A Proposal And Some Generic Attacks

Xigen Yao
Wuxi Hengqi Electromechanical Device Co.Ltd.China
email : dihuo377@163.com

Abstract

This paper presents a efficient proposal for iterating hash function to prevent the main of generic attacks such as Multicollisions Attack,Second Preimage Attack and Herding Attack.Based on this proposal,it's possible that a secure hash function can be built with iterating compression functions .

The proposal mainly contains a method called "Shifting Whole Message", it regroups the cascaded messages to be new blocks and makes the known results of the pre-computed blocks noneffective .

keywords: hash function ,iterating ,shift ,regrouped block,pre-computed

1 Introduction:

Since 2004,some of the existing hash functions MD5,SHA0,SHA1 [1][2]are broken. The existing hash functions are built by a same structure called MerkleDamgaard Structure ,which use iterating compression functions.Many papers have shown the weakness of the structure and many generic attacks are given[3][4][5]. It seems that iterating hash functions can hardly be secure anymore.
This paper presents a efficient proposal for iterating hash function to prevent those generic attacks which includes Multicollisions Application to Cascaded Constructions ,Second Preimage Attacks on Dithered Hash Functions and Herding Hash Functions and the Nostradamus Attack,of course, we need a stronger compression function to avert the differential attacks on collision resistance .

The proposal is made up of two parallel compression functions, one acts in a normal mode, and another acts in a particular mode which contains a method called "Shifting Whole Message".

A normal pretreatment of a hash function is:after padding and appending length,a message is formatted as 16 m 64 -bit(or 32 -bit) words,and the message is grouped to be m blocks ,each block contains 16 64-bit(or 32 -bit)words. we add a pretreatment called "Shifting Whole Message":
an original message : $x_{0}, x_{1}, \ldots, x_{i}, \ldots, x_{16 m-1}$
Cut s words from the head , and link them to the end,ie.,the whole message is shifted to the left for s words.

Set a shift parameter $s=8 m+1$,if m is a odd number;
and set $s=8 m+7$ if m is a even number. For example, we consider m is a odd number.

The original message is:
$x_{0}, x_{1}, \ldots, x_{8 m}, x_{8 m+1} \ldots, x_{16 m-1}$
The shifted message is:
$x_{8 m+1} \ldots, x_{16 m-1}, x_{0}, x_{1}, \ldots, x_{8 m}$
This method is different from the previous ones[6], it makes the blocks regrouped and makes the new blocks staggered ,then,each block is different from the original corresponding one . Once the message blocks are cascaded, each the block will change into a new block, the previous known result of a block can't be used again, and we can avert the attacks which using known result by precomputing blocks.

The rest of this paper, we first explain the method "Shifting Whole Message" to prevent those attacks, then , we give a more detailed proposal.

2 Shift Mode And The Generic Attacks

For a message x , after padding and appending length ,it's length is $16 \mathrm{~m} \times 64$ bits or $16 m \times 32$ bits, (the succedent we assume it 64 bits), for the hash function $H(x)$ of the M-D structure ,it's compression function is f, the message is formatted as $16 m 64$-bit words : $x_{0}, x_{1}, \ldots, x_{i}, \ldots, x_{16 m-1}$, ie., the message is made up of m blocks and each the block contains 1664 -bit words,for $H(x)$:
$C V_{i}=$ Chaining variable , $C V_{0}=I V$ (given Initial Value)
$X[i]=$ the ith block
$C V_{i}=f\left(C V_{i-1}, X[i]\right)$
$H(x)=C V_{m}$
We can see,the fixed message-block $X[i]$ is computed one by one ,the attackers achieve by pre-computing the message-blocks, using known result of messageblocks, matching and yielding the chaining variables. We now use the method "Shifting Whole Message" and to see the generic attacks.

2.1 The Setting of Shifting Whole Message

For a m blocks message , we set the shift parameter $s=8 m+1$, if m is a odd number; and set $s=8 m+7$ if m is a even number.

For example, $m=1$, i.e., the message is a single block. The original message is:
$x_{0}, x_{1}, \ldots, x_{8}, x_{9} \ldots x_{15}$
The shift parameter $s=8 m+1=8 \times 1+1=9$ (m is a odd number), we cut $9(s=9)$ words $\left(x_{0}, x_{1}, \ldots, x_{7}, x_{8}\right)$ from the head and link them to the end.
where ,"| "denotes the cutting point:
the original message : $x_{0}, x_{1}, \ldots, x_{8}, \mid x_{9} \ldots x_{15}$

And the shifted message: $\mid x_{9} \ldots x_{15}, x_{0}, x_{1}, \ldots, x_{7}, x_{8}$
For a two-block message, we assume it contains Block A and B :
Block $A: x_{0}, x_{1}, \ldots, x_{7}, x_{8}, \ldots, x_{15}$
Block $B: y_{0}, y_{1}, \ldots, y_{7}, y_{8}, \ldots, y_{15}$
Of curse , if the single block A is shifted for pre-computing ,it is: $x_{9}, \ldots, x_{15}, x_{0}, x_{1}, \ldots, x_{7}, x_{8}$, and we write this single block as \overbrace{A}. The same ,if the single block B is shifted for pre-computing, it is:

$$
\overbrace{B}\left(y_{9}, \ldots, y_{15}, y_{0}, y_{1}, \ldots, y_{7}, y_{8}\right)
$$

Their output are marked with subscript " ${ }^{\text {S " }}$,e.g , $C V_{S 1}$.
Pre-compute $C V_{S 1}$ and $C V_{S 2}$:
$C V_{S 1}=f(I V, \overbrace{A}^{\overbrace{B}})=f\left(I V,\left(x_{9} \ldots x_{15}, x_{0}, x_{1}, \ldots, x_{8}\right)\right)$
$C V_{S 2}=f(C V_{S 1}, \overbrace{B})=f\left(C V_{S 1},\left(y_{9}, \ldots, y_{15}, y_{0}, y_{1}, \ldots, y_{8}\right)\right)$
Now, if the two single blocks are cascaded to be a two-block message, then the shift parameter $s=8 m+7=8 \times 2+7=23$ ($m=2$,it is a even number).

We cut $23(s=23)$ words from the head and link them to the end.
The original two-block message is:
$\left(x_{0}, x_{1}, \ldots, x_{7}, x_{8}, x_{9} \ldots x_{15}\right)\left(y_{0}, y_{1}, \ldots, y_{6} \mid y_{7}, \ldots, y_{15}\right)$ (where | denotes the cutting point)

And the shifted two-block message is:
$\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)\left(x_{7}, \ldots, x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)$
We can see that the two new blocks of the cascaded message are staggered.The first new block contains elements of Block B, and the second new block contains elements of Block A,so the two new blocks are different from either of Block A or Block B,we call the new blocks regrouped blocks.

Let $\overbrace{B A}$ denotes the first regrouped block $\left(y_{7}, y_{8}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)$.
$\overbrace{B A}$ means the elements are from Block B and Block A.)
$\overbrace{A B}^{B}$ denotes the second regrouped block $\left(x_{7}, \ldots, x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)$,for these cascaded blocks, their output are marked with subscript" ${ }^{\circ}$ ", e.g, $C V_{C 1}$.
$C V_{C 1}$ denotes the output of the first block.in shift mode:

$$
C V_{C 1}=f(I V, \overbrace{B A})=f\left(I V,\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)\right)
$$

$C V_{C 2}$ denotes the output of the second new block:
$C V_{C 2}=f(C V_{C 1}, \overbrace{A B})=f\left(C V_{C 1},\left(x_{7} \ldots x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)\right)$,
in normal mode, pre-compute $C V_{1}$ and $C V_{2}$:
$C V_{1}=f(I V, A)=f\left(I V,\left(x_{0}, x_{1}, \ldots, x_{15}\right)\right)$
$C V_{2}=f\left(C V_{1}, B\right)=f\left(C V_{1},\left(y_{0}, y_{1}, \ldots, y_{15}\right)\right.$
Obviously, $C V_{C 1} \neq C V_{1} ; C V_{C 1} \neq C V_{S 1}$ and $C V_{C 2} \neq C V_{2}, C V_{C 2} \neq C V_{S 2}$

So, pre-computing the two single shifted blocks $f(I V, \overbrace{A})$ and $f(C V_{S 1}, \overbrace{B})$ or pre-computing the two original blocks $f(I V, A)$ and $f\left(C V_{1}, B\right)$ are of no use in this case.

Our proposal mainly contains the cascading of the two parallel compression functions f_{1} and f_{2} :
f_{1} acts the original blocks, f_{2} acts the shifted blocks,and the chaining values outputted are the modulo additions of theirs. f_{1}, f_{2} can be similar compression functions which output chaining-value with same length (and even f_{1}, f_{2} they can be a same function).
The followed is analysis of Multicollisions in shift mode.

2.2 Multicollisions In Shift Mode

For Multicollisions [3],We quote Multicollisions in Iterated Hash Functions Application to Cascaded Constructions :In a normal iterating function with M-D construction ,recall that a collision is a pair of different messages M and M^{\prime} such that $H(M)=H\left(M^{\prime}\right)$. Due to the birthday paradox, there is a generic attack that find collisions after about $2^{n / 2}$ evaluations of the hash function, where n is the size in bits of the hash values.If there are t collisions of t pairs of different messages, then ,there can construct multicollisions of 2^{t} collisions. first is how 4 collisions can be obtained,assume that two different blocks, A and A^{\prime} that yield a collision, i.e. $f(I V, A)=f\left(I V, A^{\prime}\right)$. Let z denotes this common value and find two other blocks B and B^{\prime} such that $f(z, B)=f\left(z, B^{\prime}\right)$. Put these two steps together to obtain the following 4-collision:
$f(f(I V, A), B)=f\left(f(I V, A), B^{\prime}\right)=f\left(f\left(I V, A^{\prime}\right), B\right)=f\left(f\left(I V, A^{\prime}\right), B^{\prime}\right)$
And 2^{t}-collision can obtain by analogy.
Now, in shift mode, we set the shift parameter $s=8 m+1$, if m is a odd number; and set $s=8 m+9$ if m is a even number.

Obviously ,for each the precomputing of the single block , $m=1$, and the shift parameter $s=8 m+1$.ie., $s=8 \times 1+1=9$

For example, we show the message made up of two blocks,we also assume the previous two different single blocks A and A^{\prime} that yield a collision, and B, B^{\prime} yield another collision at $z . A\left(x_{0}, x_{1}, \ldots, x_{6}, x_{7}, \ldots x_{15}\right)$ denotes the elements of block A, by the same, there are $B\left(y_{0}, y_{1}, \ldots y_{6}, y_{7}, \ldots, y_{15}\right), A^{\prime}\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{6}^{\prime}, x_{7}^{\prime}, \ldots x_{15}^{\prime}\right)$, and $B^{\prime}\left(y_{0}^{\prime}, y_{1}^{\prime}, \ldots y_{6}^{\prime}, y_{7}^{\prime}, \ldots, y_{15}^{\prime}\right)$.

This is a message cascaded by two blocks, which $m=2(\mathrm{~m}$ is an even number),so the shift parameter $s=8 m+7$. ie., $s=8 \times 2+7=23$.

The original message $A B$ is:| denotes the cutting point):
$\left(x_{0}, x_{1}, \ldots, x_{7}, x_{8}, \ldots x_{15}\right)\left(y_{0}, y_{1}, \ldots, y_{6}, \mid y_{7} \ldots, y_{15}\right)$
We cut the first $23(s=8 \times 2+7=23)$ words of $x_{0}, x_{1}, \ldots, x_{7}, x_{8}, \ldots x_{15}, y_{0}, y_{1}, \ldots y_{6}$ and link them to the end
the shifted message is:

$$
\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)\left(x_{7}, \ldots x_{15}, y_{0}, y_{1}, \ldots y_{6}\right)
$$

We show the blocks in three situations, the first is each the original block, the second is the each single block shifted for precomputing , and the third is each of the two cascading blocks which are regrouped by shift . For A, B :

Block1
Block2
$\underbrace{B\left(y_{0}, y_{1}, \ldots, y_{6}, y_{7}, \ldots, y_{15}\right)}$
original $: A\left(x_{0}, x_{1}, \ldots, x_{6}, x_{7}, \ldots, x_{15}\right)$
single $: \overbrace{A}^{A}\left(x_{9}, \ldots, x_{15}, x_{0}, x_{1}, \ldots, x_{8}\right)$
cascaded: $\overbrace{B A}^{A}\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)$
$\overbrace{B}^{B\left(y_{9}, \ldots, y_{15}, y_{0}, y_{1}, \ldots, y_{8}\right)}$
$\overbrace{A B}^{B}\left(x_{7}, \ldots, x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)$

By analogy, we link A^{\prime}, B
Block1
Block2
original : $A^{\prime}\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{6}^{\prime}, x_{7}^{\prime}, \ldots, x_{15}^{\prime}\right)$
single $: \overbrace{A^{\prime}}\left(x_{9}^{\prime}, \ldots, x_{15}^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{8}^{\prime}\right)$
$B\left(y_{0}, y_{1}, \ldots, y_{6}, y_{7}, \ldots, y_{15}\right)$
cascaded: $\overbrace{B A^{\prime}}^{\prime}\left(y_{7}, \ldots, y_{15}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{6}^{\prime}\right)$

$$
\overbrace{A^{\prime} B}\left(x_{7}^{\prime}, \ldots, x_{15}^{\prime}, y_{0}, y_{1}, \ldots, y_{6}\right)
$$

We assume the two different single blocks, \overbrace{A} and $\overbrace{A^{\prime}}$ that yield a collision by precomputing, (Of course, this is in shift mode, we can also assume it in normal mode, that two original blocks A and A^{\prime} yield a collision by precomputing.the followed we'll only consider precomputing in shift mode.)

$$
\begin{aligned}
& f(I V, \overbrace{A})=f(I V, \overbrace{A^{\prime}})=z \\
& \text { i.e., } f\left(I V,\left(x_{9}, \ldots, x_{15}, x_{0}, x_{1}, \ldots, x_{8}\right)\right)=f\left(I V,\left(x_{9}^{\prime}, \ldots, x_{15}^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{8}^{\prime}\right)\right)=z
\end{aligned}
$$

For cascaded message $A-B$, the first regrouped block is:
$\overbrace{B A}\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)$
For cascaded message $A^{\prime}-B$, the first regrouped block is:
$\overbrace{B A^{\prime}}^{\prime}\left(y_{7}, \ldots, y_{15}, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{6}^{\prime}\right)$
Obviously, $\overbrace{B A} \neq \overbrace{B A^{\prime}}$;Synchronously, $\overbrace{B A} \neq \overbrace{A} ; \overbrace{B A^{\prime}} \neq \overbrace{A^{\prime}}$, we can't get $f(I V, \overbrace{B A})=f(I V, \overbrace{B A^{\prime}}^{\prime})=z$ by assuming $f(I V, \overbrace{A})=f(I V, \overbrace{A^{\prime}})=z$.
The first regrouped blocks are also different from the two known original blocks A or A^{\prime}.

Therefore, the first step that $f(I V, \overbrace{B A})=f(I V, \overbrace{B A^{\prime}}^{\prime})=z$ is false, and we can't use the result of known collision that $f(I V, \overbrace{A})=f(I V, \overbrace{A^{\prime}})=z$.

Since they don't meet the same output of chaining value z,Synchronously in the shift mode of cascading, their second new blocks:

$$
\overbrace{A B}\left(x_{7}, \ldots x_{15}, y_{0}, y_{1}, \ldots y_{6}\right) \text { and } \overbrace{A^{\prime} B}\left(x_{7}^{\prime}, \ldots x_{15}^{\prime}, y_{0}, y_{1}, \ldots y_{6}\right) \text { are also different.so,the }
$$

second step ,their output of chaining value are not equal. we can't get that $f(z, \overbrace{A B})=f(z, \overbrace{A^{\prime} B})$.

Therefore, $f(I V, A-B) \neq f\left(I V, A^{\prime}-B\right)$
If assume that the two original blocks A and A^{\prime} yield a collision by precomputing in normal mode, we can get the same result.

By analogy,we also can't get the 4-collision :
$f(I V, A-B)=f\left(I V, A-B^{\prime}\right)=f\left(I V, A^{\prime}-B\right)=f\left(I V, A^{\prime}-B^{\prime}\right)$
By the same way,that the Multicollisions Application to Cascaded Constructions, and 2^{t}-collision can obtain are false.

We will farther expound in the below.

2.3 Herding Attacks AND Shift Mode

An attacker who can find many collisions on the hash function by brute force can first provide the hash of a message. The attacker first does a large precomputation, and then commits to a hash value h. Later, upon being challenged with a prefix P, the attacker constructs a suffix S such that hash $(P \| S)=h$. Kelsey and Kohno ,Their paper introduced the "diamond structure" [5], which is reminiscent of a complete binary tree. It is a 2^{l} multi-collision in which each message in the multi-collision has a different initial chaining value, and which is constructed in the pre-computation step of the attack. The herding attack on an n-bit hash function requires approximately $2^{2 n / 3+1}$ work[4].

According to the previous result , we can see that pre-computation of a block cann't be used in a cascaded message in shift mode. Now, we consider it again by "Shifting Whole Message".

For simplicity,assume the original blocks are $P\left(x_{0}, x_{1}, \ldots, x_{15}\right)$ and $S\left(y_{0}, y_{1}, \ldots, y_{15}\right)$
The single shifted message \overbrace{P} is: $\overbrace{P}\left(x_{9}, \ldots, x_{15}, x_{0}, x_{1}, \ldots, x_{8}\right)$
The single shifted message \overbrace{S} is: $\overbrace{S\left(y_{9}, \ldots, y_{15}, y_{0}, y_{1}, \ldots, y_{8}\right)}$
Assume that by pre-computing and matching, we get $f(I V, \overbrace{P})=z_{1}$ and $f(z_{1}, \overbrace{S})=h$, then we'll see whether we can get that: $f(I V, P \| S)=h$.
$f(I V, \overbrace{P})=f\left(I V,\left(x_{9}, \ldots, x_{15}, x_{0}, x_{1}, \ldots, x_{8}\right)\right)=z_{1}$;
$f(z_{1}, \overbrace{S})=f\left(z_{1},\left(y_{9}, \ldots, y_{15}, y_{0}, y_{1}, \ldots, y_{8}\right)\right)=h$
Now, P and S are cascaded to be a new message " $P \| S$ ", we write it as " $P-S$ " or" $P S$ ".

The shift parameter s of the cascaded message $P S: s=8 m+7=8 \times 2+7=$ 23 , which $m=2$.
the original message is: $\left(x_{0}, x_{1}, \ldots, x_{6}, x_{7}, \ldots, x_{15}\right)\left(y_{0}, y_{1}, \ldots, y_{6}, \mid y_{7}, \ldots, y_{15}\right)$

And the shifted message of $P S$ is:
$\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right),\left(x_{7}, \ldots, x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)$
$\overbrace{S P}$ denotes the first regrouped block $\overbrace{S P}\left(y_{7}, \ldots, y_{15}, x_{0}, x_{1}, \ldots, x_{6}\right)$
$\overbrace{P S}$ denotes the second regrouped block: $\overbrace{P S}\left(x_{7}, \ldots, x_{15}, y_{0}, y_{1}, \ldots, y_{6}\right)$
Obviously, $\overbrace{S P}$ is quite different from the single shifted block \overbrace{P}, so, the first steep, $f(I V, \overbrace{S P}) \neq f(I V, \overbrace{P})=z_{1}$; synchronously, for the second blocks $\overbrace{P S} \neq \overbrace{S}$.

Even though $f(z_{1}, \overbrace{S})=h$, We can't get $f(z_{1}, \overbrace{P S})=h$, ie., we can't get $f(I V, P S)=h$.

If the pre-computing is in normal mode, that we get $f(I V, P)=z_{1}, f\left(z_{1}, S\right)=$ h, By analogy, we'll have the same result.It means , that to build a binary tree of multi-collision by pre-computing the original blocks or the single-shifted blocks is useless.

In fact, our proposal mainly contains the cascading of two parallel compression functions f_{1} and $f_{2} ; f_{1}$ acts the original blocks in normal mode, f_{2} acts the regrouped blocks in shift mode, the chaining values outputted are the modulo additions of theirs.

The message in shift mode is a shift version of the original message(by shifting it to left for $(8 m+1) \operatorname{or}(8 m+7)$ words), and we can also regard the original message as a shift version of the shifted message(by shifting it to right for $(8 m-1) \operatorname{or}(8 m-7)$ words),ie.,they are the shift versions each other.

Consider a m-block message B :

If m is an odd number, then Block $B_{\frac{m+1}{2}}$ is the center one, where is just the cutting point.

$$
B\left(B_{1}, B_{2}, \ldots, B_{\frac{m+1}{2}}, B_{\frac{m+3}{2}}, \ldots, B_{m}\right)
$$

The shifted message is:

$$
\overbrace{B}(\overbrace{B_{\frac{m+1}{2}} B_{\frac{m+3}{2}}}, \ldots, \overbrace{B_{m-1} B_{m}}, \overbrace{B_{m} B_{1}}, \ldots, \overbrace{B_{\frac{m-1}{2}} B_{\frac{m+1}{2}}}) \ldots \ldots \ldots \ldots \ldots . \text {................. } 1 \text {. }
$$

If m is an even number, where block $B_{\frac{m}{2}+1}$ is the cutting point.

$$
\overbrace{B}^{B\left(B_{1}, B_{2}, \ldots, B_{B_{\frac{m}{2}+1} B_{\frac{m}{2}+2}+1}^{\frac{m}{2}+\ldots},\right.}, \overbrace{B_{m-1} B_{m}}^{B_{\frac{m}{2}+2}}, \ldots, \overbrace{B_{m} B_{1}}, \ldots, \overbrace{B_{\frac{m}{2}} B_{\frac{m}{2}+1}})
$$

The shifted message has moved about $8 m$ words.ie., each the block is shifted for about $8 m$ words from it's corresponding one.

If P and S are all multi-block massages,we'll get the same result.(see appendix)

There's another question:What about pre-computing the regrouped blocks(not the single shifted blocks and the original blocks)?

It seems that the pre-computed results can be useful if the regrouped blocks have been pre-computed. If a "diamond structure" is made up of the regrouped blocks,can the pre-computing results be used again?

If pre-compute the regrouped blocks, The original message will act as the shift version of the shifted message, and the original blocks act as the shifted ones,therefore ,just like the previous analysis , that idea which pre-computing the regrouped blocks can't be realized.

Then, what about pre-computing the regrouped blocks and the original blocks together?

We'll explain by giving an example :
A two-block message $A B$,
Block A Block B
It'corresponding shifted blocks are :
$\overbrace{B A} \overbrace{A B}$
Pre-compute them by binding(e.g.,binding a pair of blocks, A and $\overbrace{B A}$).
$C V_{1}=f_{1}(I V, A)+f_{2}(I V, \overbrace{B A})$.

Assume the two-block message $A B$ (which it' $m_{A B}=2$) is cascaded with an other message C_{x} (which it's m_{c} blocks), there become a new message $C_{x} A B$ with $m\left(m=m_{A B}+m_{c}\right)$ blocks.then,there always $m>m_{A B}$, the positions of the shifted blocks have to move again, the pre-computed result of the binding blocks, a pair of A and $\overbrace{B A}$ is no use.

In fact, the blocks themself have been changed also ,there is no block $\overbrace{B A}$ anymore.
E.g.,let C_{x} is a sing block,ie., $m_{c}=1 . C_{x}$ is the first block,the original message is $C_{x} A B$,ie.,Block C_{x}, Block B and Block A :
$C_{x} \quad A \quad B$
the corresponding shifted blocks are ($m=3$, it's an odd number, where Block A is the cutting point.) :
$\overbrace{A B}, \overbrace{B C_{x}}, \overbrace{C_{x} A}$.
Now, the corresponding block of A is $\overbrace{B C_{x}}$, this pair of blocks Block A and $\overbrace{B C_{x}}$ are different from the previous binding blocks, A and $\overbrace{B A}$.

$$
C V_{1}^{\prime}=f_{1}(I V, A)+f_{2}(I V, \overbrace{B C_{x}}), \text { obviously, } C V_{1}^{\prime} \neq C V_{1}
$$

And then, there produced the new regrouped blocks $: \overbrace{B C_{x}}$ and $\overbrace{C_{x} A}$, which are different from the regrouped blocks of $A B$.

So we can't use the known result of Pre-computing a pair of binding blocks.
Synchronously ,if two single blocks are cascaded to be a two-block message, each block contains 16 words(64 bit-word),there are $64 \times 16 \times 2=2048$ bits,ie.,there are about 2^{2048} kinds two-block messages.

Obviously,there are about $\left(2^{1024}\right)^{3}$ kinds of 3 -block message,and $\left(2^{1024}\right)^{4}$ for 4 block message,.... therefore,that can be hardly realized to build a so called "diamond structure" for herding attack.

2.4 Second Preimage Attacks In Shift Mode

For Second Preimage Attacks on Dithered Hash Functions of Andreeva et al[4], their basic technique relies on the diamond from the herding attack[6], if the diamond structure of herding is too hard to build,the attack is defeated.
The second preimage attack of Dean means $[7]$ is ,to insert a block (or blocks)at so called a fixed point ith block, then make a preassigned output $C V_{i}$ equal to the input $C V_{i}$.

Let's see Second Preimage Attacks again by"shifting whole message".
There are three types messages (and the corresponding blocks), first is the original message,second is the single shifted message for precomputing ,third is the regrouped message after cascading.

We assume two messages A_{x} and $B_{y} . A_{x}$ contains m_{1} blocks and B_{y} contains m_{2} (For simplicity,let's set $m_{2}=3$)blocks. $m_{1}>m_{2}$, and both of them are odd numbers,

We will insert B_{y} into A_{x} at the point (the i th block of A_{x}). Might as well set $1 \leq i<\frac{m_{1}+m_{2}}{2}-3$.

The single original message A_{x} is:

$$
A_{x}\left(A_{1}, \ldots, A_{i-1}, \ldots, A_{\frac{m_{1}+1}{}}, \ldots, A_{m_{1}}\right)
$$

(block $A_{\frac{m_{1}+1}{2}}$ is the cutting point for the single message A_{x}.)
For precomputing ,The single shifted message of A_{x} is:

$$
\overbrace{A_{x}}(\overbrace{A_{\frac{m_{1}+1}{2}} A_{\frac{m_{1}+3}{2}}}, \ldots, \overbrace{A_{m_{1}-1} A_{m_{1}}}, \overbrace{A_{m_{1}} A_{1}}, \ldots, \overbrace{A_{\frac{2 i-m_{1}-1}{2}} A_{\frac{2 i-m_{1}+1}{2}}}, \ldots, \overbrace{A_{\frac{m_{1}-1}{2}} A_{\frac{m_{1}+1}{}}})
$$

The first i blocks of $\overbrace{A_{x}}$:
$(\overbrace{A_{\frac{m_{1}+1}{2}} A_{\frac{m_{1}+3}{2}}}, \ldots, \overbrace{A_{m_{1}-1} A_{m_{1}}}, \overbrace{A_{m_{1}} A_{1}}, \ldots, \overbrace{A_{\frac{2 i-m_{1}-1}{2}}} \quad A_{\frac{2 i-m_{1}+1}{2}})$
The single original message B_{y} is:
$B_{y}\left(B_{1}, B_{2}, B_{3}\right)$
For precomputing, the single shifted message of B_{y} is:

$$
\overbrace{B_{y}}(\overbrace{\left(B_{2} B_{3}\right.}, \overbrace{B_{3} B_{1}}, \overbrace{B_{1} B_{2}})
$$

Precomputation of the single shifted message:
Compute the first i blocks of $\overbrace{A_{x}}$:
$f(I V, \overbrace{A_{\frac{m_{1}+1}{2}} A_{\frac{m_{1}+3}{2}}}, \ldots, \overbrace{A_{m_{1}-1} A_{m_{1}}}, \overbrace{A_{m_{1}} A_{1}}, \ldots, \overbrace{A_{\frac{2 i-m_{1}-1}{2}}} A_{\frac{2 i-m_{1}+1}{2}})=C V_{i}$
Assume that: $f(C V_{i}, \overbrace{B_{y}})=C V_{i}$ ie., $f(C V_{i},(\overbrace{B_{2} B_{3}}, \overbrace{B_{3} B_{1}}, \overbrace{B_{1} B_{2}}))=C V_{i}$
Cascading:
Insert B_{y} into A_{x} at the point A_{i}, then ,there become a cascaded massage. $A_{x}-B_{y}$ denotes the original cascaded message. such that:
$A_{x}-B_{y}\left(A_{1}, \ldots, A_{i}, B_{1}, B_{2}, B_{3}, A_{i+1}, \ldots, A_{\frac{m_{1}+1}{2}}, A_{\frac{m_{1}+3}{2}}, A_{\frac{m_{1}+5}{2}}, \ldots, A_{m_{1}}\right)$
The original message $A_{x}-B_{y}$ contains m blocks, which $m=m_{1}+m_{2}=m_{1}+3$,and m is an even number.

According to Formula(2): $\overbrace{B}(\overbrace{B_{\frac{m}{2}+1} B_{\frac{m}{2}+2}}, \ldots, \overbrace{B_{m-1} B_{m}}, \overbrace{B_{m} B_{1}}, \ldots, \overbrace{B_{\frac{m}{2}} B_{\frac{m}{2}+1}})$
For message $A_{x}-B_{y}$, Block $A_{\frac{m}{2}+1}$ is the cutting point.

$$
\left(A_{\frac{m}{2}+1}=A_{\frac{m_{1}+m_{2}+1}{2}}^{2}=A_{\frac{m_{1}+3}{2}+1}=A_{\frac{m_{1}+5}{2}}\right)
$$

We get the regrouped massage $\overbrace{A_{x}-B_{y}}$:

$$
(\overbrace{A_{\frac{m_{1}+5}{2}} A_{\frac{m_{1}+7}{2}}}, \ldots \overbrace{A_{m_{1}-1} A_{m_{1}}}, \overbrace{A_{m_{1}}}, \ldots, \overbrace{A_{i-1} A_{i}}, \overbrace{A_{i} B_{1}}, \overbrace{B_{1} B_{2}}, \overbrace{B_{3} A_{i+1}}, \ldots, \overbrace{A_{\frac{m_{1}+3}{2}} A_{\frac{m_{1}+5}{}}})
$$

(Of course ,we can write the first i regrouped blocks:

$$
(\overbrace{A_{\frac{m_{1}+5}{2}} A_{\frac{m_{1}+7}{2}}}, \ldots \overbrace{A_{m_{1}-1} A_{m_{1}}}, \overbrace{A_{m_{1}} A_{1}}, \ldots, \overbrace{A_{\frac{2 i-m_{1}+3}{2}} A_{\frac{2 i-m_{1}+5}{2}}})
$$

There are t_{1} blocks from $\overbrace{A_{\frac{m_{1}+5}{2}}} \quad A_{\frac{m_{1}+7}{2}}$ to $\overbrace{A_{m_{1}-1} A_{m_{1}}}$

$$
\left(t_{1}=m_{1}-\frac{m_{1}+7}{2}+1=\frac{m_{1}-5^{2}}{2}\right) ;
$$

and there are t_{2} blocks from $\overbrace{A_{m_{1}} A_{1}}$ to $\overbrace{A_{\frac{2 i-m_{1}+3}{2}}}$

$$
\begin{aligned}
& \left(t_{2}=\frac{2 i-m_{1}+5}{2}-1+1=i-\frac{m_{1}-5}{2}\right) \\
& \text { so, } t_{1}+t_{2}=i
\end{aligned}
$$

and the followed 3 regrouped blocks are:

Compare the first i regrouped blocks with the first i single shifted blocks,they are different.)

Obviously ,Compute the first i regrouped blocks and the the first i single shifted blocks, their output are not equal,i.e, the output of the i th cascaded block isn't equal to $C V_{i}$.

That means, for the followed regrouped blocks ,the input is not $C V_{i}$, synchronously, the 3 regrouped blocks $\overbrace{A_{i} B_{1}}, \overbrace{B_{1} B_{2}}$,and $\overbrace{B_{m_{2}} A_{i+1}}$ are different from $\overbrace{B_{y}}$,so,there can't compute that $f(C V_{i}, \overbrace{B_{y}})=C V_{i}$.

If set m_{2} and i be other values, we can get the same result. There always be $m>m_{1}$ and $m>m_{2}$, and simply it's shift parameter $s>s_{1}$ and $s>s_{2}$. So,once the message B_{y} is inserted into A_{x}, the pre-computed blocks of A_{x} or B_{y} have to shift again,ie.,each the position of the blocks has been changed.thefore ,there isn't a point so called" fixed point", and there's no input $C V_{i}$ for B_{y}.

On the other way,the pre-computed blocks of B_{y} have also been changed,
There'll always be the new regrouped blocks $\overbrace{A_{i} B_{1}}$ and $\overbrace{B_{m_{2}} A_{i+1}}$ forcorresponding B_{y}.

In the cascaded message, the chining value input $C V_{i}$, the positions of blocks and even each the blocks of A_{x} are all changed, we can't get a chaining value $C V_{i}$ at the point ith block, and there's no $\overbrace{B_{y}}$ can be computed such that $f(C V_{i}, \overbrace{B_{y}})=C V_{i}$, so, the attack is invalid.

2.5 Some Conditions

What about that the regrouped blocks are as same as the original blocks?
We give an example message $A, m=1$, ie., that a single original block
$A\left(x_{0}, x_{1}, \ldots, x_{6}, x_{7}, \ldots, x_{15}\right)$ is same as it's regrouped block
$\overbrace{A}^{A}\left(x_{9}, x_{10}, \ldots, x_{15}, x_{0}, \ldots, x_{8}\right)$.This means, their corresponding elements are equal:
$x_{0}=x_{9}, x_{1}=x_{10}, \ldots, x_{6}=x_{15}, x_{7}=x_{0}, \ldots, x_{15}=x_{8}$
From these 16 equations, we can get:
$x_{0}=x_{1}=x_{2}=, \ldots,=x_{15}$
It means that the message is an especial one,each of the 16 words is the same and fixed one.

By similar,we can get the similar results for a multi-blocks-message.
Even though there's this especial situation,this doesn't make different result from the previous analysis if they are cascaded.

The followed is a detailed proposal.

3 A Detailed Proposal

First,for pretreatment , we get two messages.
For a message x ,after padding and appending length,it's length is $16 \mathrm{~m} \times 64$ bits, the message is formatted as $16 m 64$-bit words : $x_{0}, x_{1}, \ldots, x_{i}, \ldots, x_{16 m-1}$, ie., the message is made up of m blocks $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ and each the block contains 16 64-bit words.we set a shift parameter $s=8 m+1$, if m is a odd number; and set $s=8 m+7$ if m is a even number.

1 The original message is: $x_{0}, x_{1}, \ldots, x_{8 m}, x_{8 m+1} \ldots, x_{8 m+6}, x_{8 m+7}, \ldots, x_{16 m-1}$
2 the shifted message is:
$x_{8 m+1} \ldots, x_{16 m-1}, x_{0}, x_{1}, \ldots, x_{8 m}(m$ is an odd number);
$x_{8 m+7 \ldots}, x_{16 m-1}, x_{0}, x_{1}, \ldots, x_{8 m+6}$ (if m is an even number)
The original message can be written as : $B_{1}, B_{2}, \ldots B_{i}, \ldots, B_{m}$
And the shift message can be written as: $B_{S 1}, B_{S 2}, \ldots B_{S i}, \ldots, B_{S m}$.
Second, set two parallel compression functions f_{1} and f_{2}, which are similar compression functions outputting chaining-value with same length:
f_{1} outputs k (assume $k \geq 8$) 64-bit values of $C V_{O i}$ and f_{2} outputs $k 64$-bit values of $C V_{S i} . f_{1}$ acts the original blocks, f_{2} acts the regrouped blocks,for message x , the hash function $H(x)$, such that
for $1 \leq i \leq m$,
$C V_{0}=I V$
$C V_{i}=C V_{O i}+C V_{S i} \quad$ where " + " is 2^{64} modulo addition.
$C V_{O i}=f_{1}\left(C V_{i-1}, B_{i}\right) ; C V_{S i}=f_{2}\left(C V_{i-1}, B_{S i}\right)$
$H(x)=C V_{m}$
Where $C V_{O i}$ is the i th output of the original block B_{i};
$C V_{S i}$ is the i th output of the regrouped block $B_{S i}$.
This is a simple proposal, and we can get a stronger vision.
Based on the previous proposal, we add a step so called "Second Hash".

Make the last regrouped block $B_{S m}$ a extra-block $B_{x t a}$:
Add the chaining-value $C V_{O m}$ and $C V_{S m}$ into the message of block $B_{S m}$.
$B_{S m}$ is written as: $B_{S m}\left(u_{0}, u_{1}, \ldots, u_{15}\right)$;
the output of f_{1} is written as: $C V_{O m}\left(V_{O 1}, V_{O 2}, \ldots, V_{O k}\right)$;
the output of f_{2} is written as: $C V_{S m}\left(V_{S 1}, V_{S 2}, \ldots, V_{S k}\right)$,
then get 16 variables from the each first 8 variables of $C V_{O m}$ and $C V_{S m}$, such that:
$\left(V_{O 1}, V_{O 2}, \ldots, V_{O 8}, V_{S 1}, V_{S 2}, \ldots, V_{S 8}\right)$ and compute:
$u_{0}=u_{0}+V_{O 1}, u_{1}=u_{1}+V_{O 2}, \ldots, u_{7}=u_{7}+V_{O 8} ;$

$$
u_{8}=u_{8}+V_{S 1}, u_{9}=u_{9}+V_{S 2}, \ldots, u_{15}=u_{15}+V_{S 8}
$$

Compute the extra block $B_{x t a}$ by f_{1} and f_{2} :

$$
\begin{aligned}
& C V_{O}=f_{1}\left(C V_{m}, B_{x t a}\right) \\
& C V_{S}=f_{2}\left(I V, B_{x t a}\right) \\
& H(x)=C V_{O}+C V_{S}
\end{aligned}
$$

We may select a new strong-avalanche hash function to work as the two parallel compression functions f_{1} and f_{2}, and to resist the differential attacks on collision resistance.

4 summary

That the main weakness of a iterating hash function is it can be modularized.The attackers make use of this and develop various attacks.

Our purpose is how to break the modularization.Based on the two parallel modes which called "original" and "shift", we built the proposal,and the "Second Hash" is helpful. It seems that the iterating hash functions should be revalued, even though that the candidates of SH3 are advanced,the task of building a real secure hash function isn't finished.

5 References

[1]Xiaoyun Wang and Hongbo Yu How to Break MD5 and Other Hash Functions EUROCRYPT 2005, LNCS 3494, pp. 19C35, 2005
[2]Wang,X. ,Yin,Y. ,and Yu,H.Finding Collisions in the Full SHA-1, ,Proceedings-Crypto'05, 2005 ,Published-Spring-Verlag
[3] Antoine Joux Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions,In Proceedings of CRYPTO, LNCS 3152, pp. 306-316, Springer, 2004
[4] John Kelsey, Bruce Schneier Second Preimages on n-Bit Hash Functions for Much Less than 2^{n} Work In Proceedings of EUROCRYPT, LNCS 3494, pp. 474-490, Springer, 2005
[5]John Kelsey, Tadayoshi Kohno Herding Hash Functions and the Nostradamus Attack In Proceedings of EUROCRYPT, LNCS 4004, pp. 183-200, Springer, 2006
[6]Ronald L. Rivest Abelian square-free dithering for iterated hash functions2005
[7]Richard D. Dean Formal Aspects of Mobile Code Security1999

6 Appendix

The herding attack of multi-block massages P and S In Shift Mode

P and S are multi-block massages P contains m_{1} (Assume m_{1} is an odd number) blocks,such that
$P\left(P_{1}, P_{2}, \ldots, P_{\frac{m_{1}+1}{2}}, \ldots, P_{m_{1}}\right)$.
And S contains m_{2} (Assume m_{2} is an odd number also,and $m_{1}>m_{2}$) blocks, $S\left(S_{1}, S_{2}, \ldots, S_{\frac{m_{2}+1}{2}}, \ldots, S_{m_{2}}\right)$.
Then ,for pre-computing,the single shifted message are $\left(m_{1}, m_{2}\right.$ are odd numbers,according to Formula(1)):

$$
\begin{aligned}
& \overbrace{P}(\overbrace{P_{\frac{m_{1}+1}{2}}} P_{P_{\frac{m_{1}+3}{2}}}, \ldots, \overbrace{P_{m_{1}-1}}), \overbrace{P_{m_{1}}}, \ldots, \overbrace{P_{\frac{m_{1}-1}{2}}} \quad \overbrace{P_{\frac{m_{1}+1}{}}}) \\
& \overbrace{S}(\overbrace{S_{\frac{m_{2}+1}{2}}}^{2} S_{\frac{m_{2}+3}{2}}^{2}, \ldots, \overbrace{S_{m_{2}-1} S_{m_{2}}}, \overbrace{S_{m_{2}} S_{1}}, \ldots, \overbrace{S_{\frac{m_{2}-1}{2}}}^{\overbrace{S_{m_{2}+1}^{2}}})
\end{aligned}
$$

Assume that: $f(I V, \overbrace{P})=z_{1}, f(z_{1}, \overbrace{S})=h$.
We'll see ,whether" $f(I V, P S)=h$ " can be gotten.
P, S are cascaded to be a m-block massage $P S$
$P S\left(P_{1}, P_{2}, \ldots, P_{\frac{m}{2}+1}, \ldots, P_{m_{1}}, S_{1}, S_{2}, \ldots, S_{m_{2}}\right)$.
$m=m_{1}+m_{2}, m$ is an even number,according to Formula(2), $P_{\frac{m}{2}+1}$ is the cutting point,the shifted message of $P S$ is:
$(\overbrace{P_{\frac{m}{2}+1} P_{\frac{m}{2}}+2}, \ldots, \overbrace{P_{m_{1}-1} P_{m_{1}}}, \overbrace{P_{m_{1}} S_{1}}, \ldots, \overbrace{S_{m_{2}-1}} \overbrace{S_{m_{2}}}, \overbrace{S_{m_{2}} P_{1}}, \overbrace{P_{2} P_{3}}, \ldots, \overbrace{P_{\frac{m_{1}-m_{2}}{2}} P_{\frac{m_{1}-m_{2}}{2}+1}}$,
$\overbrace{P_{\frac{m_{1}-m_{2}}{2}+1} P_{\frac{m_{1}-m_{2}}{2}+2}}, \ldots, \overbrace{P_{\frac{m}{2}} P_{\frac{m}{2}+1}})$
Let P^{\prime} denotes the message group of the first m_{1} shifted blocks, P^{\prime} :

$$
(\overbrace{P_{\frac{m}{2}+1} P_{\frac{m}{2}+2}}, \ldots, \overbrace{P_{m_{1}-1} P_{m_{1}}}, \overbrace{P_{m_{1}} S_{1}}, \ldots, \overbrace{S_{m_{2}-1}}, \overbrace{S_{m_{2}}}, \overbrace{{m_{2}}_{2} P_{1}}, \overbrace{P_{2} P_{3}}, \ldots, \overbrace{P_{\frac{m_{1}-m_{2}}{} P_{m_{1}-m_{2}}+1}})
$$

Obviously it's different from \overbrace{P},so,we can't get $f\left(I V, P^{\prime}\right)=z_{1}$.
Let S^{\prime} denotes the message group of the left m_{2} blocks, S^{\prime} :
$(\overbrace{P_{\frac{m_{1}-m_{2}}{2}+1} P_{\frac{m_{1}-m_{2}}{2}}+2}, \ldots, \overbrace{P_{\frac{m}{2}} P_{\frac{m}{2}+1}})$
It's also different from \overbrace{S}.we can't get $f\left(z_{1}, S^{\prime}\right)=h$
Therefore, we can't get $f(I V, P S)=h$.

