
Non-Interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers

Rosario Gennaro∗ Craig Gentry† Bryan Parno‡

November 5, 2009

Abstract

Verifiable Computationenables a computationally weak client to “outsource” the computation of a
function F on various inputsx1, ...,xk to one or more workers. The workers return the result of the
function evaluation, e.g.,yi = F(xi), as well as a proof that the computation ofF was carried out correctly
on the given valuexi . The verification of the proof should require substantiallyless computational effort
than computingF(xi) from scratch.

We present a protocol that allows the worker to return a computationally-sound, non-interactive proof
that can be verified inO(m) time, wherem is the bit-length of the output ofF . The protocol requires
a one-time pre-processing stage by the client which takesO(|C|) time, whereC is the smallest Boolean
circuit computingF . Our scheme also provides input and output privacy for the client, meaning that the
workers do not learn any information about thexi or yi values.

1 Introduction

Several trends are contributing to a growing desire to “outsource” computing from a (relatively) weak
computational device to a more powerful computation service. For years, avariety of projects, including
SETI@Home [5], Folding@Home [2], and the Mersenne prime search [4],have distributed computations
to millions of clients around the Internet to take advantage of their idle cycles. Aperennial problem is
dishonest clients: end users who modify their client software to return plausible results without performing
any actual work [22]. Users commit such fraud, even when the only incentive is to increase their relative
ranking on a website listing. Many projects cope with such fraud via redundancy; the same work unit is sent
to several clients and the results are compared for consistency. Apart from wasting resources, this provides
little defense against colluding users.

A related fear plagues cloud computing, where businesses buy computing timefrom a service, rather
than purchase, provision, and maintain their own computing resources [1,3]. Sometimes the applications
outsourced to the cloud are so critical that it is imperative to rule out accidental errors during the compu-
tation. Moreover, in such arrangements, the business providing the computing services may have a strong
financial incentive to return incorrect answers, if such answers require less work and are unlikely to be
detected by the client.

The proliferation of mobile devices, such as smart phones and netbooks,provides yet another venue in
which a computationally weak device would like to be able to outsource a computation, e.g., a cryptographic
operation or a photo manipulation, to a third-party and yet obtain a strong assurance that the result returned
is correct.
∗IBM T.J.Watson Research Center.rosario@us.ibm.com
†IBM T.J.Watson Research Center.cbgentry@us.ibm.com
‡CyLab, Carnegie Mellon Univesity.parno@cmu.edu

1

In all of these scenarios, a key requirement is that the amount of work performed by the client to generate
and verify work instances must be substantially cheaper than performing the computation on its own. It is
also desireable to keep the work performed by the workers as close as possible to the amount of work needed
to compute the original function. Otherwise, the worker may be unable to complete the task in a reasonable
amount of time, or the cost to the client may become prohibitive.

PRIOR WORK: In the security community, research has focused on solutions based on audits and various
forms of secure co-processors. Audit-based solutions [9, 23] typically require the client (or randomly se-
lected workers) to recalculate some portion of the work done by untrusted workers. This may be infeasible
for resource-constrained clients and often relies on some fraction of theworkers to be honest, or at least
non-colluding. Audits based on the time taken to compute the result [25] require detailed knowledge of the
hardware employed by the worker.

Secure co-processors [26, 30] provide isolated execution environments, but their tamper-resistance typ-
ically makes them quite expensive (thousands of dollars each) and sparsely deployed. The requirements of
tamper-resistance also lead to the use of weak CPUs to limit the amount of heat dissipation needed. The
growing ubiquity of Trusted Platform Modules (TPMs) [27] in commodity machines promises to improve
platform security, but TPMs have achieved widespread deployment in part due to reduced costs (one to five
dollars each) that result in little to no physical tamper resistance.

In the cryptographic community, the idea to outsource expensive cryptographic operations to a semi-
trusted device has a long history. Chaum and Pedersen define the notion of wallets with observers[10],
a piece of secure hardware installed by a third party, e.g. a bank, on the client’s computer to “help” with
expensive computations. The hardware is not trusted by the client who retains assurance that it is perform-
ing correctly by analyzing its communication with the bank. Hohenberger and Lysyanskaya formalize this
model [16], and present protocols for the computation of modular exponentiations (arguably the most ex-
pensive step in public-key cryptography operations). Their protocolrequires the client to interact withtwo
non-colluding servers. Other work targets specific function classes, such as one-way function inversion [15].

Recent advances in fully-homomorphic encryption [12] allow a worker to compute arbitrary functions
over encrypted data, but they do not suffice to provide outsourceablecomputing. Indeed, fully-homomorphic
encryption providesno guaranteethat the worker performed the correct computation. While our solution
does employ fully-homomorphic encryption, we combine it with other techniquesto provide verifiability.

The theoretical community has devoted considerable attention to the verifiable computation of arbitrary
functions. Interactive proofs[6, 14] are a way for a powerful (e.g. super-polynomial) prover to (proba-
bilistically) convince a weak (e.g. polynomial) verifier of the truth of statements that the verifier could not
compute on its own. As it is well known, the work on interactive proofs lead tothe concept ofprobabilis-
tically checkable proofs(PCPs), where a prover can prepare a proof that the verifier can check in only very
few places (in particular only a constant number of bits of the proofs needed for NP languages). Notice,
however, that the PCP proof might be very long, potentially too long for the verifier to process. To avoid this
complication, Kilian proposed the use of efficient arguments1 [18,19] in which the prover sends the verifier
a short commitment to the entire proof using a Merkle tree. The prover can then interactively open the
bits requested by the verifier (this requires the use of a collision-resistanthash function). A non-interactive
solution can be obtained using Micali’s CS Proofs [21], which remove interaction from the above argument
by choosing the bits to open based on the application of a random oracle to thecommitment string. In more
recent work, which still uses some of the standard PCP machinery, Goldwasser et al. [13] show how to build
an interactive proof to verify arbitrary polynomial time computations in almost linear time. They also extend
the result to a non-interactive argument for a restricted class of functions.

1We follow the standard terminology: anargumentis a computationally sound proof, i.e. a protocol in which the prover
is assumed to be computationally bounded. In an argument, an infinitely powerful prover can convince the verifier of a false
statement, as opposed to a proof where this is information-theoretically impossible or extremely unlikely.

2

Therefore, if we restrict our attention to non-interactive protocols, the state of the art offers either Mi-
cali’s CS Proofs [21] which are arguments that can only be proven in the random oracle model, or the
arguments from [13] that can only be used for a restricted class of functions.

OUR CONTRIBUTION. We slightly move away from the notions of proofs and arguments, to define the
notion of aVerifiable Computation Scheme: this is a protocol between two polynomial time parties, aclient
and aworker, to collaborate on the computation of a functionF : {0,1}n→ {0,1}m. Our definition uses an
amortized notion of complexity for the client: he can perform some expensivepre-processing, but after this
stage, he is required to run very efficiently. More specifically, a verifiable computation scheme consists of
three phases:

PreprocessingA one-time stage in which the client computes some auxiliary (public and private)informa-
tion associated withF . This phase can take time comparable to computing the function from scratch,
but it is performed only once, and its cost is amortized over all the future executions.

Input Preparation When the client wants the worker to computeF(x), it prepares some auxiliary (public
and private) information aboutx. The public information is sent to the worker.

Output Computation and Verification Once the worker has the public information associated withF and
x, it computes a stringπx which encodes the valueF(x) and returns it to the client. From the valueπx,
the client can compute the valueF(x) and verify its correctness.

Notice that this is inherently a non-interactive protocol: the client sends a single message to the worker and
vice versa. The crucial efficiency requirement is that Input Preparation and Output Verification must take
less time than computingF from scratch (ideally linear time,O(n+ m)). Also, the Output Computation
stage should take roughly the same amount of computation asF .

After formally defining the notion of verifiable computation, we present a verifiable computation scheme
for any function. Assume that the functionF is described by a Boolean circuitC. Then the Preprocessing
stage of our protocol takes timeO(|C|), i.e., time comparable to computing the function from scratch. Apart
from that, the client runs in linear time, as Input Preparation takesO(n) time and Output Verification takes
O(m) time. Finally the worker takes timeO(|C|) to compute the function for the client.

The computational assumptions underlying the security of our scheme are thesecurity of block ci-
phers (i.e., the existence of one-way functions) and the existence of a secure fully homomorphic encryption
scheme [11,12] (more details below). We stress that our non-interactiveprotocol works foranyfunction (as
opposed to Goldwasser et al.’s protocol [13] which works only for a restricted class of functions) and can be
proven in the standard model (as opposed to Micali’s proofs [21] which require the random oracle model).

Motivation: In our setting, the client must still perform an expensive one-time preprocessing phase.
After that, in our scheme, the client runs in linear time. Since the preprocessingstage happens only once, it
is important to stress that it can be performed in a trusted environment wherethe weak client, who does not
have the computational power to perform it, outsources it to a trusted party (think of a military application
in which the client loads the result of the preprocessing stage performed inside the military base by a trusted
server, and then goes off into the field where outsourcing servers may not be trusted anymore – or think of
the preprocessing phase executed on the client’s home machine and then used by his portable device in the
field).

Dynamic and Adaptive Input Choice.We note that in this amortized model of computation, Goldwasser
et al.’s protocol [13] can be modified using Kalai and Raz’s transformation [17] to achieve a non-interactive
scheme (see [24]). However an important feature of our scheme, that isnot enjoyed by Goldwasser et
al.’s protocol [13], is that the inputs to the computation ofF can be chosen in a dynamic and adaptive
fashion throughout the execution of the protocol (as opposed to [13] where they must be fixed and known in
advance).

Privacy. We also note that our construction has the added benefit of providing input and output privacy
for the client, meaning that the worker does not learn any information aboutx or F(x) (details below).

3

This privacy feature is bundled into the protocol and comes at no additional cost. This is a very important
aspect, which should be considered a requirement in real-life applications. After all, if you don’t trust the
worker to compute the function correctly, why would you trust him with the knowledge of your input data?
Homomorphic encryption already solves the problem of computing over private data, but it does not address
the problem of efficiently verifying the result. Our work therefore is the first to provide a weak client with
the ability to efficiently and verifiably offload computation to an untrusted server in such a way that the input
remains secret.

OUR SOLUTION IN A NUTSHELL. Our work is based on the crucial (and somewhat surprising) observation
that Yao’s Garbled Circuit Construction [28,29], in addition to providing secure two-party computation, also
provides a “one-time” verifiable computation. In other words, we can adapt Yao’s construction to allow a
client to outsource the computation of a function on a single input. More specifically, in the preprocessing
stage the client garbles the circuitC according to Yao’s construction. Then in the “input preparation” stage,
the client reveals the random labels associated with the input bits ofx in the garbling. This allows the worker
to compute the random labels associated with the output bits, and from them the client will reconstructF(x).
If the output bit labels are sufficiently long and random, the worker will notbe able to guess the labels for
an incorrect output, and therefore the client is assured thatF(x) is the correct output.

Unfortunately, reusing the circuit for a second inputx′ is insecure, since once the output labels ofF(x)
are revealed, nothing can stop the worker from presenting those labels as correct forF(x′). Creating a new
garbled circuit requires as much work as if the client computed the function itself, so on its own, Yao’s
Circuits do not provide an efficient method for outsourcing computation.

The second crucial idea of the paper is to combine Yao’s Garbled Circuit with a fully homomorphic
encryption system (e.g., Gentry’s recent proposal [12]) to be able to safely reuse the garbled circuit for
multiple inputs. More specifically, instead of revealing the labels associated withthe bits of inputx, the
client will encrypt those labels under the public key of a fully homomorphic scheme. A new public key
is generated for every input in order to prevent information from one execution from being useful for later
executions. The worker can then use the homomorphic property to compute an encryption of the output
labels and provide them to the client, who decrypts them and reconstructsF(x).

Since we use the fully-homomorphic encryption scheme in a black-box fashion, we anticipate that any
performance improvements in future schemes will directly result in similar performance gains for our pro-
tocol as well.

One pre-processing step for many workers:Note that the pre-processing stage is independent of the
worker, since it simply produces a Yao-garbled version of the circuitC. Therefore, in addition to being
reused many times, this garbled circuit can also be sent to many different workers, which is the usage
scenario for applications like Folding@Home [2], which employ a multitude of workers across the Internet.

How to handle malicious workers.In our scheme, if we assume that the worker learns whether or
not the client accepts the proofπx, then for every execution, a malicious worker potentially learns a bit of
information about the labels of the Yao-garbled circuit. For example, the worker could try to guess one of the
labels, encrypt it with the homomorphic encryption and see if the client accepts. In a sense, the output of the
client at the end of the execution can be seen as a very restricted “decryption oracle” for the homomorphic
encryption scheme (which is, by definition, not CCA secure). Because of this one-bit leakage, we are unable
to prove security in this case.

There are two ways to deal with this. One is to assume that the verification output bit by the client
remains private. The other is to repeat the pre-processing stage, i.e. theYao garbling of the circuit, every
time a verification fails. In this case, in order to preserve a good amortized complexity, we must assume
that failures do not happen very often. This is indeed the case in the previous scenario, where the same
garbled circuit is used with several workers, under the assumption that only a small fraction of workers will
be malicious. Details appear in Section 5.

4

g

wa wb

wz

wa wb wz

0 0 g(0,0)

0 1 g(0,1)

1 0 g(1,0)

1 1 g(1,1)

wa wb wz

k0
a k0

b kg(0,0)
z

k0
a k1

b kg(0,1)
z

k1
a k0

b kg(1,0)
z

k1
a k1

b kg(1,1)
z

wa wb wz

k0
a k0

b Ek0
a
(Ek0

b
(kg(0,0)

z))

k0
a k1

b Ek0
a
(Ek1

b
(kg(0,1)

z))

k1
a k0

b Ek1
a
(Ek0

b
(kg(1,0)

z))

k1
a k1

b Ek1
a
(Ek1

b
(kg(1,1)

z))

(a) (b) (c) (d)

Figure 1:Yao’s Garbled Circuits. The original binary gate(a) can be represented by a standard truth table(b). We
then replace the 0 and 1 values with the corresponding randomly chosenλ-bit values(c). Finally, we use the values
for wa and wb to encrypt the values for the output wire wz (d). The random permutation of these ciphertexts is the
garbled representation of gate g.

2 Background

2.1 Yao’s Garbled Circuit Construction

We summarize Yao’s protocol for two-party private computation [28, 29].For more details, we refer the
interested reader to Lindell and Pinkas’ excellent description [20].

We assume two parties, Alice and Bob, wish to compute a functionF over their private inputsa and
b. For simplicity, we focus on polynomial-time deterministic functions, but the generalization to stochastic
functions is straightforward.

At a high-level, Alice convertsF into a boolean circuitC. She prepares a garbled version of the circuit,
G(C), and sends it to Bob, along with a garbled version,G(a), of her input. Alice and Bob then engage in
a series of oblivious transfers so that Bob obtainsG(b) without Alice learning anything aboutb. Bob then
applies the garbled circuit to the two garbled outputs to derive a garbled version of the output:G(F(a,b)).
Alice can then translate this into the actual output and share the result with Bob. Note that this protocol
assumes an honest-but-curious adversary model.

In more detail, Alice constructs the garbled version of the circuit as follows.For each wirew in the

circuit, Alice chooses two random valuesk0
w,k1

w
R
← {0,1}λ to represent the bit values of 0 or 1 on that wire.

Once she has chosen wire values for every wire in the circuit, Alice constructs a garbled version of each gate
g (see Figure 1). Letg be a gate with input wireswa andwb, and output wirewz. Then the garbled version
G(g) of g is simply four ciphertexts:

γ00 = Ek0
a
(Ek0

b
(kg(0,0)

z)), γ01 = Ek0
a
(Ek1

b
(kg(0,1)

z)), γ10 = Ek1
a
(Ek0

b
(kg(1,0)

z)), γ11 = Ek1
a
(Ek1

b
(kg(1,1)

z)), (1)

whereE is an secure symmetric encryption scheme with an “elusive range” (more details below). The order
of the ciphertexts is randomly permuted to hide the structure of the circuit (i.e., we shuffle the ciphertexts,
so that the first ciphertext does not necessarily encode the output for(0,0)).

We refer tow0
z andw1

z as the “acceptable” outputs for gateg, since they are the only two values that rep-

resent valid bit-values for the output wire. Given input keyskx
a,k

y
b, we will refer towg(x,y)

z as the “legitimate”

output, andw1−g(x,y)
z as the “illegitimate” output.

In Yao’s protocol, Alice transfers all of the ciphertexts to Bob, along with the wire values corresponding
to the bit-level representation of her input. In other words, she transfers eitherk0

a if her input bit is 0 ork1
a if

her input bit is 1. Since these are randomly chosen values, Bob learns nothing about Alice’s input. Alice and
Bob then engage in an oblivious transfer so that Bob can obtain the wire values corresponding to his inputs
(e.g.,k0

b or k1
b). Bob learns exactly one value for each wire, and Alice learns nothing about his input. Bob

can then use the wire values to recursively decrypt the gate ciphertexts,until he arrives at the final output
wire values. When he transmits these to Alice, she can map them back to 0 or 1 values and hence obtain the
result of the function computation.

5

2.2 The Security of Yao’s Protocol

Lindell and Pinkas prove [20] that Yao is a secure two-party computation protocol under some specific
assumptions on the encryption schemeE used to garble the circuit. More specifically the encryption function
E needs:

• Indistinguishable ciphertexts for multiple messages:For every two vectors of messages ¯x and ȳ, no
polynomial time adversary can distinguish between an encryption of ¯x and an encryption of ¯y. Notice
that because we require security for multiple messages, we cannot use a one-time pad.

• An elusive range:Encryptions under different keys fall into different ranges of the ciphertext space
(at least with high probability).

• An efficiently verifiable range:Given the keyk, it is possible to decide efficiently if a given ciphertext
falls into the range of encryptions underk.

We give a formal definition of these properties. Recall that a private encryption scheme is a pair of
algorithms(E,D), the encryption and decryption algorithms respectively, that run on inputthe security
parameterλ, a randomλ-bit key k, andλ-bit strings (the plaintext and ciphertext, respectively). In the
following negli() denotes a negligible function of its input.

Definition 1 We say that a private encryption scheme(E,D) is Yao-secureif the following properties are
satisfied. Assume k←{0,1}λ:

• Indistinguishability of ciphertexts for multiple messages:For every efficient adversary A, and every
two vectors of ciphertexts[x1, ...,xℓ] and [y1, ...,yℓ] (with ℓ = poly(λ)), and ui = Ek(xi), zi = Ek(yi),
we have that

|Prob[A[u1, . . . ,uℓ] = 1]−Prob[A[z1, . . . ,zℓ] = 1]|< negli(λ)

• Elusive Range:LetRangeλ(k) = {Ek(x)}x∈{0,1}λ . For every efficient adversary A we require:

Prob[A(1λ) ∈ Rangeλ(k)] < negli(λ)

• Efficiently Verifiable Range:There exists an efficient machine M such that M(k,c) = 1 if and only if
c∈ Rangeλ(k).

Lindell and Pinkas show [20] that Yao’s garbled circuit technique, combined with a secure oblivious
transfer protocol, is a secure two-party computation protocol (for semi-honest parties) ifE is Yao-secure.
They also show how to build Yao-secure encryption schemes based on one-way functions.

2.3 Fully-Homomorphic Encryption

A fully-homomorphic encryption schemeE is defined by four algorithms: the standard encryption functions
KeyGenE , EncryptE , andDecryptE , as well as a fourth functionEvaluateE . EvaluateE takes in a circuit
C and a tuple of ciphertexts and outputs a ciphertext that decrypts to the result of applyingC to the plaintexts.
A nontrivial scheme requires thatEncryptE andDecryptE operate in time independent ofC [11,12]. More
precisely, the time needed to generate a ciphertext for an input wire ofC, or decrypt a ciphertext for an output
wire, is polynomial in the security parameter of the scheme (independent ofC). Note that this implies that
the length of the ciphertexts for the output wires is bounded by some polynomial in the security parameter
(independent ofC).

Gentry recently proposed a scheme, based on ideal lattices, that satisfiesthese requirements for arbitrary
circuits [11, 12]. The complexity ofKeyGenE in his initial leveledfully homomorphic encryption scheme
grows linearly with the depth ofC. However, under the assumption that his encryption scheme iscircular
secure– i.e., roughly, that it is “safe” to reveal an encryption of a secret key under its associated public key

6

– the complexity ofKeyGenE is independent ofC. See [8, 11, 12] for more discussion on circular-security
(and, more generally, key-dependent-message security) as it relates tofully homomorphic encryption.

In this paper, we use fully homomorphic encryption as a black box, and therefore do not discuss the
details of any specific scheme.

3 Problem Definition

At a high-level, a verifiable computation scheme is a two-party protocol in which aclientchooses a function
and then provides an encoding of the function and inputs to the function to aworker. The worker is expected
to evaluate the function on the input and respond with the output. The client then verifies that the output
provided by the worker is indeed the output of the function computed on the input provided.

3.1 Basic Requirements

A verifiable computation schemeV C = (KeyGen,ProbGen,Compute,Verify) consists of the four algo-
rithms defined below.

1. KeyGen(F,λ)→ (PK,SK): Based on the security parameterλ, the randomizedkey generational-
gorithm generates a public key that encodes the target functionF , which is used by the worker to
computeF . It also computes a matching secret key, which is kept private by the client.

2. ProbGenSK(x)→ (σx,τx): The problem generationalgorithm uses the secret keySK to encode the
function inputx as a public valueσx which is given to the worker to compute with, and a secret value
τx which is kept private by the client.

3. ComputePK(σx)→ σy: Using the client’s public key and the encoded input, the workercomputesan
encoded version of the function’s outputy = F(x).

4. Verify SK(τx,σy)→ y∪ ⊥: Using the secret keySK and the secret “decoding”τx, the verification
algorithm converts the worker’s encoded output into the output of the function, e.g.,y = F(x) or
outputs⊥ indicating thatσy does not represent the valid output ofF onx.

A verifiable computation scheme should be both correct and secure. A scheme is correct if the prob-
lem generation algorithm produces values that allows an honest worker tocompute values that will verify
successfully and correspond to the evaluation ofF on those inputs. More formally:

Definition 2 (Correctness) A verifiable computation schemeV C is correct if for any choice of function
F, the key generation algorithm produces keys(PK,SK)← KeyGen(F,λ) such that,∀x ∈ Domain(F), if
(σx,τx)← ProbGenSK(x) andσy← ComputePK(σx) then y= F(x)← Verify SK(τx,σy).

Intuitively, a verifiable computation scheme is secure if a malicious worker cannot persuade the verifica-
tion algorithm to accept an incorrect output. In other words, for a givenfunctionF and inputx, a malicious
worker should not be able to convince the verification algorithm to output ˆy such thatF(x) 6= ŷ. Below, we
formalize this intuition with an experiment, wherepoly(·) is a polynomial.

ExperimentExpVeri f
A [V C ,F,λ]

(PK,SK)
R
← KeyGen(F,λ);

For i = 1, . . . , ℓ = poly(λ);
xi ← A(PK,x1,σ1, . . . ,xi ,σi);
(σi ,τi)← ProbGenSK(xi);

(i, σ̂y)← A(PK,x1,σ1, . . . ,xℓ,σℓ);
ŷ← Verify SK(τi , σ̂y)
If ŷ 6=⊥ andŷ 6= F(xi), output ‘1’, else ‘0’;

7

Essentially, the adversary is given oracle access to generate the encoding of multiple problem instances.
The adversary succeeds if it produces an output that convinces the verification algorithm to accept on the
wrong output value for a given input value. We can now define the security of the system based on the
adversary’s success in the above experiment.

Definition 3 (Security) For a verifiable computation schemeV C , we define the advantage of an adversary
A in the experiment above as:

AdvVeri f
A (V C ,F,λ) = Prob[ExpVeri f

A [V C ,F,λ] = 1] (2)

A verifiable computation schemeV C is securefor a function F, if for any adversary A running in
probabilistic polynomial time,

AdvVeri f
A (V C ,F,λ)≤ negli(λ) (3)

wherenegli() is a negligible function of its input.

In the above definition, we could have also allowed the adversary to selectthe functionF . However, our
protocol is a verifiable computation scheme that is secure forall F , so the above definition suffices.

3.2 Input and Output Privacy

While the basic definition of a verifiable computation protects the integrity of the computation, it is also
desirable that the scheme protect the secrecy of the input given to the worker(s). We define input privacy
based on a typical indistinguishability argument that guarantees thatno information about the inputs is
leaked. Input privacy, of course, immediately yields output privacy.

Intuitively, a verifiable computation scheme isprivatewhen the public outputs of the problem generation
algorithmProbGenover two different inputs are indistinguishable; i.e., nobody can decide which encoding
is the correct one for a given input. More formally consider the following experiment: the adversary is given
the public key for the scheme and selects two inputsx0,x1. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one was encoded. During this process the adversary
is allowed to request the encoding of any input he desires. The experiment is described below. The oracle
PubProbGenSK(x) callsProbGenSK(x) to obtain(σx,τx) and returns only the public partσx.

ExperimentExpPriv
A [V C ,F,λ]

(PK,SK)
R
← KeyGen(F,λ);

(x0,x1)← APubProbGenSK(·)(PK)
(σ0,τ0)← ProbGenSK(x0);
(σ1,τ1)← ProbGenSK(x1);

b
R
←{0,1};

b̂← APubProbGenSK(·)(PK,x0,x1,σb)

If b̂ = b, output ‘1’, else ‘0’;

Definition 4 (Privacy) For a verifiable computation schemeV C , we define the advantage of an adversary
A in the experiment above as:

AdvPriv
A (V C ,F,λ) = Prob[ExpPriv

A [V C ,F,λ] = 1] (4)

A verifiable computation schemeV C is private for a function F, if for any adversary A running in
probabilistic polynomial time,

AdvPriv
A (V C ,F,λ)≤ negli(λ) (5)

wherenegli() is a negligible function of its input.

8

An immediate consequence of the above definition is that in a private scheme, the encoding of the input
must be probabilistic (since the adversary can always queryx0,x1 to thePubProbGen oracle, and if the
answer were deterministic, he could decide which input is encoded inσb).

A similar definition can be made for output privacy.

3.3 Efficiency

The final condition we require from a verifiable computation scheme is that thetime to encode the input and
verify the output must be smaller than the time to compute the function from scratch.

Definition 5 (Outsourceable) A V C can be outsourced if it permits efficient generation and efficient veri-
fication. This implies that for any x and anyσy, the time required forProbGenSK(x) plus the time required
for Verify (σy) is o(T), where T is the time required to compute F(x).

Some functions are naturally outsourceable (i.e., they can be outsourced with no additional mecha-
nisms), but many are not.

Notice that we are not including the time to compute the key generation algorithm (i.e., the encoding of
the function itself). Therefore, the above definition captures the idea of an outsourceable verifiable compu-
tation scheme which is more efficient than computing the function in anamortizedsense, since the cost of
encoding the function can be amortized over many input computations.

4 An Efficient Verifiable-Computation Scheme with Input/Output Pr ivacy

4.1 Protocol Definition

We are now ready to describe our scheme. Informally, our protocol works as follows. The key generation
algorithm consists of running Yao’s garbling procedure over a Booleancircuit computing the functionF :
the public key is the collection of ciphertexts representing the garbled circuit,and the secret key consists
of all the random wire labels. The input is encoded in two steps: first a fresh public/secret key pair for a
homomorphic encryption scheme is generated, and then the labels of the correct input wires are encrypted
with it. These ciphertexts constitute the public encoding of the input, while the secret key is kept private by
the client. Using the homomorphic properties of the encryption scheme, the worker performs the compu-
tation steps of Yao’s protocol, but working over ciphertexts (i.e., for every gate, given the encrypted labels
for the correct input wires, obtain an encryption of the correct outputwire, by applying the homomorphic
encryption over the circuit that computes the “double decryption” in Yao’sprotocol). At the end, the worker
will hold the encryption of the labels of the correct output wires. He returns these ciphertexts to the client
who decrypts them and then computes the output from them. We give a detaileddescription below.

Protocol V C .
1. KeyGen(F,λ)→ (PK,SK): RepresentF as a circuitC. Following Yao’s Circuit Construction (see

Section 2.1), choose two values,w0
i ,w

1
i

R
← {0,1}λ for each wirewi . For each gateg, compute the

four ciphertexts(γg
00,γ

g
01,γ

g
10,γ

g
11) described in Equation 1. The public keyPK will be the full set

of ciphertexts, i.e.,PK← ∪g(γg
00,γ

g
01,γ

g
10,γ

g
11), while the secret key will be the wire values chosen:

SK←∪i(w0
i ,w

1
i).

2. ProbGenSK(x)→ σx: Run the doubly-homomorphic encryption scheme’s key generation algorithm
to create a new key pair:(PKE ,SKE)← KeyGenE (λ). Let wi ⊂ SK be the wire values representing
the binary expression ofx. Setσx← (PKε,EncryptE (PKE ,wi)) andτx← SKE .

3. ComputePK(σx)→ σy: CalculateEncryptE (PKE ,γi). Construct a circuit∆ that on inputw,w′,γ
outputsDw(Dw′(γ)), whereD is the decryption algorithm corresponding to the encryptionE used in

9

Yao’s garbling (therefore∆ computes the appropriate decryption in Yao’s construction). Calculate
EvaluateE (∆, EncryptE (PKE ,wi), EncryptE (PKE ,γi)) repeatedly, to decrypt your way through the
ciphertexts, just as in the evaluation of Yao’s garbled circuit. The result isσy← EncryptE (PKε, w̄i),
wherew̄i are the wire values representingy = F(x) in binary.

4. Verify SK(σy)→ y∪ ⊥: UseSKE to decryptEncryptE (PKε, w̄i), obtainingw̄i . UseSK to map the
wire values to an outputy. If the decryption or mapping fails, output⊥.

Remark: On verifying ciphertext ranges in an encrypted form.Recall that Yao’s scheme requires the en-
cryption schemeE to have anefficiently verifiable range: Given the keyk, it is possible to decide efficiently
if a given ciphertext falls into the range of encryptions underk. In other words, there exists an efficient
machineM such thatM(k,γ) = 1 if and only if γ ∈ Rangeλ(k). This is necessary to “recognize” which
ciphertext to pick among the four ciphertexts associated with each gate.

In our verifiable computation schemeV C , we need to perform this check using an encrypted form of the
keyc = EncryptE (PKE ,k). When applying the homomorphic properties ofE to the range testing machine
M, the worker obtains an encryption of 1 for the correct ciphertext, and an encryption of 0 for the others. Of
course he is not able to distinguish which one is the correct one.

The worker then proceeds as follows: for the four ciphertextsγ1,γ2,γ3,γ4 associated with a gateg,
he first computesci = EncryptE (PKE ,M(k,γi)) using the homomorphic properties ofE over the circuit
describingM. Note that only one of these ciphertexts encrypts a 1, exactly the one corresponding to the
correctγi . Then the worker computesdi = EncryptE (PKE ,Dk(γi)) using the homomorphic properties of
E over the decryption circuit∆. Note thatk′ = ΣiM(k,γi)Dk(γi) is the correct label for the output wire.
Therefore, the worker can use the homomorphic properties ofE to computec = EncryptE (PKE ,k′) =
EncryptE (PKE ,ΣiM(k,γi)Dk(γi)) from ci ,di , as desired.

4.2 Proof of Security

The main result of our paper is the following.

Theorem 1 Let E be a Yao-secure symmetric encryption scheme andE be a semantically secure homomor-
phic encryption scheme. Then protocolV C is a secure, outsourceable and private verifiable computation
scheme.

The proof of Theorem 1 requires two high-level steps. First, we show that Yao’s garbled circuit scheme
is a one-time secure verifiable computation scheme, i.e. a scheme that can be used to computeF securely
on one input. Then, by using the semantic security of the homomorphic encryption scheme, we reduce the
security of our scheme (with multiple executions) to the security of a single execution where we expect the
adversary to cheat.

4.3 Proof Sketch of Yao’s Security for One Execution

Consider the verifiable computation schemeV CYao defined as follows:

Protocol V CYao.
1. KeyGen(F,λ)→ (PK,SK): RepresentF as a circuitC. Following Yao’s Circuit Construction (see

Section 2.1), choose two values,w0
i ,w

1
i

R
← {0,1}λ for each wirewi . For each gateg, compute the

four ciphertexts(γg
00,γ

g
01,γ

g
10,γ

g
11) described in Equation 1. The public keyPK will be the full set

of ciphertexts, i.e,PK← ∪g(γg
00,γ

g
01,γ

g
10,γ

g
11), while the secret key will be the wire values chosen:

SK←∪i(w0
i ,w

1
i).

2. ProbGenSK(x)→ σx: Reveal the labels of the input wires associated withx. In other words, let
wi ⊂ SK be the wire values representing the binary expression ofx, and setσx← (PKε,wi). τx is the
empty string.

10

3. ComputePK(σx)→ σy: Compute the decryptions in Yao’s protocol to obtain the labels of the correct
output wires. Setσy to be these labels.

4. Verify SK(σy)→ y∪⊥: UseSK to map the wire values inσy to the binary representation of the output
y. If the mapping fails, output⊥.

Theorem 2 V CYao is a correct verifiable computation scheme.

Proof of Theorem 2: The proof of correctness follows directly from the proof of correctness for Yao’s
garbled circuit construction [20]. UsingC and x̃ will produce a ˜y that represents the correct evaluation of
F(x).

We prove thatV CYao is a one-timesecure verifiable computation scheme. The definition ofone-time
secureis the same as Definition 3 except that in experimentExpVeri f

A , the adversary is allowed to query the
oracleProbGenSK(·) only once (i.e.,ℓ = 1) and must cheat on that input.

Intuitively, an adversary who violates the security of this scheme must eitherguess the “incorrect”
random valuek1−yi

w for one of the output bit values representingy, or he must break the encryption scheme
used to encode the “incorrect” wire values in the circuit. The former happens with probability≤ 1

2λ , i.e.,
negligible inλ. The latter violates our security assumptions about the encryption scheme. We formalize this
intuition below using an hybrid argument similar to the one used in [20].

Theorem 3 Let E be a Yao-secure symmetric encryption scheme. ThenV CYao is a one-time secure verifi-
able computation scheme.

Proof of Theorem 3: Assume w.l.o.g. that the functionF outputs a single bit (at the end of the proof we
show how to deal with the case of multiple-bit outputs). Assume a canonical order on the gates in the circuit
computingF , and letm be the number of such gates. LetPK be the garbled circuit obtained by running
KeyGen(F,λ).

Fix any adversaryA; we show that forA, the probability of successfully cheating is negligible inλ, if the
encryption schemeE is Yao-secure. We do this by defining a series ofhybridexperiments where we change
the setting in whichA is run, but in a controlled way: each experiment in the series will becomputationally
indistinguishablefrom the previous one, if the security of the encryption scheme holds. Thefirst experiment
in the series isExpVeri f

A . In the last experiment, we will show that information-theoreticallyA can cheat
only with negligible probability, therefore proving that in order to cheat in theoriginal experiment,A must
distinguish between two experiments in the series, and thus break the encryption scheme.

We denote withH i
A[V C ,F,λ], theith hybrid experiment, run with an adversaryA, verifiable computation

schemeV C , functionF and security parameterλ. All experiments output a Boolean value, and therefore
we can defineAdvi

A(V C ,F,λ) = Prob[H i
A[V C ,F,λ] = 1].

Define
pb = Prob[A in ExpVeri f

A [V CYao,F,λ] outputsx s.t.F(x) = b]

Note that we can estimate these probabilities by running the experiment many times.Setβ to be the bit such
that pβ ≥ pβ̄. Notice thatpβ ≥ 1/2.

Experiment H0
A[V CYao,F,λ] : This experiment is exactly likeExpVeri f

A [V CYao,F,λ] except that whenA
queriesProbGen on the inputx (recall that we are considering the case where the adversary only submits
a single input value and must cheat on that input), the oracle selects a random2 x′ such thatF(x′) = β and
returnsσx′ , where(σx′ ,τx′)← ProbGenSK(x′). The experiment’s output bit is set to 1 ifA manages to cheat
over inputx′, i.e. produces a valid proof for̄β (and to 0 otherwise).

Lemma 1 If E is a Yao-secure encryption scheme, then for all efficient adversaries A we have|Adv0
A(V CYao,F,λ)−

AdvVeri f
A (V CYao,F,λ)| ≤ negli(λ).

2SinceF is a Boolean function, w.l.o.g. we can assume that we can efficiently samplex′ such thatF(x′) = b.

11

Proof of Lemma 1: The Lemma follows from the security of Yao’s two-party computation protocol[20].
Recall that in Yao’s protocol, two partiesP1 andP2 want to compute a functionF over inputsx andy

privately held respectively byP1 andP2, without revealing any information about their inputs except the
valueF(x,y). The protocol goes as follows:P1 garbles a circuit computing the functionF , and gives to
P2 the labels of his inputx. Moreover,P1 andP2 engage in OT protocols to giveP2 the labels of her input
y, without revealing this input toP1. ThenP2 executes the circuit on his own and sends the output label
to P1, who reveals the output of the functionF(x,y). Note thatP1 sends his input labels in the clear toP2.
The intuition is thatP1’s input remains private sinceP2 can’t associate the labels with the bit values they
represent. This intuition is formalized in the proof in [20].

Therefore we reduce the indistinguishability ofH0
A[V CYao,F,λ] andExpVeri f

A∗ [V CYao,F,λ] to the secu-
rity of Yao’s protocol. We show that if there existsA such that

|Adv0
A(V CYao,F,λ)−AdvVeri f

A (V CYao,F,λ)|> ε

with non-negligibleε, then we can learn some information aboutP1’s input with roughly the same advantage.
Suppose we run Yao’s two-party protocol betweenP1 andP2 with the functionF computed over justP1’s

inputx′. We assume thatP1’s input is chosen with the right distribution3 (i.e. F(x′) = β). For any two values
x,x′, with F(x) = F(x′), the security of Yao’s protocol implies that no efficient playerP2 can distinguish ifx
or x′ was used.

We build a simulatorS that plays the role ofP2 and distinguishes between the two input cases, with
probability pβε, thus creating a contradiction.

The protocol starts withP1 sending the garbled circuitPK and the encoding of his inputσx′ . The
simulator computes the labelℓ associated with the outputF(x′). At this point the simulator engagesA over
the inputPK, andA requests the encoding of an inputx. If F(x) 6= β the simulator tosses a random coin,
and outputs the resulting bit. Notice however that with probabilitypβ, F(x) = β = F(x′). In this case, the
simulator providesA with the encodingσx′ , and returns as its output the experiment bit.

Notice that ifx= x′ we are runningExpVeri f
A [V CYao,F,λ], while if x 6= x′ we are runningH0

A∗ [V CYao,F,λ].
Therefore the simulator distinguishes between the two input values exactly withprobability pβε, therefore
creating a contradiction.

Experiment H i
A[V CYao,F,λ] for i = 1, . . . ,m: During theith experiment theProbGenoracle still chooses a

random valuex′ to answerA’s query as inH0
A[V CYao,F,λ]. This valuex′ defines 0/1 values for all the wires

in the circuit. We say that a labelwb for wire w is activeif the value of wirew when the circuit is computed
overx′ is b. We now define a family of fake garbled circuitsPKi

f ake for i = 0, . . . ,m, as follows. For gate

g j with j ≤ i, if wb is the active label associated with its output wirew, thenall four ciphertexts associated
with g j encryptwb. For gateg j , with j > i, the four ciphertexts are computed correctly as in Yao’s garbling
technique, where the value encrypted depends on the keys used to encrypt it. Notice thatPK0

f ake= PK since
for all of the gates, the ciphertexts are computed correctly. The experiment’s output bit is still set to 1 ifA
manages to cheat over inputx′, i.e. produces a valid proof for̄β (and to 0 otherwise).

Lemma 2 If E is a Yao-secure encryption scheme, then for all efficient adversaries A we have|Advi
A(V CYao,F,λ)−

Advi−1
A (V CYao,F,λ)| ≤ negli(λ).

This lemma is actually proven in [20], and we refer the reader to it for a full proof. Intuitively, the lemma
follows from the ciphertext indistinguishability of the encryption schemeE.

Lemma 3 Advm
A(V CYao,F,λ) = 2−λ

3We can assume this since the security of Yao’s protocol is for all inputs, so in particular for this distribution.

12

Proof of Lemma 3: Recall thatAdvm
A(V CYao,F,λ) is the probability thatA manages to cheat over inputx′,

i.e., to provide the incorrect output label. However, the view ofA is information-theoretically independent
of that label, since the incorrect output label is inactive and has not been encrypted in the garbled circuit
PKm

f ake. Since labels are chosen as randomλ-bit strings, the probability of guessing the incorrect output

label is exactly 2−λ.

This completes the proof of Theorem 3.

Remark: This proof does not readily extend to the case of a functionF with multiple output bits, because
in that case it might not be possible to sample anx which produces a specific output (think of a one-way
function F for example). However, notice that if the output isn bits, then the valuey computed by a
successful cheating adversary must be different fromF(x) in at least one bit. Thus, at the beginning of the
simulation, we can try to guess the bit on which the adversary will cheat and then run the proof for the 1-bit
case. Our guess will be right with probability 1/n.

4.4 Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 2 and the semantic securityof the homomorphic encryption
scheme. More precisely, we show that if the homomorphic encryption schemeis semantically secure, then
we can transform (via a simulation) a successful adversary against thefull verifiable computation scheme
V C into an attacker for the one-time secure protocolV CYao. The intuition is that for each query, the labels
in the circuit are encrypted with a semantically-secure encryption scheme (the homomorphic scheme), so
multiple queries do not help the adversary to learn about the labels, and hence if he cheats, he must be able
to cheat in the one-time case as well.

Proof of Theorem 1: Let us assume for the sake of contradiction that there is an adversaryA such that
AdvVeri f

A (V C ,F,λ)≥ ε, whereε is non-negligible inλ. We useA to build another adversaryA′ which queries
theProbGenoracle only once, and for whichAdvVeri f

A′ (V CYao,F,λ)≥ ε′, whereε′ is close toε. The details
of A′ follow.

A′ receives as input the garbled circuitPK. It activatesA with the same input. Letℓ be an upper bound
on the number of queries thatA makes to itsProbGen oracle. The adversaryA′ chooses an indexi at
random between 1 andℓ and continues as follows. For thej th query byA, with j 6= i, A′ will respond by
(i) choosing a random private/public key pair for the homomorphic encryption scheme(PK j

E
,SKj

E
) and (ii)

encrypting randomλ-bit strings underPK j
E

. For theith query,x, the adversaryA′ givesx to its ownProbGen
oracle and receivesσx, the collection of active input labels corresponding tox. It then generates a random
private/public key pair for the homomorphic encryption scheme(PKi

E
,SKi

E
), and it encryptsσx (label by

label) underPKi
E

.
Once we prove the Lemma 4 below, we have our contradiction and the proof of Theorem 1 is complete

Lemma 4 AdvVeri f
A′ (V CYao,F,λ)≥ ε′ whereε′ is non-neglible inλ.

Proof of Lemma 4: This proof also proceeds by defining, for any adversaryA, a set of hybrid experiments
H k

A (V C ,F,λ) for k = 0, . . . , ℓ−1. We define the experiments below. Leti be an index randomly selected
between 1 andℓ as in the proof above.

Experiment H k
A(V C ,F,λ) = 1]: In this experiment, we change the way the oracleProbGen computes its

answers. For thej th query:

• j ≤ k and j 6= i: The oracle will respond by (i) choosing a random private/public key pairfor the
homomorphic encryption scheme(PK j

E
,SKj

E
) and (ii) encrypting randomλ-bit strings underPK j

E
.

13

• j > k or j = i: The oracle will respond exactly as inV C , i.e. by (i) choosing a random private/public
key pair for the homomorphic encryption scheme(PK j

E
,SKj

E
) and (ii) encrypting the correct input

labels in Yao’s garbled circuit underPK j
E

.

In the end, the bit output by the experimentH k
A is 1 if A successfully cheats on theith input and otherwise is

0. We denote withAdvk
A(V C ,F,λ) = Prob[H k

A(V C ,F,λ) = 1]. Note that

• H 0
A (V C ,F,λ) is identical to the experimentExpVeri f

A [V C ,F,λ], except for the way the bit is computed
at the end. Since the indexi is selected at random between 1 andℓ, we have that

Adv0
A(V C ,F,λ) =

AdvVeri f
A (V C ,F,λ)

ℓ
≥

ε
ℓ

• H ℓ−1
A (V C ,F,λ) is equal to the simulation conducted byA′ above, so

Advℓ−1
A (V C ,F,λ) = AdvVeri f

A′ (V CYao,F,λ)

If we prove fork= 0, . . . , ℓ−1 that experimentsH k
A (V C ,F,λ) andH k−1

A (V C ,F,λ) are computationally
indistinguishable, that is for everyA

|Advk
A(V C ,F,λ)−Advk−1

A (V C ,F,λ)| ≤ negli(λ) (6)

we are done, since that implies that

AdvVeri f
A′ (V CYao,F,λ)≥

ε
ℓ
− ℓ ·negli(λ)

which is the desired non-negligibleε′.
But Eq. 6 easily follows from the semantic security of the homomorphic encryption scheme. Indeed

assume that we could distinguish betweenH k
A andH k−1

A , then we can decide the following problem, which
is easily reducible to the semantic security ofE :

Security of E with respect to Yao Garbled Circuits: Given a Yao-garbled circuit PKYao, an input x for it,
a random public key PKE for the homomorphic encryption scheme, a set of ciphertexts c1, . . . ,cn where n is
the size of x, decide if for all i, ci = EncryptE (PKE ,wxi

i), where wi is the ith input wire and xi is the ith input
bit of x, or ci is the encryption of a random value.

Now run experimentH k−1
A with the following modification: at thekth query, instead of choosing a fresh

random key forE and encrypting random labels, answer withPKE and the ciphertextsc1, . . . ,cn defined by
the problem above. Ifci is the encryption of a random value, then we are still running experimentH k−1

A ,
but if ci = EncryptE (PKE ,wxi

i), then we are actually running experimentH k
A . Therefore we can decide the

Security ofE with respect to Yao Garbled Circuits with the same advantage with which we can distinguish
betweenH k

A andH k−1
A .

The reduction of the Security ofE with respect to Yao Garbled Circuits to the basic semantic security
of E is an easy exercise, and details will appear in the final version.

4.5 Proof of Input and Output Privacy

Note that for each oracle query the input and the output are encrypted under the homomorphic encryption
schemeE . It is not hard to see that the proof of correctness above, easily implies the proof of input and
output privacy. For the one-time case, it obviously follows from the security of Yao’s two-party protocol.
For the general case, it follows from the semantic security ofE , and the proof relies on the same hybrid
arguments described above.

14

4.6 Efficiency

The protocol we have described meets the efficiency goals outlined in Section 3.3. During the preprocessing
stage, the client performsO(|C|) work to prepare the Garbled Yao circuit. For each invocation ofProbGen,
the client generates a new keypair and encrypts one Yao label for eachbit of the input, which requiresO(n)
effort. The worker computes its way through the circuit by performing a constant amount of work per gate,
so the worker takes time linear in the time to evaluate the original circuit, namelyO(|C|). Finally, to verify
the worker’s response, the client performs a single decryption and comparison operation for each bit of the
output, for a total effort ofO(m). Thus, amortized over many inputs, the client performsO(n+m) work to
prepare and verify each input and result.

5 How to Handle Cheating Workers

Our definition of security (Definition 3) assumes that the adversary does not see the output of theVerify
procedure run by the client on the valueσ returned by the adversary. Theorem 1 is proven under the same
assumption. In practice this means that our protocolV C is secure if the client keeps the result of the
computation private.

In practice, there might be circumstances where this is not feasible, as the behavior of the client will
change depending on the result of the evaluation (e.g., the client might refuse to pay the worker). Intuitively,
and we prove this formally below, seeing the result ofVerify on proofs the adversary correctlyComputes
using the output ofPubProbGendoes not help the adversary (since it already knows the result based on the
inputs it supplied toPubProbGen). But what if the worker returns a malformed response – i.e., something
for which Verify outputs⊥. How does the client respond, if at all? One option is for the client to ask the
worker to perform the computation again. But this repeated request informs the worker that its response
was malformed, which is an additional bit of information that a cheating workermight exploit in its effort
to generate forgeries. Is our scheme secure in this setting? In this section,we prove that our scheme
remains secure as long as the client terminates after detecting a malformed response. We also consider
the interesting question of whether our scheme is secure if the client terminatesonly after detectingk > 1
malformed responses, but we are unable to provide a proof of security inthis setting.

Note that there is a real attack on the scheme in this setting if the client does not terminate. Specifically,
for concreteness, suppose that each ciphertext output byEncryptE encrypts a single bit of a label for an
input wire of the garbled circuit, and that the adversary wants to determine the first bitwb1

11 of the first label
(where that label stands in for unknown inputb1∈{0,1}). To do this, the adversary runsComputeas before,
obtaining ciphertexts that encrypt the bits ¯wi of a label for the output wire. Using the homomorphism of the
encryption schemeE , it XORs wb1

11 with the first bit ofw̄i to obtainw̄′i , and it sends (the encryption of) ¯w′i
as its response. IfVerify outputs⊥, thenwb1

11 must have been a 1; otherwise, it is a 0 with overwhelming
probability. The adversary can thereby learn the labels of the garbled circuit one bit at a time – in particular,
it can similarly learn the labels of the output wire, and thereafter generate a verifiable response without
actually performing the computation.

Intuitively, one might think that if the client terminates after detectingk malformed responses, then the
adversary should only be able to obtain aboutk bits of information about the garbled circuit before the client
terminates (using standard entropy arguments), and therefore it should still be hard for the adversary to
output the entire “wrong” label for the output wire as long asλ is sufficiently larger thank. However, we are
unable to make this argument go through. In particular, the difficulty is with the hybrid argument in the proof
of Theorem 1, where we gradually transition to an experiment in which the simulator is encrypting the same
Yao input labels in every round. This experiment must be indistinguishable from the real world experiment,
which permits different inputs in different rounds. When we don’t givethe adversary information about

15

whether or not its response was well-formed or not, the hybrid argument isstraightforward – it simply
depends on the semantic security of the FHE scheme.

However, if we do give the adversary that information, then the adversary can easily distinguish rounds
with the same input from rounds with random inputs. To do so, it chooses some “random” predicateP over
the input labels, such thatP(w1

b1
,w2

b2
, . . .) = P(w1

b′1
,w2

b′2
, . . .) with probability 1/2 if (b1,b2, . . .) 6= (b′1,b

′
2, . . .).

Given the encryptions ofw1
b1

,w2
b2

, . . ., the adversary runsCompute as in the scheme, obtaining ciphertexts
that encrypt the bits ¯wi of a label for the output wire, XORs (using the homomorphism)P(w1

b1
,w2

b2
, . . .) with

the first bit ofw̄i , and sends (an encryption of) the result ¯w′i as its response. If the client is making the same
query in every round – i.e., the Yao input labels are the same every time – then,the predicate always outputs
the same bit, and thus the adversary gets the same response (well-formed ormalformed) in every round.
Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attack more difficult by (for example) trying to
hide which ciphertexts encrypt the bits of which labels – i.e., via some form of obfuscation. However,
the adversary may define its predicate in such a way that it “analyzes” this obfuscated circuit, determines
whether two ostensibly different inputs in fact represent the same set ofYao input labels, and outputs the
same bit if they do. (It performs this analysis on the encrypted inputs, usingthe homomorphism.) We do not
know of any way to prevent this distinguishing attack, and suspect that preventing it may be rather difficult
in light of Barak et al.’s result that there is no general obfuscator [7].

Security with Verification Access.We say that a verifiable computation scheme is securewith verification
accessif the adversary is allowed to see the result ofVerify over the queriesxi he has made to theProbGen
oracle inExpVeri f

A (see Definition 3).

Let V C
† be like V C , except that the client terminates if it receives a malformed response fromthe

worker. Below, we show thatV C
† is secure with verification access. In other words, it is secure to provide

the worker with verification access (indicating whether a response was well-formed or not), until the worker

gives a malformed response. LetExpVeri f†

A

[

V C
†
,F,λ

]

denote the experiment described in Section 3.1, with

the obvious modifications.

Theorem 4 If V C is a secure outsourceable verifiable computation scheme, thenV C
† is a secure out-

sourceable verifiable computation scheme with verification access. IfV C is private, then so isV C
†.

Proof of Theorem 4: Consider two games between a challenger and an adversaryA. In the real world
game forV C

†, Game 0, the interactions between the challenger andA are exactly like those between the
client and a worker in the real world – in particular, ifA’s response was well-formed, the challenger tells
A so, but the challenger immediately aborts ifA’s response is malformed. Game 1 is identical to Game 0,
except that whenA queriesVerify , the challenger always answers with the correcty, whetherA’s response
was well-formed or not, and the challenger never aborts. Letεi beA’s success probability in Gamei.

First, we show that ifV C is secure, thenε1 must be negligible. The intuition is simple: since the
challenger always responds with the correcty, there is actually no information in these responses, sinceA
could have computedy on its own. More formally, there is an algorithmB that breaksV C with probability
ε1 by usingA as a sub-routine.B simply forwards communications between the challenger (now a challenger
for theV C game) andA, except thatB tellsA the correcty w.r.t. all of A’s responses.B forwardsA’s forgery
along to the challenger.

Now, we show thatε0 ≤ ε1, from which the result follows. LetEmal be the event thatA makes a mal-

formed response, and letEf be the event thatAsuccessfully outputs a forgery – i.e., whereExpVeri f†

A [V C
†
,F,λ]

outputs ‘1’.A’s success probability, in either Game 0 or Game 1, is:

Prob[Ef] = Prob[Ef |Emal] ·Prob[Emal]+Prob[Ef |¬Emal] ·Prob[¬Emal] (7)

16

If A does not make a malformed response, then Games 0 and 1 are indistinguishable to A; therefore, the
second term above has the same value in Games 0 and 1. In Game 0,Prob[Ef |Emal] = 0, since the challenger
aborts. Therefore,ε0≤ ε1.

In practice Theorem 4 implies that every time a malformed response is received, the client must re-
garble the circuit (or, as we said above, make sure that the results of the verification procedure remain
secret). Therefore the amortized efficiency of the client holds only if we assume that malformed responses
do not happen very frequently.

In some settings, it is not necessary to inform the worker that its responseis malformed, at least not
immediately. For example, in the Folding@Home application [2], suppose the clientgenerates a new garbled
circuit each morning for its many workers. At the end of the day, the client stops accepting computations
using this garbled circuit, and it (optionally) gives the workers information about the well-formedness of
their responses. (Indeed, the client may reveal all of its secrets for that day.) In this setting, our previous
security proof clearly holds even if there are arbitrarily many malformed responses.

6 Conclusions and Future Directions

In this work, we introduced the notion of Verifiable Computation as a natural formulation for the increasingly
common phenomenon of outsourcing computational tasks to untrusted workers. We describe a scheme
that combines Yao’s Garbled Circuits with a fully-homomorphic encryption scheme to provide extremely
efficient outsourcing, even in the presence of an adaptive adversary. As an additional benefit, our scheme
maintains the privacy of the client’s inputs and outputs.

Our work leaves open several interesting problems. It would be desirable to devise a verifiable compu-
tation scheme that used a more efficient primitive than fully-homomorphic encryption. Similarly, it seems
plausible that a verifiable scheme might sacrifice input privacy to increaseits efficiency. While our scheme is
resilient against a single malformed response from the worker, ideally we would like a scheme that tolerates
k > 1 malformed responses. Finally, it would be interesting to enhance a verifiable computation scheme to
include a non-repudiation property, so that a client who receives a malformed response from a worker can
demonstrate the worker’s misbehavior to a third party.

References

[1] Amazon Elastic Compute Cloud. Online athttp://aws.amazon.com/ec2.
[2] The Folding@home project. Stanford University,http://www.stanford.edu/group/

pandegroup/cosm/.
[3] Sun Utility Computing. Online athttp://www.sun.com/service/sungrid/index.jsp.
[4] The Great Internet Mersenne Prime Search.http://www.mersenne.org/prime.htm.
[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@Home: An experiment

in public-resource computing.Communications of the ACM, 45(11):56–61, 2002.
[6] L. Babai. Trading group theory for randomness. InProceedings of the ACM Symposium on Theory of

Computing (STOC), pages 421–429, New York, NY, USA, 1985. ACM.
[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahay, S. Vadhan, and K. Yang. On the

(im)possibility of obfuscating programs. InProceedings of CRYPTO, pages 1–18, 2001.
[8] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. 2009.
[9] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpç̈u, and A. Lysyanskaya. Incentivizing out-

sourced computation. InProceedings of the Workshop on Economics of Networked Systems (NetEcon),
pages 85–90, New York, NY, USA, 2008. ACM.

17

[10] D. Chaum and T. Pedersen. Wallet databases with observers. InProceedings of CRYPTO, 1992.

[11] C. Gentry.A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[12] C. Gentry. Fully homomorphic encryption using ideal lattices. InProceedings of the ACM Symposium
on the Theory of Computing (STOC), 2009.

[13] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation:interactive proofs for
muggles. InProceedings of the ACM Symposium on the Theory of Computing (STOC), 2008.

[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

[15] P. Golle and I. Mironov. Uncheatable distributed computations. InProceedings of the RSA Conference,
2001.

[16] S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic computations. In
Proceedings of TCC, 2005.

[17] Y. T. Kalai and R. Raz. Probabilistically checkable arguments. InProceedings of CRYPTO, 2009.

[18] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). InProceedings
of the ACM Symposium on Theory of computing (STOC), pages 723–732, New York, NY, USA, 1992.
ACM.

[19] J. Kilian. Improved efficient arguments (preliminary version). InProceedings of the International
Cryptology Conference on Advances in Cryptology, pages 311–324, London, UK, 1995. Springer-
Verlag.

[20] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for securetwo-party computation.Journal of
Cryptology, 22(2):161–188, 2009.

[21] S. Micali. CS proofs (extended abstract). InProceedings of the IEEE Symposium on Foundations of
Computer Science, 1994.

[22] D. Molnar. The SETI@Home problem.ACM Crossroads, 7.1, 2000.

[23] F. Monrose, P. Wyckoff, and A. Rubin. Distributed execution with remote audit. InProceedings of
ISOC Network and Distributed System Security Symposium (NDSS), Feb. 1999.

[24] G. Rothblum. Delegating Computation Reliably: Paradigms and Constructions. PhD thesis, Mas-
sachusetts Institute of Technology, 2009.

[25] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. VanDoorn, and P. Khosla. Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms. InProceedings of the Symposium on Operating
Systems Principals, 2005.

[26] S. Smith and S. Weingart. Building a high-performance, programmable secure coprocessor.Computer
Networks (Special Issue on Computer Network Security), 31:831–960, 1999.

[27] Trusted Computing Group. Trusted platform module main specification. Version 1.2, Revision 103,
July 2007.

[28] A. Yao. Protocols for secure computations. InProceedings of the IEEE Symposium on Foundations of
Computer Science, 1982.

[29] A. Yao. How to generate and exchange secrets. InProceedings of the IEEE Symposium on Foundations
of Computer Science, 1986.

[30] B. S. Yee.Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

18

