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Abstract. A cryptographic pairing evaluates as an element in an ex-
tension field, and the evaluation itself involves a considerable amount of
extension field arithmetic. It is recognised that organising the extension
field as a “tower” of subfield extensions has many advantages. Here we
consider criteria that apply when choosing the best towering construc-
tion, and the associated choice of irreducible polynomials for the imple-
mentation of pairing-based cryptosystems. We introduce a method for
automatically constructing efficient towers for more congruency classes
than previous methods, some of which allow faster arithmetic.
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1 Introduction

When considering the software implementation of a cryptographic scheme
such as RSA, or schemes based on the discrete logarithm problem, an
implementation can be written which performs reasonably efficiently for
any level of security. For example, an RSA implementation with a 1024-
bit modulus can easily be modified to use a 4096-bit modulus, maybe by
just changing a single parameter within the program. The same applies to
elliptic curve cryptography where a generic implementation will perform
reasonably well for a curve with a subgroup of points of size 160-bits,
192-bits or 256-bits. Of course an implementation specially tailored for,
and hard-wired to, a particular level of security will perform somewhat
better, but not spectacularly so.

The situation for pairing-based cryptography (PBC) is fundamentally
different. An efficient implementation at the 80-bit level of security using
the Tate pairing on a Cocks-Pinch pairing-friendly curve [9] will be com-
pletely different from an implementation at the 128-bit level using the
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R-ate [16] pairing on a BN curve [6] and very little code will be reusable
between the two implementations. In this situation the development and
maintenance of good quality pairing code becomes difficult and there is a
compelling case for the development of some kind of automatic tool – a
cryptographic compiler – which can generate good quality code for each
case [8].

When using pairing-based protocols, it is necessary to perform arith-
metic in fields of the form Fqk , for moderate values of k, so it is important
that the field is represented in such a way that the arithmetic can be per-
formed as efficiently as possible. It is this aspect of the implementation
of pairing-based protocols which is the focus of this paper.

The remainder of the paper is organised as follows: in §2 the motiva-
tion for the work in this paper will be reinforced. In §3 the specific context
of focus will be presented. Some existing ideas for the field construction
are briefly explained in §4. A general result is proved in §5 which is then
applied to the context of pairing-based cryptography in in §6, including
the main contribution of this paper to PBC in §6.1. In §7 we draw some
conclusions.

2 Extension Fields

Consider the implementation of the extension field Fqk . The obvious rep-
resentation of elements of this field is as polynomials of degree k − 1,
Fpk = Fp[x]/f(x)Fp[x] where f(x) is an irreducible polynomial in Fp[x] of
degree k. For efficiency reasons some effort might be made to choose f(x)
to have a minimal number of terms and small coefficients. For example,
for the field Fp2 , where p is a prime and p ≡ 3 mod 4, a good choice for
f(x) would be x2 + 1, and elements can be represented as ax + b, with
a, b ∈ Fp. For the case p ≡ 5 mod 8, a good choice for f(x) would be
x2 − 2. For the final case p ≡ 1 mod 8 there is no immediately obvious
way to choose a suitable irreducible binomial, but for some small value i
which is a quadratic non-residue in Fp, x2 − i would be appropriate.

In some settings the value of the extension degree k might be much
greater than 2, in which case the direct polynomial representation be-
comes more arithmetically complex. For elliptic curve cryptography im-
plemented over “Optimal Extension Fields”, (OEFs) as suggested by Bai-
ley and Paar [3], extensions as high as Fp30 are considered; in pairing-based
cryptosystems, an extension degree of up to 50 is reasonable [9]. OEFs are
usually defined as extensions with respect to a small single-word pseudo-
mersenne prime. The extension fields that arise in the context of efficient
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implementations of pairing-based cryptography, however, are rather dif-
ferent.

If the extension degree is a parameter of the implementation then the
potentially uncomfortable situation arises where, if the extension degree
changes, an optimal implementation must be re-written again, largely
“from scratch”. The alternative seems to be to use generic polynomial
code to construct the extension field, making the implementation slow and
bulky. A nice compromise that applies when the extension k is smooth
(that is has only small factors) is to use a “tower” of extensions, where
one layer builds on top on the last, and ideally where each sub-extension
is quite small. For example, Fp12 could be implemented as a quadratic
extension, of a cubic extension, of a very efficiently implemented (and
reusable) quadratic extension field Fp2 , as implemented by Devegili et al.
[7].

This idea of using a tower of extensions was suggested by Baktir and
Sunar [19] as a better way of implementing OEFs, and in the process
of doing this they discovered that the resulting simpler implementation
resulted in an asymptotically improved method for performing field in-
version. The point is that it is relatively easy to implement quadratic
and cubic extensions efficiently, whereas the complexity of implementing
generic methods over large extensions might result in the inadvertent use
of sub-optimal methods.

It is also proposed in the IEEE draft standard “P1363.3: Standard for
Identity-Based Cryptographic Techniques using Pairings” that extensions
of odd primes are constructed using a tower of extensions created using
irreducible binomials at each stage [1].

Clearly it is advantageous to use this towering method when imple-
menting a pairing-based protocol. One issue remains: finding the best
tower for a particular value of k. Obviously, for different values of k, we
will need to use different towers; a very reasonable approach in the context
of pairing-based cryptography would be to fix the tower for a particular
k which will be made clear in §6.

The construction does not only depend on k however, but also on
p, the characteristic of the base field. There is an existing method for
constructing such towers given by Koblitz and Menezes in [15] which can
only be used for some p with specific properties, so relying on this method
alone places unnecessary restrictions on the parameters of a pairing-based
curve. Given that pairing-friendly elliptic curves are quite rare, it is clear
that we should aim to reduce the number of constraints on the parameters
that may compromise the efficiency of the implementation.

3



The main contribution of this work is to give a new method, which
complements the existing method and gives a means for automatically
constructing efficient towers in the cases for which the existing method
can not be used. In some cases, the towers given using this new method
give more efficient arithmetic than would be possible using the towers
over fields for which the Koblitz and Menezes method can be used.

Motivating this work is our ambition to contribute to a “cryptographic
compiler” [8], that is, a compiler which when given as input the parame-
ters for a pairing-friendly curve, should be automatically able to generate
the optimal pairing code, including the optimal field arithmetic imple-
mentation.

3 Pairings and pairing-friendly elliptic curves

The Tate pairing of two linearly independent points P and Q on an elliptic
curve E(Fqk), denoted e(P,Q), is an element of the extension field Fqk . If
P is of prime order r, then the pairing evaluates as an element of order r.
Here we focus on the case of non-supersingular elliptic curves over prime
fields, that is, q = p. In practice it is common to choose P as a point on
the elliptic curve over the base field, E(Fp). As is well known, the number
of points on this elliptic curve is p+1−t, where | t |≤ 2

√
p (Hasse bound)

is the trace of the Frobenius [12].
The Tate pairing is only of interest if it is calculated on a “pairing-

friendly” elliptic curve. This pairing-friendliness entails that r | pk − 1
for some reasonably small value of k, that is, the rth roots of unity in
F̄p, the codomain of the pairing, are contained in Fpk . To find the actual
parameters of the curve, however, it is also required that the integer 4p−t2
(always positive as a consequence of the Hasse condition), has a relatively
small non-square part D (the CM discriminant), that is it factors as Dv2

for small D. Such curves can then be found using the method of complex
multiplication (CM) [12].

For the Tate pairing the point Q is commonly represented as a point
over some twist E′(Fpk/t), where t | k, as apposed to being on the curve
defined over the full extension field, E(Fpk). When k is even the quadratic
twist t = 2 can always be used, when the pairing-friendly curve has a CM
discriminant of D = 1 and 4 | k, the quartic twist t = 4 can be used, and
when the CM discriminant is D = 3 and 6 | k, the sextic twist t = 6 can
be used. It is preferable to use the highest order twist available, as this
leads to a faster more compact implementation [13].
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Variants of the Tate pairing have recently been discovered (the ate
pairing [13], and the R-ate pairing [16]) that are more efficient in some
cases, but which require the roles of P and Q to be reversed. This makes
it even more important to use the highest order twist available as a signif-
icant part of the pairing calculation is a point multiplication of the first
parameter (now Q), which is more expensive than in the Tate pairing.

In their taxonomy of pairing-friendly curves [9], Freeman Scott and
Teske, following a recommendation from Koblitz and Menezes [15, §8.3],
particularly recommend curves for which the embedding degree k is of the
form k = 2i ·3j . Here we further restrict that i ≥ 1, j ≥ 0 as an even value
for k facilitates the important “denominator elimination” optimization for
the pairing calculation [4]. In each case we prefer curves which support
the maximal twist.

4 Existing ideas for constructing towers

Let p be an odd prime, and let n > 0 and m > 1 be integers. The most
obvious way to construct the tower of sub-extensions of the field Fpnm

over Fpn would be to use a binomial xm − α which is irreducible over
Fpn [x] and successively adjoin roots of the previously adjoined root until
the tower has been constructed (call this the ‘general method’). We are
able to test xm − α for irreducibility using the following theorem:

Theorem 1. [18, Theorem 3.75] Let m ≥ 2 be an integer and α ∈ F×pn.
Then the binomial xm − α is irreducible in Fpn [x] if and only if the fol-
lowing two conditions are satisfied:

1. each prime factor of m divides the order e of α ∈ F×pn, but not (pn −
1)/e;

2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

By theorem 1 we see that the general method above works for all m,
m 6≡ 0 mod 4. When m ≡ 0 mod 4, this method works if pn ≡ 1 mod 4.

Given the constraints outlined in §3, it is clear that the tower of exten-
sions used in pairing-based cryptography can be built using a sequence
of quadratic and cubic sub-extensions. This was recognised by Koblitz
and Menezes in [15]. They called a field Fpk pairing-friendly (not to be
confused with a pairing-friendly elliptic curve) if p ≡ 1 mod 12 and k is
of the form k = 2i3j , in which case by [15, Theorem 2] (which is derived
from Theorem 1 above) the polynomial xk−α is irreducible over Fp if α is
neither a square nor a cube in Fp. The extension tower can be constructed
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using the general method by simply adjoining a cube or square root of
some small such α and then successively adjoining a cube or square root
of the previously adjoined root until the tower has been constructed. If
b = 0 then it is sufficient that p = 1 mod 4, and that α be a quadratic
non-residue in Fp. This result gives us an easy method for building tow-
ers over pairing-friendly fields: simply find an element α in Fp which is a
quadratic and (when necessary) cubic non-residue and adjoin successive
cube and square roots of α to Fp.

There is one major issue remaining, the strict condition that p ≡
1 mod 12 to give a pairing-friendly field. When searching for pairing-
friendly curves of a suitable size there are typically other criteria that we
wish to meet (for example, it is preferred that the Hamming weight of the
variable that controls the Miller loop in the pairing calculation should be
as small as possible [7]). Having to skip a nice curve just because p 6≡ 1
mod 12 seems unnecessarily restrictive. Since the publication of [15], new
families of pairing-friendly elliptic curves have been discovered which the
results of [15] could not have taken into account. In particular, the KSS
curves with embedding degree 18 [14] are good for implementation given
the many optimisations possible using these curves. The condition that
p ≡ 1 mod 12 here is completely unnecessary as this condition comes
from condition 2 of Theorem 1 which is not applicable when k = 18.

Given the many applications of pairings in cryptography and the fact
that the parameters of a pairing-based protocol are already subject to
quite strict constraints, it is clear that there is a necessity for a method to
construct towers for fields which would not be considered pairing-friendly
(in the sense of Koblitz and Menezes) but would otherwise be favourable
for implementation of a pairing-based protocol. The term ‘pairing-friendly
field’ is slightly misleading, as there are families of pairing-friendly elliptic
curves attractive for implementation which are defined over fields which
do not necessarily satisfy p ≡ 1 mod 12. In a sense, the pairing-friendly
fields of [15] are the fields, in the context of pairings, over which it is easy
to build the towers. We introduce a new definition:

Definition 2. A towering-friendly field is a field of the form Fqm , where
q is a prime power, for which all prime divisors of m also divide q − 1.

Essentially, towering-friendly fields are fields for which the tower of
sub-extensions can be easily (and most efficiently) constructed; that is,
using irreducible binomials. The OEFs of Bailey and Paar [3] are by
definition towering-friendly fields (where q a prime of a special form).
The fields said to be pairing-friendly by Koblitz and Menezes are also
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towering-friendly, but these are not the only towering-friendly fields which
occur in the context of pairing based cryptography.

The contribution of this paper is to give a simple, general method for
testing the irreducibility of a binomial xm − α in Fpn [x] to construct the
tower of sub-extensions of the field Fpnm over Fpn . This results in a method
for constructing general towers for towering-friendly fields when m ≡ 0
mod 4 and pn 6≡ 1 mod 4. In the context of pairing-based cryptography
this gives a method for constructing towers for towering-friendly fields
not considered pairing-friendly.

5 General tower construction method

Considering first the general case where p is an odd prime, n > 0 and
m > 1 are integers and we want to construct the tower of sub-extensions
of the towering-friendly field Fpnm over Fpn . The two issues to address
are:

– we need a method to construct towers over Fpn when m ≡ 0 mod 4
and pn 6≡ 1 mod 4, and

– we need to find an appropriate irreducible binomial xm − α in Fpn [x]
to construct the tower.

The first issue has a relatively simple solution. As pn 6≡ 1 mod 4 and
p is an odd prime, we know that n is odd and p ≡ 3 mod 4. In order
to be able to use the straightforward construction method we construct
first a quadratic extension Fp2n of Fpn , which we will refer to as a base
tower, using a binomial. Over the base tower we can use the general
method to build the rest of the tower using the binomial xm/2−α, where
α ∈ Fp2n \ Fpn , as now p2n ≡ 1 mod 4.1

In the particular case of n = 1 this can be done by simply adjoining a
square root of −1. This idea is a generalisation of the approach taken by
Barreto and Naehrig in [6] to construct the field Fp12 over Fp. They first
implement an efficient quadratic extension over the base field, and then
1 The idea of a base tower can be generalised: Suppose a given Fpn and m do not form

a towering friendly field. Write m = m1m2 such that gcd(pn − 1,m2) = 1 and all
primes dividing m1 divide pn−1. If all primes dividing m2 divide pnm1 −1 then the
tower of Fpnm over base tower Fpn can be constructed in two parts. The base tower
Fpnm1 over Fpn can be constructed using the general method. Now, Fpnm1m2 over
Fpnm1 is towering-friendly and the general method can be used to implement the
remaining subfield extensions (using a binomial xm2−α where α ∈ Fpnm1 \Fpn). This
gives a procedure for deciding whether or not, given input (p, n,m), any subfields
of Fpnm/Fpn are towering-friendly.
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look for irreducible polynomials of the from x6 − α where α ∈ Fp2 \ Fp is
neither a square nor a cube.

As to the problem of finding a suitable α for constructing the tower
(and also the base tower when necessary), Theorem 1 provides a means
for determining whether a given binomial is irreducible, but it does not
give an efficient method for constructing the towers: taking random small
elements of Fpn then computing their order and verifying that the condi-
tions hold is quite cumbersome – especially as n grows. Using this result,
however, we are able to prove a theorem which results in a more efficient
method for finding a suitable α.

We first recall some definitions and properties which will be used in
the following theorems and proof: Let γ ∈ Fpn . The Norm from Fpn to Fp

of γ, denoted NFpn/Fp
(γ), is the product of all its conjugates,

NFpn/Fp
(γ) =

n−1∏
i=0

(γ)pi ∈ Fp.

The norm is multiplicative, that is, for γ1, γ2 ∈ Fpn ,

NFpn/Fp
(γ1 · γ2) = NFpn/Fp

(γ1) ·NFpn/Fp
(γ2).

Using induction this gives us that NFpn/Fp
(γ`) = NFpn/Fp

(γ)` for some
` ∈ Z+. The order of γ is the smallest positive integer e such that γe = 1
in Fpn . The order is a divisor of pn − 1.

Theorem 3. Let m > 1, n > 0 be integers, p an odd prime and α ∈ F×pn.
The binomial xm−α is irreducible in Fpn [x] if the following two conditions
are satisfied:

1. for each prime factor q of m: q divides pn− 1 and NFpn/Fp
(α) ∈ Fp is

not a qth residue in Fp;
2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

Proof. To prove this theorem, we show that condition 1 of Theorem 3
implies condition 1 of Theorem 1. We assume that condition 1 of Theorem
3 is true. Let e denote the order of α in Fpn and q denote a prime divisor
of m.

Suppose that q | (pn−1)/e. This implies that e | (pn−1)/q and so α is
a qth power in Fpn . Let δ ∈ Fpn be such that δq = α. Taking the norm of α
we see that NFpn/Fp

(α) = NFpn/Fp
(δq) = NFpn/Fp

(δ)q where NFpn/Fp
(δ) ∈

Fp and thus NFpn/Fp
(α) is a qth residue in Fp, a contradiction, so q -

(pn − 1)/e.
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We have also assumed that q | (pn − 1) and since q - (pn − 1)/e it is
clear that q | e and so condition 1 of theorem 3 is satisfied.

Using Theorem 3 we are able to verify the irreducibility of a bino-
mial xm − α over an extension field Fpn [x], where α is an element of
Fpn , by checking the properties of just one particular element of the base
field, namely the norm from Fpn to Fp of α - a much simpler task than
computing the order of an element in Fpn . Theorem 3 can be applied in
all contexts to find the binomial for automatically generating towers of
extensions over all towering-friendly fields.

We now illustrate the usefulness of Theorem 3 by adapting it to the
particular context of pairing-based cryptography as outlined in §3.

6 Towers for PBC

Following the constraints in §3, we will consider the tower of extensions
as a sequence of quadratic and cubic sub-extensions. There is some free-
dom as to the best way to order the extensions. The choice here may
be influenced by whether or not it is intended to compress the value of
the pairing [20, 11]. This compressed value can then be further efficiently
exponentiated in its compressed form by using Lucas or XTR based meth-
ods for times 2 and times 3 compression respectively. This is facilitated
by terminating with a quadratic or a cubic extension respectively.

Consider for example the BN curves [6], which have an embedding
degree of 12 and which support the sextic twist t = 6. In this case E(Fp2)
arithmetic must be supported, and so it makes sense that the tower should
start with a quadratic extension over the base field. This can be fol-
lowed by a cubic extension and then a quadratic, or indeed the other way
around. Assuming that the highest possible compression should be sup-
ported, the tower of choice in this case is 1− 2− 4− 12. This particular
tower construction is given as an example by the IEEE draft standard [1].
For reasons that will become clear, starting with a quadratic extension
where possible is preferred. In general, to have an efficient implementation
we chose the tower which supports the highest possible compression rate
and highest degree twist. Taking these constraints into account we make
the following towering recommendations for the curves recommended in
[9], in Table 1.

There have been some advances in arithmetic performance in Fpk

based on the final extension being a quadratic extension [2] and such
towers can also be constructed using our method.
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Table 1. Suggested Towers for Curves with Efficient Arithmetic

k ρ D Twist t Construction Tower

4 2 1 4 FST [9] 1-2-4
6 2 3 6 FST [9] 1-2-6
8 1.5 1 4 KSS [14] 1-2-4-8
12 1 3 6 BN [6] 1-2-4-12
16 1.25 1 4 KSS [14] 1-2-4-8-16
18 1.333 3 6 KSS [14] 1-3-6-18
24 1.25 3 6 BLS [5] 1-2-4-8-24
32 1.125 1 4 KSS [14] 1-2-4-8-16-32
36 1.167 3 6 KSS [14] 1-2-6-12-36
48 1.125 3 6 BLS [5] 1-2-4-8-16-48

6.1 Tower construction for PBC

From the definition of towering-friendly fields we are only able to distin-
guish on a specific case-to-case basis if a general field is towering-friendly
field. In the PBC setting we have a little more information. We are able
to determine information about some of the parameters for particular
curves in advance by making some observations. We see from the follow-
ing discussion that all fields Fpk arising when using the families of pairing
friendly curves in Table 1 are towering-friendly.

Elliptic curves with CM discriminant D = 1 Elliptic curves from
Table 1 with CM discriminant D = 1 have equations of the form E :
y2 = x3 + Ax. We know that these curves are not supersingular (which
is the case for curves with such equations defined over a prime field with
characteristic p ≡ 3 mod 4 [12]) and so p ≡ 1 mod 4. This means that
the field is towering-friendly (also pairing-friendly) as all D = 1 cases
in Table 1 have k = 2n so the general method appears to be optimal.
Only a small quadratic non-residue α ∈ Fp is needed to construct the
tower. Indeed, in the case of p = 5 mod 8 we can always choose α = 2,
which leads to fast reduction. An implementation can simply tower up
quadratically, by adjoining the square root of the last adjoined element
to build the next extension at each step.

Elliptic curves with CM discriminant D = 3 For elliptic curves
with CM discriminant D = 3, p will not always be a pairing-friendly
prime in the sense of the Koblitz and Menezes definition, but we do have
some information which will aid us in the construction of the towers over
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Fp. Given that the CM discriminant D = 3, we know that the elliptic
curve must have an equation of the form E : y2 = x3 +B. If p ≡ 2 mod 3
then such a curve would supersingular [12] and so we know that p ≡ 1
mod 3 must be true. We see then that all the fields resulting from this
construction are towering-friendly.

For the KSS k = 18 curves and FST k = 6 curves we are able to use
the general method in every case without a base tower (as k 6≡ 0 mod 4
and both 2 and 3 divide p − 1). We simply adjoin successive cubic and
quadratic roots of some cubic and quadratic non-residue α ∈ Fp in the
recommended order.

For all other families of curves, if the prime p is not 1 mod 4 then we
will need to use a base tower to construct the tower. One advantage in
this case is that we know p ≡ 3 mod 4 and so the base tower Fp2 over Fp

can be efficiently constructed by adjoining a square root of −1. This may
be more efficient than an implementation using a towering-friendly prime
which satisfies p ≡ 1 mod 4 as the arithmetic in Fp(

√
−1) can be faster

than Fp(
√
τ) for some other base field quadratic non-residue τ [10].

The following Corollary (drawing on ideas from Barreto and Naehrig
in [6]) gives a method for finding appropriate candidates for the value α
such that the polynomial xm − α is irreducible over a finite field of the
form Fp2 = Fp(

√
−1).

Corollary 4. The polynomial xm − (a ± b
√
−1) is irreducible over Fp2,

for m = 2i3j, i, j > 0, if a2 + b2 is neither a square nor a cube in Fp.

Proof. The norm for any element a ± b
√
−1 is NFp2/Fp

(a ± b
√
−1) =

(a+b
√
−1)(a−b

√
−1) = a2 +b2. The integer m is of the form 2i3j and so

by Theorem 3 if a2 + b2 is neither a quadratic nor a cubic residue modulo
p, then xm − (a± b

√
−1) is irreducible over Fp2 .

Using this corollary, in order to construct the tower, small values of
a and b can be tested until a combination is found such that a2 + b2 is
neither a square nor a cube in Fp. This process only requires a few cubic
and quadratic non-residue tests to be performed on elements of the base
field. Small values for a and b can be found to help improve efficiency.

As 1
2 of the non-zero elements of Fp are non-squares and 2

3 of the
non-zero elements are non-cubes, such an element must exist; in fact, on
heuristic grounds it is expected that 1

3 of the elements will be neither
squares nor cubes, which the experimental evidence supports.

Using corollary 4 we can now simply construct the towers for all curves
from Table 1 with D = 3 for primes p ≡ 7 mod 12.
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BN k = 12 Fp → Fp2 → Fp4 → Fp12 :

Fp ⊂ Fp(
√
−1) ⊂ Fp(

√
−1, (a− b

√
−1)1/2) ⊂ Fp(

√
−1, (a− b

√
−1)1/6) =

Fp12 .

BLS k = 24 Fp → Fp2 → Fp4 → Fp8 → Fp24 :

Fp ⊂ Fp(
√
−1) ⊂ Fp(

√
−1, (a− b

√
−1)1/2) ⊂ Fp(

√
−1, (a− b

√
−1)1/4) ⊂

Fp(
√
−1, (a− b

√
−1)1/12) = Fp24 .

KSS k = 36 Fp → Fp2 → Fp6 → Fp12 → Fp36 :

Fp ⊂ Fp(
√
−1) ⊂ Fp(

√
−1, (a− b

√
−1)1/3) ⊂ Fp(

√
−1, (a− b

√
−1)1/6) ⊂

Fp(
√
−1, (a− b

√
−1)1/18) = Fp36 .

BLS k = 48 Fp → Fp2 → Fp4 → Fp8 → Fp16 → Fp48 :

Fp ⊂ Fp(
√
−1) ⊂ Fp(

√
−1, (a− b

√
−1)1/2) ⊂ Fp(

√
−1, (a− b

√
−1)1/4) ⊂

Fp(
√
−1, (a− b

√
−1)1/8) ⊂ Fp(

√
−1, (a− b

√
−1)1/24) = Fp48 .

Once a suitable pair (a, b) has been found the tower can be constructed
automatically.

Given a little more information about p, which is easily found, we are
able to give some more specific constructions.

Construction 5. For a prime p ≡ 3 modulo 8 the function xm − (1 +√
−1) is irreducible over Fp2 [x] for m = 2i3j, i, j > 0, for approximately

2/3 of the values of p.

Proof. In this case a2 + b2 = 2. The polynomial will be irreducible if 2
is neither a square nor a cube modulo p. We know that 2 is a quadratic
non-residue modulo p when p ≡ 3 mod 8. The only remaining condition
is that 2 is not a cube modulo p.

All primes p ≡ 1 mod 3 can be written in the form p = 3u2 + v2. As
Euler conjectured (proved by Gauss [17]) 2 is a cubic residue modulo p
if and only if 3 | u. Instinctively we would presume that this occurs 1/3
of the time. There is currently no proof concerning the number of primes
in a quadratic sequence but this is supported by experimental results. So
2 is a cubic non-residue modulo for approximately 2/3 of the values of p
for which p ≡ 3 modulo 8.

When p ≡ 7 mod 8 the following corollary may be useful:
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Construction 6. For a prime p ≡ 2 or 3 modulo 5 the function xm−(2+√
−1) is irreducible over Fp2 [x] for m = 2i3j, i, j > 0 for approximately

2/3 of the values of p.2

Proof. The values of a and b in theorem 4 in this case are 2 and 1 respec-
tively, so a2 + b2 = 5. The polynomial will be irreducible if 5 is neither a
square nor a cube modulo p. When p ≡ 2 or 3 modulo 5 we know that 5
is a quadratic non-residue modulo p and so the only condition left is that
5 should not be a cube in Fp. With p written in the form p = 3u2 + v2,
we know that 5 is a cube if 15 | u, or 3 | u and 5 | v, or 15 | (u ± v),
or 15 | (u ± 2v) [17]. Again, there is currently no proof concerning the
number of primes in a quadratic sequence but as supported by experi-
mental results we expect that this occurs 1/3 of the time. So 5 is a cubic
non-residue modulo for approximately 2/3 of the values of p for which
p ≡ 2 or 3 modulo 5.

The results of Corollaries 5 and 6 is that for around 2/3 of the primes
not considered pairing-friendly, we have a more automatic and often more
efficient implementation than is possible for pairing-friendly fields. To con-
struct the tower for a pairing-friendly field we must find a small quadratic
and cubic non-residue in Fp - which will be at least 5.

Example 1 The value x = 400880400000000916 generates suitable pa-
rameters for a BN curve. Using this x we see that p ≡ 3 mod 4 we first
need a base tower before we use the general construction method. We can
see that p ≡ 3 mod 5 and running a few tests we verify that a2 + b2 is
neither a square nor a cube for the (unordered) pairs (a, b) = (1, 2) as
given in Construction 6. Here we can construct the tower as:

Fp
2−→ Fp(

√
−1) 2−→ Fp(

√
−1, (1− 2

√
−1)1/2) 3−→ Fp(

√
−1, (1− 2

√
−1)1/6).

Given that a2 + b2 = b2 + a2 we could also use:

Fp
2−→ Fp(

√
−1) 2−→ Fp(

√
−1, (2−

√
−1)1/2) 3−→ Fp(

√
−1, (2−

√
−1)1/6).

Trivially we could also use the conjugates a + b
√
−1 and b + a

√
−1,

or the negatives −a + b
√
−1 and −b + a

√
−1. Not only (1, 2) could be

used, also (1, 3), (1, 5), (2, 3) would be suitable. This example raises some
questions about the choice of pairs (a, b). A simple analysis indicates that
the optimal choice is the one which minimises ω(a) +ω(b), where ω(n) is
the number of additions required to perform a multiplication by n.
2 In this case, the polynomial xm − (1 + 2

√
−1) is also irreducible.
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Example 2 Comparing now our method with that given in [6], for the
security level of 196 bits, the authors suggest the BN curve with prime

p = 6277101719531269400517043710060892862318604713139674509723.

The tower suggested in [6] would then be

Fp
2−→ Fp(

√
−1) 6−→ Fp(

√
−1, (−8 + 8

√
−1)1/6).

Using our method, we see that 2 is neither a cube, nor a square modulo
p and so the tower can be constructed:

Fp
2−→ Fp(

√
−1) 6−→ Fp(

√
−1, (1 +

√
−1)1/6),

which is equivalent to:

Fp
2−→ Fp(

√
−1) 2−→ Fp(

√
−1, (1 +

√
−1)1/2) 3−→ Fp(

√
−1, (1 +

√
−1)1/6).

Example 3 Using the parameterisation of the KSS k = 18 curves [14]
and the value x = 17592186050810, we find a suitable value for p where
p ≡ 3 mod 4, so according to the constraints given by the Koblitz and
Menezes (predating the discovery of such curves) the extension field Fpk

would not be pairing-friendly. We can construct these towers using the
general method and after very few tests we discover that 3 is neither a
square nor a cube modulo p so the tower for this particular prime can be
given by:

Fp
3−→ Fp(31/3) 2−→ Fp(31/6) 3−→ Fp(31/18).

7 Conclusion

In this paper we proved a theorem which leads to a method to determine
if a binomial defined over an extension field is irreducible by performing
a few tests on one element of the base field. This results in a method to
construct the towers of extension fields of towering-friendly fields Fpm for
which the general method could not be used.

Using Theorem 4 along with the general construction method and
base towers we are now able to automatically construct towers of ex-
tensions for the implementation of the finite fields used in pairing-based
cryptography by performing a few cubic and quadratic non-residue tests
on elements of Fp. The resulting constructions are efficient and can con-
tribute to the development of a cryptographic compiler specialised for
pairing-based cryptography as described in [8].
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