Differential Addition on Edwards Curves

Benjamin Justus and Daniel Loebenberger*

b-it
Universitat Bonn
D53113 Bonn

Abstract. We give two parametrizations of points on Edwards curves
that omit the X coordinate. The first parametrization leads to a differ-
ential addition formula that has the cost 5M + 4S, a doubling formula
that has the cost 5S and a tripling formula that costs 4M + 7S. The sec-
ond one yields a differential addition formula with cost 5M + 2S and a
doubling formula with cost 5S both even on generalized Edwards curves.
The price to pay for this representation is the extraction of two square
roots in the ground field. For both parametrizations the formula for re-
covering the missing coordinate is also provided. In addition, we give
an addition chain for computing the scalar multiple of a point on the
Edwards curve.

Keywords. Edwards curve, addition formula, differential addition

1 Introduction

Efficient arithmetic (addition, doubling and scalar multiplication) on elliptic
curves is the core requirement of elliptic curve cryptography. They are the cor-
nerstone in applications such as the digital signature algorithms (DSA), see [8],
abd Lenstra’s elliptic curve factoring method [9], which is a natural adaption of
Pollards’s (p — 1)-method [12] to elliptic curves. Various forms of elliptic curves
have been proposed for the purpose doing efficient arithmetic. For an overview,
the readers can consult the standard reference [1] or the online Explicit-Formulas
Database (EFD)!. We have selected some of the top candidates and summarized
in the table below. Here M (resp. S) refers to an elementary multiplication (resp.
a squaring) in the field. We ignore in this paper the cost induced by multiplica-
tion by a constant, since this operation is — especially in hardware — basically
for free. Also the cost of an addition in the field will be ignored, since also the
cost of this operation is negligible when compared to the cost of multiplication
or squaring.

With the advent of Edwards curves [6], extensive recent work [2-5] have
been able to show that doing arithmetic on Edwards curves is more efficient in
most cases than on other forms of elliptic curve. Edwards curves could well be
a leading contender for cryptographic applications involving elliptic curves.

* This work was partially funded by the BSI.
! see http://www.hyperelliptic.org/EFD

Table 1. Some coordinates with fast speed

Forms Coordinates Addition Cost|Doubling Cost
Short WeierstraB8 [(X : Y : Z) = (X/Z%,Y/Z%)| 12M + 4S8 4M + 58
Montgomery curve (X:2) 4M + 18 2M +3S
Edwards curve (X:Y:2) 10M + 1S 3M +4S
Inverted Edwards | (X :Y :2)=(Z/X,Z/Y)| 9M+1S 3M +4S

In this paper, we introduce two parametrizations of points on Edwards curves:
In the first parametrization a point on an Edwards curve is represented by the
projective coordinate (Y : Z). Notice the X-coordinate is absent, so we can not
distinguish P from —P (see next section for details). This is indeed similar
to Montgomery’s approach [10] where he represented a point with only the a-
coordinate. The parametrization leads to a new differential addition formula,
a doubling formula and a tripling formula. The addition formula has the cost
6M+4S (5M+4S in the case ¢ = 1). The doubling formula has the cost 1M +4S
(58 when ¢ = 1). The tripling formula has the cost 4M + 7S. We also provide
methods for recovering the missing x-coordinate.

The second parametrization also omits the X coordinate. Additionally it
uses the squares of the coordinates of the points only. On generalized Edwards
curves, addition can be done with 5M + 2S and point doubling with 5S. In
order to obtain the coordinates of the resulting point we need to extract at
the end of the computation two square roots over the ground field (one for each
coordinate). Thus our parametrization is best suited for multiplications of a point
P with a large scalar s while working over a (finite) field. In such an application,
the additional cost for the extraction of the two square roots is asymptotically
negligible. Note that for point doubling we get completely rid of multiplication
and employ squarings in the ground field only. This is desireable since squarings
can be done slightly faster than generic multiplications, see for example [1].

We are currently carrying out several runtime estimates. Since we do not have
comparable results in this direction up to now, we postpose a detailed analysis
to the long version of this paper.

The plan of the paper is as follows. We recall the basics of Edwards curves
in the next section and describe and prove the addition, doubling and tripling
formula in section 3. The formula for recovering the x-coordinate is described in
section 4. A parametrization of the points that uses the squares of the coordinates
only is introduced in section 5. In section 6, we will describe an addition chain
that carries out the task of single scalar multiplication of points on Edwards
curves.

2 Edwards Curves

We describe now the basics of Edwards curves. More details can be found in the
original papers [4,5]. A generalized Edwards curve is of the form

Eca: 2?4y = 02(1 + d:c2y2)

where ¢, d are curve parameters in a field k of characteristic different from 2.
When ¢, d # 0 and dc* # 1, the Edwards addition law is defined by

T1Y2 + Y122 Y1Y2 — T1x2) (1)
1+ dzizy1y2) (1l — deizayry2))

(z1,91), (T2,92) — (C(

For this addition law, the point (0, ¢) is the neutral element. The inverse of point
P = (z,y) is —P = (—x,y). In particular, (0, —c) has order 2; (¢,0) and (—c,0)
are the points of order 4. When the curve parameter d is not a square in k, then
the addition law (1) is complete (i.e. defined for all inputs).

3 Representing Points on Edwards Curves

Given a generalized Edwards curve E. 4. As explained in the introduction, we
represent a point P on the curve by the projective coordinate P = (Y7 : Z7).
Write [n]P = (Y, : Z,,). Then we have

Theorem 1. Let E. 4 be a generalized Edwards curve defined over k such that
char(k) # 2, ¢,d # 0, dc* # 1 and d is not a square in k. Then the following
formule hold when m > n

Yiin = Zm-n (Y2(Z2 — 2dY,2) + Z2,(Y,} — ¢ Z}))
Zman = Ymen (AY2 (Y.} — PZ2) + Z2(Z2 — 2dY}?)) .
with cost 6M + 4S. When n = m, the doubling formula is given by
Yon = —c2dY,} +2Y? 72 — 27}
Zop = dY —22dY2 722 + 72
having cost 1M + 48S.

Proof. Let Py = (x1,41), P> = (22,y2) be two points on the Edwards curve E, 4
such that P; # P5. Since the curve parameter d is not a square in k, the addition
law (1) is defined for all inputs. Let P, + P> = (x3,y3) and Pi — P> = (x4, ya).
Then the addition law (1) gives

930(1 - d$1x2y1y2) = Y1Y2 — T172
yac(l + dx122y1y2) = Y1y2 + 2172

After multiplying the two equations above, we obtain

ysyac® (1 — d*zia3yiys) = yiys — aixs. (2)

2 2 2 2
Next we substitute 23 = 11;2% and 23 = 1(;_25;% (obtained from the curve
equation) in (2) to obtain
ysya(—dyiys + Cdyf + c*dy; — 1) = dyty; —yi —y3 + ¢ (3)

After changing (3) into projective coordinates, we see that the formula for adding
[m]P = (Y, Zm) and [n]P = (Y,, Z,) (m > n) becomes

Yinin Yimen Y2(Z2 —2dY2)+ Z2,(Y2 — 2Z2) (1)
Zmin Zom—n dY2(Y2 —272) + Z2(Z2 — c2dY}?)’

This proves the addition formula. If P = P, we obtain by the Edwards addition
law (1)
yse(l — daiyi) = yi — 2.

2,2
c“ =y

o ; 2 _
Similarly, we substitute x7 = T-c2dy?

into the equation above to obtain

ys(edyi — 2¢%dy; + ¢) = —Pdy; + 247 — ¢

This proves the doubling formula in Theorem 1 after changing into projective
coordinates. a

We obtain additional savings in the case ¢ = 1:
Corollary 1. With the same assumptions and notations as in Theorem 1. If

¢ =1 we have form >n

Yern =Zm-n ((Yri - Z’?n)(Z’?L - dYn2) - (d - 1)Yn2272n) ’
Zmin = —Ymn (Y2 — Z0)Z) —dY) + (d—1)Y,2 Z7)

with costs 5M + 4S. For doubling we obtain

YVQn = _(Yn2 - Zr27,)2 - (d - 1)Yr?7
Zon = (Y2 — Z2)? 4 (d — d®)Y,2.

having cost 5S. ad

Remark 1. A simple induction argument also shows that the computation of the
2k_fold of a point costs 5kS.

3.1 A Tripling Formula

One also obtains a tripling formula that has the cost 4M + 7S. This is cheaper
than by doing a doubling then an addition. We restrict ourselves to the case
¢ = 1. The calculation is similar in the case ¢ # 1.

Proposition 1. With the same assumptions and notations as in Theorem 1.
Furthermore, we assume char(k) # 3. Then we have

Yan = Yy, ((dY,! —3Z0)% — Za (222 — (1 + d)Y;2)? + 874 — (1 + d)*Y)))
Zsn = Zn ((Zy — 3dY,))? — dY,) (227 — (1 +d)Y;))? — 4Z;, + (12d — (1 + d)*)Yy))

Proof. We sketch the proof. It is similar as before. Let (z3,y3) = 3(z,y) =

2(z,y) + (x,y). Using the addition law (1), we obtain an expression for ys.

Inside the expression, make the substitution z? = 1" and simplify to obtain

. . 1—dy?
an expression in y only.

_ y(d?y® — 6dy* + (4d + 4)y? — 3)
 —3d2y8 + (4d? + 4d)yS — 6dyt + 1

Y3

Substitute into projective coordinates y = Y/Z and rearrange terms. The for-
mula follows. O

4 Recovering the x-coordinate

In some cryptographic applications it is important to have at some point both x
and y coordinates. This is possible as shown in the next result. We also mention
there have been results [11,7] in this direction for other forms of elliptic curve.

Theorem 2. Let E. 4 be a generalized Edwards curve defined over k such that
char(k) # 2, ¢,d # 0, dc* # 1 and d is not a square in k. Let (z,y) be a point
whose order does not divide 4. Let yn,ynt1 be the affine y-coordinates of the
points [n| P, [n + 1]P respectively. Then the following formula holds

2yYnYng1 — 2 — Yty
" cdzyyn (Qn - y'r27,+1)

)

where
2
0, = Mt B
dBy2 + A
A=1-c2dy?
B =y* -

In order to prove Theorem 2, we need the following result.

Proposition 2. Fiz an Edwards curve E. 4 such that char(k) # 2, ¢,d # 0,
dc* # 1 and d is not a square in k. Let Q = (x,y), P, = (x1,y1) be two points
on E¢ 4. Define Py = (z2,y2) and Py = (x3,y3) by Po = P1+Q and Ps = P, — Q.
Then we have

oy = Y2 — s (5)
cdryyi(ys — y2)

provided the denominator does not vanish.

Proof. By the addition law (1), we have

c(l — dzxzryy1)y2 = yy1 — a1
c(1 + drxryyr)ys = yy1 + v1.

Add the two equations and solve for x1, the Proposition follows. a
The following lemma tells us when the formula (5) is valid.

Lemma 1. With the same assumptions as in Proposition 2. Furthermore, let
P, Q be points whose order does not divide 4. Then the formula (5) always
holds.

Proof. The points P; and @ have orders that are not 1,2,4, so x,y,y1 # 0.
Suppose now ys = y3 (i.e. y-coordinates of P; + @ and P; —) are the same).
By the addition Law (1), this implies

Yyy1 — x11 Yyy1 + z11

c(1 — dxz1yyr) o (1 + dzxx1yyr)

whence dy?y? = 1. But d is not a square in k, so a contradiction is arrived.

Proof (Theorem 2). Let [n]P = (x,yn) where P is not a 4-torsion point on
E. 4. Our task is to recover the x,. By Proposition 2, we may write

_ 2YYn — CYn—1 — CYnt1 ©)
n =
Cd/xyyn(yn—l - yn+1)

where y,_1,yn+1 are the y-coordinates of the points [n — 1P and [n + 1]P
respectively. Now the variable y,_; can be eliminated because of (4). Indeed we
may write using (4) in affine coordinate

A2+ B)
Yn—1Yn+1 = 7dBy%+A

where
A=1-c%dy?, B=1y>—-¢.

Now from (7), y,—1 can be isolated and put back in (6). This gives

_ 2yYnYn+1(dBy, + A) — c(Ay; + B) — cya 1 (dBy, + A)
cdryyn (Ay2 + B — y2 1 (dBy2 + A))

n

The claim follows. O

5 A parametrization using squares only

The formulae in Theorem 1 show that for the computation of Y2, and Z2,_
it is sufficient to know the squares of the coordinates of the points (Y, Zp,),

(Yo, Z,) and (Y—n, Zn—m) only. This gives

Theorem 3. With the same assumptions as in Theorem 1, the following for-
mule hold when m > n

Y2, = 2%, (A+ B)/2)?
220 = Y2 (A= B)j2+ (d -)Y2 (V2 - 272))%.

with
A= (Y2 +2Z2)((1-dP)Y?+(1-c)Z2),

n

B:= (Y2 - Z2) (1 +cAZ2 — (1 +dc*)Y2).

The cost of this addition is 5M + 2S if one stores the squares of the coordinates
only. When n = m, we obtain

Y2 = (- DY, + (1 -)zt — (V2 - 22)%),
73, = (AP (Y2 = Z2)? —d(c* —)Y + (Pd —1)Z2)°
with cost 5S.
Proof. This follows directly from Theorem 1 and elementary calculus. a

We will now sketch the computation of a scalar multiple [s] P in this parametriza-
tion. Assume P has affine coordinates (z : y). Then one would proceed as follows:
After changing to projective coordinates (X : Y : Z), two squares (one for each
of the coordinates Y and Z) have to be computed. Now a differential addition
chain (such as the one described in the next section) is employed to compute the
multiple [s]P. During the computation we store the squares of the coordinates
of the intermetiate points only. After the computation two square roots have to
be extracted. Due to the contruction both computations are possible, i.e. the
inputs are indeed squares in the ground field. We now end up with the Y and
the Z coordinate of the point [s]P. Note that the computation of the square
roots is only feasible if we are working over a field. This makes the proposed
parametrization unsuitable for the elliptic curve factoring method.

Also the trippling formula given in Proposition 1 can be adapted to this
second parametrization. Namely we have

Corollary 2. With the same assumptions and notations as in Theorem 1. Fur-
thermore, we assume char(k) # 3. Then we have

Y = Y2 (Y, — 324 — Zh (222 — (1 + Q)Y + 875 — (1 + d)*Y;)))”,
73, = 72 ((Z1 = 3dY;)? — avt (222 — (1 + d)Y2)? — 4Z} + (12d — (1 + d))V}}))?
with cost 4M + 58S. d

6 Addition chains for scalar multiplication

To compute the scalar multiple [s]P using the addition and doubling formula
developed in section 3, one can apply Montgomery’s ladder (see [1]). The algo-
rithms has the indistinguishability feature that prevents side channel attacks.
We present in the following an alternative algorithm (Algorithm 1) for com-
puting [s]P. The algorithms uses tripling and quadrupling in addition to addi-
tions and doubling. The algorithm can be applied in any additive groups. Let us
briefly analyze the cost for computing [s]P in our context. We treat terms like
3P, + P, by computing (P, + P), (P1 + P2) 4+ 2P; successively. This is feasible
because the difference between P; and P, is always P. The cost of addition using
our addition formula (Theorem 1) becomes 3M+ 4S. The quadrupling of a point
is done by doubling the point twice. In summary the algorithm uses 2 additions
and 2 doubling for each 2-bits of s. The length of the addition chain is log, s. So
if s has n-bits, the total cost for computing [s]P is n additions and n doublings.

Algorithm 1 INPUT: A point P on F and a positive integer s = (nj_1 ...ng)a.
OUTPUT: [s]P.

1: P1 « [m—1]P and Ps « [ny_1 + 1]P

2: for i =1 — 2 down to 0 do

3: if n; =0 then

4: P, =4P, and P, =3P, + P

5: else if n; =1 then

6: P, =3P, + P, and P>, = 2(P1 + P2)
7: else if n; = 2 then

8: P = 2(P1 + Pz) and P, = P, + 3P
9: else

10: Pr=P, +3P and P>, = 4P,

11: end if

12: end for

13: return P

7 Acknowledgements

This work was funded by the b-it foundation and the state of North Rhine-
Westphalia.

References

1.

10.

11.

12.

R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete
Mathematics and its Applications. Chapman & Hall/CRC, 2006.

D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted ed-
wards curves. In S. Vaudenay, editor, Progress in Cryptology: Proceedings of
AFRICACRYPT 2008, Casablanca, Morocco, volume 5023 of Lecture Notes in
Computer Science, pages 389-405, 2008.

D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using edwards curves.
2008.

D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, Advances in Cryptology: Proceedings of ASIACRYPT 2007,
Kuching, Sarawak, Malaysia, volume 4833 of Lecture Notes in Computer Science,
pages 29-50, June 2007.

D. J. Bernstein and T. Lange. Inverted edwards coordinates. In S. Boztas and
H. feng Lu, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, 17th International Symposium, AAECC-17, Bangalore, India, December 16-
20, 2007, Proceedings, volume 4851 of Lecture Notes in Computer Science, pages
20-27, 2007.

. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American

Mathematical Society, 44(3):393-422, July 2007.

E. Brier and M. Joye. Weierstraf elliptic curves and side-channel attacks. In
D. Naccache and P. Paillier, editors, Public Key Cryptography, number 2274 in Lec-
ture Notes in Computer Science, pages 183-194, Berlin, Heidelberg, 2002. Springer-
Verlag.

Information Technology Laboratory. Fips 186-3: Digital signature standard (dss).
Technical report, National Institute of Standards and Technology, June 2009.

H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126:649-673, 1987.

P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243-264, January 1987.

K. Okeya and K. Sakurai. Efficient elliptic curve cryptosystem from a scalar mul-
tiplication algorithm with recovery of the y-coordinate on a montgomery-form
elliptic curve. In C. K. Kog, D. Naccache, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems, Workshop, CHES’01, Paris, France, number
2162 in Lecture Notes in Computer Science, pages 126-141, Berlin, Heidelberg,
2001. Springer-Verlag.

J. M. Pollard. Theorems on factorization and primality testing. Proceedings of the
Cambridge Philosophical Society, 76:521-528, 1974.

