUC framework removes these two restritions by extending the UC framework. In theEUC framework, the environment is allowed to diretly query the funtionality F , both in thereal and in the ideal model. For example, in the ase of the CRS funtionality, the environmentwill know the true value of the CRS (as hosen by the funtionality), and the simulator will notbe able to make up a fake value.To make this more formal, we �rst introdue the notion of a shared funtionality. Suh afuntionality is derived from a normal funtionality but additionally honours requests from theenvironment. The environment an make requests in the name of any party and in the name ofthe adversary.De�nition 13 (Shared funtionality) Let F be a funtionality. The shared funtionality F̄behaves like F , with the following extension: When F̄ gets a message from some protool party orthe adversary, the request is forwarded to an internally simulated F , and the answer m′ of F isforwarded bak to the party or adversary. When F̄ gets a message (P,m) from the environmentwhere P is the identity of some party, the message m is given to the internally simulated F asoming from P . The answer m′ of F is forwarded bak to Z.Given this notion of a shared funtionality, it is easy to de�ne EUC seurity. In the EUCframework, the environment has aess to the shared funtionality both in the real and in theideal model. 18

De�nition 14 (EUC seurity) Let π be a protool using a shared funtionality F̄ . Let ρ bea protool. We say that π F̄-EUC emulates ρ if for any polynomial-time adversary A thereexists a polynomial-time adversary S (the adversary-simulator) suh that for any polynomial-time environment Z the networks π ∪ {A,Z} and ρ ∪ {F̄ ,S,Z} are indistinguishable.Sine π already ontains F̄ , we have that F̄ is present both in the real and in the ideal model.Sine the simulator is not allowed to simulate the funtionality F̄ any more, EUC seurity isstritly stronger than UC seurity. In partiular, it was shown by Canetti et al. [CDPW07℄ thatin the EUC framework, it is not even possible to onstrut seure ommitment protools using aCRS. There are, however, alternative funtionalities that allow to design EUC seure protools:The key registeration with knowledge (KRK) funtionality Fkrk is a funtionality where eahparty may register a publi key/seret key pair and every party may request the publi keys ofall parties and the seret key of itself. The restrited KRK funtionality F∗
krk is de�ned like Fkrkexept that unorrupted parties are not allowed to retrieve their seret key.4The augmented CRS (ACRS) funtionality Facrs hooses a publi key and a orrespondingmaster seret key, and derives for eah party a orresponding individual seret key. The publikey is given to all parties, the seret key of eah party is only given to that party. The restritedACRS funtionality F∗

acrs is de�ned like Facrs, exept that unorrupted parties are not allowedto retrieve their seret key.For details on the restrited KRK and ACRS funtionalities, see [CDPW07℄. (They aresimply alled KRK and ACRS funtionalities (Gkrk and Gacrs) there, we added the quali�er�restrited� for disambiguation.)The signature ard funtionality Fsc with owner P piks a signing/veri�ation key pair andreveals the veri�ation key to all parties. The party P (the owner) may send arbitrary messages
m to Fsc and reeives signatures of m bak. The signing key is never revealed. The restritedsignature ard funtionality F∗

sc additionally allows one protool session to lok the signatureard. While the signature ard is loked by a given protool session, in all other protool sessions,even the owner P may not sign messages.5For details on the restrited signature ard funtionality, see [HUMQ07℄ (simply alled thesignature ard funtionality Fsc there).Theorem 15 (EUC multi-party omputation [HUMQ07, CDPW07℄) Let F̄ ∈
{F̄∗

krk, F̄
∗
acrs, F̄

∗
sc}. Let G be a well-formed6 funtionality. Then there is a protool π inthe F̄-hybrid model suh that π F̄-EUC emulates G with stati orruptions.Proof. Canetti, Dodis, Pass, and Wal�sh [CDPW07℄ show that for F̄ ∈ {F̄∗

krk, F̄
∗
acrs}, there is aprotool πcom in the F̄-hybrid model suh that F̄-EUC emulates the ommitment funtionality4The de�nition of Fkrk in [CDPW07℄ lets parties hoose the randomness used to generate their key pair whenregistering. Thus every party knows its own seret key and the restrition that unorrupted parties are notallowed to retrieve their own seret keys is meaningless. We therefore assume that the intended de�nition in[CDPW07℄ is that only orrupted parties may hose the randomness while for unorrupted ones the randomnessis hosen by the funtionality.5Stritly speaking, a funtionality with suh a loking mehanism does not �t our de�nition of shared fun-tionalities: Suh a loking funtionality will have to distinguish di�erent protool sessions. In partiular, it mightanswer di�erently to a query sent by the owner, and the same query sent by the environment in the name ofthe owner, ontraditing De�nition 13. This an be remedied by a slight hange in the de�nition of the lokingmehanism: Instead of loking with respet to a given session, loking requests are aompanied by a seretrandom none N . Then only unloking and signing requests ontaining N will be honoured. As long as theunorrupted parties do not divulge N , this has the same e�et as session-wise loking, and the funtionality willthen not have to distinguish between the environment and protool parties.6A well-formed funtionality is one whose behaviour does not depend on whih parties are orrupted ordeeiving. 19

Fcom. Hofheinz, Müller-Quade, and Unruh [HUMQ07℄ show that for F̄ = F̄∗
sc, there is a protool

πcom in the F̄-hybrid model suh that F̄ -EUC emulates Fcom. [CDPW07, after Thm. 5℄ showthat for any shared funtionality F̄ and any well-formed funtionality G, given a protool πcom

F̄-EUC emulating Fcom, we an onstrut a protool π that F̄-EUC emulates G with statiorruptions. (Indeed, if G is not only well-formed, but even adaptively well-formed as de�nedby Canetti, Lindell, Ostrovsky, and Sahai [CLOS02℄, then π even F̄-EUC emulates G withadaptive orruptions. However, we do not need this fat in the following.) Note that this resultimpliitly uses our onvention that we use seure hannels that do not leak anything to theadversary. Otherwise, we ould not realise all funtionalities G; only funtionalities that notifythe adversary when invoked would be possible. �4.2 EUC seurity implies UC/ seurityIn this setion, we show that under ertain onditions, an EUC seure protool is already UC/seure with stati orruptions/deeptions. To state our result, we �rst introdue some additionalnotation.First, to apture the relation between F̄∗
krk, F̄

∗
acrs, F̄

∗
sc and Fkrk,Facrs,Fsc, we introdue thenotion of a restrition:De�nition 16 (Restritions) Let F and F∗ be funtionalities. We say F∗ is a restritionof F if F∗ behaves like F , exept that for eah party P there is an e�iently reognisable set CPof messages suh that F∗ ignores any message m ∈ CP from P . Here CP may depend on themessages exhanged between F∗ and P so-far.We say F̄∗ is a shared restrition of F if there exists a restrition F∗ of F suh that F̄∗ isthe shared funtionality orresponding to F∗.We all a protool π ∋ F̄∗ restrition-ompatible to F̄∗ if no honest party P in π ever sendsa message m ∈ CP to F̄∗.For example, in the ase of F̄∗ = F̄∗

krk, CP would be the set of messages requesting a seretkey. Hene F̄∗
krk is a shared restrition of Fkrk. Similarly, F̄∗

acrs is a shared restrition of Facrs.In the ase of F̄∗ = F̄∗
sc, when the signature ard is loked for the session with none N (seefootnote 5), CP would be the set of unloking and signing requests oming from the owner P ofthe ard but not tagged with N . When the signature ard is not loked, CP is empty. Hene

F̄∗
sc is a shared restrition of Fsc.We additionally need to re�ne the notion of EUC seurity to apture ertain tehnial re-quirements on the simulator:De�nition 17 (Speial simulator) We say π F̄-EUC emulates ρ with a speial simulator ifthe adversary-simulator ÃS orresponding to the dummy-adversary Ã has the following property:When the environment sends a message (F ,m) to the ÃS, ÃS sends m to F̄ . When F̄ sends

m to ÃS, ÃS sends (F ,m) to the environment. These messages are not reorded in the state of
ÃS. ÃS never sends a message m to F̄ unless he got (F ,m) from the environment, and neversends a message (F ,m′) to the environment unless he got m′ from F̄ .In other words, ÃS provides a diret onnetion between F̄ and Z whih he does not even listentoo. In the ase that no party is orrupted, the dummy-adversary Ã in the real model only hasaess to F̄ . Thus in this ase, the behaviour of ÃS is fully spei�ed by De�nition 17, namely
ÃS forwards messages between F̄ and the environment and does nothing else. In most protools,this is the natural behaviour of ÃS in the unorrupted ase anyway.If some party is orrupted, De�nition 17 implies that ÃS annot query F̄ (exept whenforwarding messages from the environment). For example, if F̄ = F̄∗

krk, then ÃS ould not20

even query F̄ to get the publi keys of the parties. This seems to be a strong restrition. Theadversary-simulator ÃS an, however, instrut the orrupted party to request the publi keysfrom the funtionality. Thus everything the adversary ould do by diretly ontating F̄ analso be done by giving suitable instrutions to the orrupted party. Analogous reasoning holdsfor F̄ = F̄∗
acrs and F̄ = F̄∗

sc. Thus at least for these funtionalities, De�nition 17 does not posea restrition in the ase of a orrupted party.Corollary 18 (EUC multi-party omputation with speial simulator) Let F̄∗ ∈
{F̄∗

krk, F̄
∗
acrs, F̄

∗
sc}. Let G be a well-formed funtionality. Then there is a protool π in the

F̄∗-hybrid model suh that π F̄∗-EUC emulates G with stati orruptions and speial simulator.Furthermore, π is restrition-ompatible to F̄∗.Proof. The simulators in the onstrutions from [HUMQ07, CDPW07℄ already onstrut dummy-adversary-simulators that ful�l De�nition 17 in the unorrupted ase. In the orrupted ase,their simulators an be made to ful�l De�nition 17 by replaing all diret requests to F̄∗ byindiret alls through the orrupted party. The protools onstruted in [HUMQ07, CDPW07℄are restrition-ompatible to F̄∗. Then the proof is as for Theorem 15. �Finally, we will onsider a restrited lass of funtionalities:De�nition 19 (Silent funtionalities) A funtionality G is silent if it ignores all messagesfrom the adversary or the deeiver and never sends messages to the adversary or the deeiver.In other words, silent funtionalities are those that leak no information. Note that it is notexluded that the adversary or deeiver indiretly gets aess to G through a orrupted ordeeiving party.The main result of this setion (Theorem 23) will be to show that, under ertain onditions,a protool π UC/ emulates a funtionality G with stati orruptions/deeptions if π EUCemulates G with stati orruptions.The most important ase is overed by the following lemma:Lemma 20 Let G be a silent polynomial-time funtionality. Let F be a polynomial-time fun-tionality and let F̄∗ be a shared restrition of F . Let π be a two-party protool in the F-hybridmodel with parties P and Q. Let π0 := π \ F ∪ {F̄∗}. Assume that π0 is restrition-ompatibleto F̄∗ and that π0 F̄∗-EUC emulates G for for stati orruptions of Q.7Then π UC/ emulates G for statially orrupted Q and for statially deeiving Q.8Proof. To simplify the proof, we �rst introdue some alternative notation. In the de�nitionof the network model in the UC framework, mahines speify the reipient of a message m byattahing the identity of the reipient to the message. Although this is onvenient for de�ningprotools, it makes ertain proofs relatively di�ult to formulate: In intermediate proof steps,we often onsider hanged mahines that send their messages to di�erent reipients than theiroriginal program would presribe (the mahines are �rewired�). Furthermore, mahines likethe dummy-adversary that simply forward messages expet headers with the reipients of themessages. Explaining the onstrutions below in suh a setting leads to ompliated and hard-to-read textual desriptions even in the ase of relatively simple �rewiring�.To make presentation simpler, we instead assume that eah mahine has a number of namedports. Between two ports a and b we an have a onnetion whih means that messages send on7That is, we assume a orruption shedule in whih P is never orrupted and Q may be orrupted, but onlybefore the protool starts.8That is, we assume a orruption shedule in whih the environment always makes Q orrupted or deeivingbefore the protool start and never leaves Q unontrolled and always leaves P unontrolled.21

a are reeived on b. Any network using this formalism an easily be onverted into a networkusing the original formalism with message-headers. The formalism using ports, however, has theadvantage that we an easily desribe the on�guration of a network by giving a piture withlines indiating the onnetions between ports. In the pitures, we follow the onvention thatin all ourrenes of a given mahine, the relative position of its ports is the same. This allowsto ompare di�erent networks without having to pay attention to the (somewhat hard to read)port names.EUC seurity, unorrupted ase. By assumption, π0 F̄∗-EUC emulates G with a speialsimulator. Consider an environment Z∗ that does not query the funtionality F̄∗ in the nameof P (but Z∗ may query F̄∗ in the name of Q). Let Â0 denote the dummy-adversary in thisase. (We write Â instead of Ã to distinguish this dummy-adversary for the UC/ setting, andwe write the supersript 0 to indiate that it is the dummy-adversary for the unorrupted ase.)The resulting real model π0 ∪ {Â0,Z∗} is depited in Figure 3, network A. (Here and in thefollowing pitures, we draw several boxes marked Z∗ or Z. These a supposed to denote a singlemahine, the separation into several boxes is only for graphial reasons.)Note the following partiularities:Instead of F̄∗, we have written F in network A beause the shared funtionality F̄∗ and thefuntionality F behave identially, exept that we allow Z∗ to aess F̄∗ in the name of Q andthat ertain messages from unorrupted parties are ignored by F̄∗. The additional aess for Z∗,however, is already expressed by the onnetions in network A. And the messages that would beignored by F̄∗ are not sent by honest parties anyway sine π0 is restrition-ompatible to F̄∗.Furthermore, there are two onnetions ending in the port fq of F . This is due to the fatthat both Z∗ and Q may aess F in the name of Q. Responses to messages from Z∗ and Qarriving at that port are sent bak to the Z∗ and Q, respetively. The dummy-adversary hasno onnetions to the protool parties P and Q beause they are unorrupted and we assumeseure hannels.The orresponding ideal model G ∪ {F̄∗, Â0
S ,Z∗} is depited in Figure 3, network B. Herethe dummy-adversary-simulator Â0

S is a mahine that simply forwards all messages betweenits ports fa and fa ′. This is due to the fat that we assumed EUC-emulation with a speialsimulator. The dummy-parties are denoted by P̃ and Q̃.Sine π0 F̄∗-EUC emulates G with a speial simulator, we have that the networks A and Bare indistinguishable for all polynomial-time environments Z∗.EUC seurity, Q orrupted. By assumption, π0 F̄∗-EUC emulates G in the ase of orrupted
Q. Consider an environment Z that does not query the funtionality F̄∗ (neither in the name of
P nor Q). Let Â denote the dummy-adversary in this ase. The resulting real model π0∪{Â,Z}is depited in Figure 3, network C. In network C, we write Q∗ for the orrupted party Q forlarity (it will be important later to distinguish Q∗ from the unorrupted Q). The ideal model
G∪{F̄∗, ÂS ,Z} is depited in Figure 3, network D. We write Q̃∗ for the orrupted dummy-party
Q̃. We an use F instead of F̄∗ for the same reasons as in the ase of an honest Q. Note thatthe dummy-adversary-simulator ÂS routes all queries from Z on the port fa ′ diretly to thefuntionality F . This is beause we assumed EUC emulation with speial simulator. We thenhave that for all polynomial-time Z, the networks C and D are indistinguishable.UC/ seurity, Q orrupted. We now proeed to show that π UC/ emulates G for statiallyorrupted Q. By Lemma 6, it is su�ient to onstrut an adversary-simulator ÃS and a deeiver-simulator D̃0

S that for every environment Z that orrupts Q, the real model π ∪ {Ã, D̃0
S ,Z} andthe ideal model G ∪ {ÃS , D̃0,Z} are indistinguishable. Here Ã denotes the dummy-adversary,and D̃0 the dummy-deeiver. (We use the supersript 0 to stress the fat that we are onsideringthe ase that no party is orrupted, and thus D̃0 and D̃0

S are trivial.) The real model is depited22

Z∗ P Q

F Â0

Z∗

Z∗

com com

fp

fp

fq

fq

p p q q

fa fa fa ′

fa
fq

fq

Z∗
P̃

G

Q̃

F Â0
S

Z∗

Z∗

gpgp gq
gq

p p q q

fa ′

fa

fa fa

fq

fq

Z P Q∗

F

Â

Z

Z

com com

fp

fp

fq

fq

c
o
m

′
c
o
m

fq
′

fq

q
′

q

p p q q

com
′ com

a

q
′

qa
fq
′

fqa
fa fa

fa
′

fa

Z P̃

G

Q̃∗

F

ÂS

Z

Z

gp

gp
gq

gq

g
q
′

g
q

q
′

q

p p q q

com
′ com

a

q
′

qa
fq
′

fqafa
fa

fa
′

fa

fq

fq

fq
′

fq

Z P Q∗

F Ã

Z

ZD̃0
S

com com

fp

fp

fq

fq

c
o
m

′
c
o
m

fq
′

fq

q
′

q

p p q q

com′ coma
q′ qa

fq′ fqa

fafa

fa′ fa

Z P̃

G

Q̃∗

ÃS

Z

ZD̃0

g
p

g
p

g
q

g
q

g
q
′

g
q

q
′

q

p p q q

com′ coma
q′ qa

fq′ fqa

fa′ fa

Z P Q†

F Ã

Z

Z

D̃S Z

com com

fp

fp

fq
fq

c
o
m

a
c
o
m

fq
a

fq

q
a

q

p p q q

com′ coma
q′ qa

fq′ fqa

fafa

fa′ fa

q′ qd
qa′ qad

gq′ gqd
gqa′ gqad

q
′

q

c
o
m

′
c
o
m

q
a
′

q
a

fq
′

fq

fq
a
′

fq
a

c
o
m

a
′co

m
a

Z P̃

G

Q̃†

ÃS

Z

Z

D̃ Z

g
p

g
p

g
q

g
q

g
q
a

g
q

q
a

q

p p q q

com′ coma
q′ qa

fq′ fqa

fa′ fa

g
q
′

g
q

q
′

q

g
q
a
′

g
q
a

q
a
′

q
a

q′ qd
qa′ qad

gq′ gqd
gqa′ gqad

ÂS

F

gq q

q ′

com′

fq ′

fa′

fq

fq

gq

q

fq
′

com
′

q ′

fa

ÃS

ÂS

Q

co
m

fq fq
a

co
m
a

qa q

gq ′

gqa′

qa′

q ′

q

fq

co
m

fq

gq

q

fq
′

co
m
′

q
′

D̃S

Z

ÂS

Z Z

Z

fa

fq

q p

fa

fq
′

fqa

com
′ com

a

q
′

qa

fq

q

qad

gq

gqad

gqd

q
d

q

p

Z∗

A B
C D
E F
G H

Figure 3: Networks A�H and mahines ÃS, D̃S , and Z∗ from the proof of Lemma 20.

in Figure 3, network E. The ideal model is depited in network F. Note that the dummy-deeiver
D̃0 has no onnetions to the protool or the funtionality G (the latter is silent by assumption),and therefore also no onnetions to the environment. The same holds for D̃0

S . We an thus �x
D̃0

S to be the mahine that does nothing. We onstrut the adversary-simulator ÃS as follows:It internally simulates an instane of the funtionality F , and an instane of the adversary-simulator ÂS (from the EUC setting). ÃS onnets these mahines between eah other and tothe ports of ÃS as depited in Figure 3, bottom.With this de�nition of ÃS, we have that the networks C and E are perfetly indistinguishable,and the networks D and F are perfetly indistinguishable. (To see that two networks are perfetlyindistinguishable, hek for eah port of the mahines Z, F , G, P , ÂS that the onnetion, whenfollowing all forwardings, leads to the same port in both networks. E.g., in network D the port
q of Z is onneted to q of Q̃∗, from there to q′ of Q̃∗, to q of ÂS; in network F, the port q of Zis onneted to q of Q̃∗, to q′ of Q̃∗, to q of ÃS, and �nally to q of the internally simulated ÂS;thus in both networks, the port q of Z is onneted to the port q of ÂS .) Note that in networkD, the onnetion between Z's and F 's ports fa is routed through ÂS , while in network F itdoes not reah ÂS. This is permissible beause by assumption, ÂS only forwards this onnetionwithout aessing the transferred data in any way. Sine we already know that networks C andD are indistinguishable, it follows that networks E and F are indistinguishable, thus we havethat π UC/ emulates G for statially orrupted Q.UC/ seurity, Q deeiving. We now proeed to show that π UC/ emulates G for statiallydeeiving Q. By Lemma 6, it is su�ient to onstrut an adversary-simulator ÃS and a deeiver-simulator D̃S suh that for every environment Z that makes Q deeiving, the real model π ∪
{Ã, D̃S ,Z} and the ideal model G ∪ {ÃS , D̃,Z} are indistinguishable. Here Ã denotes thedummy-adversary, and D̃ the dummy-deeiver. The real model is depited in Figure 3, networkG. The ideal model is depited in network H. We write Q† for the deeiving party Q. Q† hasports com , fq , and q to P , F , and Z. Furthermore, sine from the point of view of the adversary,
Q† is supposed to look like the orrupted Q∗, it has ports coma , fqa, and qa that are onnetedto the adversary (and that would, if Q† was orrupted, be onneted to the ports com , fq , and
q). Finally, sine Q† is ontrolled by the deeiver-simulator, for eah port x, it has a port x′onneted to the deeiver-simulator. Analogously for the deeiving dummy-party Q̃†.We use the same adversary-simulator ÃS as above (see Figure 3, bottom). The deeiver-simulator D̃S internally simulates the mahines ÂS (the adversary-simulator from the EUCsetting) and the unorrupted Q.9 The ports are onneted as shown in Figure 3, bottom. Notethat both ÂS and Q are onneted to D̃S 's port fq . This means that messages from both ÂSand Q are forwarded to that port, and answers are sent bak to the orresponding sender. (Aswas the ase with the port fq of F in network A.)To show that for any environment Z, the networks G and H are indistinguishable, we addi-tionally onstrut an environment Z∗ internally simulating Z and ÂS with onnetions as shownin Figure 3, bottom.With these de�nitions of D̃S , and Z∗, the networks A and G are perfetly indistinguishable.And with the de�nitions of ÃS and Z∗, the networks B and H are perfetly indistinguishable.Sine we know that for any polynomial-time Z∗, the networks A and B are indistinguishable, itfollows that the networks G and H are indistinguishable, thus π UC/ emulates G for statiallydeeiving Q.Summing up. We have shown that π UC/ emulates G for statially orrupted Q and that
π UC/ emulates G for statially deeiving Q. Thus π UC/ emulates G for stati orrup-9It is at this point that we use that fat that G is silent. If there was a onnetion between G and ÂS, D̃Swould have to onnet to G in the name of the adversary. But D̃S annot do this.24

tions/deeptions of Q: The deeiver-simulator behaves like D̃0
S above when Q is orrupted, andlike D̃S above when Q is deeiving. The adversary-simulator is ÃS in both ases (this is impor-tant, sine the adversary-simulator annot distinguish whether a party is orrupted or deeiving).

�Lemma 21 Let π be a protool, let F ,G be funtionalities, and let F̄∗ be a shared restrition of
F . Let π0 := π \ {F} ∪ {F̄∗}. If π0 is restrition-ompatible to F̄∗ and π0 F̄∗-EUC emulates Gwithout orruptions, then π UC/ emulates G without orruptions/deeptions.Proof. EUC emulation implies UC emulation. Hene π0 UC emulates G without orruptions.Sine π0 is restrition-ompatible, π never sends a query to F that F̄∗ would ignore. Thus π UCemulates G without orruptions. In the ase without orruptions/deeptions, UC/ emulationis equivalent to UC emulation. Hene π UC/ emulates G without orruptions/deeptions. �Lemma 22 Let π be a two-party protool with parties P and Q and using a polynomial-timefuntionality F , and let G be a polynomial-time funtionality. Then π UC/ emulates G forstatially orrupted or deeiving P and Q.10Proof. Let Ã denote the dummy-adversary and D̃ the dummy-deeiver. By Lemma 6, we needto show that there is a dummy-adversary-simulator ÃS and a dummy-deeiver-simulator D̃Ssuh that the real model π∪{Ã, D̃S ,Z} and the real model G∪{ÃS, D̃,Z} are indistinguishablefor polynomial-time environments Z where Z does one of the following at the beginning of theexeution: (i) Z orrupts P and Q, (ii) Z orrupts P and makes Q deeiving, (iii) Z makes Pdeeiving and orrupts Q, (iv) Z makes P and Q deeiving.We use the notation using ports desribed in the proof of Lemma 20. We de�ne ÃS tointernally simulate F and to forward messages between its ports as depited in Figure 4, networkB. Then, in ase (i), the real model is network A, and the ideal model is network B. NetworksA and B are perfetly indistinguishable. (This an be seen by following the onnetions inFigure 4.)In ase (ii), we de�ne D̃S to internally simulate G and to forward messages between itsports as depited in Figure 4, network C. The real model is network C, and the ideal model isnetwork D. Note that in network D, we use the same de�nition for ÃS as in network B sine theadversary-simulator annot distinguish whether Q is orrupted or deeiving. Networks C and Dare perfetly indistinguishable.Case (iii) is handled analogously to ase (ii).In ase (iv), we de�ne D̃S to internally simulate G and to forward messages between its portsas depited in Figure 4, network E. (Note that D̃S is de�ned di�erently than in the previous ases.This is possible beause the deeiver-simulator an distinguish whether parties are orrupted ordeeiving.) The real model is network E, and the ideal model is network F. Networks E and Fare perfetly indistinguishable.Thus, in all ases, the real and the ideal model are perfetly indistinguishable. Hene πUC/ emulates G for statially orrupted or deeiving P and Q. �Theorem 23 Let G be a silent polynomial-time funtionality. Let F be a polynomial-time fun-tionality and let F̄∗ be a shared restrition of F . Let π be a two-party protool in the F-hybridmodel with parties P and Q. Let π0 := π \ F ∪ {F̄∗}. Assume that π0 is restrition-ompatibleto F̄∗ and that π0 F̄-EUC emulates G with stati orruptions and speial simulator.Then π UC/ emulates G with stati orruptions/deeptions.10That is, we onsider environments that statially make P and Q orrupted or deeiving, and that do notleave any of the mahines unontrolled. We do allow that one party is orrupted and the other deeiving.25

Z P ∗

Z Ã F Ã

Q∗ Z

Z

p p com com q q

fp
fp

fq
fq

fa fa

fq
′

fq
co

m
′

co
m

q
′

q

p
′

p

c
o
m
′
c
o
m

p

fp
′

fp

fa′ fa

com′ coma

fq′ fqa

q′ qa

fpa fp′

compa comp′

pa p′
Ffp fq

fa

ÃS

Z P̃ ∗

Z

G

Q̃∗ Z

Z

p p q q

q
′

q

p
′

p

fa ′
fa

com
′ coma

fq′ fqa

q
′ qa

fpa fp′

compa comp′
pa

p ′

gp

gp
gq

gq

g
p
′
g
p

g
q
′

g
q

Z P ∗

Z Ã F Ã

Q† Z

Z

ZG gqD̃S

p p com com q q

fp
fp

fq
fq

fa fa

fq
a

fq
co

m
a

co
m

q
a

q

p
′

p

c
o
m
′
c
o
m

p

fp
′

fp

fa′ fa

com′coma

fq′ fqa

q′ qa

fpa fp′

compa comp′

pa p′

q
′

q

q
a
′

q
a

c
o
m

a
′
c
o
m

a

fq
a
′

fq
a

c
o
m

′
c
o
m

fq
′

fq

q′ qd
qa′ qad

gqa′ gqad

gq′ gqd

Ffp fq

fa

ÃS

Z P̃ ∗

Z

G

Q̃† Z

Z

D̃ Z

p p q q

q
a

q

p
′

p

fa ′
fa

com
′ coma

fq′ fqa

q
′ qa

fpa fp′

compa comp′
pa

p ′

gp

gp
gq

gq

g
p
′
g
p

g
q
a

g
q

q′ qd
qa′ qad

gq′ gqd
gqa′ gqad

g
q
′

g
q

q
′

q

g
q
a
′

g
q
a

q
a
′

q
a

Z P †

Z

Z Ã F Ã

Q† Z

Z

ZG gqgp

D̃S

p p

com
com q q

fp
fp

fq
fq

fa fa

fq
a

fq
co

m
a

co
m

q
a

q

p
a

p

co
m

a
co

m
p

fp
a

fp

fa′ fa

com′ coma

fq′ fqa

q′ qa

fpa fp′

compacomp′

pa p′

q
′

q

q
a
′

q
a

c
o
m

a
′c

o
m

a

fq
a
′

fq
a

c
o
m

′
c
o
m

fq
′

fq

p
′

p

p
a
′

p
a

c
o
m

a
′c
o
m

p
a

fp
a
′

fp
a

c
o
m
′c
o
m

p

fp
′

fp

q′ qd
qa′ qad

gqa′ gqad

gq′ gqd

p′pd
pa′pad

gp′gpd
gpa′gpad

Ffp fq

fa

ÃS

Z

Z

P̃ †

Z

G

Q̃† Z

Z

D̃ Z

p p q q

q
a

q

p
a

p

fa ′
fa

com
′ coma

fq′ fqa

q
′ qa

fpa fp′

compa comp′
pa

p ′

gp

gp
gq

gq

g
p
a

g
p

g
q
a

g
q

q′ qd
qa′ qad

gq′ gqd
gqa′ gqad

gq
′

gq

q
′

q

gq
a
′

gq
a q
a
′

q
a

p′pd
pa′pad

gp′gpd
gpa′gpad

gp ′

gp

p
′
p

gpa
′gpa

p
a
′p

a

A B

C D

E FFigure 4: Networks A�F from the proof of Lemma 22.
26

Proof. From Lemmas 20, 21, and 22. �Corollary 24 (UC/ two-party omputation) Let F ∈ {Fkrk,Facrs,Fsc}. Let G be a well-formed silent funtionality. Then there is a protool π in the F-hybrid model suh that π UC/emulates G with stati orruptions/deeptions.Proof. From Corollary 18 and Theorem 23 and the fat that F̄∗
krk, F̄

∗
acrs, F̄

∗
sc are shared restritionsof Fkrk,Facrs,Fsc. �5 Conlusions and open problemsWe have presented the UC/ framework. This framework enables us to model the inoeribilityof general multi-party protools. The UC/ framework omes with a strong omposition theo-rem (universal omposition). We have shown that with respet to stati oerions/deeptions,arbitrary two-party protool tasks an be realised in the framework.Diretions for future work inlude:

• Good-guy/bad-guy oerions. Our feasibility results only hold for stati oer-ions/deeptions. We believe that feasibility results similar to those presented in Setion 4an be shown for good-guy oerions. To ahieve protools that are seure with respet tobad-guy oerions, we believe that new ryptographi tehniques will have to be developed.
• Inseure hannels. We assumed perfetly seure hannels, i.e., hannels where the ad-versary does not even notie that a message is sent. Can the results from Setion 4 begeneralised to a setting with weaker assumptions on the hannels?
• Multi-party protools. Our feasibility results are restrited to two-party protools. To ap-ture important ases like voting protools we need to extend this to multi-party protools.
• Impossibility results. Sine inoeribility is a strong requirement, we also expet thatmany protool tasks annot be ful�lled. For example, is it possible to realise a non-trivialprotool task using only a ommon referene string?Aknowledgements. We thank Yevgeniy Dodis and Daniel Wihs for extensive disussions.Referenes[BMQR07℄ Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrih. Bingo voting: Seureand oerion-free voting using a trusted random number generator. In E-Voting andIdentity, VOTE-ID 2007, volume 4896 of LNCS, pages 111�124, Berlin/Heidelberg,2007. Springer.[BOGW88℄ Mihael Ben-Or, Sha� Goldwasser, and Avi Wigderson. Completeness theoremsfor non-ryptographi fault-tolerant distributed omputation. In Twentieth AnnualACM Symposium on Theory of Computing, Proeedings of STOC 1988, pages 1�10.ACM Press, 1988.[BT94℄ Josh Benaloh and Dwight Tuinstra. Reeipt-free seret-ballot eletions (extendedabstrat). In STOC '94, pages 544�553. ACM, 1994.27

[Can00℄ Ran Canetti. Seurity and omposition of multi-party ryptographi protools. Jour-nal of Cryptology, 3(1):143�202, 2000.[Can01℄ Ran Canetti. Universally omposable seurity: A new paradigm for ryptographiprotools. In Proeedings of FOCS 2001, pages 136�145. IEEE Computer So-iety, 2001. Full version online available at http://www.e.uni-trier.de/e-reports/2001/TR01-016/revisn01.ps, a strongly revised full version ap-peared as [Can05℄.[Can05℄ Ran Canetti. Universally omposable seurity: A new paradigm for ryptographiprotools. IACR ePrint Arhive, Deember 2005. Full and revised version of [Can01℄,online available at http://eprint.iar.org/2000/067.[CCD88℄ David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unonditionallyseure protools. In Twentieth Annual ACM Symposium on Theory of Computing,Proeedings of STOC 1988, pages 11�19. ACM Press, 1988. Online available athttp://www.s.mgill.a/~repeau/GZIP/CCD88.ps.gz.[CDPW07℄ Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. Universally om-posable seurity with global setup. In Theory of Cryptography, Proeedings of TCC2007, volume 4392 of Leture Notes in Computer Siene, pages 61�85. Springer-Verlag, Marh 2007. Preprint on IACR ePrint 2006/432.[CFGN96℄ Ran Canetti, Uri Feige, Oded Goldreih, and Moni Naor. Adaptively seure multi-party omputation. In Twenty-Eighth Annual ACM Symposium on Theory of Com-puting, Proeedings of STOC 1995, pages 639�648. ACM Press, 1996. Extended ver-sion online available at http://www.wisdom.weizmann.a.il/~oded/PS/tr682.ps.[CG96℄ R. Canetti and R. Gennaro. Inoerible multiparty omputation. In FOCS '96:Proeedings of the 37th Annual Symposium on Foundations of Computer Siene,page 504, Washington, DC, USA, 1996. IEEE Computer Soiety. Long versionavailable at http://eprint.iar.org/1996/001.[Cha04℄ David Chaum. Seret-ballot reeipts: True voter-veri�able eletions. IEEE Seurity& Privay, 2(1):38�47, 2004.[CLOS02℄ Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally om-posable two-party and multi-party seure omputation. In 34th Annual ACM Sym-posium on Theory of Computing, Proeedings of STOC 2002, pages 494�503. ACMPress, 2002. Extended abstrat, full version online available at http://eprint.iar.org/2002/140.ps.[CRS05℄ David Chaum, Peter Y. A. Ryan, and Steve A. Shneider. A pratial voter-veri�ableeletion sheme. In ESORICS, pages 118�139, 2005.[DKR09℄ Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privay-type prop-erties of eletroni voting protools. Journal of Computer Seurity, 17(4):435�487,July 2009.[For91℄ Frederik Forsyth. The Deeiver. Bantam Books, 1991. Summary available athttp://tinyurl.om/yvhuod. 28

http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps
http://eprint.iacr.org/2000/067
http://www.cs.mcgill.ca/~crepeau/GZIP/CCD88.ps.gz
http://www.wisdom.weizmann.ac.il/~oded/PS/tr682.ps
http://eprint.iacr.org/1996/001
http://eprint.iacr.org/2002/140.ps
http://tinyurl.com/ycvhuod

[GMW87℄ Oded Goldreih, Silvio Miali, and Avi Wigderson. How to play any mental game� or � a ompleteness theorem for protools with honest majority. In Pro. 19thAnnual ACM Symposium on Theory of Computing (STOC), pages 218�229, 1987.[Gol04℄ Oded Goldreih. Foundations of Cryptography � Volume 2 (Basi Appliations).Cambridge University Press, May 2004. Preliminary version online available athttp://www.wisdom.weizmann.a.il/~oded/frag.html.[Her91℄ Amir Herzberg. Rumpsession, Crypto '91, 1991.[HUMQ07℄ Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Universally ompos-able zero-knowledge arguments and ommitments from signature ards. Tatra Mt.Math. Pub., pages 93�103, 2007.[JCJ05℄ Ari Juels, Dario Catalano, and Markus Jakobsson. Coerion-resistant eletronieletions. In Pro. 4nd ACMWorkshop on Privay in the Eletroni Soiety (WPES),pages 61�70. ACM Press, 2005.[MN06℄ Tal Moran and Moni Naor. Reeipt-free universally-veri�able voting with everlastingprivay. In CRYPTO 2006, volume 4117 of LNCS, pages 373�392. Springer, 2006.[Pas03℄ Rafael Pass. On deniability in the ommon referene string and random orale model.In Dan Boneh, editor, Advanes in Cryptology, Proeedings of CRYPTO 2003, num-ber 2729 in Leture Notes in Computer Siene, pages 316�337. Springer-Verlag,2003. Online available at http://www.nada.kth.se/~rafael/papers/denzk.ps.[Tru07℄ Trusted Computing Group. TPM main spei�ation level 2 version 1.2, 2007. on-line available at http://www.trustedomputinggroup.org/resoures/tpm_main_speifiation, adopted as ISO/IEC standard 11889.Indexabstention, 14fored, 17ACRS funtionality, 19adversarydummy-, 10voting, 15adversary-simulator, 7dummy, 10augmented CRS, see ACRSauthentiated hannel, 6bad-guy oerions, 8atalystsUC with, see EUChannelauthentiated, 6inseure, 6seure, 6oerion resistane, see inoeribility

ompletenessdummy-adversary/deeiver, 10omposable inoeribility, see UC/omposition theoremuniversal, 12onlusions, 27ontrolledorruption state, 7orruptedorruption state, 7orruption stateorrupted, 7orruption shedule, 8bad-guy oerions, 8good-guy oerions, 8only orruptions, 8reeipt-freeness, 8stati orruption/deeption, 8orruption state, 729

http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.nada.kth.se/~rafael/papers/denzk.ps
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

ontrolled, 7unontrolled, 7deeiverdummy-, 10deeiver-simulator, 7dummy, 10deeivingorruption state, 7deeption strategyuniversal, 10deeption strategy, 15dummy-adversary, 10ompleteness, 10UC/, 10dummy-adversary-simulator, 10dummy-deeiver, 10ompleteness, 10UC/ w.r.t., 10dummy-deeiver-simulator, 10dummy-party, 6emulateEUC, 19UC, 6UC/, 7erasing party, 9EUC, 5, 18, 19EUC emulate, 19exeutablenetwork, 5externalized UC, see EUCfored-abstention, 17funtionalityACRS, 19ideal, 6KRK, 19shared, 18signature ard, 19silent, 21well-formed, 19generalized UC, see EUCglobal setupUC with, see EUCgood-guy oerions, 8hybrid model, 6ideal funtionality, 6

ideal model, 6inoeribilityomposable, see UC/inoeribleseure funtion evaluation, 4voting sheme, 15indistinguishable networksperfetly, 6indistinguishable networks, 6inseure hannel, 6key registration with knowledge, see KRKKRK funtionality, 19model
F-hybrid, 6ideal, 6real, 6network, 5non-erasing party, 9only orruptions, 8partydummy-, 6erasing, 9non-erasing, 9perfetly indistinguishablenetworks, 6phasetallying, 14voting, 14protool, 6real model, 6reeipt-freeness, 8re�exivity, 9restritionof a funtionality, 20restrition-ompatible, 20seure funtion evaluationinoerible, 4seure hannel, 6seurity parameter, 5shared funtionality, 18shared restritionof a funtionality, 20signature ard funtionality, 19silent funtionality, 2130

simulatoradversary-, 7deeiver-, 7dummy-adversary, 10dummy-deeiver, 10speial, 20speial simulator, 20stati orruption/deeption, 8tally funtion, 14tallying phase, 14transitivity, 9UC, 6externalized, see EUCgeneralized, see EUCwith atalysts, see EUCwith global setup, see EUCUC emulate, 6

UC/, 7dummy-adversary/deeiver, 10intuition, 3UC/ emulate, 7unontrolledorruption state, 7Universal Composability, see UCuniversal omposition theorem, 12universal deeption strategy, 10voting shemeinoerible, 15voting adversary, 15voting phase, 14voting sheme, 14well-formedfuntionality, 19

31

	Introduction
	The intuition behind UC/c
	Related work

	The Composable Incoercibility Framework (UC/c)
	The UC framework
	The Composable Incoercibility framework (UC/c)
	Corruption schedules
	Erasing and non-erasing parties
	Basic properties
	Universal composition

	Voting schemes
	Incoercible two-party protocols
	Externalized UC framework
	EUC security implies UC/c security

	Conclusions and open problems
	References
	Index

