Non-Interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers

Rosario Gennaro Craig Gentry Bryan Parnd
November 5, 2009

Abstract

Verifiable Computatiorenables a computationally weak client to “outsource” thegotation of a
function F on various inputs«, ..., Xx to one or more workers. The workers return the result of the
function evaluation, e.gy; = F(X;), as well as a proof that the computatiorFofvas carried out correctly
on the given valug;. The verification of the proof should require substantidlgs computational effort
than computind~ (x;) from scratch.

We present a protocol that allows the worker to return a cdatfmnally-sound, non-interactive proof
that can be verified i©(m) time, wherem is the bit-length of the output df. The protocol requires
a one-time pre-processing stage by the client which t&K#s|) time, whereC is the smallest Boolean
circuit computingF. Our scheme also provides input and output privacy for tletimeaning that the
workers do not learn any information about ther y; values.

1 Introduction

Several trends are contributing to a growing desire to “outsource” congpfrom a (relatively) weak
computational device to a more powerful computation service. For yeaemjety of projects, including
SETI@Home [5], Folding@Home [2], and the Mersenne prime searchh@f distributed computations
to millions of clients around the Internet to take advantage of their idle cycleper@nnial problem is
dishonest clients: end users who modify their client software to retursipleuresults without performing
any actual work [22]. Users commit such fraud, even when the onlyntiveeis to increase their relative
ranking on a website listing. Many projects cope with such fraud via reahuryd the same work unit is sent
to several clients and the results are compared for consistency. AmariMasting resources, this provides
little defense against colluding users.

A related fear plagues cloud computing, where businesses buy computinfrdimex service, rather
than purchase, provision, and maintain their own computing resourcgps [@pmetimes the applications
outsourced to the cloud are so critical that it is imperative to rule out adaidemors during the compu-
tation. Moreover, in such arrangements, the business providing the Gomparvices may have a strong
financial incentive to return incorrect answers, if such answensinedess work and are unlikely to be
detected by the client.

The proliferation of mobile devices, such as smart phones and nethmokgles yet another venue in
which a computationally weak device would like to be able to outsource a compytatip, a cryptographic
operation or a photo manipulation, to a third-party and yet obtain a strongaase that the result returned
is correct.

*IBM T.J.Watson Research Centeosari o@is. i bm com
TIBM T.J.Watson Research Centebgent ry@s. i bm com
*CyLab, Carnegie Mellon Univesitypar no@nu. edu

In all of these scenarios, a key requirement is that the amount of wdidrpeed by the client to generate
and verify work instances must be substantially cheaper than performengpthputation on its own. It is
also desireable to keep the work performed by the workers as closesiblpdo the amount of work needed
to compute the original function. Otherwise, the worker may be unable to cetpketask in a reasonable
amount of time, or the cost to the client may become prohibitive.

PrRIOR WORK: In the security community, research has focused on solutions basedli® @nd various
forms of secure co-processors. Audit-based solutions [9, 23] typieguire the client (or randomly se-
lected workers) to recalculate some portion of the work done by untrusiddevs. This may be infeasible
for resource-constrained clients and often relies on some fraction a¥dheers to be honest, or at least
non-colluding. Audits based on the time taken to compute the result [25] eedeiiailed knowledge of the
hardware employed by the worker.

Secure co-processors [26, 30] provide isolated execution envirasnmit their tamper-resistance typ-
ically makes them quite expensive (thousands of dollars each) anelsp@eployed. The requirements of
tamper-resistance also lead to the use of weak CPUs to limit the amount ofisepation needed. The
growing ubiquity of Trusted Platform Modules (TPMs) [27] in commodity maekipromises to improve
platform security, but TPMs have achieved widespread deploymenttinipato reduced costs (one to five
dollars each) that result in little to no physical tamper resistance.

In the cryptographic community, the idea to outsource expensive crygpbigr operations to a semi-
trusted device has a long history. Chaum and Pedersen define the noti@tiedis with observer§l0],

a piece of secure hardware installed by a third party, e.g. a bank, otieh&sccomputer to “help” with
expensive computations. The hardware is not trusted by the client wding@ssurance that it is perform-
ing correctly by analyzing its communication with the bank. Hohenberger gsghinskaya formalize this
model [16], and present protocols for the computation of modular exp@aiens (arguably the most ex-
pensive step in public-key cryptography operations). Their prot@mplires the client to interact witivo
non-colluding servers. Other work targets specific function classeb,as one-way function inversion [15].

Recent advances in fully-homomorphic encryption [12] allow a workeotafute arbitrary functions
over encrypted data, but they do not suffice to provide outsourceabiputing. Indeed, fully-homomorphic
encryption providesio guarantedhat the worker performed the correct computation. While our solution
does employ fully-homomaorphic encryption, we combine it with other technitpupsovide verifiability.

The theoretical community has devoted considerable attention to the verifeabfutation of arbitrary
functions. Interactive proofg6, 14] are a way for a powerful (e.g. super-polynomial) prover tlfp-
bilistically) convince a weak (e.g. polynomial) verifier of the truth of statemeratsttie verifier could not
compute on its own. As it is well known, the work on interactive proofs leati¢éoconcept oprobabilis-
tically checkable proof6PCPs), where a prover can prepare a proof that the verifier ek @ only very
few places (in particular only a constant number of bits of the proofseteéat NP languages). Notice,
however, that the PCP proof might be very long, potentially too long for ¢hifier to process. To avoid this
complication, Kilian proposed the use of efficient argumefit8, 19] in which the prover sends the verifier
a short commitment to the entire proof using a Merkle tree. The prover caniriteractively open the
bits requested by the verifier (this requires the use of a collision-resksightfunction). A non-interactive
solution can be obtained using Micali’s CS Proofs [21], which remove iatierafrom the above argument
by choosing the bits to open based on the application of a random oracleciontimeitment string. In more
recent work, which still uses some of the standard PCP machinery, Gsddwet al. [13] show how to build
an interactive proof to verify arbitrary polynomial time computations in almosélitieme. They also extend
the result to a non-interactive argument for a restricted class of fulsction

Iwe follow the standard terminology: aargumentis a computationally sound proof, i.e. a protocol in which the prover
is assumed to be computationally bounded. In an argument, an infinitelgrfudvprover can convince the verifier of a false
statement, as opposed to a proof where this is information-theoreticallygitghe or extremely unlikely.

Therefore, if we restrict our attention to non-interactive protocols, thie ©f the art offers either Mi-
cali's CS Proofs [21] which are arguments that can only be proven inahédom oracle model, or the
arguments from [13] that can only be used for a restricted class ofifunsc

OuR CONTRIBUTION. We slightly move away from the notions of proofs and arguments, to defee th
notion of aVerifiable Computation Schemthis is a protocol between two polynomial time parties|iant

and aworker, to collaborate on the computation of a functién {0,1}" — {0,1}™. Our definition uses an
amortized notion of complexity for the client: he can perform some expepsd#processing, but after this
stage, he is required to run very efficiently. More specifically, a vetdiabmputation scheme consists of
three phases:

Preprocessing A one-time stage in which the client computes some auxiliary (public and privédteina-
tion associated witk. This phase can take time comparable to computing the function from scratch,
but it is performed only once, and its cost is amortized over all the futigeutions.

Input Preparation When the client wants the worker to comp#gx), it prepares some auxiliary (public
and private) information about The public information is sent to the worker.

Output Computation and Verification Once the worker has the public information associated wigmd
X, it computes a stringy which encodes the valle(x) and returns it to the client. From the valmg
the client can compute the val&€x) and verify its correctness.

Notice that this is inherently a non-interactive protocol: the client sendg&esimessage to the worker and
vice versa. The crucial efficiency requirement is that Input Preéjoarand Output Verification must take
less time than computing from scratch (ideally linear timeQ(n+ m)). Also, the Output Computation
stage should take roughly the same amount of computatién as

After formally defining the notion of verifiable computation, we present digbte computation scheme
for anyfunction. Assume that the functidn is described by a Boolean circ@t Then the Preprocessing
stage of our protocol takes tin@&|C|), i.e., time comparable to computing the function from scratch. Apart
from that, the client runs in linear time, as Input Preparation t&kes time and Output Verification takes
O(m) time. Finally the worker takes tim®(|C|) to compute the function for the client.

The computational assumptions underlying the security of our scheme asedhsdty of block ci-
phers (i.e., the existence of one-way functions) and the existence ofigedally homomorphic encryption
scheme [11,12] (more details below). We stress that our non-interactit@col works foranyfunction (as
opposed to Goldwasser et al.'s protocol [13] which works only farsdricted class of functions) and can be
proven in the standard model (as opposed to Micali’s proofs [21] wiaghire the random oracle model).

Motivation: In our setting, the client must still perform an expensive one-time prepsitg phase.
After that, in our scheme, the client runs in linear time. Since the preprocessigg happens only once, it
is important to stress that it can be performed in a trusted environment Wiganesak client, who does not
have the computational power to perform it, outsources it to a trusted plairtik O©f a military application
in which the client loads the result of the preprocessing stage perforrsiele ithe military base by a trusted
server, and then goes off into the field where outsourcing servers atderirusted anymore — or think of
the preprocessing phase executed on the client’'s home machine anddbdiyuss portable device in the
field).

Dynamic and Adaptive Input Choicé/e note that in this amortized model of computation, Goldwasser
et al.’s protocol [13] can be modified using Kalai and Raz'’s transftiongl7] to achieve a non-interactive
scheme (see [24]). However an important feature of our scheme, that isnjoyed by Goldwasser et
al.'s protocol [13], is that the inputs to the computationFotan be chosen in a dynamic and adaptive
fashion throughout the execution of the protocol (as opposed to [i8terthey must be fixed and known in
advance).

Privacy. We also note that our construction has the added benefit of providingangwutput privacy
for the client, meaning that the worker does not learn any information about~(x) (details below).

3

This privacy feature is bundled into the protocol and comes at no addittoss This is a very important
aspect, which should be considered a requirement in real-life applica#idtes all, if you don’t trust the
worker to compute the function correctly, why would you trust him with thevkedge of your input data?
Homomorphic encryption already solves the problem of computing oveatprdata, but it does not address
the problem of efficiently verifying the result. Our work therefore is thet fio provide a weak client with
the ability to efficiently and verifiably offload computation to an untrusted sémsch a way that the input
remains secret.

OUR SOLUTION IN A NUTSHELL. Our work is based on the crucial (and somewhat surprising) oligmrva
that Yao’s Garbled Circuit Construction [28,29], in addition to providiagwse two-party computation, also
provides a “one-time” verifiable computation. In other words, we cantadaps construction to allow a
client to outsource the computation of a function on a single input. More sgabyifiin the preprocessing
stage the client garbles the circGitaccording to Yao’s construction. Then in the “input preparation” stage,
the client reveals the random labels associated with the input bitisdiie garbling. This allows the worker

to compute the random labels associated with the output bits, and from theliettiewill reconstruct (x).

If the output bit labels are sufficiently long and random, the worker willb®able to guess the labels for
an incorrect output, and therefore the client is assuredRpatis the correct output.

Unfortunately, reusing the circuit for a second inglis insecure, since once the output label$ ¢f)
are revealed, nothing can stop the worker from presenting those labedsract for- (X'). Creating a new
garbled circuit requires as much work as if the client computed the functielf, is® on its own, Yao’s
Circuits do not provide an efficient method for outsourcing computation.

The second crucial idea of the paper is to combine Yao’s Garbled Cirdtitanully homomorphic
encryption system (e.g., Gentry’s recent proposal [12]) to be ablaftdysreuse the garbled circuit for
multiple inputs. More specifically, instead of revealing the labels associatedvethits of inputx, the
client will encrypt those labels under the public key of a fully homomorphieste. A new public key
is generated for every input in order to prevent information from ome@ion from being useful for later
executions. The worker can then use the homomorphic property to competeceyption of the output
labels and provide them to the client, who decrypts them and recong&dts

Since we use the fully-homomorphic encryption scheme in a black-box fashimanticipate that any
performance improvements in future schemes will directly result in similar pa&ioce gains for our pro-
tocol as well.

One pre-processing step for many workehote that the pre-processing stage is independent of the
worker, since it simply produces a Yao-garbled version of the cikCuiiTherefore, in addition to being
reused many times, this garbled circuit can also be sent to many differekénspwhich is the usage
scenario for applications like Folding@Home [2], which employ a multitude okersracross the Internet.

How to handle malicious workersln our scheme, if we assume that the worker learns whether or
not the client accepts the pronf, then for every execution, a malicious worker potentially learns a bit of
information about the labels of the Yao-garbled circuit. For example, thieewopuld try to guess one of the
labels, encrypt it with the homomaorphic encryption and see if the client &cepa sense, the output of the
client at the end of the execution can be seen as a very restricted ptieargracle” for the homomorphic
encryption scheme (which is, by definition, not CCA secure). Becaubésmne-bit leakage, we are unable
to prove security in this case.

There are two ways to deal with this. One is to assume that the verificationtdaitgay the client
remains private. The other is to repeat the pre-processing stage, i.éadlgarbling of the circuit, every
time a verification fails. In this case, in order to preserve a good amortizeglegity, we must assume
that failures do not happen very often. This is indeed the case in thepsescenario, where the same
garbled circuit is used with several workers, under the assumptionriheasmall fraction of workers will
be malicious. Details appear in Section 5.

Wa Wp Wy Wa Wp W, Wa Wy W,

W, Wp 0 0 |g00 QK| KO Q18 | Be(Eeld®?))
@ 0 1 901 QK koD QK| B (B (K8ODy)
L0 ga0 kg K KRY K| BB

" 11 oy Kk KT) K| BeEg ™)

@) (b) (c) (d)
Figure 1:Yao’s Garbled Circuits. The original binary gatea) can be represented by a standard truth tafile We
then replace the 0 and 1 values with the corresponding ramglehrosen\-bit values(c). Finally, we use the values
for wy and w, to encrypt the values for the output wire Yd). The random permutation of these ciphertexts is the
garbled representation of gate g.

2 Background

2.1 Yao's Garbled Circuit Construction

We summarize Yao’s protocol for two-party private computation [28, Z2r more details, we refer the
interested reader to Lindell and Pinkas’ excellent description [20].

We assume two parties, Alice and Bob, wish to compute a funéti@ver their private inputa and
b. For simplicity, we focus on polynomial-time deterministic functions, but the gdiaation to stochastic
functions is straightforward.

At a high-level, Alice convert§ into a boolean circuiC. She prepares a garbled version of the circuit,
G(C), and sends it to Bob, along with a garbled versi@fa), of her input. Alice and Bob then engage in
a series of oblivious transfers so that Bob obtd®ib) without Alice learning anything abotlt Bob then
applies the garbled circuit to the two garbled outputs to derive a garblsiresf the outputG(F (a,b)).
Alice can then translate this into the actual output and share the result withNBmib that this protocol
assumes an honest-but-curious adversary model.

In more detail, Alice constructs the garbled version of the circuit as folldws. each wirew in the

circuit, Alice chooses two random valuk k, & {0,1}* to represent the bit values of 0 or 1 on that wire.
Once she has chosen wire values for every wire in the circuit, Alice aarista garbled version of each gate
g (see Figure 1). Leg be a gate with input wires, andwy,, and output wirew,. Then the garbled version
G(g) of g is simply four ciphertexts:

Yoo = Ekg(Ekg(kg(o’o))), Yo1 = Ekg(Ektl)(kg(o’l))), Yi0= E@(Ekg(kg(l’o))), Yi1= Ekg(Ekg(kg(l’l)))a (1)

whereE is an secure symmetric encryption scheme with an “elusive range” (moisdetimw). The order
of the ciphertexts is randomly permuted to hide the structure of the circuit (eeshwffle the ciphertexts,
so that the first ciphertext does not necessarily encode the outpi@ €}.

We refer tow? andw? as the “acceptable” outputs for gagesince they are the only two values that rep-

resent valid bit-values for the output wire. Given input kk'g/,:kﬁ, we will refer tovvg(x‘y) as the “legitimate”

output, andvi 9% as the “illegitimate” outpui.

In Yao's protocol, Alice transfers all of the ciphertexts to Bob, along withwlire values corresponding
to the bit-level representation of her input. In other words, she tranefirerk? if her input bit is 0 ork? if
her input bitis 1. Since these are randomly chosen values, Bob leamsgabout Alice’s input. Alice and
Bob then engage in an oblivious transfer so that Bob can obtain the Wiresveorresponding to his inputs
(e.g.,kg or k%). Bob learns exactly one value for each wire, and Alice learns nothiogtdis input. Bob
can then use the wire values to recursively decrypt the gate ciphenexishe arrives at the final output
wire values. When he transmits these to Alice, she can map them back to Oloe4 &ad hence obtain the
result of the function computation.

2.2 The Security of Yao's Protocol

Lindell and Pinkas prove [20] that Yao is a secure two-party computatiotogol under some specific
assumptions on the encryption schefnegsed to garble the circuit. More specifically the encryption function
E needs:
¢ Indistinguishable ciphertexts for multiple messagEsr every two vectors of messageandy, no
polynomial time adversary can distinguish between an encryptigrantl an encryption of. Notice
that because we require security for multiple messages, we cannot nediee pad.

e An elusive rangeEncryptions under different keys fall into different ranges of théeipext space
(at least with high probability).
¢ An efficiently verifiable rangeGiven the ke, it is possible to decide efficiently if a given ciphertext
falls into the range of encryptions under
We give a formal definition of these properties. Recall that a privateyption scheme is a pair of
algorithms(E, D), the encryption and decryption algorithms respectively, that run on itiigusecurity
parametei\, a randomA-bit key k, andA-bit strings (the plaintext and ciphertext, respectively). In the
following negl i () denotes a negligible function of its input.

Definition 1 We say that a private encryption schefiie D) is Yao-securef the following properties are
satisfied. Assume {0, 1}*:
¢ Indistinguishability of ciphertexts for multiple messag€sr every efficient adversary A, and every
two vectors of ciphertexty, ..., x,] and [y, ...,Yy,| (with £ = poly(A)), and y = Ex(X), z = Ex(i),
we have that
|Prob[Aug, ..., us] = 1] — ProbjA[zi, ..., z] = 1]| < negl i (A)

e Elusive RangeLetRange, (k) = {Ex(X) }xc (0,112 FOr every efficient adversary A we require:
Prob/A(1}) € Range, (k)] < negl i (\)

¢ Efficiently Verifiable RangeThere exists an efficient machine M such thg¢kM) = 1 if and only if
c € Rangey (k).

Lindell and Pinkas show [20] that Yao's garbled circuit technique, dostbwith a secure oblivious
transfer protocol, is a secure two-party computation protocol (for semést parties) i€ is Yao-secure.
They also show how to build Yao-secure encryption schemes basedemaynfunctions.

2.3 Fully-Homomorphic Encryption

A fully-homomorphic encryption schen®is defined by four algorithms: the standard encryption functions
KeyGen;, Encrypt ¢, andDecryptg, as well as a fourth functioBvaluatez. Evaluatez takes in a circuit

C and a tuple of ciphertexts and outputs a ciphertext that decrypts to thieafespplyingC to the plaintexts.

A nontrivial scheme requires thBncrypt andDecryptz operate in time independentGf{11, 12]. More
precisely, the time needed to generate a ciphertext for an input witeooidecrypt a ciphertext for an output
wire, is polynomial in the security parameter of the scheme (independ&)t dfote that this implies that
the length of the ciphertexts for the output wires is bounded by some polyhiontiiee security parameter
(independent of).

Gentry recently proposed a scheme, based on ideal lattices, that s#tssiesequirements for arbitrary
circuits [11, 12]. The complexity dkeyGeny in his initial leveledfully homomorphic encryption scheme
grows linearly with the depth af. However, under the assumption that his encryption scheriecidar
secure- i.e., roughly, that it is “safe” to reveal an encryption of a secret kedeu its associated public key

— the complexity oKeyGen,. is independent of. See [8,11,12] for more discussion on circular-security
(and, more generally, key-dependent-message security) as it rel&lg tmmomorphic encryption.

In this paper, we use fully homomorphic encryption as a black box, andftiterdo not discuss the
details of any specific scheme.

3 Problem Definition

At a high-level, a verifiable computation scheme is a two-party protocol inwdnitient chooses a function
and then provides an encoding of the function and inputs to the functiowookeer. The worker is expected
to evaluate the function on the input and respond with the output. The cliemvéhrdies that the output
provided by the worker is indeed the output of the function computed on plu provided.

3.1 Basic Requirements

A verifiable computation schemé(= (KeyGen, ProbGen, Compute, Verify) consists of the four algo-
rithms defined below.

1. KeyGen(F,A) — (PK,SK): Based on the security paramelerthe randomizedkey generatioral-
gorithm generates a public key that encodes the target funEtiamhich is used by the worker to
computeF. It also computes a matching secret key, which is kept private by the client.

2. ProbGengk(x) — (0x,Tx): The problem generatiomlgorithm uses the secret k&K to encode the
function inputx as a public valuey which is given to the worker to compute with, and a secret value
Tx Which is kept private by the client.

3. Computep (0x) — ay: Using the client’s public key and the encoded input, the wodkenputesan
encoded version of the function’s output F (x).

4. Verify gk(tx,0y) — YU L: Using the secret ke$K and the secret “decodingy, the verification
algorithm converts the worker’s encoded output into the output of thetibm e.g.,y = F(x) or
outputs L indicating thato, does not represent the valid outputrobn x.

A verifiable computation scheme should be both correct and secure. efnscis correct if the prob-
lem generation algorithm produces values that allows an honest workentpute values that will verify
successfully and correspond to the evaluatioR o those inputs. More formally:

Definition 2 (Correctness) A verifiable computation scheméC is correctif for any choice of function
F, the key generation algorithm produces kép¥, SK) < KeyGen(F,\) such that,vx € Domain(F), if
(Ox, Tx) < ProbGensk(x) anday «<— Computepy (0x) then y= F(x) « Verify gx(Tx, Oy).

Intuitively, a verifiable computation scheme is secure if a malicious workeratgoersuade the verifica-
tion algorithm to accept an incorrect output. In other words, for a givaationF and inputx, a malicious
worker should not be able to convince the verification algorithm to owtguth thaf (x) # . Below, we
formalize this intuition with an experiment, whepely(-) is a polynomial.

ExperimentExp," [V C,F,A|
(PK,SK) & KeyGen(F,\);
Fori=1,...,¢ = poly(\);
X «— A(PK,Xx1,01,...,%,0i);
(0i,1;) < ProbGengk(x);
(i,0y) < A(PK,X1,01,...,%;,0¢);
y < Verify g(Ti, Oy)
If §#L andy'# F(x), output ‘1", else ‘0’;

Essentially, the adversary is given oracle access to generate therenabohultiple problem instances.
The adversary succeeds if it produces an output that convincegittfieation algorithm to accept on the
wrong output value for a given input value. We can now define therggaf the system based on the
adversary’s success in the above experiment.

Definition 3 (Security) For a verifiable computation schemécC, we define the advantage of an adversary
A in the experiment above as:

AV (V¢ F,) = ProblExps™ [1C,F N = 1])

A verifiable computation schemE(C is securefor a function F, if for any adversary A running in
probabilistic polynomial time, _
AV (V¢ F) <negli (A) 3)

wherenegl i () is a negligible function of its input.

In the above definition, we could have also allowed the adversary to edefeinctionF. However, our
protocol is a verifiable computation scheme that is securalfét, so the above definition suffices.

3.2 Input and Output Privacy

While the basic definition of a verifiable computation protects the integrity of thepatation, it is also
desirable that the scheme protect the secrecy of the input given to thenggr We define input privacy
based on a typical indistinguishability argument that guaranteesthitformation about the inputs is
leaked. Input privacy, of course, immediately yields output privacy.

Intuitively, a verifiable computation schemepisvatewhen the public outputs of the problem generation
algorithmProbGen over two different inputs are indistinguishable; i.e., nobody can deciddwemcoding
is the correct one for a given input. More formally consider the followixigegiment: the adversary is given
the public key for the scheme and selects two inpyig;. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one was encodedg this process the adversary
is allowed to request the encoding of any input he desires. The expeiigragscribed below. The oracle
PubProbGergk(X) callsProbGensk(x) to obtain(ox, Tx) and returns only the public pawy.

ExperimentExph™[1/C,F,\]
(PK,SK) & KeyGen(F, A
(Xo,Xl) «_ APubProbGerg(-)
(00, To) < ProbGensk(xo
(01,T1) < ProbGensk(x1
b& {0,1};

b APubProbGensK(-)(pK’X07X1,0b>
If b= b, output ‘1’, else ‘0’;

PK)

~— o~ —

Definition 4 (Privacy) For a verifiable computation scheniéC, we define the advantage of an adversary
A in the experiment above as:
A" (VC,F,A) = ProblExpa™ [1C,F N = 1] @)

A verifiable computation schemE(is private for a function F, if for any adversary A running in
probabilistic polynomial time, _
AdY(VC,FN) <negli (A) (5)

wherenegl i () is a negligible function of its input.

8

An immediate consequence of the above definition is that in a private schenssabding of the input
must be probabilistic (since the adversary can always gquers to the PubProbGen oracle, and if the
answer were deterministic, he could decide which input is encodeg)in

A similar definition can be made for output privacy.

3.3 Efficiency

The final condition we require from a verifiable computation scheme is théntledo encode the input and
verify the output must be smaller than the time to compute the function from scratch

Definition 5 (Outsourceable) A 7/C can be outsourced if it permits efficient generation and efficient veri-
fication. This implies that for any x and any, the time required foProbGensk(x) plus the time required
for Verify (oy) is o(T), where T is the time required to computéx.

Some functions are naturally outsourceable (i.e., they can be outsouittedovadditional mecha-
nisms), but many are not.

Notice that we are not including the time to compute the key generation algorithnt@encoding of
the function itself). Therefore, the above definition captures the idea ofitsourceable verifiable compu-
tation scheme which is more efficient than computing the function iamaortizedsense, since the cost of
encoding the function can be amortized over many input computations.

4 An Efficient Verifiable-Computation Scheme with Input/Output Privacy

4.1 Protocol Definition

We are now ready to describe our scheme. Informally, our protocdtsnas follows. The key generation
algorithm consists of running Yao'’s garbling procedure over a Bootér@nit computing the functior:
the public key is the collection of ciphertexts representing the garbled ciendtthe secret key consists
of all the random wire labels. The input is encoded in two steps: firstsh fpeiblic/secret key pair for a
homomorphic encryption scheme is generated, and then the labels of thet@oput wires are encrypted
with it. These ciphertexts constitute the public encoding of the input, while thietdexy is kept private by
the client. Using the homomorphic properties of the encryption scheme, themmerforms the compu-
tation steps of Yao’s protocol, but working over ciphertexts (i.e., foryegate, given the encrypted labels
for the correct input wires, obtain an encryption of the correct outyrg, by applying the homomorphic
encryption over the circuit that computes the “double decryption” in Yarisocol). At the end, the worker
will hold the encryption of the labels of the correct output wires. He rettinese ciphertexts to the client
who decrypts them and then computes the output from them. We give a detederdption below.

Protocol V(.

1. KeyGen(F,A) — (PK,SK): Represenf as a circuitC. Following Yao’s Circuit Construction (see
Section 2.1), choose two value/sric,’,wil & {0,1}* for each wirew;. For each gat@, compute the
four ciphertexts(y3o, o1, Yo, Vi) described in Equation 1. The public k&K will be the full set
of ciphertexts, i.e.PK « Ug(Y30: Yo1: Yio» Yi1), While the secret key will be the wire values chosen:
SK«— Ui(\NiO,Wil).

2. ProbGengk(x) — oyx: Run the doubly-homomorphic encryption scheme’s key generation algorith
to create a new key paifPKz, SKg) — KeyGen,(A). Letw; C SKbe the wire values representing
the binary expression of Setoy < (PKg, Encryptz(PKg,w;)) andty < SKg.

3. Computepi (0x) — oy: CalculateEncrypt«(PKg,y;). Construct a circuitd that on inputw,w/,y
outputsDy(Dw (Y)), whereD is the decryption algorithm corresponding to the encrypEomsed in

Yao’s garbling (thereforéd computes the appropriate decryption in Yao’s construction). Calculate
Evaluatez (A, Encrypt z (PKz,w;), Encrypt z(PKg,Vi)) repeatedly, to decrypt your way through the
ciphertexts, just as in the evaluation of Yao’s garbled circuit. The resaitis Encrypt «(PKe,wi),
wherew; are the wire values representing- F(x) in binary.
4. Verify g(oy) — yU L: UseSK¢ to decryptEncrypt(PKe,w;), obtainingw;. UseSKto map the
wire values to an output If the decryption or mapping fails, outpuit.
Remark: On verifying ciphertext ranges in an encrypted forRecall that Yao’s scheme requires the en-
cryption schemé& to have arefficiently verifiable rangeGiven the keyk, it is possible to decide efficiently
if a given ciphertext falls into the range of encryptions unkledn other words, there exists an efficient
machineM such thatM(k,y) = 1 if and only if y € Range, (k). This is necessary to “recognize” which
ciphertext to pick among the four ciphertexts associated with each gate.

In our verifiable computation scheméc, we need to perform this check using an encrypted form of the
key c = Encrypt «(PKz, k). When applying the homomorphic propertiesifo the range testing machine
M, the worker obtains an encryption of 1 for the correct ciphertext, areharyption of O for the others. Of
course he is not able to distinguish which one is the correct one.

The worker then proceeds as follows: for the four ciphertgxig.,ys,ys associated with a gatg,
he first computes; = Encrypt«(PKz,M(K,yi)) using the homomorphic properties @f over the circuit
describingM. Note that only one of these ciphertexts encrypts a 1, exactly the onespornding to the
correcty;. Then the worker computes = Encrypt z (PK¢,Dk(Yi)) using the homomorphic properties of
E over the decryption circuiA. Note thatk’ = Z;M(k,y;)Dk(Yi) is the correct label for the output wire.
Therefore, the worker can use the homomorphic properties af computec = Encrypt (PKg¢,K') =
Encrypt£(PKz, ZM(K, yi)Dk(yi)) from ¢;, d;, as desired.

4.2 Proof of Security

The main result of our paper is the following.
Theorem 1 Let E be a Yao-secure symmetric encryption schemetamnel a semantically secure homomor-
phic encryption scheme. Then protoddl is a secure, outsourceable and private verifiable computation
scheme.

The proof of Theorem 1 requires two high-level steps. First, we shatwio’s garbled circuit scheme
is a one-time secure verifiable computation scheme, i.e. a scheme that cadlie oemputd- securely
on one input. Then, by using the semantic security of the homomorphic dincrgeheme, we reduce the
security of our scheme (with multiple executions) to the security of a singlaigégacvhere we expect the
adversary to cheat.

4.3 Proof Sketch of Yao’s Security for One Execution

Consider the verifiable computation schefri€y 5, defined as follows:

Protocol 7 Cyao

1. KeyGen(F,A) — (PK,SK): Represenf as a circuitC. Following Yao’s Circuit Construction (see
Section 2.1), choose two valueai?,wil & {0,1}* for each wirew;. For each gat@, compute the
four ciphertexts(y3o, Yo;, Yo, Vi) described in Equation 1. The public k&K will be the full set
of ciphertexts, i.ePK «— Ug(Yoo, Yo1: Yo, Yi1), While the secret key will be the wire values chosen:
SK+«+— Ui(\NiO,Wil).

2. ProbGengk(x) — 0y: Reveal the labels of the input wires associated within other words, let
w; C SK be the wire values representing the binary expression afid sety < (PKe,W;). T4 is the
empty string.

10

3. Computepi (0x) — 0y: Compute the decryptions in Yao’s protocol to obtain the labels of the dorrec
output wires. Sety to be these labels.

4. Verify sx(oy) — y U L: UseSKto map the wire values iay to the binary representation of the output
y. If the mapping fails, output..

Theorem 2 1V Cyaois a correct verifiable computation scheme.

Proof of Theorem 2: The proof of correctness follows directly from the proof of corresgnéor Yao's
garbled circuit construction [20]. Using andxX will produce aythat represents the correct evaluation of
F(x). [

We prove that?/Cyao is aone-timesecure verifiable computation scheme. The definitionra-time
secureis the same as Definition 3 except that in experimbmxe”f, the adversary is allowed to query the
oracleProbGensk(-) only once (i.e.f = 1) and must cheat on that input.

Intuitively, an adversary who violates the security of this scheme must ajiess the “incorrect”
random value *' for one of the output bit values representiygr he must break the encryption scheme
used to encode the “incorrect” wire values in the circuit. The former happéth probability< 2% ie.,
negligible inA. The latter violates our security assumptions about the encryption schesrfermalize this
intuition below using an hybrid argument similar to the one used in [20].

Theorem 3 Let E be a Yao-secure symmetric encryption scheme. Th@n,is a one-time secure verifi-
able computation scheme.

Proof of Theorem 3: Assume w.l.0.g. that the functida outputs a single bit (at the end of the proof we
show how to deal with the case of multiple-bit outputs). Assume a canoniai on the gates in the circuit
computingF, and letm be the number of such gates. LR be the garbled circuit obtained by running
KeyGen(F,A).

Fix any adversanA; we show that fo, the probability of successfully cheating is negligible\inf the
encryption schemE is Yao-secure. We do this by defining a seriebyfrid experiments where we change
the setting in whiclA is run, but in a controlled way: each experiment in the series witldmeputationally
indistinguishabldrom the previous one, if the security of the encryption scheme holdsfifBhexperiment
in the series i€xp,-"". In the last experiment, we will show that information-theoreticallgan cheat
only with negligible probability, therefore proving that in order to cheat indhiginal experimentA must
distinguish between two experiments in the series, and thus break the amtiggheme.

We denote with—iMWC, F,A], theit" hybrid experiment, run with an adversakyverifiable computation
scheme?/C, functionF and security parametar. All experiments output a Boolean value, and therefore
we can definé\dv, (7 C,F,\) = Prob[HL[VC,F,A] = 1].

Define

Verif

po = ProblAin Exp,~ [V Cyao F,A] outputsxs.t.F(x) = b]

Note that we can estimate these probabilities by running the experiment many$iet@so be the bit such
thatpg > Pg- Notice thatpg > 1/2.

Experiment HJ[1 Cvao F,A] : This experiment is exactly IikExp\A/e”f[‘VCvao, F,A] except that whem\

gueriesProbGen on the inputx (recall that we are considering the case where the adversary ontyitsub
a single input value and must cheat on that input), the oracle selects@rardsuch that-(x') = g and
returnsoy, where(oy, Ty) < ProbGensk(X). The experiment’s output bit is set to 1Afmanages to cheat
over inputx, i.e. produces a valid proof f@ (and to O otherwise).

Lemma 1 IfE is a Yao-secure encryption scheme, then for all efficient adriessé we havéAd\ (1 Cyao F,A) —
A" (1 Cyao FA)| < negli (M),

2SinceF is a Boolean function, w.l.0.g. we can assume that we can efficientlplsafrsuch thaf (x') = b.

11

Proof of Lemma 1: The Lemma follows from the security of Yao’s two-party computation protio).
Recall that in Yao’s protocol, two partiéy andP, want to compute a functioR over inputsx andy
privately held respectively bi; and P, without revealing any information about their inputs except the
valueF(x,y). The protocol goes as follows? garbles a circuit computing the functidn and gives to
P, the labels of his inpux. Moreover,P; andP, engage in OT protocols to giv® the labels of her input
y, without revealing this input t&;. ThenP, executes the circuit on his own and sends the output label
to P, who reveals the output of the functiéi(x,y). Note thatP; sends his input labels in the clearRa
The intuition is thatP;’s input remains private sindg can’t associate the labels with the bit values they
represent. This intuition is formalized in the proof in [20]. _
Therefore we reduce the indistinguishabilityt8f[7/ Cyao, F,A] andExppe"’
rity of Yao’s protocol. We show that if there exisAssuch that

[V Cyao, F,A] to the secu-

IAAR(V Cyao F,A) — AV (VCyao F,A)| > €

with non-negligibleg, then we can learn some information abByis input with roughly the same advantage.

Suppose we run Yao'’s two-party protocol betw®eandP, with the functionF computed over jud®;’s
inputx’. We assume thd’s input is chosen with the right distributidii.e. F (x') =). For any two values
x, X, with F (x) = F(X'), the security of Yao’s protocol implies that no efficient plafgican distinguish ik
or X was used.

We build a simulatoiS that plays the role oP, and distinguishes between the two input cases, with
probability pge, thus creating a contradiction.

The protocol starts witli?; sending the garbled circuRK and the encoding of his inpudy. The
simulator computes the labéhssociated with the outp&t(x'). At this point the simulator engagésover
the inputPK, andA requests the encoding of an inputlf F(x) # the simulator tosses a random coin,
and outputs the resulting bit. Notice however that with probabpjyF (x) = B = F(X). In this case, the
simulator provide#\ with the encodingy, and returns as its output the experiment bit.

Notice that ifx= X’ we are runningxp =" ' [Cyao F, A, while if x £ X' we are runningd. [1 Cyao, F, Al
Therefore the simulator distinguishes between the two input values exactlpraiability pge, therefore
creating a contradiction. |

Experiment HL[’VCv;«» F,A] for i = 1,...,m: During thei" experiment th@robGen oracle still chooses a
random value’ to answeA's query as irtH2[Cyao, F, A]. This valuex' defines 1 values for all the wires
in the circuit. We say that a labeP for wire w is activeif the value of wirew when the circuit is computed

overx is b. We now define a family of fake garbled circuRK: , fori =0,...,m, as follows. For gate

gj with j <i, if wP is the active label associated with its output wirethenall four ciphertexts associated
with g encryptwP. For gateg;j, with j > i, the four ciphertexts are computed correctly as in Yao’s garbling
technique, where the value encrypted depends on the keys usedytptendyiotice thaPK?ake: PK since

for all of the gates, the ciphertexts are computed correctly. The expeitneermput bit is still set to 1 ifA
manages to cheat over inpufi.e. produces a valid proof f@ (and to 0 otherwise).

Lemma 2 If E is a Yao-secure encryption scheme, then for all efficient adriessa we haveéAdV, (7 Cyao F,A) —
AdV, (Y Cyao F,N)| < negli (A).

This lemma is actually proven in [20], and we refer the reader to it for a fathf Intuitively, the lemma
follows from the ciphertext indistinguishability of the encryption scheine

Lemma 3 AdVY(V Cyao F,A) =27

3We can assume this since the security of Yao's protocol is for all inpaiis, garticular for this distribution.

12

Proof of Lemma 3: Recall thatAdVi'(”Cvao F,A) is the probability thaf manages to cheat over inpdt
i.e., to provide the incorrect output label. However, the viewAds information-theoretically independent
of that label, since the incorrect output label is inactive and has not &eerypted in the garbled circuit

PKe Since labels are chosen as randb+hit strings, the probability of guessing the incorrect output
label is exactly 2*. m
This completes the proof of Theorem 3. |

Remark: This proof does not readily extend to the case of a fundiomith multiple output bits, because
in that case it might not be possible to samplexamhich produces a specific output (think of a one-way
function F for example). However, notice that if the outputrishits, then the valug computed by a
successful cheating adversary must be different fidm in at least one bit. Thus, at the beginning of the
simulation, we can try to guess the bit on which the adversary will cheat and-tm the proof for the 1-bit
case. Our guess will be right with probabilityri

4.4 Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 2 and the semantic seafribe homomaorphic encryption
scheme. More precisely, we show that if the homomorphic encryption sciseseenantically secure, then
we can transform (via a simulation) a successful adversary againitltiverifiable computation scheme
VC into an attacker for the one-time secure protok@ly . The intuition is that for each query, the labels
in the circuit are encrypted with a semantically-secure encryption schemédthomorphic scheme), so
multiple queries do not help the adversary to learn about the labels, aod ifidse cheats, he must be able
to cheat in the one-time case as well.

Proof of Theorem 1: Let us assume for the sake of contradiction that there is an adveksargh that
AV (¢, F,\) > &, wheree is non-negligible il\. We useA to build another adversa®/ which queries
theProbGen oracle only once, and for Whiohd\af”f(fl/Cym F.\) > €, wheree’ is close tce. The details
of A’ follow.

A receives as input the garbled circBiK. It activatesA with the same input. Let be an upper bound
on the number of queries that makes to itsProbGen oracle. The adversam' chooses an indek at
random between 1 antland continues as follows. For tH& query byA, with j #i, A will respond by
(i) choosing a random private/public key pair for the homomorphic enienyschemePK,., SK.) and (ii)
encrypting random-bit strings undePKjf. For theit" query,x, the adversary\’ givesx to its ownProbGen
oracle and receivesy, the collection of active input labels correspondingtdt then generates a random
private/public key pair for the homomorphic encryption sche(mléif,SN'E), and it encryptso, (label by
label) undePK....

Once we prove the Lemma 4 below, we have our contradiction and the grob&orem 1 is complete

[

Lemma 4 AV (9 Cyao F,A) > € whereg' is non-neglible in.

Proof of Lemma 4: This proof also proceeds by defining, for any advergary set of hybrid experiments
}[A‘(‘VC, F,A) fork=0,...,/—1. We define the experiments below. lidte an index randomly selected
between 1 and as in the proof above.

Experiment #X(VC,F,\) = 1]: In this experiment, we change the way the ord&lebGen computes its
answers. For th¢" query:

e j<kand j#i: The oracle will respond by (i) choosing a random private/public key foaithe
homomorphic encryption schemEKJE,SK‘E) and (ii) encrypting random-bit strings undePK’E.

13

e j>korj=i: The oracle will respond exactly as #iC, i.e. by (i) choosing a random private/public
key pair for the homomorphic encryption SChe(Iﬁl-ZKJf,SKJE) and (ii) encrypting the correct input
labels in Yao’s garbled circuit und%.

In the end, the bit output by the experime?iﬂ‘ is 1 if A successfully cheats on tii€ input and otherwise is
0. We denote wittAd\§ (7/C,F,\) = Prob[#X(VC,F,\) = 1]. Note that

° :I{AO(‘VC, F,\) isidentical to the experimeEixp\,ierif [V C,F,\], except for the way the bitis computed

at the end. Since the indéxs selected at random between 1 d@ndie have that

erif
AGR(VCFA) — AdV, (Z/c, FA) %
o H "XV (,F,\) is equal to the simulation conducted Ayabove, so
AdV, {(VC,F) = AV (9 Cyan FA)

If we prove fork=0,...,/—1that experiment%ﬁ'\‘(‘VC, F,A) and?&‘fl(‘VC, F,\) are computationally
indistinguishable, that is for every

[AdVA(VC,F,\) — AdVH(VC,F,)| < negl i (A) (6)
we are done, since that implies that

AV (VCyan FA) > = —£-negl i (A)

1 m

which is the desired non-negligibé&

But Eq. 6 easily follows from the semantic security of the homomorphic etiorygcheme. Indeed
assume that we could distinguish betwe@band}[Ak*, then we can decide the following problem, which
is easily reducible to the semantic securityAf

Security of £ with respect to Yao Garbled Circuits: Given a Yao-garbled circuit R, an input x for it,
a random public key PK for the homomorphic encryption scheme, a set of ciphertgxts.cc, where n is
the size of x, decide if for all i; e= Encrypt z (PKz, W), where wis the " input wire and xis the " input
bit of x, or G is the encryption of a random value.
Now run experiment}[,f*1 with the following modification: at th&" query, instead of choosing a fresh
random key forE and encrypting random labels, answer Wtz and the ciphertextsy, ..., c, defined by
the problem above. If; is the encryption of a random value, then we are still running experiﬂ*[éﬁil,
but if ¢ = Encrypt £ (PKz,w"), then we are actually running experiméﬁﬂ‘. Therefore we can decide the
Security ofE with respect to Yao Garbled Circuits with the same advantage with which weistamgdish
between#X and HX 1.

The reduction of the Security & with respect to Yao Garbled Circuits to the basic semantic security
of £ is an easy exercise, and details will appear in the final version. |

4.5 Proof of Input and Output Privacy

Note that for each oracle query the input and the output are encryptit the homomorphic encryption
schemekE. It is not hard to see that the proof of correctness above, easily impegsrdof of input and
output privacy. For the one-time case, it obviously follows from the 8&caf Yao’s two-party protocol.
For the general case, it follows from the semantic securitf paind the proof relies on the same hybrid
arguments described above.

14

4.6 Efficiency

The protocol we have described meets the efficiency goals outlined in $8c3ioDuring the preprocessing
stage, the client perforn®(|C|) work to prepare the Garbled Yao circuit. For each invocatioRrobGen,
the client generates a new keypair and encrypts one Yao label fobéaxftthe input, which require®(n)
effort. The worker computes its way through the circuit by performingrestant amount of work per gate,
so the worker takes time linear in the time to evaluate the original circuit, na@{@B/). Finally, to verify
the worker’s response, the client performs a single decryption andarisop operation for each bit of the
output, for a total effort o©O(m). Thus, amortized over many inputs, the client perfogs + m) work to
prepare and verify each input and result.

5 How to Handle Cheating Workers

Our definition of security (Definition 3) assumes that the adversary dokesee the output of theerify
procedure run by the client on the valogeturned by the adversary. Theorem 1 is proven under the same
assumption. In practice this means that our protokat is secure if the client keeps the result of the
computation private.

In practice, there might be circumstances where this is not feasible, aglhgibr of the client will
change depending on the result of the evaluation (e.g., the client migherefpay the worker). Intuitively,
and we prove this formally below, seeing the resulVefify on proofs the adversary correctGomputes
using the output oPubProbGendoes not help the adversary (since it already knows the result bagkd o
inputs it supplied td?ubProbGen). But what if the worker returns a malformed response — i.e., something
for which Verify outputs. How does the client respond, if at all? One option is for the client to ask the
worker to perform the computation again. But this repeated requestriaftite worker that its response
was malformed, which is an additional bit of information that a cheating warlkght exploit in its effort
to generate forgeries. Is our scheme secure in this setting? In this segéqgorove that our scheme
remains secure as long as the client terminates after detecting a malformedsesye also consider
the interesting question of whether our scheme is secure if the client termamdyesfter detecting > 1
malformed responses, but we are unable to provide a proof of secultitigigetting.

Note that there is a real attack on the scheme in this setting if the client doesmipiate. Specifically,
for concreteness, suppose that each ciphertext outpEnbyyptz encrypts a single bit of a label for an
input wire of the garbled circuit, and that the adversary wants to determérfc'ar:?.hbitwtl’l1 of the first label
(where that label stands in for unknown inpgte {0, 1}). To do this, the adversary ru@»mpute as before,
obtaining ciphertexts that encrypt the hiisof a label for the output wire. Using the homomorphism of the
encryption schemé, it XORs W?l1 with the first bit ofw; to obtainwi, and it sends (the encryption off —
as its response. Werify outputs.L, then\/\)'il1 must have been a 1; otherwise, it is a 0 with overwhelming
probability. The adversary can thereby learn the labels of the garbladt@ne bit at a time — in particular,
it can similarly learn the labels of the output wire, and thereafter generageifeable response without
actually performing the computation.

Intuitively, one might think that if the client terminates after detectingalformed responses, then the
adversary should only be able to obtain abohits of information about the garbled circuit before the client
terminates (using standard entropy arguments), and therefore it shidlubsk shard for the adversary to
output the entire “wrong” label for the output wire as long\das sulfficiently larger thaik. However, we are
unable to make this argument go through. In particular, the difficulty is withybadhargument in the proof
of Theorem 1, where we gradually transition to an experiment in which thdationus encrypting the same
Yao input labels in every round. This experiment must be indistinguishedstethe real world experiment,
which permits different inputs in different rounds. When we don't give adversary information about

15

whether or not its response was well-formed or not, the hybrid argumesttaightforward — it simply
depends on the semantic security of the FHE scheme.

However, if we do give the adversary that information, then the adwecsa easily distinguish rounds
with the same input from rounds with random inputs. To do so, it chooses S@ndom” predicat® over
the input labels, such thR(wg W ,...) = (WU,Wg, ...) with probability /2 if (by, by, ...) # (b}, 15,...).
Given the encryptions o)illl,wgz, ..., the adversary runGompute as in the scheme, obtaining ciphertexts
that encrypt the bits; of a label for the output wire, XORs (using the homomorphi&tvy; , w5 ,...) with
the first bit ofw;, and sends (an encryption of) the resslias its response. If the client is making the same
guery in every round —i.e., the Yao input labels are the same every time -tlibearedicate always outputs
the same bit, and thus the adversary gets the same response (well-formatfamed) in every round.
Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attack more difficultdoyekample) trying to
hide which ciphertexts encrypt the bits of which labels — i.e., via some fornbffscation. However,
the adversary may define its predicate in such a way that it “analyzes”thisaated circuit, determines
whether two ostensibly different inputs in fact represent the same $&tooinput labels, and outputs the
same bit if they do. (It performs this analysis on the encrypted inputs, tisgngomomorphism.) We do not
know of any way to prevent this distinguishing attack, and suspect teaepting it may be rather difficult
in light of Barak et al.’s result that there is no general obfuscator [7]

Security with Verification Acces$Ve say that a verifiable computation scheme is sewitte verification
accessf the adversary is allowed to see the resulefify over the querieg; he has made to tHerobGen

oracle mExp\A/erlf (see Definition 3).

Let V' be like vV, except that the client terminates if it receives a malformed responsetirom
worker. Below, we show that’C" is secure with verification access. In other words, it is secure to provide
the worker with verification access (|nd|cat|ng whether a response wk$fonaed or not), until the worker

gives a malformed response. LI:‘etp\,(erlf ['VCT, F,)\] denote the experiment described in Section 3.1, with

the obvious modifications.

Theorem 4 If V/C is a secure outsourceable verifiable computation scheme, thehis a secure out-
sourceable verifiable computation scheme with verification acce$4Clis private, then so ig/C".

Proof of Theorem 4: Consider two games between a challenger and an adveksdrythe real world
game for‘VC Game 0, the interactions between the challengerfaacke exactly like those between the
client and a worker in the real world — in particular Ak response was well-formed, the challenger tells
A so, but the challenger immediately abortg\i§ response is malformed. Game 1 is identical to Game 0,
except that wher\ queriesVerify , the challenger always answers with the corggeathetherA’s response
was well-formed or not, and the challenger never abortsejlls¢ A’'s success probability in Ganme

First, we show that ift/C is secure, therm; must be negligible. The intuition is simple: since the
challenger always responds with the corngcthere is actually no information in these responses, sice
could have computeglon its own. More formally, there is an algorithBthat breaksl/C with probability
€1 by usingA as a sub-routineB simply forwards communications between the challenger (now a challenger
for the 7/C game) and\, except thaB tells A the correcy w.r.t. all of A’'s responsesB forwardsA's forgery
along to the challenger.

Now, we show thagg < €1, from which the result follows. LeEqyy be the event tha makes a mal-
formed response, and [Et be the event thak successfully outputs a forgery —i.e., WhEDepve”f [‘VCT, F,A]
outputs ‘1. A’s success probability, in either Game 0 or Game 1, is:

Prob[E¢] = ProblE+ |Emal] - Prob[Emal] + Prob[E¢|—Emal - Prob[—Emal| @)

16

If A does not make a malformed response, then Games 0 and 1 are indistinguishgbtherefore, the
second term above has the same value in Games 0 and 1. In GRno®[&; |Emal = 0, since the challenger
aborts. Thereforegg < €;. [|

In practice Theorem 4 implies that every time a malformed response is rdcéieclient must re-
garble the circuit (or, as we said above, make sure that the results oetifieation procedure remain
secret). Therefore the amortized efficiency of the client holds only if sgei@e that malformed responses
do not happen very frequently.

In some settings, it is not necessary to inform the worker that its respemsalformed, at least not
immediately. For example, in the Folding@Home application [2], suppose thegtiaatates a new garbled
circuit each morning for its many workers. At the end of the day, the cli@missaccepting computations
using this garbled circuit, and it (optionally) gives the workers informatiooua the well-formedness of
their responses. (Indeed, the client may reveal all of its secrets fodalyg In this setting, our previous
security proof clearly holds even if there are arbitrarily many malformegoreses.

6 Conclusions and Future Directions

In this work, we introduced the notion of Verifiable Computation as a natoraddlation for the increasingly
common phenomenon of outsourcing computational tasks to untrusted sioér describe a scheme
that combines Yao’s Garbled Circuits with a fully-homomorphic encryptiorsehto provide extremely
efficient outsourcing, even in the presence of an adaptive adyearan additional benefit, our scheme
maintains the privacy of the client’s inputs and outputs.

Our work leaves open several interesting problems. It would be dési@devise a verifiable compu-
tation scheme that used a more efficient primitive than fully-homomorphic ptiery Similarly, it seems
plausible that a verifiable scheme might sacrifice input privacy to incresssticiency. While our scheme is
resilient against a single malformed response from the worker, ideallyou&hiike a scheme that tolerates
k > 1 malformed responses. Finally, it would be interesting to enhance a vkriGiamputation scheme to
include a non-repudiation property, so that a client who receives a mmatbresponse from a worker can
demonstrate the worker’'s misbehavior to a third party.

References

[1] Amazon Elastic Compute Cloud. Onlinefatt p: / / aws. amazon. coni ec2.

[2] The Folding@home project. Stanford Universitiat t p: / / www. st anf or d. edu/ gr oup/
pandegr oup/ cosni .

[3] Sun Utility Computing. Online alt t p: / / www. sun. cont ser vi ce/ sungri d/ i ndex. j sp.

[4] The Great Internet Mersenne Prime Seatcht p: / / www. mer senne. or g/ pri me. ht m

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. tiemer. SETI@Home: An experiment
in public-resource computingzommunications of the ACM5(11):56—-61, 2002.

[6] L. Babai. Trading group theory for randomness Pimceedings of the ACM Symposium on Theory of
Computing (STOG)pages 421-429, New York, NY, USA, 1985. ACM.

[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahay, &Hhan, and K. Yang. On the
(im)possibility of obfuscating programs. Froceedings of CRYPT@ages 1-18, 2001.

[8] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded keypdndent message security. 2009.

[9] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, Aljpgl, and A. Lysyanskaya. Incentivizing out-
sourced computation. IRroceedings of the Workshop on Economics of Networked SystetBs¢Ng
pages 85-90, New York, NY, USA, 2008. ACM.

17

[10] D. Chaum and T. Pedersen. Wallet databases with observePsodeedings of CRYPTQ992.

[11] C. Gentry.A fully homomorphic encryption schenfehD thesis, Stanford University, 2009.

[12] C. Gentry. Fully homomorphic encryption using ideal latticesPioceedings of the ACM Symposium
on the Theory of Computing (STQ@09.

[13] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computatiot@ractive proofs for
muggles. InProceedings of the ACM Symposium on the Theory of Computing (SZQES).

[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge conifgi@f interactive proof-systems.
SIAM Journal on Computindg. 8(1):186—208, 1989.

[15] P. Golle and I. Mironov. Uncheatable distributed computation®réiceedings of the RSA Conference
2001.

[16] S. Hohenberger and A. Lysyanskaya. How to securely outsoaryptographic computations. In
Proceedings of TC2005.

[17] VY. T. Kalai and R. Raz. Probabilistically checkable argument$rbteedings of CRYPTQ009.

[18] J. Kilian. A note on efficient zero-knowledge proofs and arguisiéxtended abstract). Rroceedings
of the ACM Symposium on Theory of computing (ST@&ges 723732, New York, NY, USA, 1992.
ACM.

[19] J. Kilian. Improved efficient arguments (preliminary version). Fceedings of the International
Cryptology Conference on Advances in Cryptolopgsiges 311-324, London, UK, 1995. Springer-
Verlag.

[20] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secusgo-party computation.Journal of
Cryptology 22(2):161-188, 2009.

[21] S. Micali. CS proofs (extended abstract). Rroceedings of the IEEE Symposium on Foundations of
Computer Sciengd 994.

[22] D. Molnar. The SETI@Home problemACM Crossroads7.1, 2000.

[23] F. Monrose, P. Wyckoff, and A. Rubin. Distributed execution wiimote audit. IrfProceedings of
ISOC Network and Distributed System Security Symposium (NB&$)1999.

[24] G. Rothblum. Delegating Computation Reliably: Paradigms and ConstructioR&D thesis, Mas-
sachusetts Institute of Technology, 2009.

[25] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. VanDoorn, and Pasha. Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms$?rbteedings of the Symposium on Operating
Systems PrincipaJ2005.

[26] S. Smith and S. Weingart. Building a high-performance, programmabl&es coprocessotomputer
Networks (Special Issue on Computer Network Secuty831-960, 1999.

[27] Trusted Computing Group. Trusted platform module main specificatiorsiofe 1.2, Revision 103,
July 2007.

[28] A. Yao. Protocols for secure computations.Froceedings of the IEEE Symposium on Foundations of
Computer Sciencd 982.

[29] A. Yao. How to generate and exchange secretBréweedings of the IEEE Symposium on Foundations
of Computer Sciencd 986.

[30] B. S. Yee.Using Secure CoprocessoBhD thesis, Carnegie Mellon University, 1994.

18

