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Abstract. Recently, Tu and Deng [1] proposed a combinatorial conjecture on binary string,
and, on the premise that the conjecture is correct they obtain two classes of Boolean functions
which are both algebraic immunity optimal, the first of which are also bent functions. The second
class are balanced functions, which have optimal algebraic degree and the best nonlinearity up
to now. In this paper, from three different sides, we prove this conjecture is true in many cases
with different counting strategies. We also propose some problems about the weight equations
which is related to this conjecture. Because of the scattered distribution, we predict that a
general counting is difficult to obtain.

1. Introduction

In [1], Tu and Deng proposed the following conjecture.

Conjecture 1.1. St = {(a, b)|a, b ∈ Z2k−1, a+ b ≡ t (mod 2k − 1), w(a) +w(b) ≤ k− 1}, where
1 ≤ t ≤ 2k − 2, k ≥ 2. Then, the cardinality #St ≤ 2k−1.

They validated the conjecture by computer for k ≤ 29. Based on this conjecture, they
constructed some classes of Boolean functions with many optimal cryptographic properties.

In this paper, we attack this conjecture, and prove it for many parameters, based on the
binary weight of t. We found out that the distribution of the pairs in St is very scattered.
With our method, the counting complexity increases directly with the weight of t, or t′, where
t′ = 2k − t. Our counting approach is heavily dependent on the number of solutions of the
equation w(2i1 + 2i2 + · · ·+ 2is + x) = r + w(x).

This paper is organized as follows. In Section 2, we introduce some notations and basic facts
about the binary weight functions which will be frequently used in the rest of the paper. In
Section 3, we prove that the conjecture is true when w(t) = 1, 2. In Section 4 we prove the
conjecture when t = 2k − t′, w(t′) ≤ 2 and t′ is even. In Section 5, we prove the conjecture
when t = 2k − t′, w(t′) ≤ 4 and t′ is odd. In Section 6, we give some open questions about
the number of solutions of w(2i1 + 2i2 + · · · + 2is + x) = r + w(x), where 0 ≤ x ≤ 2k − 1 and
0 ≤ i1 < i2 < . . . < is ≤ k − 1.

2. Preliminaries

Let x be an nonnegative integer, if the binary expansion of x is x = x0 + x12 + x222 + · · · ,
where xi ∈ F = {0, 1}. Then we write x = (x0x1....). The (Hamming) weight (sometimes called
the sum of digits) of x is w(x) =

∑
i xi. The following lemma is well known and easy to show.
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Lemma 2.1. The following statements are true:

w(2k − 1− x) = k − w(x), 0 ≤ x ≤ 2k − 1;

w(x+ 2i) ≤ w(x), if xi = 1;

w(x+ y) ≤ w(x) + w(y), with equality if and only if xi + yi ≤ 1, for any i;

w(x) = w(x− 1)− i+ 1, x ≡ 2i (mod 2i+1), i = 0, 1, 2, . . . .

The last statement implies that: w(x) = w(x − 1) + 1 if x is odd; w(x) = w(x − 1) if x ≡ 2
(mod 4); w(x) = w(x − 1) − 1 if x ≡ 4 (mod 8), etc., and so, for two consecutive integers, the
weight of the even integer is never greater than the weight of the odd integer.

Lemma 2.2. We have:

(1) w(x + 2i + 2j) = 1 + w(x) if and only if xi = 0, xj = 1, xj+1 = 0, or, xi = 1, xi+1 =
0, xj = 0, (j > i+ 1);

(2) w(x+ 2i + 2j) = w(x) if and only if xi = 0, xj = 1, xj+1 = 1, xj+2 = 0 (j < m− 1); xi =
1, xi+1 = 1, xi+2 = 0, xj = 0 (j > i + 2); xi = 1, xi+1 = 0, xj = 1, xj+1 = 0 (j > i + 1);
or, xi = 1, xj = 1, xj+1 = 0 (j = i+ 1).

The previous lemma can be used to show

Lemma 2.3. Given a positive integer m, let

N (i,j)
r = #{x|0 ≤ x ≤ 2m − 1, w(2i + 2j + x) = r + w(x)}, where 0 ≤ i < j ≤ m− 1.

Then N
(i,j)
2 = 2m−2, N

(i,j)
r = 0 if r ≥ 3.

Further, if r = 1, then N
(i,j)
1 =


2m−2 + 2m−3 i+ 1 < j = m− 1
2m−2 i+ 1 = j = m− 1
2m−2 i+ 1 < j ≤ m− 2
2m−3 i+ 1 = j ≤ m− 2.

Finally, if r = 0, then N
(i,j)
0 =



2m−3 + 2m−4 i+ 2 < j = m− 1
2m−3 i+ 2 = j = m− 1
2m−2 i+ 1 = j = m− 1
2m−2 i+ 2 < j = m− 2
2m−3 + 2m−4 i+ 2 = j = m− 2
2m−2 i+ 1 = j = m− 2
2m−3 + 2m−4 i+ 2 < j = m− 3
2m−3 i+ 2 = j = m− 3
2m−3 + 2m−4 i+ 1 = j = m− 3.

Proof. The proof of the above lemma is straightforward by considering the four possible values
of xi, xj . �

Since integers b will be uniquely determined by a in St, we will count the number of such a’s.
We have two different groups of integers a, which will show up in the next few sections:
Group I: a = 0, 1, . . . , t, b = t− a;
Group II: a = t+ v, b = 2k − 1− v, v = 1, 2, . . . , 2k − t− 2.

3. The conjecture is true for t = 2i and t = 2j + 2i

We have

Theorem 3.1. We have #St ≤ 2k−1, t = 2i, 0 ≤ i ≤ k − 1.
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Proof. We split our analysis in two cases.
We first assume that 0 ≤ i ≤ k − 2. Look at Group II, 1 ≤ v ≤ 2k − 2i − 2. Let

Σ := w(a) + w(b) = w(t+ v) + w(2k − 1− v) = w(2i + v) + k − w(v) ≤ 1 + k.

Then

Σ = k + 1⇔ w(2i + v) = 1 + w(v)⇔ vi = 0.

There are 2k−1 many 0 ≤ v ≤ 2k − 1 with vi = 0. When v > 2k − 2i − 1 then vi 6= 0. Thus,
v = 2k − 2i − 1 and v = 0 are two solutions of the above equation. Hence, there are 2k−1 − 2
many v (or a) such that Σ = 1 + k.

Now,

Σ = k ⇔ w(2i + v) = w(v)⇔ vi = 1, vi+1 = 0.

There are 2k−2 many 0 ≤ v ≤ 2k − 1 such that Σ = k. When v ≥ 2k − 2i − 1, vi+1 = 1, and 0
is not a solution of the above equation. Therefore, all the v such that vi = 1 and vi+1 = 0 must
be between 1 and 2k − 2i − 2. Hence, there are 2k−2 many a’s such that Σ = k.

In summary, there are exactly 2k − 2i − 2 − (2k−1 − 2) − 2k−2 = 2k−2 − 2i many a’s in St
belonging to Group II.

In Group I, a = 0, 1, ..., t. Let

σ = w(a) + w(b) = w(a) + w(2i − a)

= w(a) + w(2i − 1− (a− 1)) = w(a) + i− w(a− 1){
= i+ 1 if a ≡ 1 (mod 2)
≤ i− 1 if a ≡ 0 (mod 2),

which gives σ ≤ k−1. Combining these two groups, we get #St = 2k−2−2i+2i+1 = 2k−2 +1 ≤
2k−1.

We next assume that i = k − 1. Group II (1 ≤ v ≤ 2k−1 − 2) makes no contributions to St,
since

Σ = w(2k−1 + v) + k − w(v) = 1 + k.

In Group I,

σ = w(a) + w(t− a) = w(a) + w(2k−1 − 1− (a− 1))

= w(a) + k − 1− w(a− 1){
= k if a ≡ 1 (mod 2)
≤ k − 1 if a ≡ 0 (mod 2).

Consequently, #St = 1 + t
2 = 1 + 2k−2 ≤ 2k−1, and the proof of the theorem is done. �

When the weight of t is increased by 1, the counting complexity increases significantly.

Theorem 3.2. We have #St ≤ 2k−1 when t = 2i + 2j, 0 ≤ i < j ≤ k − 1, k ≥ 4.

Proof. Recall that: Group I: a = 0, 1, 2..., t, t = 2i + 2j ;
Group II: a = t+ v, b = 2k − 1− v, v = 1, 2, ..., 2k − 2j − 2i − 2.

We first assume that j ≤ k − 3 (Case A). In Group II, let

Σ = w(2i + 2j + v) + w(2k − 1− v) = w(2i + 2j + v) + k − w(v) ≤ 2 + k.

Further,

Σ = 2 + k ⇔ w(2i + 2j + v) = 2 + w(v)⇔ vi = vj = 0.

Then, v = 0 and v = 2k − 2j − 2i − 1 are two solutions. When v > 2k − 2j − 2i − 1, then vi = 1
or vj = 1. Hence, we get 2k−2 − 2 many v (or a) such that Σ = 2 + k. Next, Σ = 1 + k ⇔
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w(2i + 2j + v) = 1 + w(v) ⇔
{
vi = 0 vj = 1 vj+1 = 0
or, vi = 1 vi+1 = 0 vj = 0 (j > i+ 1)

by Lemma 2.3.

Certainly, v = 0 is not a solution. If v ≥ 2k − 2j − 2i − 1, then v does not satisfy any of the
above conditions. In other words, all solutions are between 1 and 2k − 2j − 2i − 2.

Hence, there are exactly

{
2k−2, j > i+ 1
2k−3, j = i+ 1

many a’s such that Σ = k + 1.

Further, Σ = k ⇔ w(2i + 2j + v) = w(v). It is easy to check that v = 0 is not a solution and
any v ≥ 2k − 2j − 2i − 1 does not satisfy any condition of Lemma 2.3 when r = 0. Hence, there

are exactly N
(i,j)
0 many v such that Σ = k, where

N
(i,j)
0 ≥

{
2k−3 j > i+ 1
2k−3 + 2k−4 j = i+ 1.

Hence, there are at most

{
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−2 − 2k−3, j > i+ 1
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−3 − (2k−3 + 2k−4), j = i+ 1

=

{
2k−1 − 2j − 2i − 2k−3 j > i+ 1
2k−1 − 2j − 2i − 2k−4 j = i+ 1

many a’s such that Σ ≤ k − 1 in Group II. In Group

I there are only t+ 1 = 2j + 2i + 1 many a. Thus,

#St ≤
{

2k−1 − 2k−3 + 1, j > i+ 1
2k−1 − 2k−4 + 1, j = i+ 1

≤ 2k−1.

Case A has been proved.
Assume next that j = k − 2 (Case B). In Group II, v = 1, 2, . . . , 2k − 2k−2 − 2i − 2. Let

Σ = w(2k−2 + 2i + v) + k − w(v) ≤ 2 + k.

First, if Σ = 2 + k, then, as in Case A, we get exactly 2k−2 − 2 many a’s such that Σ = 2 + k.

Secondly, if Σ = 1 + k, as in Case A, we get exactly

{
2k−2 k − 2 > i+ 1
2k−3 k − 2 = i+ 1

many a’s such that

Σ = 1 + k. If Σ = k, that is, w(2k−2 + 2i + v) = w(v), from Lemma 2.3(m = k, r = 0), then the
number of solutions of all the v between 0 and 2k − 1 is

2k−2, i+ 2 < j = k − 2
2k−3 + 2k−4, i+ 2 = j = k − 2
2k−2, i+ 1 = j = k − 2.

All the integers v satisfying the first condition in Lemma 2.3 are greater than 2k− 2k−2− 2i− 1.
This means that there are 2k−3 (please note that always vj+2 = vk = 0) many v that should be
excluded from the solutions of Σ = k. Hence, we get

2k−3 i+ 2 < k − 2
2k−4 i+ 2 = k − 2
2k−3 i+ 1 = k − 2.

many a’s such that Σ = k.
In summary, the number of a’s with Σ ≥ k is

2k−2 − 2 + 2k−2 + 2k−3, i+ 2 < k − 2
2k−2 − 2 + 2k−2 + 2k−4, i+ 2 = k − 2
2k−2 − 2 + 2k−3 + 2k−3, i+ 1 = k − 2

=


2k−1 − 2 + 2k−3, i+ 2 < k − 2
2k−1 − 2 + 2k−4, i+ 2 = k − 2
2k−1 − 2, i+ 1 = k − 2
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So, the number of a’s in Group II with Σ ≤ k − 1 is
2k − 2j − 2i − 2− (2k−1 − 2 + 2k−3) = 2k−1 − 2j − 2i − 2k−3, i+ 2 < k − 2
2k − 2j − 2i − 2− (2k−1 − 2 + 2k−4) = 2k−1 − 2j − 2i − 2k−4, i+ 2 = k − 2
2k − 2j − 2i − 2− (2k−1 − 2) = 2k−1 − 2j − 2i, i+ 1 = k − 2.

In Group I, there are only t+1 = 2j+2i+1 many a’s. When i+1 = k−2, and a = 2k−3+1, we
get w(a)+w(t−a) = k. Hence, combining all the a’s in the Groups I and II, we get #St ≤ 2k−1,
and Case B is proved.

Next, we assume that j = k − 1 (Case C). Look at Group II, 1 ≤ v ≤ 2k−1 − 2i − 2. Let
Σ = w(2k−1 + 2i + v) + k−w(v) ≤ 2 + k. If Σ = 2 + k, as in Case A, there are exactly 2k−2 − 2
many a’s such that Σ = 2 + k. Next, Σ = 1 + k ⇔ w(2k−1 + 2i + v) = 1 +w(v). By Lemma 2.3,
we must have k − 1 > i+ 1 (since vj = vk−1 = 1 is impossible due to v ≤ 2k − 2j − 2i − 2 < 2j)
and vi = 1 vi+1 = 0 vk−1 = 0 (if k − 1 > i + 1). Certainly, v = 0 is not a solution. If
v ≥ 2k − 2k−1 − 2i − 1 = (2k−1 − 1) − 2i, then v does not satisfy vi = 1 vi+1 = 0 vk−1 = 0.
So, there are exactly 2k−3 many a’s such that Σ = 1 + k (only if k − 1 > i + 1). Further,
Σ = k ⇔ w(2k−1 + 2i + v) = w(v), 1 ≤ v ≤ 2k−1 − 2i − 2. By Lemma 2.3, we infer that vi = 1
vi+1 = 1 vi+2 = 0 vk−1 = 0 (k− 1 > i+ 2). v ≥ 2k−1− 2i− 1 is impossible. So, there are exactly
2k−4 many a’s such that Σ = k (only if k − 1 > i+ 2). So, the number of a’s with Σ ≥ k is

2k−2 − 2 + 2k−3 + 2k−4, i+ 2 < k − 1
2k−2 − 2 + 2k−3, i+ 2 = k − 1
2k−2 − 2, i+ 1 = k − 1.

In Group II, the number of a’s that makes Σ ≤ k − 1 is
2k−1 − 2i − 2− (2k−2 − 2 + 2k−3 + 2k−4) = 2k−4 − 2i, i+ 2 < k − 1
2k−1 − 2i − 2− (2k−2 − 2 + 2k−3) = 0, i+ 2 = k − 1
2k−1 − 2i − 2− (2k−2 − 2) = 0, i+ 1 = k − 1.

We now look at solution from Group I. If i = 0 (call it, Case C1), then σ = w(a) +w(2k−1 +
1 − a) = w(a) + k − 1 − w(a − 2) = k when a ≡ 2, 3 (mod 4). So, there are at most 2k−2 + 2
many a’s between 0 and t = 2k−1 + 1 such that σ ≤ k− 1. Combining with the results in Group
II, we get #St ≤ 2k−2 + 2 + 2k−4 − 20 = 2k−2 + 2k−4 + 1 ≤ 2k−1.

Now, we assume i ≥ 1. If i ≥ 1, j = k−1 ≥ i+2 (Case C2), then σ = w(a)+w(t−a) = w(a)+
w(2k−1+2i−a). When 0 ≤ a ≤ 2i, σ = w(a)+1+w(2i−a) = w(a)+1+i−w(a−1) ≤ i+2 ≤ k−1.
So, this contributes 2i + 1 many a’s to St. When 2i + 1 ≤ a ≤ 2k−1 + 2i, then (let x = a− 2i− 1,
0 ≤ x ≤ 2k−1 − 1)

σ = w(a) + w(2k−1 − 1− (a− 2i − 1))

= w(a) + k − 1− w(a− 2i − 1)

= w(x+ 2i + 1) + k − 1− w(x) ≤ 1 + k.

First, if σ = k + 1 ⇔ w(x + 2i + 1 = 2 + w(x), there are exactly 2k−1−2 = 2k−3 many x’s (or
a’s). If σ = k ⇔ w(x+ 2i + 1 = 1 + w(x), by Lemma 2.3 (m = k − 1), then{

x0 = 0, xi = 1, xi+1 = 0
x0 = 1, x1 = 0, xi = 0 (i > 1).

The number of solution x (or a) is

{
2k−3, 1 < i ≤ k − 3
2k−4, 1 = i ≤ k − 3

Hence, the number of a’s that

σ ≤ k − 1 is 2k−1 − 2k−3 −
{

2k−3 1 < i ≤ k − 3
2k−4 1 = i ≤ k − 3

=

{
2k−2 1 < i ≤ k − 3
2k−2 + 2k−4 1 = i ≤ k − 3

.
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Putting all this together, in Group I, the number of a’s in St is{
2k−2 + 2i + 1, 1 < i ≤ k − 3
2k−2 + 2k−4 + 2i + 1, 1 = i ≤ k − 3

≤
{

2k−2 + 2k−3 + 1, 1 < i ≤ k − 3
2k−2 + 2k−3 + 2k−4 + 1, 1 = i ≤ k − 3

Combining these estimates with the ones from Group II, we get (in any case) #St ≤ 2k−1.
Finally, we assume that j = k − 1 = i+ 1, that is, j = k − 1 and i = k − 2 (Case C3). When

0 ≤ a ≤ 2k−2, then

σ = w(a) + w(2k−1 + 2k−2 − a)

= w(a) + 1 + w(2k−2 − a)

= w(a) + 1 + k − 2− w(a− 1)

=

{
k a ≡ 1 (mod 2)
≤ k − 1 a ≡ 0 (mod 2)

which contributes 1 + 2k−3 many a’s to St.
When 2k−2 + 1 ≤ a ≤ 2k−1 + 2k−2, then (let x = a− 2k−2 − 1, 0 ≤ x ≤ 2k−1 − 1)

σ = w(a) + k − 1− w(a− 2k−2 − 1)

= w(x+ 2k−2 + 1) + k − 1− w(x) ≤ 1 + k.

First, as before, when σ = k + 1, there are 2k−1−2 = 2k−3 many x (or a). Next, σ = k, that
is, w(x + bk−2 + 1) = 1 + w(x), and as in Lemma 2.3(m = k − 1), we have x0 = 0, xk−2 = 1;
or, x0 = 1, x1 = 0, xk−2 = 0. which gives that the number of solutions is 2k−3 + 2k−4, if
1 < i = k − 2.

Hence, the number of a’s in St is 2k−1 − 2k−3 − (2k−3 + 2k−4) = 2k−3 + 2k−4, 1 < k = k − 2.
Group I contributes 1 + 2k−3 + 2k−3 + 2k−4 = 2k−2 + 2k−4 + 1 many solutions to St.
Combining these estimates with the ones from Group II, we have

#St ≤ 2k−2 + 2k−4 + 1 + 2k−4 − 2i < 2k−1,

and this completes the proof of this theorem. �

4. The conjecture is true for t = 2k − 2i and t = 2k − 2j − 2i

Theorem 4.1. We have #St ≤ 2k−1, t = 2k − 2i, 1 ≤ i ≤ k − 1.

Proof. Under our assumption, Group I includes a = 0, 1, . . . , t; and Group II includes a =
t+ 1, . . . , 2k − 2, that is, a = t+ v, b = 2k − 1− v, v = 1, 2, . . . , 2i − 2.

In Group II,

Σ = w(a) + w(b) = w(t+ v) + w(2k − 1− v)

= w(2k − 2i + v) + k − w(v)

= 2k − w(2i − v − 1)− w(v) = 2k − i
≥ k + 1,

so, Group II makes no contributions to St.
we now look at Group I. If a is odd, then

σ = w(a) + w(b) = w(a) + w(t− a)

= w(a) + w(2k − 2i − a) = w(a) + k − w(2i + a− 1)

≥ w(a) + k − (1 + w(a− 1)) = k.

Hence, there are at most 1
2 t + 1 = 2k−1 − 2i−1 + 1 ≤ 2k−1 many a’s with w(a) + w(b) ≤ k − 1,

and so, #St ≤ 2k−1. The proof is done. �
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Theorem 4.2. We have #St ≤ 2k−1, t = 2k − 2j − 2i, 1 ≤ i < j ≤ k − 1.

Proof. Under our assumption, Group I includes a = 0, 1, . . . , t; and Group II includes a = t+ v,
b = 2k − 1− v, v = 1, 2, . . . , 2j + 2i − 2.

In Group II,

Σ = w(a) + w(b) = w(t+ v) + w(2k − 1− v)

= w(2k − 2j − 2i + v) + k − w(v)

= 2k − w(2j + 2i − v − 1)− w(v).

If 1 ≤ v ≤ 2i − 1, then Σ = 2k − 1 − w(2i − 1 − v) − w(v) = 2k − 1 − i ≥ k + 1. If
2i ≤ v ≤ 2j + 2i − 2, then Σ = 2k − w(2j − 1− (v − 2i))− w(v) = 2k − j + w(v − 2i)− w(v) ≥
2k− j+w(v− 2i)− (w(v− 2i) + 1) = 2k− j− 1 ≥ k. Thus, Group II has no contributions to St.

We now look at Group I. We consider several cases.
Case A: i = 1. So, t = 2k − 2j − 2 = 2k − 1− 2j − 1. Thus,

σ = w(a) + w(t− a) = w(a) + w(2k − 1− 2j − 1− a) = w(a) + k − w(2j + 1 + a) ≥ k − 2.

If σ = k− 2⇔ w(1 + 2j + a) = 2 +w(a), there are at most 2k−2 many such a’s. If σ = k− 1⇔
w(1 + 2j + a) = 1 + w(a), there are at most 2k−2 many such a’s by Lemma 2.3. Consequently,
#St ≤ 2k−1.

Case B: i > 1 and j ≤ k − 2. Then

σ = w(a)+w(b) = w(a)+w(2k−2j−2i−a) = w(a)+k−w(2j+2i+a−1) ≥ w(a)+k−2−w(a−1).

If a ≡ 1 (mod 2), then σ ≥ k − 1. Next, σ = k − 1 ⇔ w(2j + 2i + a − 1) = 2 + w(a − 1) ⇔
(a− 1)i = (a− 1)j = 0. Since (a− 1)0 = 0, there are at most 2k−3 many a’s belongs to St.

If a ≡ 2 (mod 4), then σ ≥ w(a)+k−2−w(a−1) = k−2. Next, σ = k−2⇔ w(2j+2i+a−1) =
2+w(a−1), which is equivalent to (a−1)0 = 1, (a−1)1 = 0, (a−1)i = 0, (a−1)j = 0. Thus, there

are at most 2k−4 many such a’s for a contribution to St. Further, σ = k−1⇔ w(2j+2i+a−1) =
1 + w(a − 1), and by Lemma 2.3, there are at most 2k−4 many such a’s (m = k, x = a − 1,
(a− 1)0 = 1, (a− 1)1 = 0).

Consequently, there are at most 2k−2 many a’s such that a ≡ 0 (mod 4), even if all of them
belong to St, and so, we obtain #St ≤ 2k−3 + 2k−4 + 2k−4 + 2k−2 = 2k−1.

Case C: i > 1 and j = k − 1, and so, t = 2k−1 − 2i. Then

σ = w(a) + w(b) = w(a) + w(2k−1 − 2i − a)

= w(a) + k − 1− w(2i + a− 1)

≥ w(a) + k − 2− w(a− 1).

When a ≡ 1 (mod 2), σ ≥ k − 1, and σ = k − 1⇔ w(2i + a− 1) = 1 + w(a− 1)⇔ (a− 1)0 =
(a− 1)i = 0. Therefore, there are at most 2k−1−2 = 2k−3 many solutions to contribute to St.

When a ≡ 2 (mod 4), σ ≥ k−2, and σ = k−2⇔ w(2i +a−1) = 1+w(a−1)⇔ (a−1)0 = 1,
(a− 1)1 = 0, (a− 1)i = 1. Therefore, there are at most 2k−1−3 = 2k−4 many solutions.
σ = k−1⇔ w(2i +a−1) = w(a−1)⇔ (a−1)0 = 0, (a−1)1 = 1, (a−1)i = 1, (a−1)i+1 = 0.

There are at most 2k−1−4 = 2k−5 many solutions to contribute to St.
Consequently, there are at most 2k−2 many a ≡ 0 (mod 4), even if all of them belong to St,

and we obtain #St ≤ 2k−3 + 2k−4 + 2k−5 + 2k−2 < 2k−1. �

5. The conjecture is true for t = 2k − 2i − 1, t = 2k − 2j − 2i − 1 and
t = 2k − 2l − 2j − 2i − 1

Since the proofs require many counting arguments we split our result in several theorems.

Theorem 5.1. We have #St ≤ 2k−1, if t = 2k − 2i − 1, 0 ≤ i ≤ k − 1.
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Proof. Recall that Group I includes 0 ≤ a ≤ t; Group II includes a = t + v, b = 2k − 1 − v,
v = 1, . . . , 2i − 1.

For Group II, Σ = w(t+v)+k−w(v) = w(2k−1−(2i−v))+k−w(v) = 2k−w(2i−v)−w(v) =
2k − i+ w(v − 1)− w(v) ≥ 2k − i− 1 ≥ k.

For Group I, σ = w(a)+w(t−a) = w(a)+w(2k−1− (a+2i)) = w(a)+k−w(a+2i) ≥ k−1.
Next, if σ = k − 1⇔ w(a+ 2i) = 1 + w(a), then there are at most 2k−1 many such a’s. Hence,
#St ≤ 2k−1. �

Theorem 5.2. We have #St ≤ 2k−1, if t = 2k − 2j − 2i − 1, 1 ≤ i < j ≤ k − 1.

Proof. As before, for Group II, when 1 ≤ v ≤ 2i, then

Σ = w(t+ v) + k − w(v) = 2k − w(2j + 2i − v)− w(v)

= 2k − (1 + w(2i − v))− w(v)

= 2k − 1− (i− w(v − 1))− w(v)

= 2k − i− 1 + w(v − 1)− w(v)

≥ 2k − i− 1− 1 ≥ k.

When 2i + 1 ≤ v ≤ 2j + 2i − 1, then (with x = v − 2i − 1, 0 ≤ x ≤ 2j − 2)

Σ = 2k − w(2j + 2i − v)− w(v)

= 2k − w(2j − 1− (v − 2i − 1))− w(v)

= 2k − j + w(x)− w(x+ 2i + 1)

≥ 2k − j − 2.

If j ≤ k− 2, then Σ ≥ k. If j = k− 1, then Σ ≥ k− 1, Σ = k− 1⇔ w(x+ 2i + 1) = 2 +w(x).
Thus, there are at most 2j−2 = 2k−3 many such x (v or a) contributing to St.

In Group I, 0 ≤ a ≤ 2k − 2j − 2i − 1, and

σ = w(a) + w(2k − 2j − 2i − 1− a) = w(a) + k − w(2j + 2i + a) ≥ k − 2.

Case A: j ≤ k − 2; Then σ = k − 2 ⇔ w(2j + 2i + a) = 2 + w(a), and so, there are at most
2k−2 many a’s. Next, σ = k − 1 ⇔ w(2j + 2i + a) = 1 + w(a), and by Lemma 2.3, the number
of such a’s is at most 2k−2. Hence, #St ≤ 0 + ak−2 + 2k−2 = 2k−1.

Case B: j = k − 1; Then σ = k − 2, and there are at most 2k−2 many such a’s. Next,
σ = k− 1⇔ w(2j + 2i + a) = 1 +w(a)⇔ (as in Lemma 2.3) ai = 0, aj = ak−1 = 1, aj+1 = 0 or

ai = 1, ai+1 = 0, aj = 0, (j > i+ 1). But j = k − 1, t < 2k−1, hence aj = 0. It means that the

first condition cannot be satisfied. So, there are at most 2k−3 many such a’s. Combining this
estimate with the one from Group II, we have #St ≤ 2k−3 + 2k−2 + 2k−3 = 2k−1, and the proof
is done. �

Before proving our last theorem, we need a lemma.

Lemma 5.3. Let N
(i,j,l)
r = #{x|0 ≤ x ≤ 2m − 1, w(2i + 2j + 2l + x) = r + w(x)}, where

0 ≤ i < j < l ≤ m− 1. The following hold:

(1) If r = 3, w(2i + 2j + 2l + x) = 3 + w(x)⇔ xi = xj = xl = 0; Further, N
(i,j,l)
3 = 2m−3.
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(2) If r = 2, w(2i + 2j + 2l + x) = 2 + w(x) ⇔ xi = 0 xj = 0 xl = 1 xl+1 = 0; or, xi = 0
xj = 1 xj+1 = 0 xl = 0 (l > j + 1); or, xi = 1 xi+1 = 0 xj = 0 xl = 0 (j > i + 1).

Further, N
(i,j,l)
2 =



2m−2 i+ 2 < j + 1 < l = m− 1
2m−3 + 2m−4 i+ 2 = j + 1 < l = m− 1
2m−3 + 2m−4 i+ 2 < j + 1 = l = m− 1
2m−3 i+ 2 = j + 1 = l = m− 1
2m−3 + 2m−4 i+ 2 < j + 1 < l ≤ m− 2
2m−3 i+ 2 = j + 1 < l ≤ m− 2
2m−3 i+ 2 < j + 1 = l ≤ m− 2
2m−4 i+ 2 = j + 1 = l ≤ m− 2

(3) If r = 1, w(2i + 2j + 2l + x) = 1 + w(x) ⇔ xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0
(l ≤ m − 2); or, xi = 0, xj = 1, xj+1 = 1, xj+2 = 0, xl = 0 (l > j + 2); or, xi = 0,
xj = 1, xl = 1, xl+1 = 0 (l = j + 1); or, xi = 1, xi+1 = 1, xi+2 = 0, xj = 0, xl = 0
(j > i+ 2); or, xi = 1, xj = 0, xj+1 = 0, xl = 0 (j = i+ 1, l > j+ 1); or, xi = 0, xj = 1,
xj+1 = 0, xl = 1, xl+1 = 0 (l > j + 1); or, xi = 1, xi+1 = 0, xj = 0, xl = 1, xl+1 = 0
(j > i+ 1); or, xi = 1, xi+1 = 0, xj = 1, xj+1 = 0, xl = 0 (l > j+ 1, j > i+ 1). Further,

N
(i,j,m−1)
1 =



2m−3 + 2m−4 + 2m−5 i+ 4 < j + 2 < l = m− 1
2m−3 + 2m−4 i+ 4 = j + 2 < l = m− 1
2m−3 + 2m−5 i+ 3 = j + 2 < l = m− 1
2m−3 + 2m−4 i+ 4 < j + 2 = l = m− 1
2m−3 + 2m−5 i+ 4 = j + 2 = l = m− 1
2m−3 i+ 3 = j + 2 = l = m− 1
2m−3 + 2m−4 + 2m−5 i+ 3 < j + 1 = l = m− 1
2m−3 + 2m−4 i+ 3 = j + 1 = l = m− 1
2m−3 i+ 2 = j + 1 = l = m− 1,

N
(i,j,m−2)
1 =



2m−3 + 2m−4 + 2m−5 i+ 4 < j + 2 < l = m− 2
2m−3 + 2m−4 i+ 4 = j + 2 < l = m− 2
2m−3 + 2m−4 i+ 3 = j + 2 < l = m− 2
2m−3 + 2m−4 i+ 4 < j + 2 = l = m− 2
2m−3 + 2m−5 i+ 4 = j + 2 = l = m− 2
2m−3 + 2m−5 i+ 3 = j + 2 = l = m− 2
2m−3 + 2m−4 i+ 3 < j + 1 = l = m− 2
2m−3 + 2m−5 i+ 3 = j + 1 = l = m− 2
2m−3 i+ 2 = j + 1 = l = m− 2,

N
(i,j,l)
1 =



2m−3 + 2m−4 i+ 4 < j + 2 < l ≤ m− 3
2m−3 + 2m−5 i+ 4 = j + 2 < l ≤ m− 3
2m−3 + 2m−5 i+ 3 = j + 2 < l ≤ m− 3
2m−3 + 2m−5 i+ 4 < j + 2 = l ≤ m− 3
2m−3 i+ 4 = j + 2 = l ≤ m− 3
2m−3 i+ 3 = j + 2 = l ≤ m− 3
2m−3 + 2m−5 i+ 3 < j + 1 = l ≤ m− 3
2m−3 i+ 3 = j + 1 = l ≤ m− 3
2m−4 + 2m−5 i+ 2 = j + 1 = l ≤ m− 3.

Proof. We omit this straightforward and slightly tedious proof. �

Theorem 5.4. We have #St ≤ 2k−1, t = 2k − 2l − 2j − 2i − 1, 1 ≤ i < j < l ≤ k − 1.

Proof. Under our assumptions, Group I includes 0 ≤ a ≤ t; and Group II includes a = t + v,
b = 2k − 1− v, v = 1, 2, . . . , 2l + 2j + 2i − 1. We consider several cases.
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Case A: l ≤ k − 3 (k ≥ l + 3 ≥ j + 4 ≥ i+ 5). In Group II,

Σ = w(a) + w(b) = w(t+ v) + w(2k − 1− v)

= w(2k − 1− (2l + 2j + 2i) + v) + k − w(v)

= 2k − w(2l + 2j + 2i − v)− w(v).

If 1 ≤ v ≤ 2i, then

Σ = 2k − (2 + w(2i − v))− w(v)

= 2k − 2− w((2i − 1)− (v − 1))− w(v)

= 2k − 2− i+ w(v − 1)− w(v)

≥ 2k − 2− i− 1 ≥ k + 2.

If 2i + 1 ≤ v ≤ 2j , then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)

= 2k − 1− w(2j − 1− (v − 2i − 1))− w(v)

= 2k − 1− j + w(v − 2i − 1)− w(v)

≥ 2k − 1− j − 2 ≥ k + 1.

If 2j + 1 ≤ 2j + 2i, then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)

= 2k − 1− w(2i − 1− (v − 2j − 1))− w(v)

= 2k − 1− i+ w(v − 2j − 1)− w(v)

≥ 2k − 1− i− 2 ≥ k + 2.

If 2j + 2i + 1 ≤ 2l + 2j + 2i − 1, then

Σ = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)

= 2k − l + w(v − 2j − 2i − 1)− w(v)

≥ 2k − l − 3 ≥ k.

Hence, Group II has no contributions to St.
In Group I, σ = w(a) + w(t − a) = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3. First, if

σ = k − 3 ⇔ w(2l + 2j + 2i + a) = 3 + w(a), there are at most 2k−3 many such a’s. Next,
if σ = k − 2 ⇔ w(2l + 2j + 2i + a) = 2 + w(a), there are at most 2k−3 + 2k−4 many such
a’s by Lemma 5.3 (please note that m = k and l ≤ k − 3, r = 2). Finally, if σ = k − 1 ⇔
w(2l +2j +2i +a) = 1+w(a), there are at most 2k−3 +2k−4 many such a’s by Lemma 5.3(r = 1,
l ≤ k − 3).

In summary, #St ≤ 2k−3 + 2k−3 + 2k−4 + 2k−3 + 2k−4 = 2k−1.
Case B: l = k − 2 (k = l + 2 ≥ j + 3 ≥ i+ 4). In Group II, by the proof of Case A, there are

some a’s which will contribute to St only if 2j + 2i + 1 ≤ 2l + 2j + 2i − 1. Then

Σ = w(a) + w(b) = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)

= 2k − l + w(v − 2j − 2i − 1)− w(v)

= 2k − l + w(x)− w(x+ 2j + 2i + 1)

≥ 2k − l − 3 = k − 1,

where x = v − 2j − 2i − 1, 0 ≤ x ≤ 2l − 2. If Σ = k − 1⇔ w(2l + 2j + 2i + x) = 3 +w(x), there
are at most 2l−3 = 2k−5 many such a’s.
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In Group I, σ = w(a) +w(t− a) = w(a) + k−w(2l + 2j + 2i + a) ≥ k− 3. If σ = k− 3, there
are at most 2k−3 many such a’s. If σ = k − 2, there are at most 2k−3 + 2k−4 many such a’s.
If σ = k − 1 ⇔ w(2l + 2j + 2l + a) = 1 + w(a), by Lemma 5.3, with r = 1, m = k, l = k − 2,
we get xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0 ⇔ xi = 0, xj = 0 xk−2 = 1, xk−1 = 1

⇒ x ≥ 2k−1 + 2k−2 > t, so, the number of solutions of σ = k − 1 should not include this 2k−4

many. That is, there are at most 2k−3 + 2k−5 many a’s such that σ = k − 1 by Lemma 5.3.
Combine Groups I and II, and get #St ≤ 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−3 + 2k−5 = 2k−1.
Case C: l = k − 1 (k = l + 1 ≥ j + 2 ≥ i+ 3). In Group II, by the proof in Case A, there are

some a’s will make contributions to St, only if 2i+1 ≤ v ≤ 2j or 2j +2i+1 ≤ v ≤ 2l +2j +2i−1.
If 2i + 1 ≤ v ≤ 2j ,

Σ = w(a) + w(b) = 2k − 1− j + w(v − 2i − 1)− w(v) ≥ 2k − 1− j − 2 ≥ k − 1.

First Σ = k − 1 implies that w(v − 2i − 1) − 2 = w(v) and j = k − 2. Let x = v − 2i − 1,
0 ≤ x ≤ 2j − 2i− 1. Then w(x+ 2i + 1) = 2 +w(x) has at most 2j−2 = 2k−4 many solutions, so
Σ = k − 1 has at most 2k−4 many solutions if j = k − 2.

If 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1 ,then

Σ = w(a) + w(b) = 2k − l + w(v − 2j − 2i − 1)− w(v) ≥ k + 1− 3 = k − 2.

Let x = v− 2j − 2i− 1, 0 ≤ x ≤ 2l− 2 = 2k−1− 2. If Σ = k− 2 we get at most (in fact, exactly)
2k−1−3 = 2k−4 many solutions. If Σ = k − 1 then w(x+ 2j + 2i + 1) = w(x) + 2, by Lemma 5.3

(m = k − 1), we get exactly N
(0,i,j)
2 many solutions since 2l − 1 is not a solution. Recall that

N
(0,i,j)
2 =



2k−3 2 < i+ 1 < j = k − 2
2k−4 + 2k−5 2 = i+ 1 < j = k − 2
2k−4 + 2k−5 2 < i+ 1 = j = k − 2
2k−4 2 = i+ 1 = j = k − 2
2k−4 + 2k−5 2 < i+ 1 < j ≤ k − 3
2k−4 2 = i+ 1 < j ≤ k − 3
2k−4 2 < i+ 1 = j ≤ k − 3
2k−5 2 = i+ 1 = j ≤ k − 3

In Group I,

σ = w(a) + w(t− a) = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.

If σ = k − 3, there are at most (in fact, exactly) 2k−3 many solutions. If σ = k − 2, then
w(2l + 2j + 2i + a) = w(a) + 2, and the first condition of Lemma 5.3 is satisfied (r = 2), and we
get ai = 0, aj = 0, al = 1, al+1 = 0 ⇔ ai = 0, aj = 0, ak−1 = 1 ⇒ a ≥ 2k−1 > t. That means

2k−3 many a’s should not be counted. So, the number of solutions of σ = k − 2 is at most
2k−3 i+ 2 < j + 1 < l = k − 1
2k−4 i+ 2 = j + 1 < l = k − 1
2k−4 i+ 2 < j + 1 = l = k − 1
0 i+ 2 = j + 1 = l = k − 1

If σ = k − 1, then w(2l + 2j + 2i + a) = w(a) + 1. By Lemma 5.3 (r = 1), we obtain ai = 0,
aj = 1, al = 1, al+1 = 0 (l = j + 1) ⇔ ai = 0, aj = 1, ak−1 = 1 ⇒ a > 2k−1 > t, so, there are

2k−3 many a’s which should not be counted for l = j + 1.
The sixth condition of Lemma 5.3 implies ai = 0, aj = 1, aj+1 = 0, ak−1 = 1 (l > j + 1) ⇒

a > t. There are 2k−4 many a’s which should not be counted for l > j + 1.
The seventh condition of Lemma 5.3 implies ai = 1, ai+1 = 0, aj = 0, ak−1 = 1 (j > i+ 1) ⇒

a > t. There are 2k−4 many a’s which should not be counted for j > i+ 1. In summary, we get
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the number of solutions of σ = k − 1 is at most

2k−4 + 2k−5 i+ 4 < j + 2 < l = k − 1
2k−4 i+ 4 = j + 2 < l = k − 1
2k−4 + 2k−5 i+ 3 = j + 2 < l = k − 1
2k−4 i+ 4 < j + 2 = l = k − 1
2k−5 i+ 4 = j + 2 = l = k − 1
2k−4 i+ 3 = j + 2 = l = k − 1
2k−5 i+ 3 < j + 1 = l = k − 1
0 i+ 3 = j + 1 = l = k − 1
0 i+ 2 = j + 1 = l = k − 1

If j 6= k − 2,that is, j ≤ k − 3, then

#St ≤ 2k−4 + 2k−4 + 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−5 = 2k−1.

If j = k − 2, then

#St ≤ 2k−4 + 2k−4 + 2k−3 + 2k−3 + 2k−4 + 2k−5 = 2k−2 + 2k−3 + 2k−4 + 2k−5 < 2k−1.

This completes the proof of our theorem. �

6. Further Remarks

As we see, the counting heavily depends on the following quantity

N (i1,i2,...,is)
r = {x|0 ≤ x ≤ 2k − 1, w(2i1 + 2i2 + · · ·+ 2is + x) = r + w(x)},

where 0 ≤ i1 < i2 < . . . < is ≤ k− 1. Obviously, we have N
(i1,i2,...,is)
r = 0 if r > s. We also have

N
(i1,i2,...,is)
r = 0 if r ≤ −k. A general formula may be hard to obtain, but it could be interesting

if a good upper and lower bound can be determined for given s and r.
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