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Abstract. We apply the Cocks-Pinch method to obtain pairing-friendly com-

posite order groups with prescribed embedding degree associated to ordinary
elliptic curves, and we show that new security issues arise in the composite

order setting.

1. Introduction

Elliptic curve cryptography [22, 24] and efficient computations of pairings asso-
ciated to elliptic curves [25] have given rise in recent years to pairing-based cryp-
tography, an important emerging field in public key cryptography. A powerful
new idea in pairing-based cryptography is to use composite order groups instead
of prime order ones. This idea, due to Boneh, Goh, and Nissim, was used for par-
tial homomorphic encryption in [5], and since then it has been used in a number
of other important applications including non-interactive zero-knowledge proofs,
group and ring signatures, searching encrypted data, and fully collusion-resistant
traitor tracing [20, 6, 9, 10, 7, 21, 29, 12].

Initially, composite groups used in pairing-based cryptography were based on
supersingular elliptic curves as constructed in [5]. In this paper we show that it is
possible to obtain composite groups from ordinary (i.e., non-supersingular) elliptic
curves, however some care must be taken to avoid potential security problems.

Waters [30] pointed out that for certain applications, composite order bilinear
groups based on supersingular curves are insufficient; for example, constructions
that use composite order groups that rely on the Symmetric External Diffie-Hellman
(SXDH) assumption [2] cannot use supersingular curves. The assumption says
roughly that Decision Diffie-Hellman (DDH) is hard in both of the groups being
paired. Note that if there is an efficient isomorphism from a group G1 to a group
G2, and an efficiently computable non-degenerate pairing whose domain is G1×G2,
then DDH is easy in G1. Because of this, it is not known how to use supersingular
elliptic curves to construct pairings satisfying the SXDH assumption; ordinary el-
liptic curves such as the ones constructed in §5 and §6 here seem to be necessary
for such applications.

In this paper we show that while the Cocks-Pinch method for finding pairing-
friendly elliptic curves carries over essentially verbatim to the setting of composite
groups, this setting introduces some security issues that do not occur in the original
Cocks-Pinch construction.

This material is based upon work supported by the National Science Foundation under grants
DMS-0457481, DMS-0757807, CNS-0831004, CNS-0331640, and CNS-0832820 and the National
Security Agency under grants H98230-05-1-0044 and H98230-07-1-0039.
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The goal is to produce, on input k, a “suitable” composite integer N and an
elliptic curve E over a finite field Fq such that |E(Fq)| is a multiple of N and the
embedding degree of E with respect to N is k. This leads to pairings e : G1×G2 →
µN where G1 is the cyclic group generated by a point of order N in E(Fq), G2 is
a cyclic subgroup of E(Fqk) of order N , and µN ⊆ F×

qk is the cyclic group of N -th
roots of unity in F̄×q .

We slightly modify the Cocks-Pinch method, adapting it to the case where we
are searching for an elliptic curve of embedding degree k with a point whose order
N , rather than being a large prime, is a product of primes congruent to 1 modulo
k. For many applications of composite order pairing groups, N is a product of two
or three distinct primes. Our constructions are sufficiently general to allow N to
have an arbitrary number of prime factors where some factors may be repeated.

Next is a definition of embedding degree that applies to possibly composite
divisors N of the group order |E(Fq)|. However, what we construct are elliptic
curves with embedding degree k with respect to every prime divisor of N , which is
a stronger statement.

Definition 1.1. If q is a prime power, E is an elliptic curve over Fq, and N is
a divisor of the group order |E(Fq)| such that N is relatively prime to q, then the
embedding degree of E with respect to N is the order of q in the multiplicative
group (Z/NZ)×, i.e., the embedding degree is the smallest positive integer k such
that qk − 1 is divisible by N .

In §2 we recall the Boneh-Goh-Nissim construction of supersingular composite
order pairing-friendly groups. In §3 we recall the method of Cocks and Pinch.

In §4 we construct pairing-friendly groups of embedding degree 1 from ordi-
nary elliptic curves. We note that the SXDH assumption can be false for certain
subgroups of these curves by a result in Charles’ [13], as discussed in Section 4.1.

In §§5–6 we construct pairing-friendly groups of order N and embedding degree k
from ordinary elliptic curves, using the CM method for an imaginary quadratic field
Q(
√
−D). We give two versions. In the first version of the algorithm, we choose D

so that
√
−D 6∈ Q(ζk), where ζr will always denote a primitive r-th root of unity.

In the second version of the algorithm,
√
−D ∈ Q(ζk). Thus

√
−D = f(ζk) for

some polynomial f(x) ∈ Z[x]. We let s = f(X) (mod N), where X has order k
modulo each prime power divisor of N . This method gives a square root s of −D
(mod N) that (provably) does not leak information about the factorization of N .
We therefore recommend the second version of the algorithm, rather than the first.

In §7 we give the theorems that prove that the algorithms do what we claim. In
§8 we give further remarks that address issues of security and efficiency. In §9 we
give some details of our implementations of the algorithms.

The construction for embedding degree 1 is the simplest. In this case there are
no restrictions on the prime divisors of N , and no information is leaked about N ’s
factorization.

2. Supersingular composite order groups

We first recall the construction of supersingular composite order groups from
§2.1 of [5].

Step 1: Choose a square-free integer N > 3 that is not divisible by 3.



COMPOSITE ORDER ORDINARY ELLIPTIC CURVES 3

Step 2: Find the smallest positive integer w such that q = 3wN − 1 is a prime
number.

Step 3: The elliptic curve y2 = x3 + 1 over Fq has q+ 1 = 3wN points over Fq and
embedding degree 2 with respect to N .

3. Cocks-Pinch method

We next recall the Cocks-Pinch algorithm for finding pairing-friendly elliptic
curves. See Algorithm IX.4 on p. 211 of [19] or slide 22 of [17].
Input: a positive integer k; k will be the embedding degree,

a prime p congruent to 1 modulo k.
Output: a prime q;

an elliptic curve E over Fq of embedding degree k with respect to p.

Step 1: Choose an integer X that has order k in (Z/pZ)×.
Step 2: Choose a positive integer D (the CM discriminant) so that −D is a square

modulo p.
Step 3: Fix s (mod p) such that s2 ≡ −D (mod p).
Step 4: Take an integer Y congruent to ±(X − 1)s−1 (mod p).
Step 5: Let q = ((X + 1)2 +DY 2)/4.
Step 6: If q is a prime number, use the CM method to obtain an elliptic curve E

over Fq with trace t = X + 1, so

|E(Fq)| = q + 1− t = q −X.

Since q ≡ X (mod p), the group order |E(Fq)| is divisible by p, and k is the
embedding degree for E over Fq with respect to p.

If q is not a prime number, start again with a different X.
Recall that for the CM method, the input is a prime q of the form (a2 +Db2)/4,

and the output is an elliptic curve E over Fq with |E(Fq)| = q + 1− a.

4. Ordinary composite order groups with embedding degree 1

To construct ordinary composite order groups with embedding degree 1, do the
following (which is similar to what is done in the prime order case in Example 6.17
of [18], which follows §6 of [23]).
Input: a positive integer N (e.g., an RSA modulus).
Output: a prime q;

an elliptic curve E over Fq such that E[N ] ⊆ E(Fq).
Step 1: Choose a positive integer D suitable for the CM method.
Step 2: Let

q =


1 +DN2 if D ≡ 0, 4 (mod 6),
1 + 4DN2 if D ≡ 1, 3 (mod 6),
(1−N)2 +DN2 if D ≡ 5 (mod 6),
(1− 2N)2 +DN2 if D ≡ 2 (mod 6).

Step 3: If q is prime, use the CM method to obtain an elliptic curve over Fq that
has q − 1 = DN2 points when D ≡ 0, 4 (mod 6), q − 1 = 4DN2 points
when D ≡ 1, 3 (mod 6), q − 1 + 2N = (D + 1)N2 points when D ≡ 5
(mod 6), and q − 1 + 4N = (D + 4)N2 points when D ≡ 2 (mod 6). If q
is not prime, start over with a new D and/or a new N .
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Remarks 4.1.
(i) Since N |(q − 1), the embedding degree is 1.

(ii) In this case, the CM method produces an elliptic curve E such that E[N ] ⊆
E(Fq). The pairing is computed entirely in the ground field Fq, which is
optimal from an efficiency standpoint.

(iii) No information about N ’s factorization is leaked, since knowledge of N ’s
factors was not used.

(iv) When N and D are odd, then 1 + DN2 is even. When D ≡ 2 (mod 3),
then every integer of the form 1 + DY 2 is divisible by 3, so is not prime
(unless D = 2 and Y = ±1). This is why we needed to adjust q, as above,
in these cases.

(v) More simply, instead of Steps 1 and 2, one could take the smallest positive
integer D such that q := 1 + DN2 is prime. (This forces D to be 0 or
4 (mod 6). Also D is potentially large, and is not even known to exist.)
Given N , such a construction would provide elliptic curves E with E[N ] ⊆
E(Fq) for which q is about as small as possible.

Example 4.2. Let D = 16, and let N be any positive integer such that q :=
1 + 16N2 is prime. Then y2 = x3 − x has q − 1 = 16N2 points over Fq, and has
embedding degree 1 with respect to every divisor of N .

4.1. Distortion maps.

Definition 4.3. Suppose E is an elliptic curve over a finite field Fq, p is a prime
that does not divide q, and C is an order p subgroup of E. A distortion map for C
is an endomorphism f of E such that f(C) 6⊆ C.

When distortion maps exist for a pairing-based group, then the Decision Diffie-
Hellman Problem is easy for that group. The next result, which is part of Theorem
2.1(2) of [13], shows that distortion maps are common when the embedding degree
is 1.

Proposition 4.4 ([13]). Suppose p and q are distinct primes, and E is an ordinary
elliptic curve over Fq such that E[p] ⊆ Fq. Let O = End(E), an order in an
imaginary quadratic field K. Suppose p - [OK : O]Disc(K). If p is inert in K/Q,
then there are distortion maps for every order p subgroup of E[p]. If p is split in
K/Q, then all but two subgroups of E[p] of order p have distortion maps.

Proposition 4.4 has consequences for the Subgroup Decision Assumption on the
curves produced above. Recall that the Subgroup Decision Assumption [5], com-
monly used in pairing-based cryptography, says that given as input N = p1p2 and
a description of a cyclic group GN of order N , no efficient algorithm can distin-
guish the uniform distribution on GN from the uniform distribution on its order p1

subgroup. We discuss the implications of Proposition 4.4 to the Subgroup Decision
Assumption in the following remarks.

Remark 4.5. Suppose that E, q, and N are as in the algorithm above. Then
End(E) = OK , where K = Q(

√
−D). Now suppose that N = p1p2 where p1 is

split in K/Q, p2 is inert, and gcd(p1p2, 2D) = 1. Let Gp1 be one of the two order
p1 subgroups of E(Fq) that by Proposition 4.4 has no distortion maps and let Gp2
be any order p2 subgroup of E(Fq). Let GN = Gp1 + Gp2 ⊂ E[N ] ⊆ E(Fq). By
Proposition 4.4, Gp2 has distortion maps f ∈ End(E). Since Gp1 has no distortion
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maps, every distortion map f for Gp2 maps Gp1 to itself. As a result, if eN is
the Weil pairing, then eN (P, f(P )) = 1 if P ∈ Gp1 , but eN (P, f(P )) 6= 1 if P ∈
GN \ Gp1 . This observation gives an immediate algorithm to solve the Subgroup
Decision Problem in GN .

Remark 4.6. The attack on the Subgroup Decision Problem described in Re-
mark 4.5 applies whenever one chooses a subgroup GN ⊆ E(Fq) of order N = p1p2

such that its order p1 subgroup is one of the two subgroups of E[p1] that has no
distortion maps while the order p2 subgroup of GN has distortion maps. If one
chooses GN by choosing its generator to be a random point of E of order N , then
the probability that its order p1 subgroup is one of the two distortion-free subgroups
of E[p1] is negligible. Consequently the attack from Remark 4.5 is unlikely to apply
to a subgroup GN chosen this way. Nevertheless, to provably avoid the attack we
recommend that one always choose N and D so that all of the prime divisors of N
are inert in Q(

√
−D)/Q. This will ensure that the attack in Remark 4.5 does not

apply to any order N subgroup of E.

Remark 4.7. Alternatively, to avoid the attack in Remark 4.5 one could choose
a pair of distortion-free order N cyclic subgroups of E[N ], as below. This has the
advantage that one expects DDH to be hard in such groups. Suppose gcd(N, 2D) =
1 and all the prime divisors of N are split in Q(

√
−D)/Q. Using the factorization of

N , compute a square root s of −D (mod N). Let P ∈ E(Fq) be a point of order N ,
let σ be the endomorphism

√
−D ∈ End(E), let P− = (σ− s)P , let P+ = (σ+ s)P ,

and let G± be the subgroup generated by P±. Since (σ − s)(σ + s)E[N ] = 0, we
have (σ ∓ s)P± = 0. Then G+ ∩ G− = 0, and G+ and G− are distortion-free.
If both P± have exact order N (each has order N with probability ϕ(N)/N ≥
1 −

∑
p|N

1
p ; otherwise, repeat with a different P of order N), then G+ and G−

generate E[N ] and are the two desired subgroups. One expects SXDH to hold for
the pair (G+, G−). This construction leaks P+, P−, sP+, and sP−.

Example 4.8. In the setting of Example 4.2, we have End(E) = Z[i]. Suppose
p is a prime divisor of N . If α2 ≡ −1 (mod q), then f(x, y) = (−x, αy) is a
distortion map for each of the p+ 1 subgroups of order p ≡ 3 (mod 4), and for all
but two of the p + 1 subgroups of order p ≡ 1 (mod 4). Note that f is efficiently
computable, without knowing anything about the factorization of N . As discussed
in the previous two remarks, while we recommend choosing N so that all its prime
factors are congruent to 3 (mod 4) to avoid the attack on the Subgroup Decision
Problem described in Remark 4.5, if one wants SXDH to hold one could instead
take N so that all its prime factors are 1 (mod 4) and use distortion-free subgroups
as constructed in Remark 4.7.

5. Ordinary composite order groups, Version I

We generalize the Cocks-Pinch method to the case where p is replaced by a
composite N . In this version there is no restriction on the input k.
Input: a positive integer k; k will be the embedding degree,

distinct primes p1, . . . , pr congruent to 1 modulo k, and
positive integers α1, . . . , αr.
Let N =

∏r
i=1 p

αi
i .

Output: a prime q;
an elliptic curve E over Fq of embedding degree k with respect to N .
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Step 1: Choose an integer X that has order k in (Z/pαi
i Z)× for all i.

Step 2: Choose a positive square-free integer D (the CM discriminant) so that −D
is a square modulo N . If k is a multiple of 4, choose D so that D is not a
divisor of k/4. If k is not a multiple of 4, choose D so that either D is not
a divisor of k or D 6≡ 3 (mod 4).

Step 3: Fix any s (mod N) such that s2 ≡ −D (mod N).
Step 4: Take an integer Y congruent to ±(X − 1)s−1 (mod N).
Step 5: Let q = ((X + 1)2 +DY 2)/4 ∈ Q.
Step 6: If q is a prime number, use the CM method to obtain an elliptic curve E

over Fq with trace t = X + 1, so

|E(Fq)| = q + 1− t = q −X.

If q is not a prime number, start again with a new X and/or Y and/or D.

Remarks 5.1.

(i) Since q ≡ X (mod N), it follows that the group order |E(Fq)| is divisible
by N . The embedding degree for E over Fq is k with respect to every
divisor d > 1 of N , since X has order k modulo every divisor d > 1 of N .

(ii) When k = 2, one can simply take X = N − 1 (with odd primes p1, . . . , pr
and Y ≡ 2s−1 (mod N)), and take D ≡ 3 (mod 4) to ensure that q is an
integer.

(iii) The case of k = 1 in §4 can be derived from the above algorithm with
X = 1, Y = N when D ≡ 0, 4 (mod 6), X = 1, Y = 2N when D ≡ 1, 3
(mod 6), X = 1 + 2N , Y = 2N when D ≡ 5 (mod 6), and X = 1 − 4N ,
Y = 2N when D ≡ 2 (mod 6).

(iv) The fact that N is a product of primes that are 1 (mod k) is leaked in
this construction. In addition, a square root s of −D (mod N) is revealed
from q, N , and E. We do not know how to use this information to factor
N , but it is a potential security concern. In particular, the exposed square
root of −D (mod N) must be taken into account in any security proof
using these curves.

6. Ordinary composite order groups, Version II

The only steps in which Versions I and II differ are Steps 2 and 3.
Input: a positive integer k such that either 4|k or

k has a prime divisor that is congruent to 3 modulo 4,
distinct primes p1, . . . , pr congruent to 1 modulo k, and
positive integers α1, . . . , αr.
Let N =

∏r
i=1 p

αi
i .

Output: a prime q;
an elliptic curve E over Fq of embedding degree k with respect to N .

Step 1: Choose an integer X that has order k in (Z/pαi
i Z)× for all i.

Step 2: Choose a positive square-free divisor D of k such that if k is a multiple of
4 then D divides k/4, while if k is not a multiple of 4 then D ≡ 3 (mod 4).
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Step 3: With
(−D
a

)
denoting the Jacobi symbol, let

s =



2D−1∑
a=1

(a,2D)=1

(−D
a

)
X

ak
D (mod N) if D ≡ 3 (mod 4),

1
2

4D−1∑
a=1

(a,2D)=1

(−D
a

)
X

ak
4D (mod N) otherwise.

(By Remark 6.1(ii) below, s2 ≡ −D (mod N).)
Step 4: Take an integer Y congruent to ±(X − 1)s−1 (mod N).
Step 5: Let q = ((X + 1)2 +DY 2)/4 ∈ Q.
Step 6: If q is a prime number, use the CM method to obtain an elliptic curve E

over Fq with trace t = X + 1, so

|E(Fq)| = q + 1− t = q −X.

If q is not a prime number, start again with a different X and/or Y .

Remarks 6.1.

(i) Since s2 ≡ −D (mod N) and Y ≡ ±(X−1)s−1 (mod N), we have DY 2 ≡
−(X − 1)2 (mod N) and q = ((X + 1)2 + DY 2)/4 ≡ X (mod N). Since
|E(Fq)| = q−X, the group order is divisible by N . Since k is the order of
X modulo every divisor > 1 of N , we have N |(qk − 1) and the embedding
degree is k with respect to every divisor > 1 of N .

(ii) The restrictions on the input k and on D (in Step 2) ensure that
√
−D ∈

Q(ζk) (by Corollary 7.3 below), which then allows us to define s so that
s ≡ f(X) (mod N), where f(x) ∈ Z[x] is such that

√
−D = f(ζk) and

X has order k modulo each prime divisor of N (see Proposition 7.1). By
the definition of X we have N |Φk(X), where Φk is the k-th cyclotomic
polynomial. Then s2 ≡ −D (mod N), since s is the image of

√
−D under

the following homomorphism of rings:

Z[ζk] ∼= Z[x]/(Φk(x)) → Z/NZ√
−D = f(ζk) 7→ f(x) 7→ f(X) = s.

Since s was computed without using any knowledge about the factorization
of N , this method of computing a square root s of −D (mod N) does not
leak information about the factorization of N .

Example 6.2. A good example to use is when k = D = 3 and N is a product
of two (distinct) primes. In this case, the construction reveals N of the form p1p2

with primes p1 ≡ p2 ≡ 1 (mod 3), and X such that X3 ≡ 1 (mod N). Anyone can
compute s, Y , q, and E from N and X. For example, s ≡ 2X+ 1 (mod N) (giving
s2 ≡ −3 (mod N)). It is not known how to obtain any additional information
about p1 and p2, as long as X has order 3 modulo both p1 and p2 (which is the case
in our construction).

7. Computing s

The previous algorithm made use of the next result.
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Proposition 7.1. Suppose D is a square-free positive integer. Then

√
−D =



2D−1∑
a=1

(a,2D)=1

(−D
a

)
ζaD if D ≡ 3 (mod 4),

1
2

4D−1∑
a=1

(a,2D)=1

(−D
a

)
ζa4D otherwise.

Proof. Define a function χD : Z→ {±1} as follows:

χD(a) =



(
a
D

)
if D ≡ 3 (mod 4),

(−1)(a−1)/2
(
a
D

)
if D ≡ 1 (mod 4),

(−1)(a
2−1)/8

(
a
D/2

)
if D ≡ 6 (mod 8),

(−1)
a2−1

8 + a−1
2
(

a
D/2

)
if D ≡ 2 (mod 8).

Let d = D when D ≡ 3 (mod 4) and let d = 4D otherwise. It follows from Theorem
7 on p. 349 and Problem 8 on p. 354 of [8] that

√
−d =

d−1∑
a=0

(a,d)=1

χD(a)ζad .

(Note that the above definition of χD when D ≡ 2 (mod 8) corrects a typo in
Problem 8 of [8].) Using quadratic reciprocity, it is easy to check that when a is an
odd positive integer, then χD(a) =

(−D
a

)
, and the desired result then follows. �

The next result follows from standard algebraic number theory facts about qua-
dratic subfields of cyclotomic fields.

Proposition 7.2. Suppose d is a square-free integer. The smallest positive integer
k such that

√
d ∈ Q(ζk) is |d| if d ≡ 1 (mod 4) and is 4|d| if d 6≡ 1 (mod 4).

The following result that was used in Remark 6.1(ii) is an immediate corollary:

Corollary 7.3. Suppose D is a square-free positive integer.
(i) If k is a multiple of 4, then

√
−D ∈ Q(ζk) if and only if D divides k

4 .
(ii) If k is not a multiple of 4, then

√
−D ∈ Q(ζk) if and only if D divides k

and D ≡ 3 (mod 4).

8. Remarks

We give some remarks about the above constructions.

Remark 8.1. As pointed out in [17], the Cocks-Pinch method is good for con-
structing elliptic curves with arbitrary k, and many curves will be found, and it is
easy to specify the size q of the field Fq. These favorable properties also hold with
the above constructions.

Remark 8.2. As is usual for the Cocks-Pinch method, the group order in the above
constructions is approximately N2 (since q is approximately N2), so the number
ρ := log q/ logN that measures the efficiency of the construction is approximately 2.
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Remark 8.3. Merely requiring X to have order k in (Z/NZ)×, while permitting
X to have lower order in (Z/pαi

i Z)×, could lead to an easy way to factor N , as
follows. If X has order ki in (Z/pαi

i Z)×, and j is such that kj < ki for all i 6= j,
then gcd(Xkj − 1, N) = p

αj

j , so computing this gcd gives an easy way to factor N .
Taking X to have exact multiplicative order k modulo each of the divisors pαi

i of
N ensures that X has order k modulo every divisor d > 1 of N .

Remark 8.4. When
√
−D ∈ Q(ζk) = Q(e2πi/k), Version II computes a square

root s of −D (mod N) without knowing the factorization of N , so this s does not
leak information. If we had used the factorization of N to choose a different square
root s′ 6= ±s, one could use these two square roots of −D (mod N) to factor N .
So it is important to use the s that doesn’t leak information. In Version I, to avoid
this problem we choose k and D to satisfy properties that ensure that (by Corollary
7.3) we have

√
−D 6∈ Q(ζk). Version I leaks a square root of −D (mod N) (that

is computed using the prime factors of N), but we do not know how to use that
information to give any information about the factors of N . Both versions leak a
k-th root of unity X (mod N).

Remark 8.5. The CM discriminant D needs to be chosen small so that the CM
method will be feasible. Common choices for D are 1 or 3, but if one is con-
cerned about very small D one can choose D > 200. Small D give more efficient
computation, but may be more prone to attack [15].

Remark 8.6. Starting with s and defining D to be −s2 (mod N) would solve the
problem of leaking information about s. However, this will in general give very
large D (around the size of N), for which the CM method is very inefficient. That
is why we start with (small) D and then obtain s.

Remark 8.7. Composite order group cryptography applications rely on the diffi-
culty of various problems, including the Subgroup Decision Problem, the Bilinear
Subgroup Decision Problem, and the Decision 3-Party Diffie-Hellman Problem (see
for example [6]). Parameters and curves need to be chosen so that these problems
are believed to be hard. In particular, one needs the Computational Diffie-Hellman
and Decision Bilinear Diffie-Hellman Problems to be hard, in addition to requiring
that N be difficult to factor.

Remark 8.8. The groups constructed in §5 and §6 do not succumb to the attack on
the Subgroup Decision Problem described in Remark 4.5, for the following reason.
Since each output curve E is ordinary, all its endomorphisms are defined over Fq.
For every prime divisor p of N , E[p] is not contained in E(Fq), since the embedding
degree with respect to p is k > 1. Thus all order p subgroups of E(Fq) are preserved
by all endomorphisms of E, and therefore such subgroups have no distortion maps.

Remark 8.9. Given an output curve E, without knowing the factorization of N
one can compute a random point in E(Fq) killed by N , and it will have exact order
N with high probability. Alternatively, the algorithms could additionally output a
point of exact order N (using N ’s factorization).

Remark 8.10. There are families of prime order pairing-friendly groups paramet-
rized by polynomials (see [3, 11, 14, 4, 16]). One would similarly like to obtain
families of examples of composite order pairing-friendly groups. However, this seems
to be much more difficult in the composite order case, since knowing a polynomial
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N(x) that often evaluates to group orders of the form N(x0) = p1p2 seems likely
to reveal a factorization of N(x0) for particular values x0 (if not a factorization
of N(x) itself). For example, if N(x) = x2 − 1 and is public, this reveals the
information that p1 and p2 are twin primes, and given N(x0) = x2

0 − 1 it is easy to
solve for the quantities x0, p1 = x0 − 1, and p2 = x0 + 1. It is an open problem
to obtain parametrized families in which the prime factors of N will be random,
unguessable primes of the desired size.

9. Implementation

For our implementation we fixed D and k. We took p1 and p2 to be 512-bit
primes congruent to 1 modulo 4Dk (thereby forcing −D to be a square modulo
p1 and p2) and let N = p1p2. We then took j(p1−1)/k (mod p1) for j = 1, 2, 3, . . .
until we found one of order k (mod p1), and similarly with p1 replaced by p2, and
then applied the Chinese Remainder Theorem to obtain X of order k modulo both
p1 and p2. If X was even, we replaced it with X − N , to obtain an odd X such
that 0 < |X| < N . If X = −1 we replaced X with 2N − 1. If

√
−D ∈ Q(ζk)

(as determined by Corollary 7.3), we used the formula for s in Step 3 of Version
II of the algorithm. Otherwise, we computed a square root of −D modulo p1 and
modulo p2 (using PARI/GP [28]), and used the Chinese Remainder Theorem to
obtain a square root s of −D modulo N . We let Y be (X − 1)s−1 (mod N), but if
it was odd we replaced it with Y −N , to obtain an even Y such that 0 < |Y | < N .
If Y = 0 we replaced Y with 4N ; if Y = X + 1 we replaced Y with X + 1 − 2N .
Since X + 1 and Y are even, q is automatically a positive integer. We tested q for
primality. If q was not prime, we started again with a new p2.

Once parameters are obtained with q prime, one can apply the CM method.
We ran our program for all values of k between 1 and 40, with D = 1, 2, 3,

201, 202, and 203, and readily obtained examples in all cases. In the examples we
obtained with k > 1, the value of ρ was between 1.992 and 2.006. For k = 1, ρ was
between 2.00195 and 2.00943.
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