
An Efficient Adaptive-Deniable-Concurrent
Non-malleable Commitment Scheme

Seiko Arita

Graduate School of Information Security,
Institute of Information Security, Japan

Abstract. It is known that composable secure commitments, that is, concurrent non-malleable com-
mitments exist in the plaintext model, based only on standard assumptions such as the existence of
claw-free permutations or even one-way functions. Since being based on the plaintext model, the deni-
ability of them is trivially satisfied, and especially the latter scheme satisfies also adaptivity, hence it is
adaptive-deniable-concurrent non-malleable. However, those schemes cannot be said to be practically
efficient. We show a practically efficient (string) adaptive-deniable-concurrent commitment schemes is
possible under a global setup model, called a global CRS-KR model.

keywords: commitment schemes, adaptivity, deniability, concurrency, non-malleability.

1 Introduction

As advanced security properties, there are emerging concerns on composability, deniability and
adaptivity of cryptographic protocols. The composability, culminating in Universal Composability
(UC) [3], requires secure protocols remain secure even if they are composed with another protocols.
The deniability requires secure protocols leave no evidence of their executions. The adaptivity
requires secure protocols remain secure (to some reasonable extent) even if some honest parties are
corrupted on way of their executions.

In this paper, we want to construct practically efficient commitment protocols with those ad-
vanced security properties in some global setup model.

It is known that composable secure commitments, that is, concurrent non-malleable commit-
ments exist in the plaintext model, based only on standard assumptions such as the existence of
claw-free permutations [21, 19] or even one-way functions [17]. Since being based on the plaintext
model, the deniability of them is trivially satisfied, and especially the scheme of [19] satisfies also
adaptivity, hence it is already an adaptive-deniable-concurrent non-malleable commitment scheme.
However, those schemes cannot be said to be practically efficient.

We show a practically efficient (string) adaptive-deniable-concurrent non-malleable commitment
scheme is possible under a global setup model, called a global CRS-KR model.

– We define a notion of adaptive-deniable-concurrent non-malleable commitments, that captures
the three advanced properties all at once for commitment schemes in the global CRS-KR model.

– We define, as a more-easy-to-prove property, a straight-line equivocal-extractability of commit-
ment schemes and prove that it (with some other auxiliary properties) yields the adaptive-
deniable-concurrent non-malleability in the global CRS-KR model.

– We construct a straight-line equivocal-extractable commitment scheme in the global CRS-KR
model, under the decisional linear assumption and the knowledge of exponent assumption on
bilinear groups. The scheme is efficient and practical, using a constant number of pairing com-
putations and three-round exchanges of linear-size messages.

Related works. In the literature there exists only one (to our knowledge) practically-efficient com-
mitment scheme by Canetti, Dodis, Pass and Walfish [4], that establishes the adaptive-deniable-
concurrent non-malleability. Their scheme relies on a global setup model, called augmented CRS
model (a kind of global CRS model with an augmented functionality) and is proved to be adaptively
UC-secure in that model. It uses four-round message exchanges of square size O(k2) of security pa-
rameter k. We believe that the global CRS-KR model that we use is arguably more simple than
the augmented CRS model and our scheme, that uses three-round exchanges of messages of linear
size O(k), is more efficient than their scheme.

2 An Adaptive-Deniable-Concurrent Non-malleable Commitment

2.1 Commitment Schemes

In this paper, we deal with commitments in a tag-based manner. On input value v and tag t, sender
S commits to v through a transcript c for receiver R using a CRS σ (Commitment phase). Later,
using a local output d of the commitment phase, S decommits c to the value v using the same tag t
and CRS σ (Decommitment phase). Hiding property requires even adversarial receiver R∗ cannot
know the value v under the commitment c in the commitment phase. Binding property requires
even adversarial sender S∗ cannot decommit a same commitment c to two different values. More
precisely,

Definition 1 (Commitment Schemes). A triple Σ = (K,S,R) of probabilistic polynomial time
algorithms is called a (tag-based) commitment scheme if it satisfies the following three properties:

– (Correctness) For any value v ∈ {0, 1}k and any tag, the probability

Pr[σ ← K(1k), (d, c) ← 〈Sσ,tag(v),Rσ,tag〉, (−, v′) ← 〈Sσ,tag(d),Rσ,tag(c)〉 : v = v′]

is negligibly close to 1 (with respect to k).
– (Hiding) For any adversary R∗ and any tag, the probability

Pr[σ ← K(1k), (v0, v1, s) ← R∗(σ, tag), b
$← {0, 1}, (−, b′) ← 〈Sσ,tag(vb),R∗(s)〉 : b = b′]

is negligibly close to 1/2 (with respect to k). Here, v0, v1 are supposed to be in {0, 1}k.
– (Binding) For any adversary S∗ and any tag, the probability

Pr[σ ←K(1k), ((d1, d2), c) ← 〈S∗(σ, tag),Rσ,tag〉, (−, v1) ← 〈S∗(d1),Rσ,tag(c)〉,
(−, v2)← 〈S∗(d2),Rσ,tag(c)〉 : v1 6= ⊥, v2 6= ⊥, v1 6= v2]

is negligible (with respect to k).

For our purpose, we need a new type of binding property, determining property.

Definition 2 (Determining Property). A commitment scheme Σ = (K,S,R) is said to be
determining if there exists a deterministic function det(·) (that may not be efficiently computable)
and for any feasible adversary S∗ the probability

Pr[σ ← K(1k), (−, c) ← 〈S∗(σ), Rσ,tag〉 : ∃d, r s.t. (−, v) = 〈S∗(d), Rσ,tag(c; r)〉 ⇒ v = det(c)]

is negligibly close to 1 (with respect to k). Here, tag is being chosen by S∗. We call the unique value
v = det(c) determining value of c.

In the above definition we note that the d and r are not supposed to be efficiently computable.
The determining property means that any commitment c generated by feasible adversaries S∗ must
statistically determine the value that can be committed to under c. If Σ is statistically binding
then it is determining, and if Σ is determining then it is computationally binding. In the rest of
paper, we only consider commitment schemes that are determining.

2.2 Definition of Adaptive-Deniable-Concurrent Non-malleability

Intuitively, we call a commitment scheme adaptive-deniable-concurrent non-malleable if the scheme
permits no fake commitments even by a man-in-the-middle adversary that is able to invoke any
number of left and right parties concurrently to receive/make commitments and is able to adaptively
corrupt any number of left parties that completes the commitment phases, and in addition if the
scheme leaves no evidence of execution of the protocol.

Since the property seems to be unreachable in the plain model (as seen later), in the rest of
paper, we rely on a global setup model, called the global CRS-KR model. In that model, participants
must register their identities to receive their public/private key pairs and a global CRS in advance,
that are need to execute protocols. (Secret keys are used only when participants want to yield
the deniability.) More formally, we define two experiments, as to a commitment scheme Σ and an
adversary A, as in Figure 1.

– Experiment mimΣ
A(v1, · · · , vm, z):

1. Invoke A on input z. A outputs a string ID∗ to register itself and tags t1, . . . , tm for m left interactions.
2. Generate CRS σ and a public/private-key pair pkID∗ , skID∗ for ID∗ as specified by Σ.
3. Receiving σ, pkID∗ , skID∗ , A carries over a concurrent man-in-the-middle attack: Each of m left honest

parties concurrently commits to vi with tag ti according to Σ through transcript ci for A (i = 1, . . . , m)
and at the same time A concurrently commits to some values with tags t∗j (chosen by A) through
transcripts c∗j for each of n right honest parties (j = 1, . . . , n) with some polynomial n = n(k). (If
necessary, A can receive public keys pkID of any ID it wants.)

4. The experiment outputs (viewA, v∗1 , . . . , v∗n, d1, . . . , dm). Here, viewA denotes the view of A in the above
attack, v∗j denotes the determining value det(c∗j) of the right commitments c∗j (j = 1, . . . , n) and di

denotes honest decommitment of the left commitments ci (to vi) (i = 1, . . . , m). However here, for each
j ∈ {1, . . . , n}, if t∗j = ti with some i, then v∗j be overwritten to ⊥.

– Experiment staΣ
S (v1, · · · , vm, z):

1. Invoke S on input z. S outputs a string ID∗ to register itself and tags t1, . . . , tm.
2. Generate CRS σ and a public/private-key pair pkID∗ , skID∗ of ID∗ as specified by Σ.
3. Receiving σ, pkID∗ , skID∗ , S concurrently commits to some values using tags t∗i (chosen by S) according

to Σ through transcripts c∗i for each of n receivers with some polynomial n = n(k) (i = 1, . . . , n) and
outputs a simulated view viewA of A. (If necessary, S can receive public keys pkID of any ID it wants.)

4. S is given the values v1, · · · , vm. Then, S outputs decommitment di (to vi) that corresponds to the
simulated commitments ci in the simulated view viewA (i = 1, . . . , m).

5. The experiment outputs (viewA, v∗1 , . . . , v∗n, d1, . . . , dm). Here, v∗j denotes the determining value det(c∗j)
of the right commitments c∗j (j = 1, . . . , n).

Fig. 1. Experiments mimΣ
A and staΣ

S .

Definition 3. A commitment scheme Σ = (K,S,R) is said to be adaptive-deniable-concurrent
non-malleable in the global CRS-KR model if for any feasible adversary A, there exists a feasible

algorithm S and the ensemble
{
staΣ

S (v1, · · · , vm, z)
}

v1,··· ,vm,z
is computationally indistinguishable

from the ensemble
{
mimΣ

A(v1, · · · , vm, z)
}

v1,··· ,vm,z
with any polynomial m = m(k), any values

v1, · · · , vm (∈ {0, 1}k) and any string z.

Remark 1. In the above definition, adversary A is restricted to be a type of “selective-tag”, namely,
A is supposed to choose left tags t1, . . . , tn before it knows the CRS and A must use different tags t∗j
from ti for his challenges. The restriction is not restrictive. In fact, a tag-based commitment scheme
that is secure for selective-tag-type adversaries is easily transformed into an ordinal commitment
scheme without tags that is secure for fully adaptive adversaries, by using a method of the CHK
transformation [7], just as in the cases of encryption schemes. (Sender generates a key-pair of strong
one-time signature. It uses the verification key as a tag and signs a transcript by the corresponding
secret key.)

2.3 Definition of Straight-line Equivocal-Extractability

As a more-easy-to-prove sufficient condition for the adaptive-deniable-concurrent non-malleability,
we define straight-line equivocal-extractability of commitment schemes, that involves only a “classi-
cal” (instead of concurrent) man-in-the-middle adversary. The straight-line equivocal-extractability
requires that a left party can be adaptively simulated by some feasible algorithm EQV that knows
adversary’s secret key and at the same time the property requires that the value committed to by
the adversary for a right party can be extracted by some feasible algorithm EXT that knows the
trapdoor of the global CRS. More formally, we define two experiments, as to a commitment scheme
Σ and an adversary A, as in Figure 2.

Definition 4. A commitment scheme Σ = (K,S,R) is said to be straight-line equivocal-extractable
in the global CRS-KR model if there exists a feasible algorithm EQV such that for any feasible adver-
sary A, there exists a feasible algorithm EXT and the ensemble

{
fakeComΣ

EQV,A,EXT(v, z)
}

v,z
is com-

putationally indistinguishable from the ensemble
{
realComΣ

A(v, z)
}

v,z
with any value v (∈ {0, 1}k)

and any string z.

Remark 2. The definition requires that the algorithm EQV is independent of adversaries A.

Theorem 1. If a commitment scheme Σ = (K,S,R) is determining, public-coin for R and
straight-line equivocal-extractable in the global CRS-KR model, then Σ is adaptive-deniable-concurrent
non-malleable in the global CRS-KR model.

Proof Idea. To prove the theorem, we construct a stand-alone man-in-the-middle adversary Aij

from an assumed concurrent adversary A against the scheme, that internally simulates left parties
besides the i-th left party and right parties besides the j-th right party for A. We use the straight-
line equivocal-extractability for Aij to upper bound advantage of the assumed A, using a hybrid
argument. In doing that, as one subtle point, we need to efficiently construct the view of Ai2, . . . , Aim

given the view of Ai1, that will be possible since the scheme is public-coin for receiver R.

Proof. Let Σ = (K,S,R) be a commitment scheme that is determining, public-coin for R and
straight-line equivocal-extractable. Let EQV be the algorithm that is guaranteed to exist by the def-
inition of straight-line equivocal-extractability for Σ. Let A be arbitrary feasible adversary against

– Experiment realComΣ
A(v, z):

1. Invoke A on input z. A outputs a string ID∗ to register itself and a tag t for the left interaction.
2. Generate CRS σ and a public/private-key pair pkID∗ , skID∗ of ID∗ as specified by Σ.
3. Receiving σ, pkID∗ , skID∗ , A carries over a (classical) man-in-the-middle attack: A left honest party

commits to v with tag t according to Σ through transcript c for A and at the same time A commits to
some value using tag t∗ (chosen by A) through transcript c∗ for a right honest party. (If necessary, A
can receive public keys pkID of any ID it wants.)

4. The experiment outputs (τ, viewA, v∗, d). Here, τ denotes the trapdoor of CRS σ, viewA denotes the
view of A in the above attack, v∗ denotes the determining value det(c∗) of the right commitment c∗

and d denotes honest decommitment of the left commitment c (to v). However here, if t∗ = t then v∗

be overwritten to ⊥.

– Experiment fakeComΣ
EQV,A,EXT(v, z):

1. Invoke A on input z. A outputs a string ID∗ to register itself and a tag t for the left interaction.
2. Generate CRS σ with trapdoor τ and a public/private-key pair pkID∗ , skID∗ of ID∗ as specified by Σ.
3. Receiving σ, pkID∗ , skID∗ , A carries over a (classical) man-in-the-middle attack with a dummy left

party: The algorithm EQV, on input t, skID, plays the role of honest left party and commits to a
dummy value w with tag t according to Σ through transcript c for A and at the same time A commits
to some value using tag t∗ (chosen by A) through transcript c∗ for a right honest party. (If necessary,
A can receive public keys pkID of any ID it wants.) Let d′ be a local output of EQV(t, skID, w).

4. If t∗ = t then set v∗ to be ⊥. Otherwise, invoke algorithm EXT on input the trapdoor τ of CRS σ and
the view viewA of A, and set its output to v∗.

5. Invoke (the second stage of) algorithm EQV on input d′ and v, and get its output d.
6. The experiment outputs (τ, viewA, v∗, d).

Fig. 2. Experiments realComΣ
A and fakeComΣ

EQV,A,EXT.

Σ. We can assume A is deterministic without loss of generality (by supposing A’s coins are included
in its input z). We want to construct a simulator S that satisfies

staΣ
S (v1, · · · , vm, z) ≡c mimΣ

A(v1, · · · , vm, z) (1)

for any values v1, · · · , vm (∈ {0, 1}k) and any string z. We construct such simulator S as follows:

– Simulator S on input a string z:
1. S invokes A on input z. A outputs ID∗, t1, . . . , tm. Then, S also outputs ID∗, t1, . . . , tm.
2. S receives CRS σ and a public/private-key pair pkID∗ , skID∗ . Giving those σ, pkID∗ , skID∗

to A, S plays each of m left parties for A by invoking EQV on ti, skID∗ , w (Here, w is any
string such as 0k) (i = 1, . . . ,m). S forwards messages of A to each of n right parties to its
own outside right parties Rσ,t∗j and forwards messages from Rσ,t∗j to A as its j-th right party
messages (j = 1, . . . , n). Let d′i be the local output of EQV(ti, skID∗ , w) (i = 1, . . . ,m).

3. On halting A, S outputs its view viewA.
4. Receiving left values vi, S invokes the corresponding second stage of EQV on d′i and vi to

get its output di and outputs di as its own output (i = 1, . . . ,m).

Toward showing Equation (1) with the above S, we first construct a (classical) man-in-the-
middle adversary Ai,j using A as follows (i = 0, . . . , m− 1, j = 1, . . . , n).

– A man-in-the-middle adversary Ai,j on input z, vi+2, . . . , vm:
1. Ai,j internally invokes A on input z. A outputs ID∗, t1, . . . , tm. Then, Ai,j outputs ID∗, ti+1.

2. Receiving CRS σ and a public/private-key pair pkID∗ , skID∗ , Ai,j carries over a man-in-the-
middle attack against its (outside) left party and right party, using the internally simulated
A that is given those σ, pkID∗ , skID∗ .
(a) In the attack, Ai,j internally simulates m left parties for A as follows.

i. Ai,j simulates each of the first i left parties by using α-th copy of EQV on tα, skID∗ , w
(α = 1, . . . , i). (w is any dummy string.)

ii. Ai,j forwards messages from its left party to A as messages of A’s (i+1)-th left party,
and forwards messages from A to its (i + 1)-th left party to its left party.

iii. Ai,j simulates the rest of m − i − 1 left parties honestly to commit to vβ (β =
i + 2, . . . , m).

(b) At the same time Ai,j internally simulates n right parties for A as follows.
i. Ai,j honestly simulates each of n right parties except the j-th right party for A.
ii. Ai,j forwards messages from its right party to A as messages of A’s j-th right party,

and forwards messages from A to A’s j-th right party to its right party.

– Experiment hyb-iΣA(v1, . . . , vm, z):
1. Invoke A on input z, that outputs a string ID∗ to register itself and tags t1, . . . , tm for left interactions.
2. Generate CRS σ with trapdoor τ and a public/private-key pair pkID∗ , skID∗ , and give them to A.
3. A begins a concurrent man-in-the-middle attack. Then,

(a) Simulate each of first i left parties by α-th copy of EQV on tα, skID∗ , w (α = 1, . . . , i).
(b) Simulate honestly each of the rest m− i left parties to commit to vβ (β = i + 1, . . . , m).
(c) Receiving these m left commitments c1, . . . , cm concurrently, A commits to some values with tags t∗j

(chosen by A) through transcripts c∗j for each of n right honest parties concurrently (j = 1, . . . , n)
with some polynomial n = n(k).

Let d′α be the local output of EQV(tα, skID, w) for α = 1, . . . , i and d′β be the honest decommitment
corresponding to cβ for β = i + 1, . . . , m.

4. Let Ai,j be the man-in-the-middle adversary defined as above from this A. We note that the above
attack of A can be viewed as the attack of Ai,j on input z, vi+2, . . . , vm that stands between the (i+1)-
th left party and the j-th right party. Let EQV and EXT(i,j) be feasible algorithms for Ai,j that are
guaranteed to exist by straight-line equivocal-extractability of Σ. (Recall EQV does not depend on the
adversary by definition.)

5. For j = 1, . . . , n, if t∗j = ti, set v∗j = ⊥, else invoke EXT(i,j) on τ, viewAi,j and set v∗j to its output.
6. For i = 1, . . . , m, invoke EQV on d′i and v, and set di to its output.
7. The experiment outputs (viewA, v∗1 , . . . , v∗n, d1, . . . , dm).

Fig. 3. Hybrid Experiments hyb-iΣA .

Using the above Ai,j , we define hybrid experiments hyb-iΣA(v1, . . . , vm, z) for i = 0, 1, . . . , m as
in Figure 3. In the experiments, when i = m, all of the left parties are simulated by EQV and
hyb-mΣ

A is exactly distributed as staΣ
S :

hyb-mΣ
A(v1, . . . , vm, z) ≡ staΣ

S (v1, · · · , vm, z). (2)

On the other hand, when i = 0, all of the left parties are honestly simulated to commit to vi.
Moreover the straight-line equivocal-extractability of Σ means that det(c∗j) = EXT(i,j)(τ, viewAi,j)
(with exception of negligible probability). Hence, we have

hyb-0Σ
A(v1, . . . , vm, z) ≡s mimΣ

A(v1, · · · , vm, z). (3)

By Equations (2) and (3), Equation (1) follows from the next claim by a standard hybrid
argument.

Claim. For i = 0, . . . , m− 1, we have hyb-iΣA(v1, . . . , vm, z) ≡c hyb-(i + 1)Σ
A(v1, . . . , vm, z).

Proof. We define two auxiliary experiments realΣA and idealΣA . The experiment realΣA(v1, . . . , vm, z)
first constructs B = Ai,1. Then, it computes (τ, viewB, v∗1, di+1) ← realComΣ

B(vi+1, (z, vi+2, . . . , vm)),
and returns (viewA, v∗1, . . . , v

∗
n, d1, . . . , dn) ← Expand(τ, viewB, v∗1, di+1, (v1, . . . , vm)). The experi-

ment idealΣA is the same as realΣA except that it uses fakeComΣ
EQV,B,EXT, instead of realComΣ

B , to
compute (τ, viewB, v∗1, di+1).

In the above, the procedure Expand reconstructs view of Ai,j from the view of B = Ai,1 and
extracts values v∗j committed to by A in right interactions using EXT with trapdoor τ . More
precisely, Expand proceeds as follows:

– Procedure Expand(τ, viewB, v∗1, di+1, (v1, . . . , vm)):
1. For j = 2, . . . , n, do:

(a) Construct Ai,j ’s view viewi,j from viewB. (Recall B = Ai,1 and Σ is public-coin with
respect to receivers.)

(b) v∗j ← EXT(i,j)(τ, viewi,j) with the algorithm EXT(i,j) for Ai,j .
2. For α = 1, . . . , i, i + 2, . . . ,m, do:

(a) Reconstruct from viewB the local output d′α of the simulated α-th left party. (Recall
B = Ai,1 internally simulates the α-th left party.)

(b) dα ← EQV(d′α, vα)
3. Return (viewA, v∗1, . . . , v

∗
n, d1, . . . , dn)

It is easy to see that the view of A (included in viewB) in realΣA(v1, . . . , vm, z) is exactly dis-
tributed as viewA in hyb-iΣA . (In both cases, the first i left parties are simulated by EQV.) Then,
by definition of Expand, we have

hyb-iΣA(v1, . . . , vm, z) ≡ realΣA(v1, . . . , vm, z). (4)

Similarly, we have

hyb-(i + 1)Σ
A(v1, . . . , vm, z) ≡ idealΣA(v1, . . . , vm, z). (5)

The straight-line equivocal-extractability of Σ against B means that the outputs of realComΣ
B

and fakeComΣ
EQV,B,EXT are indistinguishable and then, since Expand is an efficient procedure, realΣA(v1, . . . , vm, z)

and idealΣA(v1, . . . , vm, z) are indistinguishable. The claim follows by Equation (4) and (5). 2

2

Remark 3. We can construct a deniable concurrent zero-knowledge argument if the adaptive-
deniable-concurrent non-malleable commitment scheme once exists, by using the GMW protocol of
graph 3-coloring instantiated with it. That means

– It is difficult (if not impossible) to construct adaptive-deniable-concurrent non-malleable com-
mitment schemes only using the CRS model, since deniable concurrent zero-knowledge argu-
ments are known to be difficult in the CRS model [20].

– An efficient construction of adaptive-deniable-concurrent non-malleable commitment scheme in
the global CRS-KR model, that will be shown in the next section, gives an efficient deniable
concurrent zero-knowledge argument in the global CRS-KR model. (We remark that the efficient
concurrent zero-knowledge scheme of [11] in the auxiliary string is not deniable.)

3 A Construction of Straight-line Equivocal-Extractable Commitment

This section constructs a determining, public-coin for receivers, and straight-line equivocal-extractable
commitment scheme in the global CRS-KR model, using bilinear groups. The scheme is practically
efficient, using a constant number of pairing computations and three-round exchanges of linear-size
messages.

3.1 Design Principle

The basic design of our commitment scheme follows the one of Damg̊ard and Nielsen [13]. Generate
a one-time commitment key of a base commitment using a coin-flipping protocol and then commit to
a value by the base commitment with the generated one-time key. CRS is used in the coin-flipping.

However, in our scheme, the generated coins used to form a one-time commitment key are
not opened to a receiver, remaining secret of a sender. To assure the coins are honestly generated
and used to form one-time commitment key, the sender appends a non-interactive zero-knowledge
argument for proving that honesty. (As seen later, the used NIZK argument can be constructed
without using Cook reduction, depending on the property of the bilinear map.) More accurately, the
argument proves that the sender formed the one-time commitment key honestly or the sender knows
the receiver’s secret key, that enables only simulator EQV to form a fake equivocal commitment.

The scheme “duplicates” some items in the sender messages so that extractor EXT can ex-
tract the generated coins (used to form a one-time commitment key) and values committed to by
adversaries in the course of proving security with help of some KEA extractors.

3.2 Building Blocks

The Homomorphic Commitment. As the base commitment, we use the homomorphic commitment
of Groth, Ostrovsky, Sahai [16]. The homomorphic commitment is built on a group G with bilinear
map. The commitment to a value m is computed as Com(m; r, t) = (M1 = gm

1 gr
4,M2 = gm

2 gt
5,M3 =

gm
3 gr+t

6) with a tuple (g1, . . . , g6) of six elements of G as a commitment key.
A tuple (g1, . . . , g6) is called linear when there exist α and β that satisfy g1 = gα

4 , g2 =
gβ
5 , g3 = gα+β

6 . A linear tuple (g1, . . . , g6) defines an equivocal (so perfectly hiding) commitment:
Com(m0; r0, t0) = Com(m; r0+α(m0−m), t0+β(m0−m)). On a while, a non-linear tuple (g1, . . . , g6)
defines perfectly binding commitment. The commitment (M1,M2,M3) with a non-linear (gi = gci)
determines its underlying value m through gm = (M1/c4

1 M
1/c5
2 M

−1/c6
3)1/(c1/c4+c2/c5−c3/c6).

The Perfect Non-interactive Zero-Knowledge Argument. To prove the above-mentioned honesty of
generation of one-time commitment key, we incorporate the non-interactive zero-knowledge argu-
ment of Abe and Fehr [1] into our scheme in a following way.

Let CRS be a pair of elements g, gc in a group G with bilinear map. A Common input to a
prover and a verifier is a triple of A, b, g̃ and a statement to be proved is: “There exist a and
s satisfying that A = gags

c and g̃ = gab.” The proof is simply a single element P = gs, that is
verified as e(A, gb) = e(g̃, g)e(P, gb

c). The NIZKA is perfectly simulated in zero-knowledge, if one
knows ec satisfying gc = gec , as P = (Ag̃−1/b)1/ec . The NIZKA is computationally sound, for
example, under the Diffie-Hellman inversion assumption in a following way. Given an opening (a, s)
of A = gags

c , an opening c of g̃ = gc and a convincing proof P , one can efficiently compute g1/ec as
g1/ec = (g−sP)b/(ab−c) if ab 6= c. Note that we need openings of A and g̃ to use the soundness, that
would require some use of KEA extractors, as in [1].

3.3 The Commitment Scheme

We describe our commitment scheme. Our scheme Σ = (Σ′|Σ′) executes two parallel independent
copies of subscheme Σ′ = (K,S, R) in the global CRS-KR model. Each of these two executions
uses an independent global CRS and an independent public/private key pair. If both executions of
Σ′ output a same value m, the scheme Σ outputs that value m. (Otherwise, it outputs ⊥.)

Generation of CRS: K selects random four elements ec, ex, dx, ey from Zq and a random element g of G.
K computes gc = gec , gx = gex , hx = gdx

x , gy = gey and outputs σ = (g, gc, gx, hx, gy).

Commitment phase: Sender S commits to value m (∈ Zq) using tag tag and CRS σ = (g, gc, hc, gx, hx) for
receiver R with registered public key gID (= geID), as follows:
1. S randomly chooses a1, . . . , a6, s1, . . . , s6, b

′
1, . . . , b

′
6 from Z∗q and w1, . . . , w6 from Zq. For i = 1, . . . , 6,

S computes Ai = gaigc
si , Ui = gwigID

b′i . S sends A1, . . . , A6, U1, . . . , U6 to R.
2. R randomly chooses b1, . . . , b6 from Z∗q and sends them to S.
3. In response S computes, for i = 1, . . . , 6, b′′i = bi/b′i, ci = aib

′′
i , gi = gci , hi = Gx

ci , Pi =

gsi , Qi = gy
si with Gx = g

H(tag)
x hx. Then, S selects random elements r, t from Zq and com-

putes M1 = g1
mg4

r, M2 = g2
mg5

t, M3 = g3
mg6

r+t. S sends the following items to R,
g1, . . . , g6, h1, . . . , h6, P1, . . . , P6, Q1, . . . , Q6, b

′
1, . . . , b

′
6, w1, . . . , w6, M1, M2, M3.

4. R checks, for i = 1, . . . , 6, DH(g, Gx, gi, hi), DH(g, gy, Pi, Qi), Ui = gwigID
b′i , e(Ai, g

b′′i) =

e(gi, g)e(Pi, gc
b′′i) with b′′i = bi/b′i. If any of them (for any i) is not true, R aborts.

Decommitment phase: S sends m, r, t to R, who accepts it if M1 = g1
mg4

r, M2 = g2
mg5

t, M3 = g3
mg6

r+t.

Fig. 4. The Commitment Subscheme Σ′ = (K,S,R)

Let G be a group of prime order q with bilinear map e(·, ·) : G × G → GT and let H be
an injective function from {0, 1}tagLen to Zq (with length tagLen of tag strings). The subscheme
Σ′ = (K,S,R) on group G proceeds as in Figure 4. (DH(·, ·, ·, ·) means that a given tuple constitutes
a DH-tuple.) It relies on a global CRS consisting of five elements (g, gc, gx, hx, gy) in G and requires
the knowledge of receiver’s public-key gID that is also an element of G.

First, parties run a coin-tossing protocol using (part of) the CRS to generate random coins
c1, . . . , c6 in Zq

∗. Then, sender S forms a one-time commitment key (g1, . . . , g6) using the generated
coins c1, . . . , c6 as gi = gci , and computes NIZK arguments P1, . . . , P6 that yield the one-time key
(g1, . . . , g6) was honestly generated from c1, . . . , c6 or S knows the secret key of R. (Construction of
the OR proof follows the standard way of making OR-proof of Σ protocols [6].) In the course, some
part of the CRS is used only after ‘twisted’ with the tag tag to prevent adversaries from copying
generated coins from/to another sessions. Main body of commitment to input m is generated with
homomorphic commitment using that one-time key as M1 = g1

mg4
r, M2 = g2

mg5
t, M3 = g3

mg6
r+t.

In the scheme, several messages are duplicated such as h1, . . . , h6 for g1, . . . , g6 and Q1, . . . , Q6

for P1, . . . , P6. Those will be used by KEA-extractors to extract the coins generated by adversaries
from its view in the proof of security. A decommitment is done in a canonical way.

As seen, the proposed scheme is practically efficient, using a constant number of pairing com-
putations and three-round exchanges of linear-size messages.

3.4 Security

First, we review two necessary assumptions. Let G denote a group of k-bit prime order q. The deci-
sional linear assumption holds on G if linear tuples (g4

α, g5
β, g6

α+β, g4, g5, g6) are computationally

indistinguishable from random tuples (g4
α, g5

β, g6
γ , g4, g5, g6) with random elements g4, g5, g6 in G

and random α, β, γ in Zq.
The knowledge of exponent assumption [10] means that it is possible only if one knows b to

generate a pair (gb, gab) given a random ga. More formally, for feasible algorithms H, H∗ and any
string w, an experiment Expw

G,H,H∗ is defined as follows. H is given q, g, A = ga (with random a
from Zq) and w, and outputs (B,W). On the same inputs, H∗ is invoked and outputs b. If W = Ba

and B 6= gb, the experiment outputs 1, otherwise outputs 0. The knowledge of exponent assumption
holds on G if for any w and any feasible adversary H (called KEA-adversary) there exists a feasible
H∗ (called KEA-extractor) with negligible advantage Advw

G,H,H∗(k) := Pr[Expw
G,H,H∗(k) = 1].

We begin to analyze security of the proposed commitment scheme Σ = (Σ′|Σ′). In the analysis,
we use ordinal characters such as a, b, c, . . . for items in one of the two parallel executions of the
subscheme Σ′ on which we have a current focus, and use characters with superscript + such
as a+, b+, c+, . . . for the corresponding items in the another parallel execution. First we see its
computational hiding property.

Proposition 1. Under the decisional linear assumption on G, the proposed commitment scheme
is computationally hiding in the global CRS-KR model.

Proof. Suppose that a feasible adversary R∗ with identity ID∗ breaks the hiding property of the
proposed scheme Σ using tag tag with non-negligible probability.

Using such R∗, we construct an efficient distinguisher D that distinguishes between a pair of
linear tuples and a pair of random tuples. Given a pair of tuples as input, D simulates a sender for
R∗ and plugs the input tuple into the second sender-message as a one-time commitment key, for
each of the two parallel executions of the subscheme Σ′. In doing that, D uses the knowledge of
simulated secret key of R∗, and proves it knows the secret key in the OR proof, instead of proving
honesty of the fake one-time commitment key. More details follow.

Distinguisher D on input ((g1, . . . , g6), (g+
1 , . . . , g+

6)):

1. (Simulate a sender for R∗.) D invokes R∗ and does as follows, for each of the two parallel
executions of the subscheme.
(a) (Emulate CRS and a key-pair.) D selects random eID∗ from Zq

∗ and a random g from G. D
sets gID∗ = geID∗ and gives (gID∗ , eID∗) as her pair of public/private keys toR∗. In addition,
D chooses random ec, ex, dx, ey from Zq, sets gc = gec , gx = gex , hx = gdx

x , gy = gey , and
gives tag and (g, gc, gx, hx, gy) to R∗. D records η = ex(H(tag) + dx) for later use. (Note
Gx = gη.)

(b) (Emulate the first message.) Receiving a pair of messages (m0,m1) from R∗, D selects a
random bit b (only this process is common for the two executions). Then, D selects random
(si), (ki), (b′′i) from Zq and computes Ai = g

1/b′′i
i gsi

c (with gi in the input) and Ui = gki for
i = 1, . . . , 6. D sends (Ai), (Ui) to R∗.

(c) (Emulate the second message.) Receiving challenge (b∗i) from R∗, to generate the second
sender-message ((gi), (hi), . . . , (Mi)), D uses its own input (gi) (or (g+

i)) as the (gi) in the
second message, computes (hi) as hi = gη

i with η recorded at Step 1a and honestly computes
the proofs Pi = gsi , Qi = gy

si . Then, with b′i = b∗i /b′′i , D computes wi = ki−b′ieID∗ using the
secret key eID∗ . Finally, D computes (M1,M2,M3) as honest homomorphic commitment to

mb with its own input (g1, . . . , g6) using as a commitment key. D sends the second message
((gi), (hi), (Pi), (Qi), (b′i), (wi), (Mi)) to R∗.

2. (Output.) If R∗ outputs b̂ which is equal to b, then D outputs 1, otherwise outputs 0.

We evaluate the probability that D outputs 1. When given both (g1, . . . , g6) and (g+
1 , . . . , g+

6)
are linear, the simulated view of R∗ in D is completely independent of b by the perfect hiding
property of homomorphic commitment with linear tuples. So, the probability that D outputs 1 is
1/2.

Suppose both (g1, . . . , g6) and (g+
1 , . . . , g+

6) are random tuples. Let ci and ai be values defined
by gi = gci and ai = ci/b′′i . As for transcripts generated by D, we have

Ai = g
1/b′′i
i gsi

c = gci/b′′i gsi
c = gaigsi

c

Ui = gki = gwi+b′ieID∗ = gwigID∗
b′i

gi = gci , hi = gη
i = (gci)η = (gη)ci = Gci

x

Pi = gsi , Qi = gy
si .

Thus, the simulated transcript is also determined by values (ai), (si), (wi), (b′i), (ci) just as the
real transcripts. Here, by the description of D, we see (ci), (b′′i), (si), (ki) among them are inde-
pendently uniformly distributed and the rest (ai), (b′i), (wi) are determined through the relations
ci = aib

′′
i , b∗i = b′ib

′′
i , wi = ki− b′ixID by them. On a while, in the real transcript, (ai), (b′i), (si), (wi)

are independently uniform and the remaining (ci), (b′′i), (ki) are determined by the same relations
by them. So, we see the distribution of (ai), (si), (wi), (b′i), (ci) is identical regardless whether it
is simulated or real. Hence, the simulated view of R∗ by D is same as the real view of R∗, and
the probability that D outputs 1 given random tuples (g1, . . . , g6) and (g+

1 , . . . , g+
6) is equal to the

success probability of R∗ to guess the committed values in the definition of hiding property. This
must be nonnegligibly larger than 1/2 by the contradictive assumption.

Hence, D has non-negligible advantage to distinguish between a pair of linear tuples and a pair
of random tuples. Such D, by standard argument, implies a distinguisher between a linear tuple and
a random tuple with non-negligible advantage, contradicting to the decisional linear assumption. 2

Second, we show the determining property (Definition 2) of the proposed scheme.

Proposition 2. Under the discrete logarithm assumption and the knowledge of exponent assump-
tion on G, the proposed commitment scheme is determining in the global CRS-KR model.

Proof. Since homomorphic commitment with non-linear tuples is perfectly binding, it is enough
to show that any feasible adversarial sender S∗ can generate linear one-time commitment keys
(g1, . . . , g6) in (both of) the two parallel executions of the subscheme only with negligible probability.

Suppose a feasible adversary S∗ generates linear tuples (g1, . . . , g6), (g+
1 , . . . , g+

6) as its one-time
commitment keys in either of the two parallel executions of the subscheme Σ′ for a honest receiver
with identity ID (using tag tag) with non-negligible probability. Without loss of generality, we
assume S∗ generates linear tuples in the second execution with non-negligible probability.

Using S∗, we construct an efficient invertor I that breaks the discrete-logarithm assumption on
G with help of some KEA-extractors. Given g, gc(= gec), I sets (g, gc) in the corresponding part of
CRS and simulates a receiver of ID for internally invoked S∗. In an execution of the subscheme,
I would receive the second sender-message (gi), (hi), (Pi), (Qi), . . . from S∗. If the messages passes

the specified test by Σ′, there should be some ci and si that satisfy (gi, hi) = (gci , Gx
ci) and

(Pi, Qi) = (gsi , gy
si). Then, I can use some KEA-extractors H∗

ci
and H∗

si
to extract such ci and

si respectively, that provides I with an opening ai(= cib
′
i/bi), si of Ai = gaigsi

c in the first sender-
message of S∗. (For example, KEA-adversary Hci on input (g, gx) reproduces the exact view of
S∗ invoked in I using some auxiliary input wx, and outputs (gi(= gci), h1/(H(tag)+dx)

i (= gci
x)).) By

rewinding S∗, I can obtain another opening âi, ŝi of the same Ai = gâigŝi
c from another second

sender-message (ĝi), (ĥi), (P̂i), (Q̂i), By the contradictive assumption we can suppose both (gi)
and (ĝi) are linear, and we will see it means that ai 6= âi with some i. Then I can compute the
desired discrete-log ec of gc over g, using such ai, si, âi, ŝi as ec = (âi − ai)(si − ŝi)−1. More details
follow.

Invertor I on input (g, gc (= gec)):

1. (Simulate a receiver for S∗.) I invokes S∗ and simulates an honest receiver for S∗ as follows, for
each of the two parallel executions of the subscheme.
(a) (First execution.) For the first execution, I honestly generates CRS and public key for S∗

and simulates the receiver in a completely honest way.
(b) (Second execution.) For the second execution, I simulates the receiver in a following way,

using its input (g, gc) as part of CRS.
i. (Emulate a public/private-key pair and CRS.) I selects a random δ from Zq

∗, sets gID = gδ
c

and gives gID as receiver’s public-key (for the second execution) to S∗. I also selects
random ex, dx, ey from Zq

∗ under constraint that H(tag)+dx 6= 0 and sets gx = gex , gy =
gey , hx = gdx

x (with g in the input). I gives (g, gc, gx, hx, gy) as CRS (for the second
execution) to S∗, using g, gc in the input.

ii. (Emulate the challenge.) Receiving the first sender-message (Ai), (Ui) from S∗, I takes
random (bi) from Zq

∗ and sends them to S∗.
iii. (Extract values generated by S∗.) Receiving the second sender-message (gi), . . . , (b′i), . . .

from S∗, I extracts values (ci), (ai), (si) as follows, after verifying the equations specified
by Σ′.
A. (Extract (ci)) I sets wx = (δ, gc, dx, ey, b1, . . . , b6, coins1) (where coins1 denotes the

coins used to honestly simulate the first execution) and for i = 1, . . . , 6, I invokes
KEA-extractor H∗

ci
on input (g, gx;wx) and obtains the result ci to compute ai =

cib
′
i/bi. (Note that ex is independent of wx.)

B. (Extract (si)) I sets wy = (δ, gc, ex, dx, b1, . . . , b6, , coins1) and for i = 1, . . . , 6, I
invokes KEA-extractor H∗

si
on input (g, gy;wy) and obtains the result si. (Note that

ey is independent of wy.)
iv. (Rewind and extract new values.) I rewinds S∗ to Step 1(b)ii and repeats the processes

with new challenge (b̂i) to get the new extracted values (ĉi), (âi), (ŝi), receiving another
second message (ĝi), . . . , (b̂′i), . . . from S∗.

2. (Compute the discrete log.) Finally,
(a) If there exists some i satisfying b′i 6= b̂′i, then I computes the discrete-log ec using wi, b

′
i, ŵi, b̂

′
i

(as shown below).
(b) Otherwise if there exists some i satisfying ai 6= âi, then I computes the discrete-log ec using

ai, si, âi, ŝi (as shown below).
(c) Otherwise I aborts.

It is direct to see I perfectly simulates a real view of S∗ using its input (g, gc) as part of CRS of
the second execution. Then, I invokes KEA-extractors H∗

ci
at Step 1(b)iiiA and H∗

si
at Step 1(b)iiiB,

respectively twice, by rewinding S∗. From now on we condition ourselves on the non-negligible event
in which S∗ generates linear tuples (g1, . . . , g6), (g+

1 , . . . , g+
6) as its one-time commitment keys in

both of the two parallel executions, and completes the commitment phase. For a while, assume that

Claim 1 The extracted values (ci) (or (ĉi)) at Step 1(b)iiiA and (si) (or (ŝi)) at Step 1(b)iiiB
satisfy gi = gci , Pi = gsi (or ĝi = gĉi , P̂i = gŝi) for i = 1, . . . , 6 with overwhelming probability.

Under the claim, we can modify the right-hand side of the verifier equation as

e(Ai, g
bi/b′i) = e(gi, g) e(Pi, g

bi/b′i
c)

= e(gci , g) e(gsi , g
bi/b′i
c) = e(g, gcib

′
i/bigsi

c)bi/b′i

that means Ai = gcib
′
i/bigsi

c = gaigsi
c for i = 1, . . . , 6. Similarly, we have Ai = gâigŝi

c for i = 1, . . . , 6.

Suppose there exists some i satisfying b′i 6= b̂′i at Step 2a. Then, by the verifier equation on wi,

we have Ui = gwig
b′i
ID = gŵig

b̂′i
ID, that means gID = g(ŵi−wi)(b

′
i−b̂′i)

−1
. Then, since gID = gδ

c , I can
compute the desired discrete-log ec as ec = (ŵi − wi)(b′i − b̂′i)

−1δ−1.
Else if there exists some i satisfying ai 6= âi at Step 2b, since we have Ai = gaigsi

c = gâigŝi
c as

seen above under Claim 1, it holds that gc = g(âi−ai)(si−ŝi)
−1

. Hence, I can compute the discrete-log
ec by ec = (âi − ai)(si − ŝi)−1.

Otherwise, we have b′i = b̂′i and ai = âi for any i, then it must hold ĉi/ci = b̂i/bi for any i. In
this case, the probability that both tuples (gi(= gci)) and (ĝi(= gĉi)) are simultaneously linear is
negligible (since the ratio ĉi/ci is uniformly random) and we see that I reaches Step 2c only with
negligible probability.

Thus, to complete the proof, all we need is to prove Claim 1.

Proof (of Claim 1). KEA-extractors H∗
ci

correspond to the following KEA-adversaries Hci .

KEA-Adversary Hci on input (g, gx; wx = (δ, gc, dx, ey, b1, . . . , b6, coins1)):

1. (Reproduce the view of S∗.) Hci invokes S∗ and reproduces the view of S∗ using wx as follows,
for each of the two parallel executions.
(a) (First execution.) Hci takes coins1 in wx and uses it to honestly simulate the first execution

of the subscheme.
(b) (Second execution.) For the second execution, Hci simulates the receiver in a following way.

i. (Emulate a public/private-key pair and CRS.) Hci takes δ and gc from its auxiliary input wx

to regenerate gID = gδ
c and gives it as receiver’s public-key (for the second execution) to

S∗. Hci takes dx, ey from wx to regenerate hx = gdx
x , gy = gey and gives (g, gc, gx, hx, gy)

as CRS to S∗.
ii. (Emulate the challenge.) Receiving the first sender-message (Ai), (Ui) from S∗, Hci takes

(bi) from wx and sends them to S∗.
iii. (Generate an output.) Receiving the response (gi), (hi), . . . from S∗, Hci picks up gi and hi

from it and outputs (gi, h
1/(H(tag)+dx)
i). (Recall I generated dx so that H(tag)+dx 6= 0.)

On input (g, gx), Hci reproduces the exact view of S∗ invoked in I using the auxiliary input
wx, and generates (gi, hi) satisfying DH(g, Gx, gi, hi) with the same probability as S∗ in I does
so. When (g, Gx, gi, hi) is a DH-tuple and gi = gci , we have h

1/(H(tag)+dx)
i = G

ci/(H(tag)+dx)
x = gci

x .
(Here, recall that I generated dx so that H(tag) + dx 6= 0.) Thus Hci outputs (gci , gci

x) on input
(g, gx). As directly verified, the items in wx are independent of the discrete-log ex of gx over g.
Hence, by the knowledge of exponent assumption, we see that the corresponding KEA-extractor
H∗

ci
(in I) outputs ci satisfying gi = gci only with negligible exception (whenever S∗ generates valid

(gi, hi)).
KEA-adversary Hsi on input (g, gy; wy) proceeds as Hci and outputs (Pi = gsi , Qi = gy

si). By
a similar argument, we see H∗

si
in I outputs si satisfying Pi = gsi only with negligible exception. 2

2

Now we show the straight-line equivocal-extractability (Definition 4) of the proposed scheme.

Proposition 3. Under the decisional linear assumption and the knowledge of exponent assumption
on G, the proposed commitment scheme is straight-line equivocal-extractable in the global CRS-KR
model.

Proof Idea. To show the proposition, we need to construct a simulator EQV of a left party and an
extractor EXT of values committed to by any feasible adversary A for a right party, that satisfy
Definition 4.

EQV is given A’s secret key eID∗ and proves that it knows eID∗ in the second sender-message,
instead of proving its honesty to the generation of one-time commitment key. By doing this, EQV can
use a linear tuple as the one-time commitment key for its commitment. Since linear tuples define
equivocal commitments, EQV is able to adaptively simulate left parties without knowing values
actually being committed to. We show such simulation of left parties by EQV is indistinguishable
from real left parties for feasible adversaries A under the decisional linear assumption on G with
help of some KEA-extractors. (To show the indistinguishability, we need to extract the values
committed to by A, that is enabled by using some KEA-extractors.)

EXT extracts the value committed to by A from its view viewA using the trapdoor information
of CRS. For that sake, EXT needs to extract the coins c∗i , used by A to generate its one-time
commitment key. EXT invokes some KEA extractors on input (g, gx) using (some part of) the view
viewA as auxiliary information to extract such coins c∗i . Here, we need a care to use the knowledge
of exponent assumption in a right way for such KEA-extractors, because the view viewA itself
is dependent on the discrete-log between g and gx that are included in CRS. (We can use the
knowledge of exponent assumption only for KEA-extractors that uses auxiliary information that is
independent of its input.) We will carefully examine distribution of viewA and pick up some portion
from viewA that are independent of that discrete-log, making use of zero-knowledge simulators for
proofs Pi.

In the course of the proof, one key point is to ensure that the adversary A cannot use linear
tuples as its own one-time commitment key, even A receives linear tuples as one-time commitment
keys from the simulated left party by EQV. This impossibility is brought by the use of tag tag in
the scheme for generation of Gx = g

H(tag)
x hx, that is in turn used for the generation of (hi) in the

second sender-message. This dependency on tag prevents the flipped coins generated for one-time
commitment keys from being copied from/to other sessions. The detailed proof is in Section A.

By Theorem 1, Proposition 2 and Proposition 3, we have

Theorem 2. Under the decisional linear assumption and the knowledge of exponent assumption
on G, the proposed commitment scheme is adaptive-deniable-concurrent non-malleable in the global
CRS-KR model.

4 Conclusion

We defined a notion of adaptive-deniable-concurrent non-malleable commitments, that captures the
composability, deniability and adaptivity at once for commitment schemes. Then we defined a more-
easy-to-prove property of straight-line equivocal-extractability of commitment schemes and proved
that it yields the adaptive-deniable-concurrent non-malleability in the global CRS-KR model.
We also gave a construction of straight-line equivocal-extractable (especially, adaptive-deniable-
concurrent non-malleable) commitment scheme in the global CRS-KR model, under the decisional
linear assumption and the knowledge of exponent assumption on bilinear groups. The scheme is
practically efficient, using a constant number of pairing computations and three-round exchanges
of linear-size messages.

References

1. M. Abe and S. Fehr, Perfect NIZK with Adaptive Soundness, pp. 118-136, Proc. of TCC, LNCS 4392, 2007.
2. B. Barak, How to go beyond the black-box simulation barrier, Proc. 42nd FOCS, pp. 106-115, IEEE, 2001.
3. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic Protocols, pp. 136-145, Proc.

of FOCS, 2001.
4. R. Canetti, Y. Dodis, R. Pass, S. Walfish, Universally Composable Security with Global Setup, pp. 61-85, Proc.

of TCC 2007, LNCS 4392.
5. R. Canetti, M. Fischlin, Universally Composable Commitments, pp. 19-40, Proc. of Crypto, 2001.
6. R. Cramer, I. Damg̊ard and B. Schoenmakers, Proofs of Partial Knowledge and Simplified Design of Witness

Hiding Protocols, pp. 174-187, Proc. of Crypto 1994, LNCS 839.
7. R.Canetti, S.Halevi and J.Katz, Chosen-ciphertext security from identity-based encryption, EUROCRYPT 2004,

LNCS 3027, pp.207-222, 2004.
8. G. D. Crescenzo, Y. Ishai and R. Ostrovsky, Non-interactive and Non-malleable Commitment, pp. 141-150, STOC

1998.
9. G. D. Crescenzo, J. Katz, R. Ostrovsky and A. Smith, Efficient and Non-interactive Non-malleable Commitments,

pp. 40-59, Proc. of EuroCrypt 2001, LNCS 2045.
10. I. Damg̊ard, Towards practical public-key cryptosystems provably-secure against chosen-ciphertext attacks, pp.

445-456, Proc. of CRYPTO ’91, LNCS 576.
11. I. Damg̊ard, Efficient Concurrent Zero-Knowledge in the Auxiliary String Model, pp. 418-430, Proc. of EURO-

CRYPT 2000, LNCS 1807.
12. I. Damg̊ard and J. Groth, Non-interactive and reusable non-malleable commitment schemes, pp. 426-437, Proc.

of STOC 2003, ACM Press.
13. I. Damg̊ard and J. B. Nielsen, Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes

with Constant Expansion Factor, pp. 581-596, Proc. of Crypto 2002, LNCS 2442.
14. D. Dolev, C. Dwork and M. Naor, Non-Malleable Cryptography, SIAM Journal on Computing, Vol. 30(2), pp.

391–437, 2000.
15. M. Fischlin and R. Fischlin, Efficient Non-malleable Commitment Schemes, pp. 413-431, Proc. of Crypto 2000,

LNCS 1880.
16. J. Groth, R. Ostrovsky, and A. Sahai, Perfect non-interactive zero knowledge for NP, 339-358, EUROCRYPT,

LNCS 4004, 2006.
17. H. Lin, R. Pass, M. Venkitasubraamaniam, Concurrent Non-malleable Commitments from Any One-way Func-

tion, TCC 2008, LNCS 4948, pp. 571–588, 2008.
18. P. D. MacKenzie, M. K. Reiter and K. Yang, Alternatives to Non-malleability: Definitions, Constructions, and

Applications, pp. 171-190, Proc. of TCC 2004, 2004.

19. R. Ostrovsky, G. Persiano, and I. Visconti, Simulation-Based Concurrent Non-malleable Commitments and De-
commitments, TCC 2009, LNCS 5444, pp. 91-108, 2009.

20. R. Pass, On Deniabililty in the Common Reference String and Random Oracle Model, pp. 316-337, Proc. of
CRYPTO 2003, LNCS 2729.

21. R. Pass, A. Rosen, Concurrent non-malleable commitments, 563 - 572, FOCS 2005.

A Proof of Proposition 3

Let Σ = (Σ′|Σ′) with Σ′ = (K,S, R) denote the proposed commitment scheme on G. We want to
show there exists a feasible algorithm EQV such that for any feasible adversary A, there exists a
feasible algorithm EXT and

fakeComΣ
EQV,A,EXT(m, z) ≡c realComΣ

A(m, z) (6)

with any value m (∈ Zq) and any string z (Definition 4).
For that sake, we define four experiments Exp0, . . . ,Exp3 in the sequel and proves indistin-

guishability of their outputs step by step. Exp0 is nothing but the experiment realComΣ
A(m, z)

instantiated with our Σ, and the final experiment Exp3 gives EQV and EXT, proving Equation (6).

Exp0. Given m and z as input, Exp0 invokes an adversary A on z. First, A selects a tag tag for
the left interaction, its own id ID∗ and right-party’s id ID. A receives CRS σ, its public/private-
key pair (gID∗ , eID∗) and the right-party’s public key gID, for each of the two parallel executions
of the subscheme. Then, Exp0 simulates the left party that commits to m and the right party
for A, honestly. Exp0 returns trapdoor (τ, τ+) of the CRSs of both executions, the simulated A’s
view viewA, the determining value m∗ of A’s commitment in viewA and left-party’s decommitment
((m, r, t), (m, r+, r+)) that corresponds to the left-party’s commitment in viewA. (A full description
of Exp0 is in Section B.)

Exp1. Only the behavior of the left party is changed as follows. New left party proves the knowledge
of A’s secret key eID∗ , instead of proving the honesty of the generation of the one-time commitment
key. More precisely, for each of the two parallel executions of the subscheme, the new left party
computes Ui as Ui = gki with random ki (instead of Ui = gwigID∗

b′i with b′i selected in advance).
Moreover, the left party selects a random one-time commitment key (gi = gci) independently of
Ai = gaigsi

c in the first message. Although proofs Pi = gsi , Qi = gy
si are honestly computed using

si, the response wi is computed as wi = ki − b′ieID∗ using A’s secret key eID∗ for challenge b′i, that
is now computed from A’s challenge b∗i through b′′i = ci/ai, b′i = b∗i /b′′i . (A full description of Exp1

is in Section B.)

Claim 2 The output of Exp1 is perfectly indistinguishable from the output of Exp0.

Proof. The only difference between Exp0 and Exp1 is in the order of generation of challenges b′i
and b′′i : Generate random b′i and set b′′i = b∗/b′i, or generate random b′′i = ci/ai and set b′i = b∗/b′′i .
This difference does not affect the resulting distribution of left party’s messages and the output of
Exp1 distributes exactly as the output of Exp0. 2

Exp2. Third experiment Exp2 proceeds just as Exp1, except that (ci) is now selected so that (gci)
becomes a linear tuple, instead of a random tuple. (A full description of Exp2 is in Section B.)

In order to prove indistinguishability between the outputs of Exp2 and Exp1, first we prepare
a following lemma.

Lemma 1. Under the same assumption as Proposition 3, any feasible adversary A outputs a linear
tuple (g∗1, . . . , g

∗
6) as the one-time commitment key for the right interaction in either of the two

execution of the subscheme only with negligible probability in Exp1 (or Exp2).

Proof. The proof is similar to the proof of Proposition 2, where we have shown that any feasible
sender S∗ in a stand-alone setting can generate a linear tuple (g1, . . . , g6) as the one-time commit-
ment key only with negligible probability, by exhibiting an invertor I that computes the discrete-log
of gc over g with help of the KEA-extractors Hci and Hsi using such S∗.

To prove this lemma, we again construct an invertor I that computes the discrete-log of gc over
g using such A. In addition to the work done by I in the proof of Proposition 2, the new I needs
to simulate the honest left party. Since also this I, that sets up public keys for simulated A, knows
A’s secret key eID∗ , there is no difficulty for this I to simulate the left party in Exp1 (or Exp2).

One subtle point is in the construction of new KEA-adversary Hci . Recall that the work of
Hci is to compute (gi(= gci), gci

x) on input (g, gx) (and wx = (δ, gc, dx, ey, b1, . . . , b6, coins1)). In the
proof of Proposition 2, the trapdoor dx (in wx), that is generated to satisfy H(tag)+dx 6= 0, is used
to compute the gci

x by Hci . Hci picked up hi (= Gci
x) from the S∗’s second message and computed

gci
x = h

1/(H(tag)+dx)
i . (Recall Gx = gx

H(tag)+dx .) However in the case of this lemma, Hci must deal
with the right interaction and need to compute g

c∗i
x from hi (= G∗

x
c∗i) in the right interaction with

G∗
x = g

H(tag∗)
x hx. Now tag∗, that also belongs to the right interaction, is selected by A after it sees

CRS (that includes g, gx). So, we have no guarantee of being H(tag∗)+dx 6= 0 and new Hci cannot
mimic the old Hci just doing as g

c∗i
x = h

1/(H(tag∗)+dx)
i .

To remedy this situation, the new I generates gx and hx in CRS in a following manner. First, I se-
lects a random ex, η from Z∗q , and sets gx = gex , hx = g

−H(tag)
x gη. (Note Gx = gη and remember the

left tag tag is selected by A before it sees CRS.) Then, Hci can compute g
c∗i
x as

(
h∗i
g∗i

η

) 1
H(tag∗)−H(tag) ,

using η that will be newly added in the auxiliary input wx. (Note when (g,G∗
x, g∗i , h

∗
i) is a DH-

tuple and g∗i = gc∗i , we have h∗i = (G∗
x)c∗i = (gηg

H(tag∗)−H(tag)
x)c∗i = g∗i

η(gc∗i
x)H(tag∗)−H(tag).

So,
(

h∗i
g∗i

η

) 1
H(tag∗)−H(tag) = g

c∗i
x .) Because A must choose distinct tag∗ from tag (to gain nontrivial

advantage), it is guaranteed that H(tag∗)−H(tag) 6= 0. 2

Claim 3 Under the same assumption as Proposition 3, the output of Exp2 is computationally
indistinguishable from the output of Exp1.

The proof is in the same line to the proof of Proposition 1, where in order to show the hiding
property a distinguisher between linear and random tuples was constructed and it simulated an
honest sender for adversarial receiver R∗ to gain its advantage. In the proof of this claim, a new
distinguisher does the same simulation for the left interaction for adversary A, and in addition it
simulates an honest right party and extracts the value committed to by A for the right party in
some efficient way, using some KEA-extractors, that is needed for the assumed distinguisher to
distinguish between the two experiments.

Proof. Suppose that the output of Exp2 is distinguishable from the output of Exp1 by some
efficient distinguisher D12 with some non-negligible advantage (with respect to m and z).

Using such distinguisher D12, we construct an efficient (non-uniform) distinguisher DLIN be-
tween a pair of linear tuples and a pair of random tuples with non-negligible advantage, that would
contradict to the decisional linear assumption on G.

Given a pair of tuples (g1, . . . , g6), (g+
1 , . . . , g+

6) as inputs, DLIN simulates the left party for A in
such a way that the (g1, . . . , g6), (g+

1 , . . . , g+
6) would occupy one-time commitment keys of the left

interactions in the two parallel executions. Note that, due to the modification introduced in Exp1,
one-time commitment keys included in the second sender-message are being chosen independently
from the first sender-message (Ai), (Ui). So, such simulation is quite easy. After generating the view
of A, DLIN invokes KEA-extractors H∗

ci
, that are essentially same as the ones used by I in the

proof of Lemma 1, to extract coins c∗i satisfying g∗i = gc∗i for the one-time commitment key (g∗i) in
the right interaction. Because by Lemma 1 the commitment keys (g∗1, . . . , g

∗
6) can be supposed to

be non-linear, DLIN is able to compute gm∗
(with the determining value m∗ of A’s commitment

in the right interactions) as gm∗
= (M∗

1
1/c∗4M∗

2
1/c∗5M∗

3
−1/c∗6)1/(c∗1/c∗4+c∗2/c∗5−c∗3/c∗6) using those c∗i , and

as well as g+m∗
. This means that DLIN can extract m∗ by using another KEA-extractor (that

corresponds to another KEA-adversary that outputs (gm∗
, g+m∗

) on input (g, g+)) and then can
invoke the assumed distinguisher D12 on m∗ (and other easy-to-collect items) to distinguish the
given tuples. A formal description of DLIN is given in Figure 5.

– Distinguisher DLIN on input ((g1, . . . , g6), (g
+
1 , . . . , g+

6); (z, m)):
1. (Simulate the left and right parties for A.) DLIN invokes A on z. Receiving ID∗, ID and tag from A,

DLIN simulates the left and right parties for A as follows, for each of the two parallel executions of the
subscheme.
(a) (Emulate a public/private-key pair and CRS.) DLIN selects random eID∗ from Zq

∗, a random g from
G and sets gID∗ = geID∗ . DLIN also selects a random gID from G. DLIN gives to A (gID∗ , eID∗) as
A’s public/private-key pair and gID as the right-party’s public key. Further, DLIN selects random

ec, ex, ey, η from Zq
∗ and sets gc = gec , gx = gex , gy = gey , hx = g

−H(tag)
x gη. (Note that Gx = gη.)

DLIN gives (g, gc, gx, hx, gy) as CRS to A.
(b) (Emulate a first left-party message.) Receiving a request from A, DLIN chooses random (si), (ki), (b

′′
i)

from Z∗q and computes, for i = 1, . . . , 6, Ai = gi
1/b′′i gsi

c , Ui = gki . (Note when gi = gci and

ci = aib
′′
i , we have gi

1/b′′i = gai as in Exp1 (or Exp2).) DLIN sends (Ai), (Ui) to A.
(c) (Emulate a first right-party message.) Receiving a first message tag∗, (A∗i), (U

∗
i) to the right party

from A, DLIN chooses random (bi) from Zq
∗ and sends them to A.

(d) (Emulate a second left-party message.) Receiving a first message (b∗i) to the left party from A,
DLIN computes, for i = 1, . . . , 6, hi = gi

η, Pi = gsi , Qi = gy
si . (Note when gi = gci , we have

hi = gη
i = (gη)ci = Gci

x as in Exp1 (or Exp2).) In addition, DLIN computes wi = ki − b′ieID∗ for
b′i = b∗i /b′′i for i = 1, . . . , 6, and computes homomorphic commitment M1, M2, M3 to m using its
input (gi) as commitment key. DLIN sends the second sender-message (gi), (hi), . . . , (Mi) to A.

(e) (Complete commitment phases.) Receiving a second message (g∗i), (h∗i), . . . , (M
∗
i) to the right party

from A, DLIN checks the verifier equation as specified by Σ′. If any of them is not true, DLIN

aborts with a random bit. Else let w = ((g1, . . . , g6), coins), where coins denotes the coins used to
simulate this execution of subscheme so far by DLIN , except the coins used for generating the first
element g in the CRS.

2. (Generate output.) Let g and g+ be the first elements of CRSs in the two executions of the subscheme.
DLIN invokes KEA-extractor H∗ on (g, g+; z, w, w+) to get m∗. Then, DLIN invokes the assumed
distinguisher D12 on ({τ, τ+}, viewA, m∗, {(m, r, t), (m, r+, t+)}) and outputs its output.

Fig. 5. Distinguisher DLIN .

As easily seen (from comments in the description), DLIN perfectly simulates the view of A in
Exp1 if the input (gi), (g+

i) are random, and perfectly simulates the view of A in Exp2 if the input
(gi), (g+

i) are linear. Then, DLIN extracts the value m∗, that is supposed to be committed to by
A for the right party, by using KEA-extractor H∗. Assuming the extracted m∗ is in fact the one
committed to by A, DLIN is now able to use the assumed distinguisher D12 on m∗ and the others,
to distinguish the input tuples are linear or random, contradicting to the assumption.

Thus, now all we need to show is that the KEA-extractor H∗, that corresponds to following
KEA-adversary H, extracts the right determining value m∗ of A’s commitment in the right inter-
action only with negligible exceptions.

KEA-Adversary H on input (g, g+; z,m, w, w+):

1. (Reproduce the view of A.) H invokes A on z. Receiving ID∗, ID, tag from A, H reproduces
the view of A using the coins given in w,w+, for each of the two parallel executions of the
subscheme.

2. (Extract coins generated by A.) For each of the above two parallel executions, H extracts the
coins (c∗i) that defines the one-time commitment key (g∗i) in the right interactions. Namely, H
sets wx = (z, eID∗ , gID, gc, η, ey, g1, . . . , g6, coinL, b1, . . . , b6, w

+) (where notation is the same as in
DLIN besides coinL, that denotes the coins used to simulate the left party in this execution) and
invokes KEA-extractor H∗

ci
on input (g, gx; wx) to obtain c∗i satisfying g∗i = gc∗i for i = 1, . . . , 6.

Then, H computes u = (M∗
1

1/c∗4M∗
2

1/c∗5M∗
3
−1/c∗6)1/(c∗1/c∗4+c∗2/c∗5−c∗3/c∗6). (Note it should be u = gm∗

with determining value m∗ of A’s homomorphic commitment in this execution.)
3. (Generate output.) Output a pair of extracted values (u, u+) of the two executions.

Given (g, g+) as input, KEA-adversary H uses the coins given in the auxiliary input w, w+ to re-
produce the exact view of A in DLIN and then extracts coins c∗i generated by A, that are expected to
satisfy g∗i = gc∗i by using KEA-extractors H∗

ci
on (g, gx) and wx = (z, eID∗ , gID, gc, η, ey, g1, . . . , g6, coinL, b1, . . . , b6, w

+).
For a while, assume the coins c∗i are right. Then, since (g∗1 = gc∗1 , . . . , g∗6 = gc∗6) is not linear by
Lemma 1 (only with negligible exceptions), it defines perfectly binding homomorphic commitment
and so H can compute the value u = (M∗

1
1/c∗4M∗

2
1/c∗5M∗

3
−1/c∗6)1/(c∗1/c∗4+c∗2/c∗5−c∗3/c∗6) that must be

equal to gm∗
with m∗ = det(M∗

1 ,M∗
2 ,M∗

3). The output of H is a pair (u, u+) of such u for the
two executions of the subscheme. Thus, H outputs (gm∗

, g+m∗
) on input (g, g+), and since clearly

Logg(g+) is independent from the auxiliary input (z, m, w,w+), we see the corresponding H∗ ex-
tracts the right determining value m∗ of A’s commitment only with negligible exceptions, by the
knowledge of exponent assumption, as desired.

Now, all we have to do is to show the above KEA-extractors H∗
ci

, that correspond to the
following KEA-adversaries, extract the right coins c∗i satisfying g∗i = gc∗i only with negligible ex-
ceptions. As in the proof of Lemma 1, given (g, gx) as input, Hci reproduces the exact view of A
invoked in H using the auxiliary input wx, and picks up g∗i and h∗i from the view and outputs(

g∗i (= gc∗i),
(

h∗i
g∗i

η

) 1
H(tag∗)−H(tag) (= g

c∗i
x)

)
. Namely, Hci outputs (gc∗i , g

c∗i
x) on input (g, gx). In addi-

tion, as directly verified, all items in wx are independent of the discrete-log ex of gx over g. Hence,
by the knowledge of exponent assumption, H∗

ci
in H must output c∗i satisfying g∗i = gc∗i only with

negligible exception. This completes the proof of Claim 3. 2

Exp3. In the final experiment Exp3, the simulated left party is changed to commit to a dummy
value m0 through homomorphic commitment M1 = gm0

1 gr0
4 , M2 = gm0

2 gt0
5 , M3 = gm0

3 gr0+t0
6 , instead

of committing to the true value m, for each of the two executions of subscheme. Since by the modifi-
cation introduced in Exp2 the one-time commitment key (gi(= gci)) of the left interaction is linear,
its decommitment to the true value m (to be included in the output) exists and is computed by
r = r0+ c1

c4
(m0−m), t = t0+ c2

c5
(m0−m). In addition, in Exp3, the computation of the determining

value m∗ = det(M∗
1 ,M∗

2 ,M∗
3) of A’s commitment is changed. It is now efficiently extracted by using

KEA-extractor H∗ on (g, g+; z,m, w, w+) with w = (eID∗ , gID, τ, (Ai), (Ui), (bi), (gi), (b′i), (Mi)). (A
full description of Exp3 is in Section B.)

Claim 4 The output of Exp3 is statistically indistinguishable from the output of Exp2.

Proof. In Exp2, the homomorphic commitment M1,M2,M3 in the left interaction is perfectly
hiding and equivocal since the used one-time commitment key g1, . . . , g6 is linear. So, it is trivial
to see the viewA in Exp3 is exactly distributed as the viewA in Exp2.

Then, all we need to show is that given input (g, g+; z,m, w, w+), H∗ in Exp3 correctly outputs
the determining value m∗ = det(M∗

1 ,M∗
2 ,M∗

3) of A’s commitment in the right interaction only with
negligible exceptions. This H∗ is similar as H∗ used by DLIN in the proof of Claim 3. However,
there is an important difference. As seen below, the new H (that corresponds to the new H∗) also
uses extractors H∗

ci
of c∗i on input (g, gx). However, in the current setting, the information given to

this H∗
ci

through auxiliary input wx will contain (part of) A’s view (Ai), (Ui), (bi), (gi), (b′i), (Mi),
instead of the used coins as before. So, as to the new Hci , there is no direct guarantee that the
discrete-log ex of the given input (gx, g) is independent of the given auxiliary input wx. (The left
party’s second message, especially (b′i = b∗i /b′′i), depends on the A’s challenge (b∗i), that possibly
depends on the CRS, that includes g, gx.) So, before describing the new KEA-adversary H, we
need to give an equivalent code for simulating the left party in Exp3, to avoid such problem.

Fix arbitrary left party’s first message (Ai), (Ui) and arbitrary right party’s first message (bi)
in Exp3. (Note then A’s challenge (b∗i) for the left party is also fixed.) Then, in Exp3, the second
left-party message (gi), (hi), . . . , (wi) (excluding (Mi) which is clearly independent of g, gx) is being
generated by the following procedure. (Note the fixed (Ui = gki) implicitly determines ki.)

– The original procedure:
1. Take a random tuple (c1, . . . , c6) so that (g1 = gc1 , . . . , g6 = gc6) is linear and a random

tuple (s1, . . . , s6) from Z∗q . (Note si implicitly determines ai through the fixed Ai = gaigsi
c .)

2. For i = 1 to 6, compute gi = gci , hi = Gci
x , Pi = gsi , Qi = gsi

y , b′′i = ci/ai, b′i = b∗i /b′′i , wi =
ki − b′ieID∗ .

This procedure is re-written as follows, using trapdoor information τ and the zero-knowledge
simulator of proof Pi.

– The second procedure:
1. Take a linear tuple (g1, . . . , g6) from G and a random tuple (b′′1, . . . , b

′′
6) from Zq.

2. For i = 1 to 6, compute hi = gη
i , Pi = (Aig

−1/b′′i
i)1/ec , Qi = P

ey

i , b′i = b∗i /b′′i , wi = ki−b′ieID∗ ,
with η = ex(H(tag) + dx).

We can select random (b′i), instead of random (b′′i), preserving the distribution and the above
procedure is re-written as follows.

– The third procedure:

1. Take a linear tuple (g1, . . . , g6) from G and a random tuple (b′1, . . . , b
′
6) from Zq.

2. For i = 1 to 6, compute hi = gη
i , b′′i = b∗i /b′i, Pi = (Aig

−1/b′′i
i)1/ec , Qi = P

ey

i , wi = ki−b′ieID∗ .

The third procedure shows that the second left-party message includes the three independent
random components (gi), (b′i), (Mi) and the other items (hi), (Pi), (Qi), (wi) are determined by them.
Thus, we see that the discrete-log ex of gx over g is independent of the part of viewA consisting of
(Ai), (Ui), (bi) and (gi), (b′i), (Mi).

Now we describe the KEA-adversary H that uses the above third procedure to simulate the
left-party messages.

KEA-Adversary H on input (g, g+; z, w = (eID∗ , gID, τ, (Ai), (Ui), (bi), (gi), (b′i), (Mi)), w+):

1. (Reproduce the view of A.) H invokes A on z. Receiving ID∗, ID, tag from A, H reproduces the
view of A using w as follows, for each of the two parallel executions of the subscheme.
(a) (Emulate a public/private-key pair and CRS.) H takes trapdoor information τ from w to

regenerate A’s public/private-key pair (gID∗ , eID∗), right-party’s public key gID and CRS
(g, gc, gx, hx, gy), and gives them to A. H records η = ex(H(tag) + dx) for later use.

(b) (Emulate a first left-party message.) Receiving a request for a first left-party message from
A, H takes (Ai), (Ui) from w and sends them to A.

(c) (Emulate a first right-party message.) Receiving a first message tag∗, (A∗i), (U
∗
i) to the right-

party from A, H takes (bi) from w and sends them to A.
(d) (Emulate a second left-party message.) Receiving a first message (b∗i) to the left-party from

A, H takes (gi), (b′i), (Mi) from w, computes hi = gη
i , b′′i = b∗i /b′i, Pi = (Aig

−1/b′′i
i)1/ec , Qi =

P
ey

i , wi = ki − b′ieID∗ , and sends (gi), (hi), (Pi), (Qi), (b′i), (wi), (Mi) to A.
(e) (Extract coins generated by A.) Receiving the second message (g∗i), (h

∗
i), . . . , (M

∗
i) to the

right-party from A, H extracts the coins (c∗i) that A generated. Namely, H sets wx =
(z, eID∗ , gID, ec, η, ey, (Ai), (Ui), (bi), (gi), (b′i), (Mi), view+

A) (where view+
A denotes the view

of A in the another execution of the subscheme) and invokes KEA-extractor H∗
ci

on input
(g, gx; wx) to obtain c∗i , for i = 1, . . . , 6.

(f) (Extract gm∗
generated by A.) H computes u = (M∗

1
1/c∗4M∗

2
1/c∗5M∗

3
−1/c∗6)1/(c∗1/c∗4+c∗2/c∗5−c∗3/c∗6).

2. (Generate output.) Return a pair of the extracted values (u, u+) at Step 1f.

Given (g, g+) as input, KEA-adversary H reproduces the exact view of A in Exp3 by us-
ing the third procedure on those independent random components given in the auxiliary input
w, and then extracts A’s coins c∗i that are expected to satisfy g∗i = gc∗i by KEA-extractor H∗

ci

on (g, gx) and wx = (z, eID∗ , gID, ec, η, ey, (Ai), (Ui), (bi), (gi), (b′i), (Mi), view+
A). For a while, as-

sume the expectations are right. Then, since (g∗1 = gc∗1 , . . . , g∗6 = gc∗6) is not linear by Lemma
1, it defines perfectly binding homomorphic commitment and so H can compute the value u =
(M∗

1
1/c∗4M∗

2
1/c∗5M∗

3
−1/c∗6)1/(c∗1/c∗4+c∗2/c∗5−c∗3/c∗6) that must be equal to gm∗

with m∗ = det(M∗
1 , M∗

2 ,M∗
3).

The output of H is a pair (u, u+) of such u for the two executions of the subscheme. Thus, H outputs
(gm∗

, g+m∗
) on (g, g+). Since clearly the discrete-log of g+ over g is independent from the auxiliary

input (z,m, w,w+), by the knowledge of exponent assumption, the corresponding KEA-extractor
H∗ extracts the right determining value m∗ of A’s commitment only with negligible exceptions, as
desired.

Now, all we have to do is to show that the KEA-extractor H∗
ci

, that corresponds to the fol-
lowing KEA-adversary Hci , extracts the coins c∗i satisfying g∗i = gc∗i only with negligible excep-
tions. Given (g, gx) as input, Hci reproduces the exact view of A invoked in H using the aux-
iliary input wx by using the third procedure, and picks up g∗i and h∗i from them and outputs(
g∗i (= gc∗i), (h∗i /g∗i

η)1/(H(tag∗)−H(tag))(= g
c∗i
x)

)
. As discussed before, the items in wx (especially the

ones that belongs to the view of A) was chosen to be independent of the discrete log ex of gx with
g. Hence, by the knowledge of exponent assumption, H∗

ci
outputs c∗i satisfying g∗i = gc∗i only with

negligible exceptions. That completes the proof of Claim 4. 2

By Claims 2, 3 and 4, Equation (6) is satisfied by EQV and EXT in Figure 6, that are immediate
from the description of Exp3 and the third procedure, completing the proof of Proposition 3. 2

– Simulator EQV on input (tag, eID∗ , m0) does as follows, for each of the two parallel executions of the
subscheme:
1. (Emulate a first left-party message.) Choose random ai, si, ki from Z∗q and compute Ai = gaigsi

c , Ui = gki

for i = 1, . . . , 6. Send A1, . . . , A6, U1, . . . , U6.
2. (Emulate a second left-party message.) Receiving a first message (b∗i), select random ci from Z∗q so that

(gci) becomes a linear tuple and compute gi = gci , hi = Gx
ci , Pi = gsi , Qi = gy

si for i = 1, . . . , 6
with Gx = gx

H(tag)hx. In addition, compute b′′i = ci/ai, b′i = b∗i /b′′i , wi = ki − b′ieID∗ for i = 1, . . . , 6.
Then, take random r0, t0 from Zq and compute M1 = gm0

1 gr0
4 , M2 = gm0

2 gt0
5 , M3 = gm0

3 gr0+t0
6 . Send

(gi), (hi), (Pi), (Qi), (b
′
i), (wi), (Mi).

3. (Output an honest decommitment.) Receiving a true value m, compute r = r0 + c1
c4

(m0 − m), t =
t0 + c2

c5
(m0 −m), and output m, r, t.

– Extractor EXT on input (τ, τ+, viewA) does as follows:
1. For each of the two parallel executions of the subscheme, take necessary items from viewA and set

w = (eID∗ , gID, τ, (Ai), (Ui), (bi), (gi), (b
′
i), (Mi)). (Note the secret key eID∗ is in viewA.)

2. Invoke the KEA-extractor H∗ (in the proof of Claim 4) on (g, g+; z, w, w+) to get and output m∗.

Fig. 6. EQV and EXT.

B Experiments in the proof of Proposition 3

Experiment Exp0 on input m ∈ Zq and z ∈ {0, 1}∗:
1. (Simulate left and right parties for A.) Invoke A on z. Receiving ID∗, ID and tag from A, simulate the left

and right parties for A as follows, for each of the two parallel executions of the subscheme.
(a) (Emulate a public/private-key pair and CRS for A.) Select a random eID∗ from Zq and a random element

g from G, and set gID∗ = geID∗ . Select a random element gID from G. Give to A (gID∗ , eID∗) as
A’s pair of public/private key and gID as the right-party’s public key. In addition, choose ec, ex, dx, ey

randomly from Zq, set gc = gec , gx = gex , hx = gdx
x , gy = gey , and give (g, gc, gx, hx, gy) as CRS to A.

(b) (Emulate a first left-party message.) Receiving a request for a first left-party message from A, choose

a1, . . . , a6, s1, . . . , s6, w1, . . . , w6, b
′
1, . . . , b

′
6 randomly from Z∗q and compute Ai = gaigsi

c , Ui = gwigID∗
b′i

for i = 1, . . . , 6. Send A1, . . . , A6, U1, . . . , U6 to A.
(c) (Emulate a first right-party message.) Receiving a first message tag∗, A∗1, . . . , A

∗
6, U

∗
1 , . . . , U∗6 to the right-

party from A, choose b1, . . . , b6 randomly from Zq
∗ and send them to A.

(d) (Emulate a second left-party message.) Receiving a first message b∗1, . . . , b
∗
6 to the left-party from A,

compute b′′i = b∗i /b′i, ci = aib
′′
i , gi = gci , hi = Gx

ci , Pi = gsi , Qi = gy
si for i = 1, . . . , 6 with Gx =

gx
H(tag)hx. Then, take two random r, t from Zq and compute M1 = gm

1 gr
4 , M2 = gm

2 gt
5, M3 = gm

3 gr+t
6 .

Send (gi), (hi), (Pi), (Qi), (b
′
i), (wi), (Mi) to A.

(e) (Complete commitment phases.) Receiving a second message (g∗i), (h∗i), (P
∗
i), (Q∗i), (b

∗′
i), (w

∗
i), (M∗

i) to
the right-party from A, compute b′′∗i = bi/b′∗i and check

DH(g, G∗x, g∗i , h∗i), DH(g, gc, P
∗
i , Q∗i), U∗i = gw∗i gID

b′∗i , e(A∗i , gb′′∗i) = e(g∗i , gc)e(P
∗
i , g

b′′∗i
c)

with G∗x = g
H(tag∗)
x hx for i = 1, . . . , 6. If any of them (for any i) is not true, abort with output ⊥.

2. (Generate output.) Let viewA be the view of A after completing the above commitment phase. If the
two values of m∗ = det(M∗

1 , M∗
2 , M∗

3) determined in the two parallel executions are the same, return
((τ, τ+), viewA, m∗, ((m, r, t), (m, r+, t+))), otherwise return ⊥.

Experiment Exp1 on input m ∈ Zq and z ∈ {0, 1}∗:
1. (Simulate left and right parties for A.) Invoke A on z. Receiving ID∗, ID and tag from A, simulate the left

and right parties for A as follows, for each of the two parallel executions of the subscheme.
(a) (Emulate a public/private-key pair and CRS for A.) Select a random eID∗ from Zq and a random element

g from G, and set gID∗ = geID∗ . Select a random element gID from G. Give to A (gID∗ , eID∗) as
A’s pair of public/private key and gID as the right-party’s public key. In addition, choose ec, ex, dx, ey

randomly from Zq, set gc = gec , gx = gex , hx = gdx
x , gy = gey , and give (g, gc, gx, hx, gy) as CRS to A.

(b) (Emulate a first left-party message.) Receiving a request for a first left-party message from A, choose

a1, . . . , a6, s1, . . . , s6, k1, . . . , k6 randomly from Z∗q and compute Ai = gaigsi
c , Ui = gki for i =

1, . . . , 6. Send A1, . . . , A6, U1, . . . , U6 to A.
(c) (Emulate a first right-party message.) Receiving a first message tag∗, A∗1, . . . , A

∗
6, U

∗
1 , . . . , U∗6 to the right-

party from A, choose b1, . . . , b6 randomly from Zq
∗ and send them to A.

(d) (Emulate a second left-party message.) Receiving a first message b∗1, . . . , b
∗
6 to the left-party from A,

select random c1, . . . , c6 from Zq
∗ and compute gi = gci , hi = Gx

ci , Pi = gsi , Qi = gy
si for

i = 1, . . . , 6 with Gx = gx
H(tag)hx. In additon, compute b′′i = ci/ai, b′i = b∗i /b′′i , wi = ki − b′ieID∗ for

i = 1, . . . , 6, Then, take two random r, t from Zq and compute M1 = gm
1 gr

4 , M2 = gm
2 gt

5, M3 = gm
3 gr+t

6 .
Send (gi), (hi), (Pi), (Qi), (b

′
i), (wi), (Mi) to A.

(e) (Complete commitment phases.) Receiving a second message (g∗i), (h∗i), (P
∗
i), (Q∗i), (b

∗′
i), (w

∗
i), (M∗

i) to
the right-party from A, compute b′′∗i = bi/b′∗i and check

DH(g, G∗x, g∗i , h∗i), DH(g, gc, P
∗
i , Q∗i), U∗i = gw∗i gID

b′∗i , e(A∗i , gb′′∗i) = e(g∗i , gc)e(P
∗
i , g

b′′∗i
c)

with G∗x = g
H(tag∗)
x hx for i = 1, . . . , 6. If any of them (for any i) is not true, abort with output ⊥.

2. (Generate output.) Let viewA be the view of A after completing the above commitment phase. If the
two values of m∗ = det(M∗

1 , M∗
2 , M∗

3) determined in the two parallel executions are the same, return
((τ, τ+), viewA, m∗, ((m, r, t), (m, r+, t+))), otherwise return ⊥.

Experiment Exp2 on input m ∈ Zq and z ∈ {0, 1}∗:
1. (Simulate left and right parties for A.) Invoke A on z. Receiving ID∗, ID and tag from A, simulate the left

and right parties for A as follows, for each of the two parallel executions of the subscheme.
(a) (Emulate a public/private-key pair and CRS for A.) Select a random eID∗ from Zq and a random element

g from G, and set gID∗ = geID∗ . Select a random element gID from G. Give to A (gID∗ , eID∗) as
A’s pair of public/private key and gID as the right-party’s public key. In addition, choose ec, ex, dx, ey

randomly from Zq, set gc = gec , gx = gex , hx = gdx
x , gy = gey , and give (g, gc, gx, hx, gy) as CRS to A.

(b) (Emulate a first left-party message.) Receiving a request for a first left-party message from A, choose
a1, . . . , a6, s1, . . . , s6, k1, . . . , k6 randomly from Z∗q and compute Ai = gaigsi

c , Ui = gki for i = 1, . . . , 6.
Send A1, . . . , A6, U1, . . . , U6 to A.

(c) (Emulate a first right-party message.) Receiving a first message tag∗, A∗1, . . . , A
∗
6, U

∗
1 , . . . , U∗6 to the right-

party from A, choose b1, . . . , b6 randomly from Zq
∗ and send them to A.

(d) (Emulate a second left-party message.) Receiving a first message b∗1, . . . , b
∗
6 to the left-party from A,

select random c1, . . . , c6 from Z∗q so that (gci) becomes a linear tuple and compute gi = gci , hi =

Gx
ci , Pi = gsi , Qi = gy

si for i = 1, . . . , 6 with Gx = gx
H(tag)hx. In additon, compute b′′i = ci/ai, b′i =

b∗i /b′′i , wi = ki − b′ieID∗ for i = 1, . . . , 6. Then, take two random r, t from Zq and compute M1 =
gm
1 gr

4 , M2 = gm
2 gt

5, M3 = gm
3 gr+t

6 . Send (gi), (hi), (Pi), (Qi), (b
′
i), (wi), (Mi) to A.

(e) (Complete commitment phases.) Receiving a second message (g∗i), (h∗i), (P
∗
i), (Q∗i), (b

∗′
i), (w

∗
i), (M∗

i) to
the right-party from A, compute b′′∗i = bi/b′∗i and check

DH(g, G∗x, g∗i , h∗i), DH(g, gc, P
∗
i , Q∗i), U∗i = gw∗i gID

b′∗i , e(A∗i , gb′′∗i) = e(g∗i , gc)e(P
∗
i , g

b′′∗i
c)

with G∗x = g
H(tag∗)
x hx for i = 1, . . . , 6. If any of them (for any i) is not true, abort with output ⊥.

2. (Generate output.) Let viewA be the view of A after completing the above commitment phase. If the
two values of m∗ = det(M∗

1 , M∗
2 , M∗

3) determined in the two parallel executions are the same, return
((τ, τ+), viewA, m∗, ((m, r, t), (m, r+, t+))), otherwise return ⊥.

Experiment Exp3 on input m ∈ Zq and z ∈ {0, 1}∗:
1. (Simulate left and right parties for A.) Invoke A on z. Receiving ID∗, ID and tag from A, simulate the left

and right parties for A as follows, for each of the two parallel executions of the subscheme.
(a) (Emulate a public/private-key pair and CRS for A.) Select a random eID∗ from Zq and a random element

g from G, and set gID∗ = geID∗ . Select a random element gID from G. Give to A (gID∗ , eID∗) as
A’s pair of public/private key and gID as the right-party’s public key. In addition, choose ec, ex, dx, ey

randomly from Zq, set gc = gec , gx = gex , hx = gdx
x , gy = gey , and give (g, gc, gx, hx, gy) as CRS to A.

(b) (Emulate a first left-party message.) Receiving a request for a first left-party message from A, choose
a1, . . . , a6, s1, . . . , s6, k1, . . . , k6 randomly from Z∗q and compute Ai = gaigsi

c , Ui = gki for i = 1, . . . , 6.
Send A1, . . . , A6, U1, . . . , U6 to A.

(c) (Emulate a first right-party message.) Receiving a first message tag∗, A∗1, . . . , A
∗
6, U

∗
1 , . . . , U∗6 to the right-

party from A, choose b1, . . . , b6 randomly from Zq
∗ and send them to A.

(d) (Emulate a second left-party message.) Receiving a first message b∗1, . . . , b
∗
6 to the left-party from A,

select random c1, . . . , c6 from Z∗q so that (gci) becomes a linear tuple and compute gi = gci , hi =

Gx
ci , Pi = gsi , Qi = gy

si for i = 1, . . . , 6 with Gx = gx
H(tag)hx. In additon, compute b′′i =

ci/ai, b′i = b∗i /b′′i , wi = ki−b′ieID∗ for i = 1, . . . , 6. Then, take two random r0, t0 from Zq and compute

M1 = gm0
1 gr0

4 , M2 = gm0
2 gt0

5 , M3 = gm0
3 gr0+t0

6 with an arbitrary dummy value m0 ∈ mathbbZq. Send

(gi), (hi), (Pi), (Qi), (b
′
i), (wi), (Mi) to A. Compute r = r0 + c1

c4
(m0 −m), t = t0 + c2

c5
(m0 −m) .

(e) (Complete commitment phases.) Receiving a second message (g∗i), (h∗i), (P
∗
i), (Q∗i), (b

∗′
i), (w

∗
i), (M∗

i) to
the right-party from A, compute b′′∗i = bi/b′∗i and check

DH(g, G∗x, g∗i , h∗i), DH(g, gc, P
∗
i , Q∗i), U∗i = gw∗i gID

b′∗i , e(A∗i , gb′′∗i) = e(g∗i , gc)e(P
∗
i , g

b′′∗i
c)

with G∗x = g
H(tag∗)
x hx for i = 1, . . . , 6. If any of them (for any i) is not true, abort with output ⊥. Else

let w = (eID∗ , gID, τ, (Ai), (Ui), (bi), (gi), (b
′
i), (Mi)).

2. (Generate output .) Let g and g+ be the first elements of CRSs in the two executions

of the subscheme. Invoke KEA-extractor H∗ on (g, g+; z, w, w+) to get m∗ and return
((τ, τ+), viewA, m∗, ((m, r, t), (m, r+, t+))).

