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Abstract

At Eurocrypt 2006, Boneh et al. [1] presented a fully collusion-resistant traitor tracing scheme.
Their scheme is based on composite order bilinear groups, and its security depends on the hardness
of the subgroup decision assumption. In this paper we present a new scheme which is based on prime
order bilinear groups, and its security depends on the hardness of the decisional linear assumption.
Because of this, for the same level of security, our scheme allows for better efficiency (depending
on the parameters). For example, if encryption time was the major parameter of concern, then for
the same level of security our scheme could encrypt approximately 18 times faster. Also, unlike the
Boneh et al. scheme, our scheme does not require a trusted tracing party.

This paper provides general guidelines for transforming a scheme based on composite order bi-
linear groups to one based on prime order bilinear groups.

1 Introduction

Consider a setup in which a content distributor, like a cable/radio broadcaster, wants to broadcast
content while making sure that only those users who have paid for the service have access to the content.
In such a system, each user will need a decoder with a secret key in order to decrypt the content. A naive
solution would be to use an encryption system such that the corresponding secret key is known to all
legitimate users. The broadcasting authority can then encrypt the content and broadcast the ciphertext.
All legitimate users with the secret key will be able to decrypt the content. But if a user’s key gets
hacked, then the attacker could build pirate decoders which it could then distribute. A malicious user
could also use his own key to build pirate decoders. The problem is that in this system there is no way
to identify rogue users. The traitor tracing system is designed to solve this problem. The purpose of
a traitor tracing system, introduced by Chor et al. [2], is to help content distributors identify pirates.1

Given a pirate decoder, a traitor tracing system can identify at least one of the users whose key must
have been used to construct the pirate decoder. The distributor can then hold the corresponding user
responsible for the loss incurred.

A first-hand solution to the problem just described would be to have N instances of the encryption
system (in a system of N users) such that the ith secret key is known to the ith user. The broadcasting
authority could encrypt the content under each public key and broadcast all the ciphertexts. Each
legitimate user will then be able to decrypt the part of ciphertext corresponding to its private key. Given
a pirate decoder, it is also possible for this system to identify at least one of the rogue users. But this
system is very inefficient. For this system, the ciphertext size is linear in the number of users.

To overcome this limitation of inefficiency, many results with different levels of security guarantees
have been proposed. One interesting security property is the t-collusion-resistant traitor tracing. A
t-collusion-resistant tracing [3, 4, 5, 6, 7, 8, 9, 10] system will work as long as the pirate uses fewer than
t user keys in building the pirate box. A t-collusion-resistant traitor tracing system with constant size
ciphertexts [11] has also been constructed, but at the cost of increased private key sizes (quadratic in
the collusion bound). These systems fail as soon as more than t user keys are used in constructing pirate
decoders. A system that allows for traitor tracing for any value of t is called fully collusion-resistant.
Achieving sublinear size ciphertexts for a fully collusion-resistant traitor tracing system is hard. Boneh

1It should be observed that a traitor tracing system does not help to protect content. A user receiving the content can
just make copies and re-distribute them. The purpose of a traitor tracing system is to protect the broadcast channel itself.
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et al. [1] presented a fully collusion-resistant traitor tracing system with O(
√
N) size ciphertexts, where

N is the number of users.
Another issue of concern in these systems is the need for a tracing authority. Depending on whether

the tracing party is trusted, traitor tracing systems can be of two types. First kind requires a trusted
tracing party [1, 11] that uses a secret tracing key to identify rogue users. Second type of traitor tracing
systems allow for a public tracing algorithm that does not require any secret inputs [10, 12, 13, 14, 15].
Traitor tracing systems with public tracing are preferable in certain scenarios.

As an extension to the traitor tracing, some systems combine traitor tracing with broadcast encryp-
tion [16] to obtain trace and revoke [17, 18, 19, 20, 21, 22] functionality. This allows the broadcasting
authority to revoke a rogue users key, once it is identified.

1.1 Our Contribution

Composite order bilinear groups [23] are a very useful tool and have been used to construct schemes
that were previously not known. Hardness assumptions in these groups are based on factoring. Because
of sub-exponential attacks against factoring for appropriate security, much larger groups have to be
used. The large size of these groups makes them impractical. For example, just a simple exponentiation
in composite order bilinear groups is about 25 times slower than one in prime order groups. Also, one
pairing operation in these larger composite order groups is approximately 30 times costlier than a pairing
in prime order groups. The focus of this research has been to make schemes based on composite order
bilinear groups practical.

Recently Boneh, Sahai and Waters [1] (which we refer to as the BSW scheme) came up with a traitor
tracing system that was fully collusion-resistant and achieved O(

√
N) size ciphertexts. Their traitor

tracing scheme was based on composite order bilinear groups [23]. Its security relied on the hardness
of the subgroup hiding assumption. We present a new traitor tracing system that achieves the same
properties, but does not use composite order bilinear groups. Instead our scheme is based on prime
order bilinear groups, and its security depends on the hardness of the decisional linear assumption. This
allows for shorter group elements and a more efficient scheme in certain scenarios (see Section 7 for
details). Also, unlike the BSW scheme, our scheme does not need a trusted tracing party. It should be
noted that Boneh and Waters [17] improve on [1] and obtain public tracing in their trace and revoke
system, but their scheme requires O(

√
N) size private keys. On the other hand private keys in our system

are of a constant size.
Now we roughly describe the key ideas used in converting a scheme based on composite order bilinear

groups to one based on prime order bilinear groups. These ideas may be useful to convert other schemes
as well. The key intuitive idea is that we can replace elements of subgroups in the composite order groups
with corresponding analogs in carefully designed vector spaces. An analogous 2-D vector space does not
preserve the hardness properties associated with composite order bilinear groups, but fortunately a 3-D
vector space with a 2-D subspace and a 1-D subspace does. The elements of this 2-D subspace of the
3-D space differ in a fundamental way from their composite order counterparts. This difference limits
when this transformation can be done, but also opens up the possibility of solving problems for which
solutions were not previously known. These ideas are explained more formally in Section 4.

1.2 Roadmap

The remainder of this paper is organized as follows: In Sections 2 and 3, we review some definitions
and present technical preliminaries. In Section 4, we highlight the new ideas presented in this paper.
In Section 5 we give the new scheme and present its proof in Section 6.1. We discuss some of the
consequences of the scheme in Section 7, and conclude in Section 8.

2 Traitor Tracing and PLBE

In Boneh et al. [1], a new primitive called Private Linear Broadcast Encryption (PLBE) was introduced
and showed that a PLBE is sufficient for implementing a fully collusion-resistant traitor tracing scheme.
We improve on the BSW PLBE scheme. Since we mainly focus on the PLBE system in our paper, we
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only give an informal treatment of the traitor tracing system and its relation to PLBE. However, we give
details on PLBE definitions and its security properties.

2.1 Traitor Tracing

A traitor tracing system provides protection for a broadcast encrypter. It consists of four algorithms:
Setup, Encrypt, Decrypt and Trace. The Setup algorithm generates the secret keys for all the users in the
system and the public parameters for the system. By using these public parameters and the algorithm
Encrypt, any user can encrypt a message to all the users in the system. A recipient can use his secret
key and the Decrypt algorithm to decrypt a ciphertext. In case an authority discovers a pirate decoder,
it can then use the Trace algorithm to identify at least one of the users whose private key must have
been used in the construction of the pirate decoder.

The desired security properties of a traitor tracing system are the following:

• Semantic Security: An adversary that does not have access to the secret key of any user should
not be able to distinguish between encryptions of two messages of its choice.

• Traceability Against Arbitrary Collusion: Consider a case where an adversary has access
to an arbitrary number of keys of its choice and generates a pirate decoder. Then the tracing
algorithm should be able to use the pirate decoder and detect at least one of the users whose key
must have been used to construct the pirate decoder.

2.2 PLBE

A Private Linear Broadcast Encryption (PLBE) system consists of four algorithms: SetupPLBE , EncryptPLBE ,
DecryptPLBE , TrEncryptPLBE . These algorithms are very similar to the BSW PLBE system [1] except
that our system does not need a tracing key.

• (PK,K1,K2 . . .KN ) $←− SetupPLBE(λ): SetupPLBE algorithm takes as input the security param-
eter λ and sets up the public parameters PK for the system along with generating the secret keys
(K1,K2 . . .KN ) for all the users in the system.

• C $←− EncryptPLBE(PK,M): Any user can encrypt a message M using just the public key PK,
and any user that possess one of the secret keys can decrypt the ciphertext.

• M ← Decrypt(C,Ki, i): Any user i having access to the private key Ki can decrypt a ciphertext
C and obtain the corresponding message M .

• C $←− TrEncryptPLBE(PK, i,M): The TrEncryptPLBE algorithm takes in a message M and
encrypts it to ciphertext C such that only users {i . . . N} with secret keys (Ki,Ki+1 . . .KN ) can
decrypt the message. This algorithm is used only for tracing.

2.3 Desired Security Properties

A PLBE system is considered secure if no adversary has significant advantage in the following games:

• Indistinguishability: This property requires that the ciphertexts generated by EncryptPLBE(PK,M)
and TrEncryptPLBE(PK, 1,M) are indistinguishable. The game between the adversary and the
challenger proceeds as follows.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key
PK and the secret keys K1,K2 . . .KN to the adversary.

– Challenge: The adversary sends a message M to the challenger. The challenger flips an
unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets the ciphertext as

C
$←− EncryptPLBE(PK,M), and as C $←− TrEncryptPLBE(PK, 1,M) otherwise. It sends C

to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.
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The advantage of the adversary is AdvID = |Pr[β′ = β]− 1
2 |.

• Index Hiding: This property prevents an adversary from distinguishing between TrEncryptPLBE(PK, i,M)
and TrEncryptPLBE(PK, i + 1,M) when the adversary knows all the secret keys except the ith

secret key. The game between the adversary and the challenger proceeds as follows. The game
takes the index i as input which is given as input to both the challenger and the adversary.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key
PK and the secret keys K1,K2 . . .Ki−1,Ki+1 . . .KN to the adversary. The adversary does
not know Ki.

– Challenge: The adversary sends a message M to the challenger. The challenger flips an unbi-
ased coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as C $←− TrEncryptPLBE(PK, i+
β,M) and sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvIH [i] = |Pr[β′ = β]− 1
2 |.

• Message Hiding: This property requires that an adversary can not break semantic security when
encryption is performed on input i = N + 1. The game between the adversary and the challenger
proceeds as follows.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key
PK and the secret keys K1,K2 . . .KN to the adversary.

– Challenge: The adversary sends messages M0,M1 to the challenger. The challenger flips an
unbiased coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as C $←− TrEncryptPLBE(PK,N+
1,Mβ) and sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvMH = |Pr[β′ = β]− 1
2 |.

Definition 2.1 An N-user PLBE system is considered secure if for all polynomial time adversaries
AdvID, AdvIH [i] for all i ∈ {1 . . . N} and AdvMH are negligible in the security parameter λ.

2.4 Equivalence of Traitor Tracing and PLBE

We have presented an intuition behind the argument. A more formal argument appears in [1]. The
tracing algorithm will be given a pirate decoder that is able to decrypt messages encrypted using
TrEncrypt(PK, 1,M) with significant probability. The probability of success of this pirate decoder,
when encryption is done to user N + 1, should be negligible because of the message hiding game. The
tracing algorithm of the traitor tracing scheme estimates the probability of success of the adversary
when the ciphertext is generated using TrEncrypt(PK, i,M) for every i ∈ {1 . . . N + 1}. Since the
probability is being reduced from significant to negligible between encryptions to TrEncrypt(PK, 1,M)
and TrEncrypt(PK,N + 1,M), the probability must fall significantly for some i ∈ {1 . . . N + 1}. We
argue that the given pirate decoder could not have done this without the knowledge of the ith key. If
it didn’t know the ith key, then we could use this pirate decoder as an adversary in the Index Hiding
game with parameter i and distinguish between TrEncrypt(PK, i,M) and TrEncrypt(PK, i + 1,M)
with significant probability. But this can not be true for a secure PLBE. Hence, we can use a secure
PLBE to construct a traitor tracing scheme.

3 Background on Bilinear Maps

Our scheme is based on bilinear groups of prime order. below, we provide a brief background on these
groups. Since this paper improves on the BSW scheme [1] that was based on composite order bilinear
groups. We also give an informal overview of the composite order bilinear groups.
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3.1 Bilinear Groups

Bilinear Groups of Prime Order. Consider two multiplicative cyclic groups G,GT of prime order r.
Let g be a generator of G. We define a bilinear map e : G×G→ GT with the following properties:

• e is non-degenerate. In other words, e(g, g) should not evaluate to the identity element of GT .

• The map is bilinear. More formally, ∀u, v ∈ G and a, b ∈ Zr we should have e(ua, vb) = e(u, v)ab.

Bilinear groups G, for which group operations can be performed efficiently, and for which a target group
GT exists such that the corresponding bilinear map e : G×G can be computed efficiently are well known.
It can be seen that this bilinear map is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Bilinear Groups of Composite Order. Bilinear groups of composite order are very similar to
the ones of prime order. The only difference is that the order of the groups G and GT is composite.
Lets say the order is n, where n = pq. p and q are large primes depending on the security parameter.
In composite order bilinear groups, the non-degeneracy property requires the existence of a generator g
of G such that GT is also of order n. We will use Gp and Gq to denote the p and q subgroups of G,
respectively.

3.2 Complexity Assumptions

Let G be an algorithm that takes the security parameter λ as input and generates the tuple (r,G,GT , e).
Decision 3-party Diffie Hellman. This assumption is popular and has been used previously in

a number of schemes including the BSW PLBE scheme [1]. A challenger generates a bilinear group G
using (r,G,GT , e)

$←− G(λ). It generates a random generator g for the group G. It chooses a, b, c $←− Zr.
An algorithmA, solving the Decision 3-party Diffie Hellman problem is given Z = (r,G,GT , e, g, g

a, gb, gc).
The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets T = gabc

and T = R otherwise, where R $←− G. It then sends T to A. The adversary returns a guess β′ ∈ {0, 1}
of β. The advantage of A in this game is AdvD3DH = |Pr[β = β′] − 1

2 |. The Decision 3-party Diffie
Hellman assumption states that this advantage is negligible in the security parameter.

Decisional Linear Assumption. This is a simple extension of the Decisional Diffie Hellman
(DDH) Assumption introduced [24] for bilinear groups in which the DDH assumption is actually easy.

A challenger generates a bilinear group G using (r,G,GT , e)
$←− G(λ). It generates a random generator

g for the group G. It chooses a, b, c, x, y $←− Zr.
An algorithmA, solving the Decisional Linear Assumption problem is given Z = (r,G,GT , e, g, g

a, gb, gc, gax, gby).
The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets T = gc(x+y)

and T = R otherwise, where R $←− G. It then sends T to A. The adversary returns a guess β′ ∈ {0, 1}
of β. The advantage of A in this game is AdvDLN = |Pr[β = β′] − 1

2 |. Decisional Linear Assumption
states that this advantage is negligible in the security parameter.

Subgroup Decision Assumption. Since we do not use composite order groups in this paper, we
do no delve deeply into this assumption. Instead we give an informal idea about the assumption. This
problem was introduced by Boneh et al. [25] and states that for a bilinear group G of composite order
n = pq, any algorithm A, given a random element g ∈ G and a random element gq ∈ Gq, can not
distinguish between a random element in G and a random element in Gq.

4 Key Ideas

Consider a composite order bilinear group Gn of order n, where n = pq and p, q are primes. Let us denote
elements belonging to the p-order subgroup (called Gp) and the q-order subgroup (called Gq) of Gn by
subscripts p and q, respectively. The BSW scheme [1] (and most other composite order bilinear group
based schemes) relies on the fact that if gp ∈ Gp and gq ∈ Gq, then e(gp, gq) = 1. The same effect can be
obtained in a prime order group by using vector spaces. For a group G of prime order r, with generator
g, consider tuples of elements (ga, gb) (analogous to gq) and (g−b, ga) (analogous to gp) belonging to the
vector space V = G2 (analogous to Gn), where a, b are random in Zr. Define vectors ~v1 = (a, b) and
~v2 = (−b, a). Note that they are orthogonal vectors. The subspace Vp (analogous to Gp) corresponds to
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the set of elements (gap̃, gbp̃) such that p̃ ∈ Zr; and similarly subspace, Vq (analogous to Gq) corresponds
to the set of elements (g−bq̃, gaq̃) such that q̃ ∈ Zr. It is easy to see that pairing an element of Vp with an
element of Vq computed2 as e(ga, g−b) · e(gb, ga) yields the identity element (analogous to e(gp, gq) = 1).

Now we need to build on an analog of the subgroup decision assumption (SDH). SDH informally
states that given an element of G and an element of Gq, it is hard to distinguish a random element in
Gq from a random element in G. But this assumption does not hold with Vp and Vq. Given an element
(u, v) ∈ Vq, we can construct (v−1, u) ∈ Vp. Using these two elements, it is trivial to distinguish an
element in Vq from an element in V .

To fix this problem we consider a 3-dimensional vector space, V = G3. Consider ~v1 = (a, 0, c),
~v2 = (0, b, c) and ~v3 = ~v1 × ~v2, where a, b, c are random elements in Zr. Now let us define the subspace
Vq by all elements (gaq̃, gbq̃

′
, gc(q̃+q̃

′)) such that q̃, q̃′ ∈ Zr, and let the subspace Vp be defined by elements
(g−bcp̃, g−acp̃, gabp̃) such that p̃ ∈ Zr. For this system, also pairing an element of Vq with an element
of Vp yields the identity element. This system also has an analog of the subgroup decision assumption.
Given (ga, gb, gc), we want it to be hard to distinguish a random element (gaq̃, gbq̃

′
, gc(q̃+q̃

′)) ∈ Vq from
an element (gx1 , gx2 , gx3) ∈ V , where x1, x2, x3 are random. This follows directly from the decisional
linear assumption [24].

The main difference between the subspaces defined using composite order bilinear groups and sub-
spaces defined using prime order bilinear groups is the flexibility in the way elements from the sub-spaces
can be manipulated. In the case of composite order bilinear groups, it is easy to randomize elements
form the sub-space Vq; but on the other hand, for prime order groups similar randomization is hard.
This prevents the transformation from being applicable in general.

A direct compilation of the BSW traitor tracing scheme with the new ideas presented earlier doesn’t
work because of the reasons mentioned in the previous paragraph. But this can be fixed by allowing
the encrypter to define the subspaces at the time of encryption. This was not possible in the BSW
traitor tracing scheme [1] because the construction was dependent on the primes p, q. More generally,
this trick allows, and in fact, necessitates a late binding of the parameters that define the subspaces.
Other schemes satisfying this property should also be easy to simplify using our trick. Another crucial
difference between our scheme and the BSW scheme is that our scheme does not have subspaces in the
target group. Even some of the elements in the base group are not moved to the vector space.

5 Our PLBE Construction

Our construction of PLBE, just like the BSW scheme [1], obtains a fully collusion-resistant system with
O(
√
N) size ciphertext. However, in our scheme, sublinear size ciphertexts are obtained in a novel way

(as explained in Section 4). This allows our construction to rely just on prime order bilinear groups.
The number of users in the system, N , is assumed to be equal to m2 for some m. If the number of

users is not a perfect square, then we add some dummy users to pad N to the next perfect square. These
dummy users do not take part in the system in any way. We arrange the users in an m×m matrix. The
user u : 1 ≤ u ≤ N in the system is identified by the (x, y) entry of the matrix, where 1 ≤ x, y ≤ m and
u = (x− 1) ·m+ y.

The ciphertext generated by EncryptPLBE or TrEncryptPLBE consists of a ciphertext component
for every row and a component for every column. For each row x the ciphertext consists of (Ax, Bx,
Rx,1, R̃x,1, Rx,2, R̃x,2, Rx,3, R̃x,3) and for every column y the ciphertext consists of (Cy,1, C̃y,1, Cy,2,
C̃y,2, Cy,3, C̃y,3).

An encryption to position (i, j) means that only users (x, y) with x > i or x = i & y ≥ j can decrypt
the message. An encryption to position (i, j) is obtained in the following way. (It is further illustrated
in Figure 1.)

• Column Ciphertext Components: Column ciphertext components for columns y ≥ j are well
formed in both subspaces Vp and Vq, while for columns y < j are well formed in Vq but are random
in Vp.

• Row Ciphertext Components: Row ciphertext components for rows x < i are completely
random, and these recipients can not obtain the message information theoretically. For row x = i,

2e((gx, gy), (gx′
, gy′

)) is evaluated as e(gx, gx′
) · e(gy , gy′

).
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︸ ︷︷ ︸
Well formed in both Vp, Vq

︷ ︸︸ ︷Well formed only in Vq
?

Column
j

-Row i } ← ♣


← ♥


← ♠

Figure 1: ♥ stands for “Random,” ♣ stands for “Well formed in Vp and Vq,” and ♠ stands for “Well
formed in Vq.”

the row ciphertext is well formed in both Vp and Vq. And for rows x > i they are well formed in
Vq and have no component in Vp.

A user in row i will be able to decrypt if the column ciphertext is also well formed in both Vp and
Vq. However a user in rows x > i, will always be able to decrypt because the row ciphertexts for
x > i do not have any component in Vp, and the component of column ciphertexts in Vp will simply
cancel out with the row ciphertexts.

Unlike [1] where primes p and q had to be fixed before the public parameters could be generated,
our scheme doesn’t fix the parameters a, b, c, and they are chosen randomly every time EncryptPLBE or
TrEncryptPLBE is performed.

The Scheme

The PLBE scheme consists of the algorithms: SetupPLBE , EncryptPLBE , TrEncryptPLBE , DecryptPLBE .

• (PK,K(1,1), · · ·K(1,m),K(2,1) · · ·K(m,m))← SetupPLBE (1λ, N = m2)

The SetupPLBE algorithm takes as input the security parameter λ and the number of users
N in the system. The algorithm generates a bilinear group G of large prime order r (size de-
pends on the security parameter). It chooses random generator g ∈ G. It then chooses random
r1, r2, r3, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr.
The public key PK of the PLBE system (along with the group description) is set to:

g,E1 = gr1 , E2 = gr2 , . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . ,Hm = gcm

The private key K(x,y) of user (x,y) is:

K(x,y) = gαx · grx·cy

The exponents used in the public key are kept secret by the setup authority.
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• C ← EncryptPLBE(PK,M)
The EncryptPLBE algorithm can be used by an user who knows the public key PK. And any
recipient having access to a private key can decrypt the generated ciphertext.
The algorithm chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}.
It also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).
It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. For each row
x ∈ {1 · · ·m}, it picks ~vx = q̃x ~v1 + q̃′x ~v2 where q̃x, q̃′x are random ∈ Zr.
The EncryptPLBE algorithm sets row ciphertexts as:

Rx,k = Ex
sxvx,k = grxvx,ksx : k = {1, 2, 3}

R̃x,k = Ex
sxvx,kη = grxvx,ksxη : k = {1, 2, 3}

Ax = Esxt( ~vx· ~vc)

Bx = M ·Gxsxt( ~vx· ~vc) = M · e(g, g)αxsxt( ~vx· ~vc)

And for every column y the algorithm sets the column ciphertext components as:

Cy,k = H
tvc,k
y gwy,kη = gcyvc,ktgwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

It should be noted that Ax remains in the base group. Is is not moved into the vector space.

• M ← DecryptPLBE(C,K(x,y), (x, y))
Recipient (x, y) uses the key K(x,y) to decrypt the ciphertext. It uses the parts of the ciphertext
corresponding to row x and column y.

M =
Bx

e(K(x,y), Ax)
·

3∏
k=1

e(Rx,k, Cy,k)

3∏
k=1

e(R̃x,k, C̃y,k)

(1)

• C ← TrEncryptPLBE(PK, (i, j),M)
This algorithm allows the tracing party to encrypt a message to the recipients who have row value
greater than i or those who have row value equal to i and column value greater than or equal to j.
The algorithm chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}.
It also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab). It
then sets ~vc = (vc,1, vc,2, vc,3) and ~v′

c = ~vc + vc,4 ~v3 where vc,1, vc,2, vc,3, vc,4 are chosen randomly
in Zr. It can be seen that ~vc and ~v′

c are fixed for one encryption. This is essential as it is only
because of this that we can use ~vx · ~vc in the row ciphertexts.
It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3}. For rows x < i it
sets the row ciphertext components as:

Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

(2)

It sets ~vi = q̃i · ~v1 + q̃′i · ~v2 + p̃i · ~v3 where q̃i, q̃′i, p̃i are random in Zr and for row x = i it sets row
ciphertext components as:

Ri,k = grivi,ksi : k = {1, 2, 3}

R̃i,k = grivi,ksiη : k = {1, 2, 3}
Ai = gsxt(~vi· ~vc)

Bi = M · e(g, g)αisit(~vi· ~vc)
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For each x ∈ {i + 1 · · ·m}, it picks ~vx = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃′x are random in Zr, and for
row x > i it sets row ciphertext components as:

Rx,k = grxvx,ksx : k = {1, 2, 3}

R̃x,k = grxvx,ksxη : k = {1, 2, 3}
Ax = gsxt( ~vx· ~vc)

Bx = M · e(g, g)αxsxt( ~vx· ~vc)

And for every column y < j

Cy,k = gcyv
′
c,kt · gwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

And for every column y ≥ j

Cy,k = gcyvc,kt · gwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

~vc is a random element in the V while ~v′
c varies from ~vc only in the component along Vp subspace.

~vi corresponds to a random element in V while ~vx for x > i correspond to elements in Vq. For
x > i, ~vx · ~vc = ~vx · ~v′

c while for x = i, ~vi · ~vc 6= ~vi · ~v′
c. This allows a user in row x > i to decrypt

the message independent of the column, while for a user in the row x = i, decryption is possible
only for columns with y ≥ j.

The correctness of the scheme follows by inspection.

6 Security Proof

6.1 Index Hiding

Theorem 6.1 If the Decision 3-party Diffie Hellman assumption and the decisional linear assumption
hold, then no probabilistic polynomial time adversary can distinguish between an encryption to two adja-
cent recipients in the index hiding game for any (i, j) where 1 ≤ i, j ≤ m with non-negligible probability.

Proof. We consider two possible cases. First, when the adversary tries to distinguish between ciphertexts
encrypted to (i, j) and (i, j+1) when 1 ≤ j < m. Second, when the adversary tries to distinguish between
ciphertexts encrypted to (i,m) and (i+ 1, 1) when 1 ≤ i < m. The first case follows by Lemma 6.2 and
the second case follows by Lemma 6.3. �

6.2 Index Hiding between (i, j) and (i, j + 1) when 1 ≤ j < m

Lemma 6.2 If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial
time adversary can distinguish between an encryption to recipient (i, j) and (i, j + 1) in the index hiding
game for any (i, j) where j < m with non-negligible probability.

Proof. This proof is similar to proof of Lemma 5.2 of [1], though some of the public parameter settings
are different. The details of the proof can be found in Appendix A. �

6.3 Index Hiding between (i,m) (i + 1,1)

Lemma 6.3 If the Decision 3-party Diffie Hellman assumption and the decisional linear assumption
hold, then no probabilistic polynomial time adversary can distinguish between an encryption to recipient
(i,m) and (i+ 1, 1) in the index hiding game for any 1 ≤ i < m with non-negligible probability.
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Proof. The proof of this lemma follows from a series of claims that establish the indistinguishability of
the following games.

• H1 Encrypt to column3 m, row i is the target row,4 row i+ 1 is the greater-than row.5

• H2 Encrypt to column m+ 1, row i is the target row, row i+ 1 is the greater-than row.

• H3 Encrypt to column m + 1, row i is the less-than row, row i + 1 is the greater-than row (no
target row).

• H4 Encrypt to column 1, row i is the less-than row, row i + 1 is the greater-than row (no target
row).

• H5 Encrypt to column 1, row i is the less-than row, row i+ 1 is the target row.

It can be observed that game H1 corresponds to the encryption being done to (i,m) and game H5

corresponds to encryption to (i+ 1, 1). The indistinguishability of the games H1 and H5, which follows
from claims 6.4, 6.5, 6.6, and 6.7, implies the lemma. �

Claim 6.4 If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial
time adversary can distinguish between games H1 and H2 with non-negligible probability.

Proof. This claim can be proved by applying the result of Lemma 6.2. �

Claim 6.5 If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial
time adversary can distinguish between games H2 and H3 with non-negligible probability.

Proof. The basic intuition behind the proof is to embed the problem in the ~vp
c part of ~vc. Since all

columns have a random component in Vp, we don’t need to actually generate this part. The complete
proof can be seen in Appendix B. �

Claim 6.6 If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial
time adversary can distinguish between games H3 and H4 with non-negligible probability.

Proof. This proof is very similar to the proof of Lemma 6.2. H3 to H4 can be expressed as a series of
games H3,m+1, H3,m · · · H3,1. In the game H3,j , all column ciphertexts (Cy, C̃y) are well formed for all
y such that j ≤ y ≤ m. It can be seen that H3,1 is the same as H4, and H3,m is the same as H3. We
prove the indistinguishability of games H3,j and H3,j+1 for all j where 1 ≤ j ≤ m. The proof for this is
similar to that of Lemma 6.2. It is, in fact, easier because there is no target row. We show the details
of this proof in Appendix C. �

Claim 6.7 If the decisional linear assumption holds, then no probabilistic polynomial time adversary
can distinguish between games H4 and H5 with non-negligible probability.

Proof. We show the details of this proof in Appendix D. �

6.4 Message Hiding

Theorem 6.8 No adversary can distinguish between two ciphertexts when the encryption is done to the
(m+ 1, 1).

Proof. This means that all rows will be completely random and independent of the message. Hence,
information theoretically the adversary has no way of identifying which message has been encrypted. �

3Columns greater than or equal to m are well formed, both in Vp and Vq .
4The row for which the row component of the ciphertext has well formed components, both in Vp and Vq .
5The first row with the row component of ciphertexts only in Vq .
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BSW Scheme [1] Our Scheme
Encryption 4 exponentiations and 1 dou-

ble exponentiation6 in G
4, 6 exponentiations7 in G1, G2 respectively
and 3 double exponentiation in G1

Decryption 3 pairings 7 pairings
Ciphertext Size 5

√
N elements in G 7

√
N, 6
√
N elements in G1, G2 respectively

Table 1: Table comparing the key parameters of interest

Symmetric Prime
Order

Asymmetric Prime
Order

Composite Order

Order (r) of G 160 bits less than 160 bits 1024 bits
Base Field (b) in G 512 bits 170 bits in G1 and

510 bits in G2

a few bits longer than or-
der of group

Exponentiation Time O(r · b2) O(r · b2) O(r · b2)
Pairing Time8 25 ms less than 64 ms9 757 ms

Table 2: Costs of different operations

7 Discussion

The BSW PLBE scheme [1] uses composite order bilinear groups. As pointed out in [26], currently, the
only known way to generate composite order groups is by symmetric bilinear groups. Our new scheme of
using prime order groups allows for more flexibility. We could use different underlying bilinear groups to
achieve desired parameters. For example, if the system is bandwidth constrained and we desire shorter
ciphertext size, then it might be a good idea to use Weil pairing based asymmetric bilinear groups [27].

As pointed out in [1], a real implementation of broadcast encryption will use a symmetric key cipher
under some key K. But this key K still needs to be distributed and that is where our system will
be used. By converting our encryption system to a Key Encapsulation Mechanism we can save on
computation and ciphertext size. Under this optimization, we do not need to evaluate Bx or include it

in the ciphertext. A user (x, y) can extract the key Kx = e(K(x,y), Ax)

3∏
i=1

e(R̃x, C̃y)

3∏
i=1

e(Rx, Cy)

. The ciphertext

would now have to contain an encryption of K under each of the Kx. The user can then derive K from
an encryption of it under Kx. The same trick is applicable in our system and we present the evaluation
taking this optimization into account.

Encryption time. The most important limiting factor of the BSW scheme was the encryption
time. This is because the scheme had to perform O(

√
N) exponentiations. One exponentiation in the

(based on Table 2) symmetric prime order bilinear group is roughly 10243

160·5122 ≈ 25 times faster than an
exponentiation in the composite order bilinear group. This implies that the overall encryption is roughly
9.4 times faster10. Using asymmetric groups encryption is roughly 10243×5

160·1702×10+160·5102×6 ≈ 18 times
faster.

Decryption time. The DecryptPLBE algorithm as in [1] required three bilinear map operations.
Even though decryption in our system requires seven pairing operations (shown in Table 1), our system
will be more efficient. This is because a pairing in prime order bilinear groups is more efficient than a
pairing in composite order bilinear groups (exact statistics can be found in Table 2).

6It involves evaluating uavb and is generally more efficient than two exponentiations.
7Setting column ciphertext components and all Ax to be in G1 and row ciphertext parts Rx,k, R̃x,k : k = {1, 2, 3} to be

in G2.
8These time estimates are for the PBC Library as presented online on its website. These are times corresponding to

pairings with no preprocessing.
9The time 64 ms is for groups G1 of size 210 bits. But 170 bits are sufficient for reasonable security and the pairing

time for these groups will be less than 64 ms.
10To simplify the analysis, we assume that double exponentiation costs exactly twice as much as a normal exponentiation.
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Ciphertext Size. The ciphertext size in the BSW scheme was 5 · 1024
√
N = 5120

√
N size. It is

slightly larger in our system (13 · 512
√
N). But our system allows use of asymmetric bilinear groups for

which we could achieve better performance of ciphertext size with some compromise on decryption time
performance. In that case, the elements from G1 will be 170 bits and elements from G2 will be 510 bits.
This means a total of 4250

√
N bits. The encryption time in this case will be the best, but the decryption

will be better for symmetric prime order bilinear groups.
Note that our new scheme is better than the BSW scheme, both in terms of encryption and decryp-

tion time under both symmetric and asymmetric prime order groups. It also produces slightly smaller
ciphertext if asymmetric bilinear group is used.

Both the schemes rely on the hardness of the Decision 3-party Diffie Hellman assumption. But,
our system’s security does not depend on the subgroup hiding assumption (a stronger assumption than
factoring). Instead it depends on the decisional linear assumption.

8 Conclusions and Ongoing Work

Boneh et al. [1] introduced a new primitive called the Private Linear Broadcast Encryption (PLBE) and
used it to build a traitor tracing system. Their system relied on composite order bilinear groups, and its
security depended on the hardness of the subgroup decision assumption. We present a new scheme which
is based on prime order bilinear groups, and its security depends on the hardness of the decisional linear
assumption. Because of this, our scheme also allows for better efficiency (depending on the parameters).
Our system is secure under arbitrary collusion and does not need a secret tracing key.

Our paper provides general guidelines for transforming a scheme based on composite order bilinear
groups to one based on prime order bilinear groups. These guidelines can be formalized and thus could
be useful in other settings. On going work includes optimizing this transformation in the context of
asymmetric prime order bilinear groups. Our traitor tracing scheme extends to the Trace and Revoke
system of Boneh and Waters [17]. We are also working on a concrete implementation of the above system
using the PBC Library.
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A Proof of Lemma 6.2

Consider an adversary A that succeeds in the index hiding game with a probability greater than ε. The
adversary is considered successful if it can distinguish between encryptions made to positions (i, j) and
(i, j+1). We build a reduction R that uses A to solve the Decision 3-party Diffie Hellman problem. The
reduction receives the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
Next, in the Setup phase the reduction based on the input (i, j) (the row and column the ad-

versary will attack) sets up the public and the private parameters. The reduction chooses random
r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr. It sets up the public parameters as:

g,E1 = gr1 , E2 = gr2 , . . . Ei = Bri . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hj = Ccj . . . , Hm = gcm

(3)

And the private key K(x,y) of user (x,y) is:

K(x,y) = gαx ·Brx·cy : x = i, y 6= j

K(x,y) = gαx · Crx·cy : x 6= i, y = j

Note that the distribution of the public and private parameters matches the distribution of parameters
in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction
then chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It also chooses random
a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).

Set gη = B.
It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let ~vq denote the

projection of ~v along the plane formed by ~v1 and ~v2. And let ~vp be the component along ~v3.
It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the

ciphertext as follows.

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

(4)

It sets ~vi = q̃i · ~v3 + q̃′i · ~v3 + p̃i · ~v3 where q̃i, q̃′i, p̃i are random in Zr.

x = i : Ri,k = grivi,ksi : k = {1, 2, 3}

R̃i,k = Brivi,ksi : k = {1, 2, 3}

Ai = Asit(
~vp
i ·

~vp
c ) · gsit(

~vq
i ·

~vq
c )

Bi = M · e(g,Ai)αi

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = Brxv
q
x,ksx : k = {1, 2, 3}

Ax = Bsxt(
~vq
x· ~vc)

Bx = M · e(g,B)αxsxt(
~vq
x· ~vc)
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Choose a random z ∈ Zr.

y < j : Cy,k = gzv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytv
q
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyv
q
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}

C̃y,k = A−cyv
p
c,kt · g−cytv

q
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then the ciphertext corresponding to (i, j) is well formed; and if T is
randomly chosen, then the encryption corresponds to (i, j + 1). The reduction will receive the guess γ
from A and it passes on the same value to the Decision 3-party Diffie Hellman challenger. The advantage
of the reduction is exactly equal to the advantage of the adversary A.

B Proof of Claim 6.5

Consider an adversary A that can distinguish between H2 and H3 with a probability greater than ε. We
build a reduction R that uses A to solve the Decision 3-party Diffie Hellman problem. The reduction
receives the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
Next, in the Setup phase the reduction based on the input i (the row the adversary wants to attack)

sets up the public and the private parameters. The reduction chooses random r1, r2, . . . ri−1, ri+1 . . . rm,
c1, c2 . . . cm, α1, α2 . . . αi−1, αi+1 . . . αm ∈ Zr. It sets gαx = ga·b and grx = B. It doesn’t know gab but
can generate Gi = e(A,B) and Kx,y = gabg((cy−a)b) = Bcy . It sets up the public parameters as:

g,E1 = gr1 . . . Ei = B . . . Em = grm ,

G1 = e(g, g)α1 , . . . Gi = e(A,B), . . . , Gm = e(g, g)αm ,

H1 = gc1 ·A−1, H2 = gc2 ·A−1 . . . Hm = gcm ·A−1

(5)

And the private key K(x,y) of user (x,y) is:

K(x,y) = gαx · (gcy ·A−1)
rx : x 6= i

K(x,y) = Bcy : x = i

Note that the distribution of the public and private parameters matches the distribution of parameters
in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction then
chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zq where k = {1, 2, 3}. It also chooses random
a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab). It then sets ~uc = (uc,1, uc,2, uc,3)
where uc,1, uc,2, uc,3 are chosen randomly in Zr. Let ~uq denote the projection of ~u along the plane formed
by ~v1 and ~v2 and ~up denote the projection of ~u along ~v3. Let gv

p
c,k = Cu

p
c,k . Note that by using this

value of vpc,k, we will not be able to generate a column ciphertext that has the right component in Vp;

but since all columns are random in Vp, we do not need to generate this term. Let gv
′p
c,k = gz·u

p
c,k , where

z is random in Zr. It also sets , ~vi = q̃i · ~v1 + q̃′i · ~v2 + p̃i · ~v3 where q̃i, q̃′i, p̃i are random in Zr. It also
chooses random z1,x,k, z2,x, z3,x ∈ Zq where 1 ≤ x < i and k ∈ {1, 2, 3}.
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Then it creates the ciphertext as:

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)33,x

x = i : Ri,k = Bvi,ksi : k = {1, 2, 3}

R̃i,k = Bvi,ksiη : k = {1, 2, 3}

Ai = gsit(
~vq
i ·

~vq
c ) · Csit(

~vp
i ·

~up
c )

Bi = M · e(A,B)sit(
~vq
i ·

~vq
c )
e(g, T )tsi(

~vp
i ·

~up
c )

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = grxv
q
x,ksxη : k = {1, 2, 3}

Ax = gsxt(
~vq
x· ~vq

c )

Bx = M · e(g, g)αxsxt(
~vq
x· ~vq

c )

Cy,k =
(
gcy ·A−1

)t(vq
c,k+v′p

c,k) · gwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then the ciphertext corresponding to row i corresponds to the target row; and
if T is randomly chosen, then the encryption corresponds to game H3. The reduction will receive the
guess γ from A, and it passes on the same value to the Decision 3-party Diffie Hellman challenger. The
advantage of the reduction is exactly equal to the advantage of the adversary A.

C Proof of Claim 6.6

Consider an adversary A that solves the index hiding game with a probability greater than ε. The
adversary is considered successful if it can distinguish between games H3,j and H3,j+1. We build a
reduction R that uses A to solve the Decision 3-party Diffie Hellman problem. The reduction receives
the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
Next, in the Setup phase the reduction based on the input (i, j) (the row and column the adversary

will attack) sets up the public and the private parameters. The reduction chooses random r1, r2, . . . rm,
c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr. It sets up the public parameters as:

g,E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hj = Ccj . . . , Hm = gcm

(6)

And the private key K(x,y) of user (x,y) is:

K(x,y) = gαx · grx·cy : y 6= j

K(x,y) = gαx · Crx·cy : y = j

Note that the distribution of the public and private parameters matches the distribution of parameters
in the real scheme.
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In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction
then chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It also chooses random
a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).

Set gη = B.
It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let ~vq denote the

projection of ~v along the plane formed by ~v1 and ~v2. And ~vp be the component along ~v3.
It chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the ciphertext

as follows.

x ≤ i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

(7)

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = Brxv
q
x,ksx : k = {1, 2, 3}

Ax = Bsxt(
~vq
x· ~vc)

Bx = M · e(g,B)αxsxt(
~vq
x· ~vc)

Choose a random z ∈ Zr.

y < j : Cy,k = gzv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytv
q
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyv
q
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}

C̃y,k = A−cyv
p
c,kt · g−cytv

q
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then we are in game H3,j ; and if T is randomly chosen, then the encryption
corresponds to the game H3,j+1. The reduction will receive the guess γ from A, and it passes on the
same value to the Decision 3-party Diffie Hellman challenger. The advantage of the reduction is exactly
equal to the advantage of the adversary A.

D Proof of Claim 6.7

Consider an adversary A that can distinguish between games H4 and H5 with a probability greater than
ε. We build a reduction R that uses A to solve the decisional linear problem. The reduction receives
the decisional linear challenge as:

G, g, ga, gb, gc, gax, gby, T
and it is expected to guess if T is gc(x+y) or if it is random.

Next, in the Setup phase the reduction based on the input i (the row the adversary will attack) sets up
the public and the private parameters. The reduction chooses random r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈
Zr. It sets up the public parameters as:

g,E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hm = gcm

(8)

And the private key K(x,y) of user (x,y) is:

K(x,y) = gαx · grx·cy : ∀x, y
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Note that the distribution of the public and private parameters matches the distribution of parameters
in the real scheme.

It sets gv1,1 = ga, gv1,2 = g0, gv1,3 = gc, gv2,1 = g0, gv2,2 = gb and gv2,3 = gc. A valid decisional
linear tuple will lie in the subspace formed by vectors ~v1 and ~v2. A decisional linear problem tuple will
be used for setting row ciphertext for row i+ 1. A valid tuple leads to encryption as in game H4, and a
random tuple will cause the encryption to be as in game H5.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction
then chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It then sets ~vc =
(vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr.

g( ~vx· ~vc) =
3∏
k=1

[gvx,k ]vc,k

It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x ≤ i and k ∈ {1, 2, 3}. Then it creates the
ciphertext as follows.

x ≤ i : Rx,k = gzq,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

It sets gvi+1,1 = gax, gvi+1,2 = gby and gvi+1,3 = T . For each x ∈ {i + 2 · · ·m}, it picks gvx,1 = gaq̃x ,
gvx,2 = gbq̃

′
x and gvx,3 = gc(q̃x+q̃′x) where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxvx,ksx : k = {1, 2, 3}

R̃x,k = grxvx,ksxη : k = {1, 2, 3}
Ax = gsxt( ~vx· ~vc)

Bx = M · e(g, g)αxsxt( ~vx· ~vc)

Cy,k = gcytvc,k · gwy,kη C̃y,k = gwy,k : k = {1, 2, 3}

If T corresponds to gc(x+y), then the ciphertext corresponds to game H4; and if T is randomly chosen,
then it corresponds to game H5. The reduction will receive the guess γ from A, and it passes on the
same value to the decisional linear challenger. The advantage of the reduction is exactly equal to the
advantage of the adversary A.
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