
Side Channel Analysis of Cryptographic

Software via Early-Terminating Multiplications

Johann Großschädl1, Elisabeth Oswald2, Dan Page2, and Michael Tunstall2

1 Université du Luxembourg,
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg.

johann.groszschaedl@uni.lu
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol BS8 1UB, United Kingdom.

{eoswald,page,tunstall}@cs.bris.ac.uk

Abstract. The design of embedded processors demands a careful trade-
off between many conflicting objectives such as performance, silicon area
and power consumption. Finding such a trade-off can often ignore the
issue of security, which can cause, otherwise secure, software to leak infor-
mation through so-called micro-architectural side channels. In this paper
we show that early-terminating integer multipliers found in many embed-
ded processors (e.g., ARM7TDMI) represent an instance of this problem.
The early-termination mechanism causes differences in the time taken to
compute a multiplication depending on the magnitude of the operands
(e.g., up to three clock cycles on an ARM7TDMI processor), which are
observable via variations in execution time and power consumption. Ex-
ploiting the early-termination mechanism makes Simple Power Analysis
(SPA) attacks relatively straightforward to conduct, and may even al-
low one to attack implementations with integrated countermeasures that
would not leak any information when executed on a processor with a
constant-latency multiplier. We describe a number of case studies, in-
cluding both public-key (RSA, ECIES) and secret-key algorithms (RC6,
AES), to demonstrate the threat posed by early-terminating multipliers.
Furthermore, we describe an implementation of one such attack on an
implementation of AES, where we were able the extract the entire key
using just eight power traces.

Keywords: Side channel analysis, power analysis, computer arithmetic,
general-purpose processor, micro-architectural cryptanalysis.

1 Introduction

Within the context of embedded system design, factors such as area and power
consumption need to be carefully balanced against performance. This is partic-
ularly important when a single component acts as a bottleneck to performance,
or is particularly large or power hungry; examples include dedicated multiplier
circuits that exist within embedded processors. Approaches to the realisation

of such circuits form a large design space. Ignoring issues such as pipelining, at
one extreme, are fully parallel designs built entirely from combinatorial logic, for
example those based on Wallace [40] or Dadda [14] trees. Such designs represent
a low-latency solution since they produce a result in a single clock cycle, but do
so at the cost of area and power consumption. At the other extreme are designs
which are iterative in the sense that they make iterative use of more modest
combinatorial logic (e.g., based on a bit-serial approach). Bit-serial multipliers
essentially allow the opposite trade-off by increasing latency but reducing area
and power consumption. Of course, intermediate points in the design space exist;
these represent approaches that reduce the area of low-latency designs or reduce
the latency of low-area or low-power designs. Well-known ways to arrive at such
a compromise include the implementation of a digit-serial multiplier [20], the
recoding of one of the two operands into a radix-4 representation [11, 26], or a
combination of both [15].

Numerous 32-bit processors intended for the embedded market are equipped
with digit-serial integer multipliers. For example, ARM7 processors such as
the ARM7TDMI [5] contain a (32 × 8)-bit multiplier; other embedded proces-
sors feature (32 × 12)-bit multipliers (e.g., Intel StrongARM SA-1100 [22]) or
(32 × 16)-bit multipliers (e.g., MIPS32 4Km [28], PowerPC 440 [21], as well as
certain ARM9/11 models). Each such processor executes a given multiplication
in an iterative fashion by making several passes through the multiplier datapath;
each iteration takes an 8- or 16-bit digit of the multiplier-operand, starting with
the least-significant digit. The result of the first iteration is fed back into the
multiplier and combined with the intermediate products of the following itera-
tions to eventually yield the full result. Generally speaking, a w-bit processor
comprising of a digit-serial multiplier with a digit-size of k < w bits requires
n = ⌈w/k⌉ clock cycles to calculate the 2w-bit product of a (w × w)-bit mul-
tiplication (an extra clock cycle may be necessary if the full product is to be
written back to general-purpose registers). One of the reasons why digit-serial
multipliers are attractive is the proliferation of Digital Signal Processing (DSP)
and multimedia applications in embedded and mobile devices. These application
domains are multiplication-intensive, which means that the latency of multiply
instructions impacts heavily on overall performance. In order to better support
DSP and multimedia kernels, many embedded processors with digit-serial mul-
tipliers employ a technique commonly referred to as early termination. That is,
after each iteration the multiplier checks whether the remaining digits are all
zero; if this is the case, the multiplication is terminated “early” and the result is
immediately returned. The early-termination mechanism can reduce the latency
of multiply instructions if the operands are small, which is often the case in DSP
and multimedia applications. For example, a processor with an early-terminating
(32 × 8)-bit multiplier can multiply two 8-bit pixel colour values in a single clock
cycle, or two 16-bit audio samples in two cycles (instead of four cycles as would
be the case without early termination).

Both Kocher et al. [25] and Ravi et al. [35] point out the importance of consid-
ering security as an additional dimension in the embedded system design space

that demands the same attention as more traditional metrics of interest such
as cost, performance, and power. Within this setting, the threat of side chan-
nel analysis against embedded systems poses a particularly difficult problem.
By passively profiling or actively influencing execution of cryptographic algo-
rithms, it is possible that an attacker can recover otherwise secret information
stored in an embedded device. Focusing on power analysis attacks [27], Simple
Power Analysis (SPA) refers to a scenario where an attacker typically collects
only one, or very few, power traces and attempts to recover secret informa-
tion by focusing on differences between patterns within each trace. In contrast,
Differential Power Analysis (DPA) typically uses several or many traces and
analyses differences between the traces [24]. The problem of side channel leak-
age becomes especially pronounced if a processor itself causes otherwise secure
cryptographic software to leak information through so-called micro-architectural

side channels [4]. Put simply, micro-architectural attacks exploit certain fea-
tures or effects of standard processor components (e.g., cache sub-systems and
branch prediction units) to induce or amplify side channel leakage. In recent
years, micro-architectural cryptanalysis based on cache hits/misses [1, 10, 34] as
well as branch (mis-)predictions [2, 3] has been studied extensively, and several
successful attacks are reported in the literature [7, 33]. These approaches allow
an attacker to extract secret keys from cryptographic software, even if it features
effective side channel countermeasures that would completely prevent leakage on
processors without a cache or branch prediction.

In this paper we show that early-terminating integer multipliers are an ex-
ample of a micro-architectural side channel and that they can leak significant
information about the secret keys used in cryptographic software. As described
previously, the early-termination mechanism causes differences in the latency
of multiply instructions, which are observable via variations in execution time
and power consumption. For example, the latency of a (32× 32)-bit multiply
instruction producing a 64-bit result can vary by up to three clock cycles on a
processor with an early-terminating (32 × 8)-bit multiplier (e.g., ARM7TDMI,
ARM920T), or up to two cycles if the multiplier has a digit-size of 12 bits
(e.g., StrongARM SA-1100), or one cycle in the case of an early-terminating
(32 × 16)-bit multiplier (e.g., MIPS32 4Km, some PowerPC cores). Side chan-
nel attacks exploiting the early-termination mechanism belong to the category of
micro-architectural attacks since the level of susceptibility depends on the micro-
architectural design of a processor. However, micro-architectural cryptanalysis
based on early-terminating multiplication differs in some aspects from cache
attacks and branch-prediction attacks. Firstly, some variants of cache attacks
(e.g., those described in [1, 33]), as well as the Simple Branch Prediction Anal-
ysis (SBPA) attack [2], rely on other processes (e.g., a “spy” process running in
parallel on the same processor) to evict cache lines or to reveal the branch predic-
tor state. An early-termination attack, on the other hand, is completely passive
in the sense that it does not require a spy process running on the target proces-
sor: instead, our attacks work by feeding cryptographic software carefully chosen
input content (i.e., plaintexts) that provoke the early-termination mechanism.

Often, very few such inputs, and hence very few executions of the implementation
under attack, suffice to extract the entire secret key. A second difference is the
type of processors for which said attacks are relevant. While cache memory and
branch prediction units can be found in virtually any high-performance proces-
sor, they are less common in the embedded market, especially in the low-power
segment. Early-terminating integer multipliers, on the other hand, are widely de-
ployed in embedded processors and, as such, early-termination attacks expand
the scope of micro-architectural cryptanalysis into the embedded domain.

Our contribution in this paper is threefold. First, we describe in detail how
early-terminating multipliers work and what information they leak through power
and timing side channels. Even though side channel leakage due to data-dependent
instruction timing has been widely investigated within other contexts, the threat
posed by the early-termination effect is still unknown or at least undocumented3.
In particular, we are not aware of any open literature describing a concrete attack
that exploits early-terminating multiplications4, while dozens of papers on cache
and branch-prediction attacks exist. We consider it of paramount importance to
bring the security implications of the early-termination effect to public attention
so that engineers become aware of this new micro-architectural side channel and
integrate appropriate countermeasures into their products. Our second contribu-
tion is to survey vulnerable cryptographic primitives, and to demonstrate how
such vulnerabilities can be practically used to mount attacks. We conducted
a number of experiments with software implementations of AES, RC6, RSA,
and ECC on an ARM7TDMI processor. In all our experiments we succeeded in
extracting the entire key with just a few power traces; in some cases a single
power trace was sufficient. However, due to space restrictions, we are only able
to describe one attack in detail. The third and final contribution is an analysis
of potential hardware and software-based countermeasures.

In Section 2 we provide background detail on the early terminating multiplier
within ARM7 processors and how it leaks information via power analysis. In Sec-
tion 3 we investigate theoretical attacks on symmetric and public key primitives
including AES, RC6, RSA and ECIES. Since space is at a premium, we describe
results from a single set of concrete attacks on AES-128 in Section 4; where our
most successful attack was able to retrieve the entire key from eight power con-
sumption traces. Finally in Section 5 we describe and evaluate countermeasures
against this form of attack, and conclude in Section 6.

3 There are some lines on the early-termination mechanism in [18, Section 4.2]. How-
ever, the authors of [18] consider the early-termination mechanism only for perfor-
mance analysis of two variants of Montgomery multiplication. Security aspects of
the early-termination mechanism (i.e. side channel leakage) are not mentioned.

4 To the best of our knowledge, none of the current or former processor vendors affected
by this attack (e.g., ARM Limited, MIPS Technologies, Intel Corporation, Freescale
Semiconductor, etc.) has published a white paper with cautionary notes on the early-
termination effect. Of course, this does not necessarily mean that such white papers
do not exist; they are just not available to the public.

Algorithm 1: A functional description of ARM7TDMI multiplication.

Input: The 32-bit integers x and y.
Output: The 64-bit result r = x · y.

t0 ← 01

for i = 0 up to 3 step 1 do2

t1 ← x · y7...03

t0 ← t0 + (t1 ≪ 8i)4

y ← y ≫ 85

if y = 0 then return t06

end7

2 Background

In this section, we describe the early-termination mechanism in detail, using
the ARM7TDMI [5] as a concrete example. We focus on this specific platform
because it has a dominant role in the 32-bit embedded processor market. How-
ever, we point out that the attacks described in this paper can be mounted on
any embedded processor with an early-terminating integer multiplier, including
(but not limited to) the StrongARM SA-1100, the MIPS32 4Km, and certain
PowerPC models.

We use the following notation: w refers to the processor’s word size; in our
case w = 32 since we are dealing with an ARM7 processor. Let xi with 0 ≤ i < w
denote the i-th bit of some w-bit word x. Furthermore, let x(y) denote x written
in base-y. For example, F0(16) is the decimal value 240 written in base-16, X =
(X0, X1, . . . Xn−1)(256) is a vector of n elements where each element is written
in base-256 (i.e., each element is a byte).

2.1 Multiplication on an ARM7TDMI

The ARM instruction set provides several (32 × 32)-bit multiplication instruc-
tions which pass two 32-bit inputs x and y to the multiplier circuit. For exam-
ple, the umull and mul instructions produce 64-bit and 32-bit unsigned outputs
respectively [6]. Signed alternatives are provided that function in a similar man-
ner; however, we exclusively consider unsigned instructions because they are
more commonly used in cryptographic algorithms. We term x the multiplicand
and y the multiplier. In principle, one can imagine the multiplication hardware
operating as described in Figure 1.

The (32 × 8)-bit multiplier processes one 8-bit digit of y in each step, working
from the least-significant to the most-significant. After the i-th step, if y = 0
then the algorithm terminates early and returns the accumulated result in t0.
Since y is right-shifted at each step, this essentially means each j-th digit of
the original y, with j > i, is checked: if all digits are set to zero then early
termination occurs. On the other hand, if y 6= 0, then at least one such j-th
digit is non-zero, and hence a (32×8)-bit multiplication is used to form a partial

Fig. 1: Overlaid (left) and individual (right) power consumption traces showing
ARM7 multiplications that take 2, 3, 4 and 5 clock cycles (top left to bottom
right).

product t1, which is scaled and added to t0. The early-termination mechanism
means one can consider the algorithm taking between 1 and 4 steps.

In short, this means that a (32 × 32)-bit multiplication is executed in one
clock cycle if bits y8 to y31 of the multiplier y are all set to zero, in two clock cycles
if y16 to y31) are all set to zero (but y8 to y15 are not), in three clock cycles if bits
y24 to y31 are all zero (but y8 to y23 are not), and in four cycles otherwise. The so-
called “long” multiply instructions that return a 64-bit result (e.g., umull) need
an additional clock cycle since they have to write-back two 32-bit words into
general-purpose registers via a single write port. Putting everything together,
the umull instruction occupies the execute stage5 of the pipeline for between
two and five clock cycles, depending on the magnitude of the multiplier-operand
y.

2.2 Recovering Multiplication Latency using SPA

“Long” multiply instructions, such as umull [6], allow one to specify two source
registers (Rm, Rs) from which the operands to be multiplied are read, and two
destination registers (RdLo, RdHi) into which the lower (resp. upper) part of
the 64-bit product is placed. The ARM7TDMI supports early termination on
Rs, which means that the latency of the umull instruction can vary by up to
three clock cycles depending on the magnitude of the operand in Rs [5]. In what
follows, we assume that the multiplicand x is stored in Rm and the multiplier y in
Rs. Consequently, the value of y provokes early termination; where an operand
within some pseudo-code algorithm or source code is fed to the multiplier circuit
as y, we term it an early-terminating operand.

5 The ARM7TDMI processor has a simple three-stage pipeline comprising of Fetch,
Decode, and Execute stages [5].

As mentioned above, the umull instruction occupies the execute stage of the
processor pipeline for between two and five clock cycles, depending on the mag-
nitude of y. As a result, the number of clock cycles required to execute the umull
instruction leaks information about the multiplier y. The exact information re-
turned is the number of most-significant 8-bit digits of y that are set to zero,
excluding the least-significant digit, which is always processed (see Figure 1).
This observation can be made in a “course-grained” way by noting timing dif-
ferences over an entire execution, or in a “fine-grained” way by observing the
power consumption of the processor while it executes a particular umull instruc-
tion. Figure 1 shows exemplar power consumption traces from an ARM7TDMI
clocked at 7.37 MHz to demonstrate this side channel. These traces have been
captured using a Tektronix DPO 7104 digital oscilloscope with a differential
probe connected to a 1 Ω shunt in the power supply line.

The umull instruction terminates early on the operand read from register
Rs, i.e. the multiplier y according to our definition from above. On the other
hand, the second operand read from register Rm has no impact as to whether
or not early termination occurs. If one of the two operands to be multiplied
is small and known a priori, then the programmer can reduce the latency of
the umull instruction by assigning registers in such a way that this operand
provokes the early-termination mechanism. Optimising compilers also try to in-
crease the probability of early termination through appropriate assignment of
small operands (e.g. loop counters, array indices). However, there is no guaran-
tee that a compiler performs optimisations so that early termination occurs (or
does not occur) on certain input data or that an optimisation decision will be
safe if the same program is executed on a different, but compatible, processor
(e.g., with a different multiplier type). Furthermore, there exist scenarios where
a programmer has little or no control over the early-termination mechanism; one
may think of Java applets executed in a virtual machine running on a proces-
sor. In this case it depends primarily on the virtual machine whether or not the
multiplication of a given pair of operands terminates early.

3 Theoretical Attacks

In the following we demonstrate that the early-termination mechanism facilitates
SPA attacks on both secret-key and public-key cryptosystems.

3.1 AES

The structure of the Advanced Encryption Standard (AES) [32], as used to
perform encryption, is illustrated in Figure 2. Note that we restrict ourselves
to considering AES-128 and that the description omits a permutation typi-
cally used to convert the plaintext P = (P0, P1, . . . , P15)(256) and key K =
(K0, K1, . . . , K15)(256) into the matrix form used in the specification [32]. The
encryption itself is realised via iterated use of a number of round functions on a
state matrix X :

Algorithm 2: The AES-128 encryption function.

Input: The 128-bit plaintext block P , and 128-bit key K.
Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P, K)1

for i← 1 to 10 do2

X ← ShiftRows(X)3

X ← SubBytes(X)4

if i 6= 10 then5

X ← MixColumns(X)6

end7

K ← KeySchedule(K)8

X ← AddRoundKey(X, K)9

end10

C ← X11

return C12

Algorithm 3: The AES MixColumns function.

Input: X = (X0, X1, . . . , X15)(256)
Output: Y = (Y0, Y1, . . . , Y15)(256)

for i← 0 to 15 do1

Yi = 2 •Xi ⊕ 3 •X(i+4) mod 16 ⊕X(i+8) mod 16 ⊕X(i+12) mod 162

end3

return Y4

– The ShiftRows function is a byte-wise permutation of the state.
– The SubBytes function applies a substitution table (i.e., an S-box) to each

byte of the state; formally, this table is an inversion over F28 followed by an
affine transformation.

– The KeySchedule function generates the next round key from the previous
one. The first round key is the input key with no changes, subsequent round
keys are generated using the SubBytes function and XOR operations.

– The AddRoundKey function mixes a round key with the state using a XOR
operation.

– The MixColumns function is shown in Figure 3, where • represents polyno-
mial multiplication over F28 modulo the irreducible polynomial x8+x4+x3+
x+1. That is, polynomial multiplication by 2 and 3 represent multiplication
with x and x + 1 respectively.

An 8-bit implementation typically represents the state as an array of 16 bytes
and implements each step of the round function in a direct manner. Within
such an implementation, the xtime function (a polynomial multiplication by
2) used by MixColumns (and within the S-box used in SubBytes) is can be
implemented as a look-up table, or careful use of data-independent control-flow,
to prevent side channel attacks. More specifically, using a look-up table avoids the

data-dependent XOR needed to perform reduction by the irreducible polynomial
x8 + x4 + x3 + x + 1.

Algorithm 4: An implementation of the AES xtime function on a 32-bit
platform.

Input: A = (a0, a1, a2, a3)(256)
Output: B = (xtime(a0), xtime(a1), xtime(a2), xtime(a3))(256)

R1 ← A ∧ 80808080(16)1

R1 ← R1 ≫ 72

R2 ← R1 · 1B(16)3

R1 ← A≪ 14

R1 ← R1 ∧ FEFEFEFE(16)5

R1 ← R1 ⊕R26

return R17

However, on a 32-bit platform it can be attractive to compute (rather than
look-up) results of xtime as described in Figure 4. Intuitively, this approach, due
to Bertoni et al. [9], appears more time consuming than a single look-up; however,
it allows four applications of xtime to be computed in parallel. Compared to
the traditional T-tables approach to implementing AES on 32-bit platforms, this
realisation of xtime allows a trade-off toward performance over memory footprint
(which is crucial for embedded applications) and guards against cache-based side
channel attacks.

Assuming that R1 is the early-terminating operand6, the danger of this ap-
proach is clear: if an attacker can recover how many clock cycles it takes to
compute the multiplication in step 3, they can determine how many of the most-
significant bytes of R1 are set to zero.

3.2 RC6

Consider encryption using the block cipher RC6 [36] described in Figure 5 for the
specific case of w = 32; this description assumes that the round keys represented
by S are an auxiliary input. Focusing on the plaintext input B, the pertinent
feature with regard to early termination occurs in step 4 which, crucially, is after
the initial whitening step. In the first round (i.e., when i = 0), this step represents
a (32 × 32)-bit unsigned multiplication where both operands are derived from
the input B and S[0].

6 An optimising C compiler would rather use the constant 1B(16) as early-terminating
operand (even though there is no guarantee for this). However, the attack on xtime

is nonetheless practically relevant if we consider a Java implementation of Figure 4.
In this case the programmer has no control over the early-termination mechanism
as it depends primarily on the virtual machine whether R1 or 1B(16) is the early-
terminating operand.

Algorithm 5: The RC6 encryption function.

Input: A 4-tuple of 32-bit plaintext values (A, B, C, D).
Output: A 4-tuple of 32-bit ciphertext values (A,B, C, D).

B ← B + S[0]1

D← D + S[1]2

for i = 0 up to r do3

t← (B · (2B + 1))≪ 54

u← (D · (2D + 1))≪ 55

A← ((A⊕ t)≪ u) + S[2i]6

C ← ((C ⊕ u)≪ t) + S[2i + 1]7

(A, B, C, D)← (B, C, D, A)8

end9

A← A + S[2r + 2]10

C ← C + S[2r + 3]11

return (A, B, C, D)12

Assume the early-terminating operand for this multiplication is B + S[0].
An attacker can recover the number of cycles taken by this multiplication. Us-
ing adaptive choices of B, the attacker can perform trial encryptions until the
whitening step computes a result B + S[0] in which the most-significant byte is
zero. Since this intermediate value is used as the early-terminating operand in
step 4, the fact that the most significant byte is zero causes early termination.

In an ideal setting, this would mean one could search for a B such that
B + S[0] = 0, i.e., S[0] = −B, and hence recover S[0]. However, as detailed in
Sections 2.1 and 2.2, one cannot recover information about the least-significant
byte of the early-terminating operand. This means that instead of recovering
S[0] directly, one narrows the possible range of values: one finds that B +S[0] ∈
{0 . . . 255}. Even so, one can view this as leaking 24 bits of the 32-bit round key
S[0]; the same approach yields S[1] via observation of the second multiplication
involving D (within the same set of acquisitions).

3.3 Exponentiation in ZN (e.g., RSA)

A central operation in RSA [37] is exponentiation in ZN where N = p · q for
secret, large primes p and q. In textbook RSA, this operation takes plaintext
(resp. ciphertext) x and exponentiates it by a key y to compute ciphertext (resp.
plaintext) r = xy mod N . Let yi denote the i-th bit in the binary expansion of
y, and S and M represent modular squaring operations and multiplications in
ZN .

Typically, x is controllable by an attacker while y is fixed: either it represents
the public or private RSA key. The classic square-and-multiply method (i.e., left-
to-right binary exponentiation) described in Figure 6 provides a simple method
to compute r. Within the i-th iteration of the algorithm a multiplication is
executed if, and only if, yi = 1. This leaks the value of y if an attacker can
distinguish squaring operations (i.e., step 3) from multiplications (i.e., step 5):

Algorithm 6: The left-to-right binary exponentiation algorithm.

Input: The integers x, y and N .
Output: The integer r = xy (mod N).

t← x1

for i = |y| − 2 downto 0 do2

t← t2 (mod N)3

if yi = 1 then4

t← t · x (mod N)5

end6

end7

return t8

if the attacker observes the sequence SM during iteration i (i.e., a squaring
operation then a multiplication is executed) then yi = 1 whereas if they observe
S alone then yi = 0.

Since the values in the algorithm described in Figure 6 are multi-precision,
e.g. 1024-bits held in 32-bit words, a method such as Montgomery multiplica-
tion [30] is typically used to perform modular multiplication. Step 3 uses t as
both operands to the modular multiplication; since t is essentially random as the
algorithm progresses, both operands are random. However, the multiplication in
step 5 uses x as one operand. If the digits of x form early-terminating operands
to (32 × 32)-bit multiplications within the larger modular multiplication, the
early-termination mechanism can be invoked. Specifically, if an attacker controls
x, they can select a value that is “special” in the sense it is low-weight (i.e., a
number of 32-bit digits are zero). Such an x permits the attacker to distinguish
between modular squaring operations and multiplications based on how often
the early-termination mechanism is invoked; following the reasoning above this
leaks y which, depending on the context, is potentially the private key.

Interestingly, this approach not only works for “textbook RSA” as outlined
above, but also when the plaintext (resp. ciphertext) is padded according to
PKCS #1 [38]. The PKCS #1 standard provides recommendations for the im-
plementation of public-key cryptography based on the RSA algorithm, covering
both encryption and signature generation/verification. Version 2.1 of PKCS #1
specifies two padding schemes for encryption, namely the Optimal Asymmet-
ric Encryption Padding (OAEP) and an older padding scheme from PKCS #1
version 1.5 which is not recommended for new applications. In both cases the
message is first encoded before the encryption (i.e., modular exponentiation) is
performed. Conversely, the decryption of the ciphertext starts with a modular
exponentiation to recover the plaintext, which is then decoded into the original
message. Assume an attacker wishes to extract the secret key used in an RSA
decryption operation by exploiting the early-termination mechanism: to achieve
this, they manipulate the ciphertext such that it has a low-weight (e.g., by inject-
ing a number of 32-bit words that are set to zero). As mentioned previously, the
decryption process starts with a modular exponentiation of the ciphertext using

the secret key as exponent, followed by the decoding of the obtained plaintext to
retrieve the original message. Consequently, a manipulation of the ciphertext can
only be detected after the exponentiation has finished. Any multiply instruction
using one of the low-weight words as operand will terminate early, thereby en-
abling an attacker to distinguish modular multiplications from modular squaring
operation when the exponentiation is performed as shown in Figure 6. Extracting
the secret key from a PKCS #1-compliant implementation of RSA decryption is
essentially no harder than attacking textbook RSA, provided that the attacker
has the possibility to manipulate a ciphertext or to inject chosen ciphertexts.

Contrary to RSA decryption, attacking a PKCS #1-compliant implemen-
tation of RSA signature generation is not so straightforward. The PKCS #1
standard specifies signature schemes with appendix, which means that the mes-
sage to be signed is first hashed to produce an intermediary representation, which
is then used as operand for the modular exponentiation. Therefore, mounting
the attack requires producing a message whose intermediary representation has
low-weight, which can be accomplished by brute force message search.

Attacking SPA-Resistant m-ary Exponentiation The early-termination
effect amplifies side-channel leakage, but an SPA attack is, of course, also pos-
sible without exploiting this effect. In order to thwart SPA attacks on RSA, a
number of “regular” exponentiation techniques have been proposed; these range
from always computing a, possibly dummy, a multiplication to m-ary exponen-
tiation with a recoded exponent [23]. The aim of these methods is to perform
the exponentiation in such a way that always the same sequence of operations
(i.e. modular multiplications and squaring operations) is executed, irrespective
of the exponent. The m-ary method is based on m-ary expansion of the exponent
y, whereby m is typically a power of 2, i.e. m = 2k. It uses a table of m − 2
pre-computed powers of the base x, i.e. xi for i ∈ {1, . . . , m − 1}, and processes
an k-bit digit of the exponent y at a time, which reduces the number of modular
multiplications compared to the binary method. Möller [29] proposed a recoding
scheme for m-ary exponentiation where each k-bit digit that is equal to zero is
replaced with −m, and the next most significant digit is incremented by one.
This leads to an exponent recoded with digits in the set {1, 2, . . . , m−1}∪{−m}.
A good overview of other exponent recoding schemes yielding regular m-ary ex-
ponentiation can be found in [23].

Unfortunately, these regular m-ary exponentiation techniques succumb to
a SPA attack when exploiting the early-termination effect. The attacker just
needs to select the base x in such a way that exactly one of the pre-computed
powers of x contains a byte equal to zero at the “right” positions. Whenever a
multiplication with this power of x is executed, the early-termination mechanism
is invoked, which leaks the value of the corresponding k-bit digit from the secret
exponent. Repeating this attack with other values of x such that a different power
of x contains byte equal to zero will eventually allow the attacker to fully recover
the private exponent. The early-termination effect makes attacking these regular
m-ary exponentiation methods—which are designed to be SPA-resistant—almost

as easy as attacking a completely unprotected implementation, such as the one
shown in Algorithm 6.

3.4 Point multiplication on E(Fp) (e.g., ECIES)

Consider an elliptic curve E(Fp). A central operation to cryptographic schemes
based on such a curve is scalar multiplication of some point PPP ∈ E by a secret
integer d, i.e., QQQ = d ·PPP . Let di denote the i-th bit in the binary expansion of d,
and A and D represent point addition and doubling operations on E. Depending
on the exact setting PPP might be fixed or unknown; consider instead a setting
where PPP is supplied as input and hence is controllable by an attacker.

The double-and-add algorithm [19, page 97] provides a simple method to
compute QQQ; since this is the additive analogue to the multiplicative algorithm,
it is vulnerable to similar side channel attacks [13]. One way to harden the algo-
rithm is to split the point addition operation into parts each of which is identical,
in terms of the field operations it performs, to a point doubling operation. Put
simply, instead of a sequence such as DA the attacker now observes the se-
quence XXX where each X represents an atomic, indistinguishable operation
which could be a point doubling operation or a step in a point addition.

Point doubling and addition sequences specified by Gebotys and Gebotys [16]
was the first example of this; multiplication by small constants is implemented
using shifts. Several “dummy” operations, which source or target the ⊥ value,
are included to pad the sequences so the same operation occurs at each index.
Gebotys and Gebotys [16, pp. 117–118] are careful to note that on their experi-
mental platform (a StarCore SC140 VLIW-based DSP)

“the only field operations which had variable clock cycle counts were the
modular reductions which may or may not be required after additions,
subtractions, or shifts”.

Of course, where an early-terminating multiplier is used to perform (32 × 32)-
bit multiplications within the field squaring operations and multiplications, this
ceases to be true. In order to overcome this countermeasure, an attacker can
select a PPP whose x or y coordinates are “special” in the sense they are low-weight
(i.e. a number of 32-bit digits are set to zero). In this setting, even though a
high-level SPA countermeasure is implemented, an attacker can still distinguish
between a point doubling operation and a point addition by observing when
this low-weight coordinate is used and hence the early-termination mechanism
is invoked more often than usual. This can be viewed as related to the attack of
Goubin [17] where an attacker attempts to provoke computation using “special”
points (e.g., one where the x or y coordinate is set to zero).

The elliptic curve (EC) point multiplication operation is a central operation
of all EC based cryptosystems: given an EC point PPP and a scalar value k, the
operation QQQ = [k]PPP outputs another point QQQ on the curve. There are various
implementation strategies for this including the simple binary algorithm (aka
double-and-add algorithm, see [13]). In this algorithm, a sequence of EC point

addition operations and EC point double operations. More precisely, in every
iteration a point doubling operation is performed. However, if, and only if, the
i-th bit of k equals one, a point addition operation is performed as well.

It has been observed before [13] that näıve implementations of EC point mul-
tiplications are vulnerable to SPA attacks. Consequently, SPA resistant imple-
mentations were proposed using, for instance, indistinguishable operations [12],
see [16] for a concrete implementation. The goal of indistinguishable operations
is to make EC point addition and EC point doubling operation “look alike” in
terms of their power profiles.

Using the early termination feature of a multiplier we can even break imple-
mentations using such indistinguishable formulas. In the i-th step of the binary
algorithm, the point PPP is added if (and only if) ki = 1. Now, if we set PPP to be a
“special” point, i.e., a point which has either one or both coordinates with lead-
ing bytes of zeroes, then the early termination will always occur when PPP is added
to the current intermediate point. Assuming that the intermediate points QQQ that
occur during the computation of the binary algorithm have random coordinates,
i.e., do not lead to the early termination effect in the same way PPP does, the
point addition operation is identifiable because of the early termination effect.
Identifying the point addition operation allows identifying the bits of k which
are equal to one.

The remaining problem is to identify ECC based cryptosystems in which an
attacker can control (i.e., choose) the base point PPP . Typically, such cryptosystems
supply a base point GGG as part of their domain parameters; since this point
is fixed it cannot be chosen by an attacker. This rules out schemes such as
ECDSA [31] where point multiplication within the signature generation function
uses GGG as the base point. However, KEM-DEM based encryption schemes such
as ECIES [39] use a Diffie-Hellman (DH) style key exchange mechanism within
their KEM component. In the decryption step of such a KEM, the private key
is used to multiply a point derived from the ciphertext (i.e., can be chosen by
an attacker). Consequently, this point multiplication leaks the private key if the
implementation makes use of an early-terminating multiplier and the attacker
chooses the base point appropriately. Using the same observation, other DH
based protocols including ephemeral and static versions of ECDH, as well as
ECMQV, are vulnerable.

4 Concrete Attacks on AES

In this section we present some concrete attacks applied to AES as implemented
on an ARM7TDMI processor [5]. In each case, we assume that an attacker is
able to control the plaintexts being encrypted by the AES implementation, and
is able to observe a suitable side channel, such as the power consumption. For
clarity, two attacks are presented, where the first attack only observes the first
round of the AES implementation, and the second attack observes the first two
rounds.

4.1 Theory

Before discussing how the attacks were implemented we will describe how our
attacks work in theory. In both cases we make observations via Simple Power
Analysis (SPA) and exclude key hypotheses based on our observations. In the
first attack this leads to an exhaustive key search, and in the second attack
allows the key to be determined with no exhaustive key search.

Attacking the First Round As described in Section 3.1, when the xtime

function is computed insecurely on a 32-bit platform an attacker can observe
how many of the most significant bytes of R1 are set to zero and the most
significant byte of R1 that is set to one. If we observe the multiplication that
occurs in step 3 of the algorithm described in Figure 4, an attacker can derive
bits of the result of SubBytes(Xi ⊕Ki), for some i ∈ {0, 1, . . . , 15}, by counting
how many clock cycles this multiplication takes.

Each of the observations will provide information on a certain a number of
bits from different bytes output from the SubBytes function. Given that these
bits are from different bytes, an attacker will require at least eight observations
for each byte to derive the value of the associated secret key byte. However, in
order to determine the second least significant byte, an attacker will require at
least eight observations where the two most significant bytes are set to zero. If
we assume that the plaintext being encrypted is random this will occur with
a probability of 1/4. An attacker would, therefore, expect to require 32 obser-
vations to derive the three most significant bytes and reduce an the number of
possible key hypotheses from 2128 to 232. As described in Section 2.2, no infor-
mation can be derived on the least significant byte. While we can note that eight
calls to the xtime function are required to compute the MixColumns algorithm
(see Figure 3) on a 32-bit platform, there are only four unique calls.

Attacking the Second Round If an attacker acquires the power consump-
tion during the computation of the first two rounds of AES more information
is available. The same information is available to an attacker as given by the
MixColumns function in the first round. However, an attacker can also deter-
mine information on the key bytes that cannot be determined by observing the
first round. In this section we describe how an attacker could exploit the infor-
mation by observing early terminations in the first two calls to the MixColumns

function.

We denote Yi as the i-th byte of the result of the second computation of the
SubBytes function for i ∈ {0, 1, . . . , 15}. If, for example, an attacker derives a
bit in the second round, they can then compute which combinations of secret
key bytes will produce the observed bit given the known plaintext. Imagine, for
example, the most significant bit of the first byte of the result of the SubBytes

function is observed. In this case, we can note that the most significant bit of Y0

is known, where Y0 is defined as

Y0 = S(γ(S(X0 ⊕K0))⊕ γ(S(X5 ⊕K5))⊕ S(X5 ⊕K5)

⊕ S(X10 ⊕K10)⊕ S(X15 ⊕K15)⊕ S(K13)⊕K0 ⊕ 1),

S denotes the SubBytes function, and γ is the xtime function (the formulae for
producing Yi for i ∈ {0, 1, . . . , 15} are given in Appendix A). The combinations
of K0, K5, K10, K15, K13 that will produce the known bit can be noted. This
can be repeated for every acquisition, and the intersection of the combinations
of the key bytes can be taken to reduce the number of possible hypotheses for
these key bytes.

This process can be repeated for other bits observed in the second round to
produce another set of hypotheses for a different set of key bytes. When another
set of possible key bytes is created, the intersection between the new set and
previously generated sets can be analysed to reduce the number of key hypothe-
ses. That is, if a combination of bytes does not exist in one set of hypotheses it
can be removed from all the other sets.

This information can be combined with the information already derived from
analysing the first round, by noting when secret key bytes present in the list
of hypotheses generated from the first analysis are no longer possible. This is
convenient for a subsequent exhaustive search as an algorithm for working all
the possible keys is trivial. It is slightly inefficient since some combinations of
secret key bytes will not be possible. However, in our simulations of this attack,
combining the information for all the outputs of the second SubBytes function
was always sufficient to determine the secret key without an exhaustive search.

Attacking Later Rounds There is no interest in including information from
later rounds. This is because the information from the second round is typically
enough to determine the secret key. If the number of acquisitions is not sufficient
for the secret key to be determined then there are problems with storing the total
possible hypotheses in a form that can be accessed in a reasonable amount of
time.

4.2 Practice

In this section we describe a practical implementation of the attacks detailed
above. The acquisitions referred to in this section were acquired without any
specific filtering or averaging.

Attacking the First Round A series of 48 acquisitions of the power consump-
tion were taken during execution of the first round of an implementation of AES.
The traces were synchronised after the first multiplication in the MixColumns

function. The difference that each trace needed to be shifted was noted to give
the number of clock cycles that it took to compute each multiplication. This
was then repeated for each subsequent computation in the first round. This in-
formation was then used to reduce the number of possible keys, as described in

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

Acquisitions

U
nk

no
w

n
K

ey
 In

fo
rm

at
io

n
(b

its
)

Fig. 2: The size of an exhaustive key search in bits, after analysing x acquisitions.

Section 4.1. The number of keys that would need to be tested after the inclu-
sion of the information corresponding to each acquisition is shown in Figure 2.
The number of key hypotheses is rapidly reduced to approximately 234, which is
significantly more than the theoretical result given above. No information was
available on K0, K5, K10, K15. This is because the ARM7 structure is little-
endian, so the bytes are not loaded into R1 in the intuitive order. It took two
hours on a standard PC to find the correct key by testing 17.07 · 109 key hy-
potheses.

Attacking the Second Round Sixteen acquisitions of the power consumption
were taken during execution of the first two rounds of an implementation of
AES. As previously, the traces were synchronised after each multiplication in
the MixColumns function.

The attack described in Section 4.1 was applied to the resulting multiplica-
tion lengths, after having first reduced the number of possible key hypotheses by
analysing the information available from the first round. When using the infor-
mation from ten to 16 acquired traces the secret key was found instantly. When
the information from nine traces was analysed the secret key was found after 15
minutes, and after two hours when the information from eight traces were used.

No exhaustive search was necessary as the formulae for the output of the
second SubBytes function reduce the number of hypotheses to one. However, it
can take some considerable time to eliminate all the false hypotheses.

In order to minimise the amount of memory required to store the possible key
combinations in memory the order in which the formulae for yi are treated can be
ordered such that information on secret key bytes that had few hypotheses was
derived first. In the described attack the bytes were evaluated in the following
order: Y15, Y14, Y2, Y3, Y1, Y11, Y5, Y6, Y9, Y10, Y7, and Y13.

Algorithm 7: A constant time algorithm to replace ARM7 multiplication.

Input: The 32-bit integers x and y.
Output: The 64-bit result r = x · y.

γ ← (y ∧ 00FFFFFF(16)) + 01000000(16)1

τ ← (y ∧ FF000000(16))≫ 242

r ← x · γ3

r ← r + ((x · τ)≪ 24)4

r ← r − (x≪ 24)5

return r6

5 Countermeasures

Given the successful attack described in Section 4, it is clearly attractive to exam-
ine potential countermeasures. We do so by focusing on step 3 of the vulnerable
xtime implementation described in Figure 4, but note that the techniques are
more generally applicable.

The most invasive countermeasure would be to alter the processor itself. For
example, one can easily imagine including a dedicated instruction (or a proces-
sor mode) that disables the early-termination mechanism during execution of
security-critical regions of a program. However, this is disadvantageous in the
sense that such an approach is potentially costly and cannot be retrospectively
applied to existing processors. As such, one can also consider software-only coun-
termeasures. The simplest approach of this type is to ensure that secret informa-
tion is never used as an early-terminating operand. In the context of AES-128,
this means placing the constant value 1B(16) in the register that governs how
long a multiplication takes, i.e., Rs rather than R1.

Where this is not possible (e.g., both operands are secret, or the programmer
does not directly control instructions being executed as could be the case in
interpreter-based platforms such as Java), one can imagine replacing each use of
an insecure multiplication instruction with a more heavy-weight algorithm. The
algorithm described in Figure 7 represents an example: it forces the number of
cycles required to perform a multiplication to be a constant, i.e., to be data-
independent.

Essentially this works by masking the multiplier y so that the most-significant
byte in one multiplication is always non-zero, and the other is always a multipli-
cation with one byte. The two invocations of the real multiplication in steps 3
and 4 therefore leak no information. Use of the algorithm within our implemen-
tation of AES-128 increases the execution time from 1.24 milliseconds to 1.56
milliseconds. However, this is still a significant improvement over implement-
ing the MixColumns in a byte-wise manner; our implementation requires 2.53
milliseconds in this case. The impact on an implementation of a modular expo-
nentiation is larger; for example, the execution time of a 1024-bit exponentiation
on the ARM7TDMI was increased from 1.6 to 3.135 seconds (at 7.37 MHz).

For symmetric cryptosystems, the best “countermeasure” against side chan-
nel attacks exploiting the early-termination mechanism is to avoid integer mul-
tiplications when designing algorithms, as recommended by Bernstein [8].

6 Conclusions

In this paper we describe and analyse some security issues that arise when crypto-
graphic software is executed on an embedded processor with an early-terminating
integer multiplier. Even though the early-termination mechanism provides clear
advantages for certain applications (most notably digital signal and multimedia
processing), it poses a serious challenge for security-critical applications that
need to withstand side channel attacks. We have explained why, and demon-
strated how, the early-termination mechanism causes differences in the latency
of multiply instructions; in turn, this results in easily observable variations in
execution time and power consumption. Such data-dependent variations make
power analysis fairly straightforward, and may even allow an attacker to extract
the secret key from implementations with integrated high-level countermeasures.
While the side channel leakage caused by the early-termination mechanism is
obvious for public-key cryptosystems performing multi-precision multiplications
(e.g., RSA and ECIES), we have also demonstrated that block ciphers, such as
AES, are vulnerable to SPA attacks when executed on an ARM7TDMI proces-
sor. Consequently, careful attention must be focused on the implementation of
cryptographic software at a low-level so that the early-termination mechanism
does not produce side channel leakage; this can be costly and difficult to achieve
via software-only countermeasures. Another conclusion that can be drawn from
the discovery of security issues caused by early-terminating multipliers (and
other micro-architectural side channels) is that processor vendors need to re-
assess their goals in micro-architectural design of embedded processors: security
aspects require and deserve the same attention as other metrics of interest such
as performance, silicon area, and power consumption.

Acknowledgements

The work described in this paper has been supported in part by the European
Commission IST Programme under Contract IST-2002-507932 ECRYPT and
EPSRC grants EP/E001556/1 and EP/F039638/1 .

References

1. Onur Acıiçmez. Yet another microarchitectural attack: Exploiting I-cache. In
Proceedings of the 1st ACM Workshop on Computer Security Architecture (CSAW
2007), pages 11–18. ACM Press, 2007.

2. Onur Acıiçmez, Çetin K. Koç, and Jean-Pierre Seifert. On the power of simple
branch prediction analysis. In Proceedings of the 2nd ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS 2007), pages 312–320.
ACM Press, 2007.

3. Onur Acıiçmez, Çetin K. Koç, and Jean-Pierre Seifert. Predicting secret keys via
branch prediction. In Masayuki Abe, editor, Topics in Cryptology — CT-RSA
2007, volume 4377 of Lecture Notes in Computer Science, pages 225–242. Springer
Verlag, 2007.

4. Onur Acıiçmez, Jean-Pierre Seifert, and Çetin K. Koç. Micro-architectural crypt-
analysis. IEEE Security & Privacy, 5(4):62–64, July/August 2007.

5. ARM Limited. ARM7TDMI Technical Reference Manual (Revision r4p1). ARM
Doc No. DDI 0210, Issue C, available for download at http://infocenter.arm.

com/help/topic/com.arm.doc.ddi0210c/DDI0210B.pdf, November 2004.

6. ARM Limited. ARM Architecture Reference Manual. ARM Doc No. DDI 0100,
Issue I, available for download at http://www.arm.com/miscPDFs/14128.pdf, July
2005.

7. Daniel J. Bernstein. Cache-timing attacks on AES. Preprint, available for download
at http://cr.yp.to/papers.html#cachetiming, 2005.

8. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In New Stream Cipher
Designs, volume 4986 of Lecture Notes in Computer Science, pages 84–97. Springer
Verlag, 2008.

9. Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and Ste-
fano Marchesin. Efficient software implementation of AES on 32-bit platforms.
In Burton S. Kaliski Jr., Çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 159–171. Springer Verlag, 2003.

10. Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gian-
luca Palermo. AES power attack based on induced cache miss and countermeasure.
In Proceedings of the 6th International Conference on Information Technology:
Coding and Computing (ITCC 2005), volume 1, pages 586–591. IEEE Computer
Society Press, 2005.

11. Andrew D. Booth. A signed binary multiplication technique. Quarterly Journal
of Mechanics and Applied Mathematics, 4(2):236–240, June 1951.

12. Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks.
In David Naccache and Pascal Paillier, editors, Public Key Cryptography — PKC
2002, volume 2274 of Lecture Notes in Computer Science, pages 335–345. Springer
Verlag, 2002.

13. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin K. Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES ’99, volume 1717 of Lecture Notes in
Computer Science, pages 292–302. Springer Verlag, 1999.

14. Luigi Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34(5):349–356,
May 1965.

15. Stephen B. Furber. ARM System-on-Chip Architecture. Addison-Wesley, second
edition, 2000.

16. Catherine H. Gebotys and Robert J. Gebotys. Secure elliptic curve implementa-
tions: An analysis of resistance to power-attacks in a DSP processor. In Burton S.
Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 114–128. Springer Verlag, 2002.

17. Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems.
In Yvo Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of
Lecture Notes in Computer Science, pages 199–210. Springer Verlag, 2003.

18. Gaël Hachez and Jean-Jacques Quisquater. Montgomery exponentiation with no
final subtractions: Improved results. In Cryptographic Hardware and Embedded
Systems — CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
293–301. Springer Verlag, 2000.

19. Darrel R. Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide to Elliptic
Curve Cryptography. Springer Verlag, 2004.

20. Richard Hartley and Peter Corbett. Digit-serial processing techniques. IEEE
Transactions on Circuits and Systems, 37(6):707–719, June 1990.

21. IBM Corporation. PowerPC 440x6 Embedded Processor Core User’s Manual
(Version 07). Available for download at http://www.ibm.com/chips/techlib/

techlib.nsf/products/PowerPC_440_Embedded_Core, July 2008.
22. Intel Corporation. IntelR© StrongARMR© SA-1100 Microprocessor for Embedded

Applications. Brief datasheet, order number 278092-005, June 1999.
23. Marc Joye and Michael Tunstall. Exponent recoding and regular exponentiation

algorithms. In Bart Preneel, editor, Progress in Cryptology — AFRICACRYPT
2009, volume 5580 of Lecture Notes in Computer Science, pages 334–349. Springer
Verlag, 2009.

24. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer Verlag, 1999.

25. Paul C. Kocher, Ruby B. Lee, Gary E. McGraw, Anand Raghunathan, and Srivaths
Ravi. Security as a new dimension in embedded system design. In Proceedings of
the 41st Design Automation Conference (DAC 2004), pages 753–760. ACM Press,
June 2004.

26. Olin L. MacSorley. High-speed arithmetic in binary computers. Proceedings of the
IRE, 49(1):67–91, January 1961.

27. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer Verlag, 2007.

28. MIPS Technologies, Inc. MIPS32 4KmTM Processor Core Datasheet. Available
for download at http://www.mips.com/products/processors/32-64-bit-cores/
mips32-m4k/, November 2004.

29. Bodo Möller. Securing elliptic curve point multiplication against side-channel at-
tacks. In George I. Davida and Yair Frankel, editors, Information Security — ISC
2001, volume 2200 of Lecture Notes in Computer Science, pages 324–334. Springer
Verlag, 2001.

30. Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, April 1985.

31. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS Publication 186-2, available for download at http://www.itl.

nist.gov/fipspubs/, February 2000.
32. National Institute of Standards and Technology (NIST). Advanced Encryption

Standard (AES). FIPS Publication 197, available for download at http://www.

itl.nist.gov/fipspubs/, November 2001.
33. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-

sures: The case of AES. In David Pointcheval, editor, Topics in Cryptology —
CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 1–20.
Springer Verlag, 2006.

34. Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, Department of Computer Science, University of Bristol,
Bristol, U.K., June 2002.

35. Srivaths Ravi, Anand Raghunathan, Paul C. Kocher, and Sunil Hattangady. Se-
curity in embedded systems: Design challenges. ACM Transactions on Embedded
Computing Systems, 3(3):461–491, August 2004.

36. Ronald L. Rivest, Matthew J. Robshaw, Ray Sidney, and Yiqun L. Yin. The
RC6TM block cipher. Technical report, RSA Laboratories, Bedford, MA, USA, Au-
gust 1998. Available for download at ftp://ftp.rsasecurity.com/pub/rsalabs/
rc6/rc6v11.pdf.

37. Ronald L. Rivest, Adi Shamir, and Loenard M. Adleman. A method for obtaining
digital signatures and public key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

38. RSA Security, Inc. PKCS #1 v2.1: RSA Cryptography Standard. Available
for download at ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.

pdf, June 2002.

39. Standards for Efficient Cryptography Group (SECG). SEC 1: Elliptic Curve Cryp-
tography. Available for download at http://www.secg.org/download/aid-385/

sec1_final.pdf, September 2000.

40. Christopher S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, 13(1):14–17, February 1964.

A AES Early Termination Formulae

The formulae referred to in Section 4 are given below. The result bytes Yi is
created from plaintext bytes Xi and secret key bytes Ki for i ∈ {0, 1, . . . , 15}.
For brevity the SubBytes function is written as S, and the xtime function as γ.

Y0 = S(γ(S(X0 ⊕K0))⊕ γ(S(X5 ⊕K5))⊕ S(X5 ⊕K5)

⊕ S(X10 ⊕K10)⊕ S(X15 ⊕K15)⊕ S(K13)⊕K0 ⊕ 1)

Y1 = S(γ(S(X4 ⊕K4))⊕ γ(S(X9 ⊕K9))⊕ S(X9 ⊕K9)

⊕ S(X14 ⊕K14)⊕ S(X3 ⊕K3)⊕ S(K13)⊕K0 ⊕K4 ⊕ 1)

Y2 = S(γ(S(X8 ⊕K8))⊕ γ(S(X13 ⊕K13))⊕ S(X13 ⊕K13)

⊕ S(X2 ⊕K2)⊕ S(X7 ⊕K7)⊕ S(K13)⊕K0 ⊕K4 ⊕K8 ⊕ 1)

Y3 = S(γ(S(X12 ⊕K12))⊕ γ(S(X1 ⊕K1))⊕ S(X1 ⊕K1)⊕ S(X6 ⊕K6)

⊕ S(X11 ⊕K11)⊕ S(K13)⊕K0 ⊕K4 ⊕K8 ⊕K12 ⊕ 1)

Y4 = S(γ(S(X9 ⊕K9))⊕ γ(S(X14 ⊕K14))⊕ S(X14 ⊕K14)

⊕ S(X3 ⊕K3)⊕ S(X4 ⊕K4)⊕ S(K14)⊕K1 ⊕K5)

Y5 = S(γ(S(X13 ⊕K13))⊕ γ(S(X2 ⊕K2))⊕ S(X2 ⊕K2)

⊕ S(X7 ⊕K7)⊕ S(X8 ⊕K8)⊕ S(K14)⊕K1 ⊕K5 ⊕K9)

Y6 = S(γ(S(X1 ⊕K1))⊕ γ(S(X6 ⊕K6))⊕ S(X6 ⊕K6)⊕ S(X11 ⊕K11)

⊕ S(X12 ⊕K12)⊕ S(K14)⊕K1 ⊕K5 ⊕K9 ⊕K13)

Y7 = S(γ(S(X5 ⊕K5))⊕ γ(S(X10 ⊕K10))⊕ S(X10 ⊕K10)

⊕ S(X15 ⊕K15)⊕ S(X0 ⊕K0)⊕ S(K14)⊕K1)

Y8 = S(γ(S(X2 ⊕K2))⊕ γ(S(X7 ⊕K7))⊕ S(X7 ⊕K7)

⊕ S(X8 ⊕K8)⊕ S(X13 ⊕K13)⊕ S(K15)⊕K2 ⊕K6 ⊕K10)

Y9 = S(γ(S(X6 ⊕K6))⊕ γ(S(X11 ⊕K11))⊕ S(X11 ⊕K11)

⊕ S(X12 ⊕K12)⊕ S(X1 ⊕K1)⊕ S(K15)⊕K2 ⊕K6 ⊕K10 ⊕K14)

Y10 = S(γ(S(X10 ⊕K10))⊕ γ(S(X15 ⊕K15))⊕ S(X15 ⊕K15)

⊕ S(X0 ⊕K0)⊕ S(X5 ⊕K5)⊕ S(K15)⊕K2)

Y11 = S(γ(S(X14 ⊕K14))⊕ γ(S(X3 ⊕K3))⊕ S(X3 ⊕K3)

⊕ S(X4 ⊕K4)⊕ S(X9 ⊕K9)⊕ S(K15)⊕K2 ⊕K6)

Y12 = S(γ(S(X11 ⊕K11))⊕ γ(S(X12 ⊕K12))⊕ S(X12 ⊕K12)

⊕ S(X1 ⊕K1)⊕ S(X6 ⊕K6)⊕ S(K12)⊕K3 ⊕K7 ⊕K11 ⊕K15)

Y13 = S(γ(S(X15 ⊕K15))⊕ γ(S(X0 ⊕K0))⊕ S(X0 ⊕K0)

⊕ S(X5 ⊕K5)⊕ S(X10 ⊕K10)⊕ S(K12)⊕K3)

Y14 = S(γ(S(X3 ⊕K3))⊕ γ(S(X4 ⊕K4))⊕ S(X4 ⊕K4)

⊕ S(X9 ⊕K9)⊕ S(X14 ⊕K14)⊕ S(K12)⊕K3 ⊕K7)

Y15 = S(γ(S(X7 ⊕K7))⊕ γ(S(X8 ⊕K8))⊕ S(X8 ⊕K8)

⊕ S(X13 ⊕K13)⊕ S(X2 ⊕K2)⊕ S(K12)⊕K3 ⊕K7 ⊕K11)

