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Abstract. We propose new cryptosystems based on self-distributive systems that are defined by conju-
gator searching problems (CSP) in noncommutative groups. Under certain assumptions, the ciphertexts
of our basic construction are proven indistinguishable against chosen plaintext attacks (IND-CPA) in
the standard model, and two extended schemes achieve the IND-CCA security in the random oracle
model. Then, our proposal is instantiated with braid groups, and leads to a new braid-based encryption
scheme that is directly based on the intractability assumption of CSP in braid groups. Furthermore,
we quote an analysis to manifest that our newly derived braid-based cryptosystem has the potential to
resist currently known quantum attacks.
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1 Introduction

Most public-key cryptosystems that remain unbroken are based on the perceived difficulty of solv-
ing certain problems in large finite (abelian) groups. The theoretical foundations of these cryp-
tosystems are related to the intractability of problems that are closer to number theory than to
group theory [MST02]. In a quantum computer, most of these problems on number theory can
be efficiently solved by using algorithms developed by Shor [Sho97], Kitaev [Kit95] and Proos-
Zalka [PZ03]. Although the quantum computation is still in its infancy, the knowledge regarding
their potential will soon create distrust in the current cryptographic methods [Lee04]. In order
to enrich cryptography and not to put all eggs in one basket [Lee04], many attempts have been
made to develop alternative public-key cryptography (PKC) based on different kinds of problems
[AAG99,KLCH00,Lee04,MST02].

Under this background, some noncommutative groups have been attracted considerable atten-
tions. One of the most popular groups in this category is the braid group. In 1999, Anshel et al.
[AAG99] proposed an algebraic method for PKC. Owing to their pioneering work, braid groups
gained attention in the field of modern cryptography. Shortly afterward, Ko et al. [KLCH00] pub-
lished a fully fledged braid-based encryption scheme using braid groups. The security of this scheme
is based on the so-called Diffie-Hellman like conjugacy problem (DHCP), which can be viewed as



a weaker variant of the conjugator searching problem (CSP). Unfortunately, Cha et al.’s algo-
rithm [CJ03] announced the breaking of Ko et al.’s braid-based encryption. After then, finding new
braid-based encryption becomes an interesting challenge.

Beyond to give a direct answer for the above challenge, in this study, we at first propose some
properties of the CSP-based left self-distributive systems—though these properties could be ob-
tained easily from the mathematic viewpoint, but they are very useful from the cryptographic
perspective, and then propose new cryptosystems based on these properties. Our proposal is suit-
able for arbitrary noncommutative group G, providing that the intractability assumption of CSP
in G holds. Under a further assumption, the ciphertexts of our basic scheme are proven indistin-
guishable against chosen plaintext attacks (IND-CPA). Then, two extended schemes that achieve
IND-CCA security are described. When G is instantiated with the braid group Bn for example,
we can immediately derive a new braid-based encryption scheme that is directly based on the in-
tractability of CSP. At the time of this writing, no polynomial-time algorithm for solving CSP
in braid groups has been reported yet [SU08] (cf. Section 4.4). Moreover, we quote some detailed
analysis in [WWC+10] to argue that the resulted braid-based encryption is secure against currently
known quantum attacks (cf. Section 4.5).

In fact, our originality is rooted in Dehornoy’s previous work. In 2006, Dehorney [Deh06] pro-
posed an authentication scheme based on self-distributive systems in braid groups. Although some
cryptanalysis on Dehorney’s authentication scheme were reported [LU08], we find that Dehorney’s
work is still meaningful in at least the following two aspects: First, self-distributive systems can
be defined over arbitrary noncommutative groups, rather than braid groups only; Second, self-
distributive systems have the potential for building variety of cryptographic schemes, rather than
authentication schemes only.

The rest of contents are organized as follows: In Section 2, we give a review on the concept of
self-distributive system and the related assumption; in Section 3, we propose some properties for the
CSP-based self-distributive system; based on these newly developed properties, a Diffie-Hellman-
like key agreement protocol, an ElGamal-like encryption scheme and its CCA-secure extensions
are proposed in Section 4; meanwhile, the provable security theorem, the efficiency, and other
related discussions are also presented. Concluding remarks are given in Section 5. Related proofs
are arranged in appendixes.

2 Left Self-Distributive System and the One-Wayness Assumption

Suppose that S is a non-empty set, and F : S × S → S is a well-defined function. If the following
rewrite formula holds,

Fr(Fs(p)) = FFr(s)(Fr(p)), (∀p, r, s ∈ S) (1)

then we call F·(·) a left self-distributive system, abbreviated as LD system (See [Deh06]). The
terminology “left self-distributive” arises from the following analogical observation: If we consider
Fr(s) as a binary operation r ∗ s, then the formula (1) becomes

r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p), (2)

i.e., the operation “∗” is left distributive with respect to itself.



If the LD system F·(·) defined as (1) possesses the following one-wayness property [Deh06], it
is useful for designing cryptographic protocols: It is hard to retrieve s from the pair (p, Fs(p)).

3 CSP-based Left Self-Distributive System and its Properties

In his seminal paper, Dehornoy[Deh06] defined a non-trivial left self-distributive systems based on
conjugate operation in braid groups. If we define a binary function F as follows,

F : Bn ×Bn → Bn, (a, b) 7→ aba−1, (3)

and denote F (a, b) by Fa(b), then, we can see that F caters to the definition of the formula (1).
Moreover, under the intractability assumption of the conjugator searching problem (CSP) in braid
groups, this LD system is a one-way function. That is, it is hard to find s for given (p, Fs(p) = sps−1),
where s and p are two braids belonging to the braid group Bn.

Apparently, Dehornoy’s definition on LD system is suitable for arbitrary noncommutative group
G, rather then braid groups only. Thus, let us name all this category of LD systems as CSP-based
LD systems. We have developed some properties of CSP-based LD systems. From the crypto-
graphic perspective, these properties should be very useful under the aforementioned one-wayness
assumption.

Proposition 1. Suppose F be a CSP-based LD system defined over a noncommutative group G.
Then, for arbitrary a, b, c ∈ G, F satisfies the following properties:

(i) F is idempotent in the sense of Fa(a) = a;
(ii) F is mutual inverse in the sense of Fa(b) = c⇔ Fa−1(c) = b;
(iii) F is homomorphic in the sense of Fa(bc) = Fa(b)Fa(c);
(iv) F is self-reflective in the sense of Fa(b) = F−1

a (b−1).

Proof. See Appendix A.

Combining all above properties together, we obtain a new property, named as power law, for
CSP-based LD systems.

Proposition 2 (Power Law of CSP-based LD Systems). Suppose F be a CSP-based left
self-distributive system defined over a noncommutative group G. Then, for arbitrary three integers
m, s, t such that m = s + t, we have

Fa(bm) = Fm
a (b) and Fam(b) = Fa(Fam−1(b)) = Fam−1(Fa(b)) = Fas(Fat(b)). (4)

Proof. It is easy to obtain by combining the property (iii) in Proposition 1, and the definition of
the CSP-based LD system given by the formula (3).

4 Cryptosystems from CSP-based Left Self-Distributive Systems

The power law of CSP-based LD system immediately implies a Diffie-Hellman-like key agreement
protocol, which in turn implies an ElGamal-like encryption scheme. Of course, certain cryptographic
assumptions and some computational issues should be taken into account.



4.1 Constructions

Suppose F be a one-way CSP-based left self-distributive system defined over a noncommutative
group G. Let a, b ∈ G be two public elements. Assume that Alice and Bob want to negotiate a
common session key. Then, Alice (resp. Bob) picks at random an integer s (resp. t)—Please refer
[GPV08] for exact meaning of sampling an integer from an infinite space—and then sends Fas(b)
(resp. Fat(b)) to Bob (resp. Alice). Finally, both of them can compute Fas+t(b), by which a session
key can be defined as

Ksession = Kdf(Fas+t(b)), (5)

where Kdf(·) is a key derivation function, such as KDF1 defined in IEEE Std 1363-2000. Note
that we have not mentioned the order of the group G. In fact, it should be large enough to resist
exhaustive attacks. We will see that it could be even infinite (cf. Section 4.4).

The Basic Scheme—CSP-ElG. The above interactive is a natural analogy of Diffie-Hellman
key agreement protocol [DH76]. Similarly, we can define the following encryption scheme (denoted
by CSP-ElG) that is an analogy of ElGamal cryptosystem [ElG85]. Our basic construction consists
of the following four algorithms:

– Setup. The massage space isM = G, while the ciphertext space is C = G2. Picks a, b ∈ G and
publishes them as the system parameters.

– KeyGen. Picks an integer s ∈ Z at random. The public key is pk = Fas(b), while the secret
key is sk = s.

– Enc. Picks an integer t ∈ Z at random, the ciphertext on a message m ∈ G is

c = (Fat(b), mFat(pk)),

– Dec. m = c2F
−1
as (c1).

Under certain assumptions, the above scheme is IND-CPA secure (See Theorem 1 in Section
4.2). It is easy to derive a CCA secure encryption scheme by employing the Fujisaki-Okamoto
transformation [FO99]. However, enlightened by the work in [CKS08], we would like to give the
following two different extensions: the first is called the hashed ElGamal variant, denoted by CSP-
hElG, and the second is called the twin ElGamal variant, denoted by CSP-tElG. Both of them can
be proven to be IND-CCA secure under certain assumptions (cf. Section 4.2).

The First Extended Scheme—CSP-hElG. Our first extension is enlightened by the work in
[CKS08] and [ABR01]. It is the hashed version of the above CSP-ElG scheme and thus denoted by
CSP-hElG. The CSP-hElG scheme consists of the following four algorithms:

– Setup. Suppose Π = (E,D) be a symmetric cipher with the key space K, and H : G2 → K be
a hash function. Picks a, b ∈ G and publishes them as the system parameters.

– KeyGen. The public key is X, with the corresponding secret key x, where X = Fax(b).



– Enc. To encrypt a message m ∈M, one chooses a random y ∈ Z, computes

Y := Fay(b), Z := Fay(X), k := H(Y, Z), c := Ek(m),

and the ciphertext is (Y, c).
– Dec. Given the ciphertext (Y, c), and the secret key x, one computes

Z := Fax(Y ), k := H(Y, Z), m := Dk(c).

The CSP-hElG can be proven secure against chosen ciphertext attacks (See Theorem 2 in
Section 4.2).

The Second Extended Scheme—CSP-tElG. Our second extension is also enlightened the work
in [CKS08]. It is the twin version of the above CSP-ElG scheme and thus denoted by CSP-tElG.
The CSP-tElG scheme consists of the following four algorithms:

– Setup. Suppose Π = (E,D) be a symmetric cipher with the key space K, and H : G3 → K be
a hash function. Picks a, b ∈ G and publishes them as the system parameters.

– KeyGen. The public key is (X1, X2), with the corresponding secret key (x1, x2), where Xi =
Faxi (b) for i = 1, 2.

– Enc. To encrypt a message m ∈M, one chooses a random y ∈ Z, computes

Y := Fay(b), Z1 := Fay(X1), Z2 := Fay(X2), k := H(Y, Z1, Z2), c := Ek(m),

and the ciphertext is (Y, c).
– Dec. Given the ciphertext (Y, c), and the secret key (x1, x2), one computes

Z1 := Fax1 (Y ), Z2 := Fax2 (Y ), k := H(Y, Z1, Z2), m := Dk(c).

The CSP-tElG can be proven secure against chosen ciphertext attacks (See Theorem 4 in Section
4.2).

The Third Extended Scheme—CSP-rElG. Our third extension is denoted by CSP-rElG
since it is obtained by combining the above CSP-ElG scheme and a randomly padding diagram.
Compared with the CSP-ElG scheme, we just introduce a hash function H in CSP-rElG. The
CSP-rElG scheme consists of the following four algorithms:

– Setup. The message space is M = {0, 1}κ, while the ciphertext space is C = G × {0, 1}κ+κ1 ,
where κ are κ1 are two positive integers that are discussed later. Suppose H : G → {0, 1}κ+κ1

be a hash function. Picks a, b ∈ G and publishes them as the system parameters.
– KeyGen. Picks an integer s ∈ Z at random. The public key is pk = Fas(b), while the secret

key is sk = s.
– Enc. Picks r ∈ {0, 1}κ1 at random, then the ciphertext on a message m ∈ {0, 1}κ is

c = (Fat(b), t⊕H(Fat(pk))),

where t = (m||r)2 is the integer obtained by concatenating the bit-representations of m and r.



– Dec. Computes (m′||r′)2 = c2 ⊕H(Fas(c1)), then outputs m′ if c1 = Fa(m′||r′)2 (b) and ⊥ other-
wise.

Although we cannot prove that CSP-rElG is IND-CCA secure with the assumptions developed in
this paper (even if H is modeled as the random oracle model), the scheme has certain advantages, say
intuitive construction, small expansion of the ciphertexts, without symmetric ciphers involving, etc.
Anyway, we have not conceived a successful attack towards CSP-rElG, considering that there is no
easy way to modify a ciphertext without being detected. Note that Shoup described another hashed
ElGamal encryption (denoted by Shoup-hElG) that is merely IND-CPA secure in [Sho04]. The
difference between the Shoup-hElG and the CSP-rElG scheme is that in CSP-rElG, we introduce
the validation on the ciphertexts after decryption. However, we fail to answer whether this validation
mechanism is enough for assuring IND-CCA security.

4.2 Security Requirements and Cryptographic Assumptions

Similar to the decisional Diffie-Hellman (DDH) assumption for the ElGamal cryptosystem, the
security of the encryption scheme CSP-ElG described in the above subsection is based on the
following assumption (denoted by CSP-DDH) over the underlying noncommutative group G: For
arbitrary a, b ∈ G \ {1G}, it is hard to distinguish the distributions

Da,b = {(Fai(b), Faj (b), Fai+j (b)) ∈ G3 : i, j
$←−− Z},

and
D̃a,b = {(Fai(b), Faj (b), Fak(b)) ∈ G3 : i, j, k

$←−− Z},

where 1G is the identity of G, and the symbol “ $←−− Z” indicates the integer sampling algorithm
SampleD defined in [GPV08].

Theorem 1 (IND-CPA of CSP-ElG). Based on the CSP-DDH assumption, the ciphertexts of
the encryption scheme CSP-ElG are indistinguishable under chosen plaintext attacks in the standard
model.

Proof. See Appendix B.

However, in order to prove the CCA security of the extended schemes descried in the above
subsection, we need further assumptions. Enlightened by the work in [CKS08], for arbitrary a, b ∈
G \ {1G}, let us define the CSP-DH function (w.r.t. (a, b)) dh : G2 → G by

dh(X, Y ) := Z, where X = Fas(b), Y = Fat(b), and Z = Fas+t(b). (6)

Here, s, t ∈ Z are random integers. The problem of computing dh(X, Y ) given random X, Y ∈ G
such that X = Fas(b), and Y = Fat(b) for some unknown s, t ∈ Z is the CSP-DH problem. The
CSP-DH assumption asserts that this problem is hard. For X, Ŷ , Ẑ ∈ G such that X = Fas(b),
Ŷ = Fat̂(b), and Ẑ = Faû(b) for some unknown s, t̂, û ∈ Z, define the CSP-DH predicate

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ ) ?= Ẑ. (7)



Then, the strong CSP-DH assumption says that it is hard to compute dh(X, Y ), given X, Y ∈ G
such that X = Fas(b) and Y = Fat(b) for some unknown s, t ∈ Z, alone with access to a decision
oracle for the CSP-DH predicate dhp(X, ·, ·), which on input (Ŷ , Ẑ) such that Ŷ = Fat̂(b) and
Ẑ = Faû(b) for some unknown t̂, û ∈ Z, and returns dhp(X, Ŷ , Ẑ).

Theorem 2 (IND-CCA of CSP-hElG). If H is modeled as a random oracle, and the underlying
symmetric cipher Π is itself secure against chosen ciphertext attacks, then the hashed ElGamal
encryption scheme CSP-hElG is secure against chosen ciphertext attacks under the strong CSP-DH
assumption.

Proof. Analogically implied by Theorem 1 and the claims in [CKS08].

Further, we can develop the CSP-based twin Diffie-Hellman assumption over the underlying
noncommutative group G. For arbitrary a, b ∈ G \ {1G}, let us define the twin CSP-DH function
(w.r.t. (a, b)) 2dh : G3 → G2 by

2dh(X1, X2, Y ) := (dh(X1, Y ), dh(X2, Y )), (8)

where X1 = Fas(b), X2 = Fat(b), and Y = Fau(b) for some unknown random integers s, t, u ∈ Z.
Similarly, the twin CSP-DH predicate (w.r.t. (a, b)) is defined by

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ ) ?= (Ẑ1, Ẑ2), (9)

where X1 = Fas(b), X2 = Fat(b), Y = Faû(b), Z1 = Fav̂(b) and Z = Faŵ(b) for some unknown
random integers s, t, û, v̂, ŵ ∈ Z. Then, the twin CSP-DH assumption states it is hard to compute
2dh(X1, X2, Y ), given random (X1, X2, Y ) ∈ G such that X1 = Fas(b), X2 = Fat(b), and Y = Fau(b)
for some unknown s, t, u ∈ Z, while the strong twin CSP-DH assumption states that the twin
CSP-DH assumption holds even with access to a decision oracle for the twin CSP-DH predicate
2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2) such that Y = Faû(b), Z1 = Fav̂(b) and Z = Faŵ(b)
for some unknown random integers û, v̂, ŵ ∈ Z, and returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). Analogically,
we have

Theorem 3 ([CKS08]). The CSP-DH assumption over the underlying noncommutative group G
holds if and only if the strong twin CSP-DH assumption over G holds.

Theorem 4 (IND-CCA of CSP-tElG). If H is modeled as a random oracle, and the underly-
ing symmetric cipher Π is itself secure against chosen ciphertext attacks, then the twin ElGamal
encryption scheme CSP-hElG is secure against chosen ciphertext attacks under the CSP-DH as-
sumption.

Proof. Analogically implied by Theorem 1, Theorem 3, and Theorem 4 in [CKS08].



4.3 Efficiency for Computing and Representing Fat(b)

For computing Fat(b), we should at first compute at, and then plus one inversion and two multipli-
cations. Then, when t is large, say several hundreds of digits, rather than to multiply a t times, a
similar successive doubling method should be employed, and thus a factor of log t would be intro-
duced in the following performance evaluation. At present, it is enough to set t as an integer with
128 bits to resist exhaustive attacks.

It is necessary to assume that the basic group operations, i.e., multiplication of two elements
and the inversion, can be finished efficiently. This assumption implies that the lengths of the rep-
resentations of all elements in G, including a, b, at and Fat(b), should be polynomial in the system
security parameters, since the results have to be output bit-by-bit by using classical computers.

4.4 Potential Implementations and Evaluations

Now, let us proceed to give an implementation on our proposal by using braid groups.

Intractability of CSP in braid groups. Although some algorithms for solving CSP in braid
groups were proposed [EH94,GM02,FGM03,Geb05], none of them has ever been proven in polyno-
mial time (with respect to the braid index n). As far as we know, Gebhardt’s algorithm [Geb05],
which was proposed in 2003 but formally published in 2005, is the most efficient method for solving
CSP in braid groups. The algorithm has not been proven to be polynomial-time, yet. After then,
CSP in braid groups is classified for further study. According to Garber’s report [Gar07], at present
we can merely solve CSP for periodic braids within polynomial time. From ultimate solutions for
CSP in braid groups, we are still facing two kinds of challenges: one is how to solve CSP for rigid
braids within polynomial time, and the other is how to find a polynomial boundary for Gebhardt’s
method. (Please see [BGGM07a,BGGM07b,BGGM08] for more details.) According to [Deh04] and
[KLT08], most of known attacks against braid-based cryptosystems take advantage of the way that
the keys are generated, rather than solve CSP itself. So in ref. [KLT08], Ko et al. also proposed
some new methods for generating hard CSP instances for braid cryptography. According to Shpil-
rain’s latest claim in [SU08], there is no deterministic polynomial-time algorithm for solving CSP
in braid groups up to 2008. This give us certain confidence for using braid groups as the platform
to implement our proposal. Especially in Section 4.5, we will quote an detailed analysis on the
capability of our proposal in resiting currently known quantum attacks.

Parameter Suggestion. Note that the braid group Bn is infinite, and it is not convenient to
work with an infinite group. So in practice, we always choose two positive integers n and l as the
system parameters, and assume that all the braids involved in our schemes are randomly chosen
from the following finite subset [KCCL02]

Bn(l) = {b ∈ Bn|`(b) ≤ l} ⊆ Bn, (10)

where `(b) is the canonical length of b. According to ref. [KCCL02], |Bn(l)| ≤
(
bn−1

2 c!
)l. Further,

if the keys are selected properly, say by employing Ko et al.’s method [KLT08], then according to
Maffre’s suggestion [Maf06], it is enough to set n = 50 and l = 10 to resist all known classical
attacks.



Ciphertext Expansion. Apparently, in the CPA-secure scheme, CSP-ElG, the length of the
ciphertexts is double of the length of the message to be encrypted. This means the expansion
factor is 2, exactly the same situation of ElGamal cryptosystems. As regards the extended CCA-
secure schemes, i.e. CSP-hElG and CSP-tElG, the ciphertext expansion factor is (κ + ι(G))/κ,
where κ is the block size of the underlying symmetric cipher and ι(G) indicates the length of the
representation of an element in G. As regards the randomly padding extension, i.e. CSP-rElG, the
ciphertext expansion factor is (κ + κ1 + ι(G))/κ. If G is finite, say ZN , then in general we can
assume ι(G) = log |G|. Now, new problems arise:

– First, when ι(G) is fixed, the expansion factors of these extensions could be strictly less than
2 for sufficiently large κ. This in turn suggests that these extensions might be more efficient in
space than the basic CPA construction. What is the expense for achieving this? Our answer
is: We achieve this at the expense of more computations. As for CSP-hElG and CSP-tElG,
when κ increases, the cost of computing Ek(m) and Dk(c) increases. As regards CSP-rElG,
when κ increases, t = (m||r)2 also increases, leading to the increment of the cost for computing
at; Moreover, when κ increase linearly, the value of t increases exponentially and in turn log t
increase linearly, resulting in a linear increment of the computation cost.

– Second, when G is infinite, what is ι(G)? In fact, we need never to represent infinite elements
in practice. We just need to represent the involved elements. For example, if G is instantiated
with the braid group Bn and the canonical length of all involved braids are bounded by l, then
a braid in Bn(l) (cf. the previous subsection) can be represented by a bit string of the length
ι(Bn(l)) = ln log n [KLCH00,CKL+01].

Performance. Combining the above discussions together, let us give a performance evaluation on
our proposal. Let us merely focus on braid groups, since for arbitrary group G, we have no method
to evaluate the complexity of group operations, such as multiplication, inversion, etc.

According to refs. [CKL+01] and [Maf06], the complexities of the braid operations such as
multiplication, inversion, canonical form computation, etc., are bounded by O(l2n log n) in the
sense of bit operations, where n and l are the braid index and the canonical length of involved
braids, respectively. Then, taking CSP-ElG for example and combining the issues discussed in
Section 4.3, the complexity for encryption and decryption can be concluded in Table 1.

Table 1. Computation Cost of CSP-ElG

Comp. content Comp. cost Explanation

at log t · l2n log n successive doubling

a−t l2n log n 1 inversion
Enc c1 = Fat(b) 2 · l2n log n 2 multiplications

c2 = mFat(pk) 3 · l2n log n 3 multiplications

as log s · l2n log n successive doubling, pre-computing

Dec a−s l2n log n 1 inversion, pre-computing

m = c2F
−1
as (c1) 4 · l2n log n 3 multiplications, 1 inversion



Now, if we neglect small constant factors and the cost for pre-computations, then the encryption
and decryption of the scheme CSP-ElG can be finished with the complexities of O(log t · l2n log n)
and O(l2n log n), respectively. When log t ≤ 128 = 27 (cf. Section 4.3) and Maffre’s suggestion
[Maf06] is adopted (i.e., n = 50 and l = 10), the encryption can be implemented in O(222) bit
operations, while the decryption merely needs O(215) bit operations. We know that at present,
the modulus of a secure RSA cryptosystem should be at least 1024 bits. Then, the complexity of
modular exponential operation is about O(230). This suggests that our proposal is much efficient
than RSA cryptosystem. Of course, every coin has two sides. The disadvantage of our newly derived
braid-based encryption scheme is that the length of the public-key is considerably large—about 12K
bits (where K = 1024) [WWC+10].

4.5 Can we efficiently solve CSP in braid groups by using quantum computers?

The content in this subsection was partially contained in ref. [WWC+10]. However, the literature
[WWC+10] has not been published, yet. Thus, we would like to restate the related materials
to support the corresponding claims in this paper.

The known quantum algorithms are roughly divided into two types, namely hidden subgroup al-
gorithms and amplitude amplification algorithms [Röt06]. The latter can merely obtain polynomial
speed-up ratios as compared to classical algorithms, while the former deals with the so-called hid-
den subgroup problem (HSP) and has the promise to obtain exponential speed-up ratios [Röt06].
In the HSP, one is given a black-box function f : G → S from a group G to a set S with the
promise that there exists a subgroup H ⊆ G such that f is constant on the cosets of H and takes
distinct values for different cosets. The task is to determine H, or equivalently, to find a set of
generators of H by making the minimum possible queries to f [Röt06]. HSP provides a unified
framework to study problems of group theoretical nature. We have already obtained efficient so-
lutions of the HSP for any abelian group [Kit95,Sho97,KNP07] and for some non-abelian groups
[FIM+03,BCvD05b,BCvD05a,Bac06,KR08]. Thus, a natural question arises: Can we efficiently solve
the conjugator searching problem (CSP) by using quantum computers? This is partially equivalent
to answering all of the following three sub-problems:

(1) Can we model CSP by using the framework of HSP?
(2) Can we solve the HSP obtained in (1) quantumly?
(3) Can we implement the algorithm obtained in (2) efficiently in terms of elementary quantum

gates?

In spite of conducting an extensive investigation on the available literatures about HSP, in-
cluding surveys [Joz01,LJK02,Lom04,Röt06] and some newly proposed but not formally published
results such as those mentioned in refs. [MRV07], [KR08], and [DMR09], we could not find any
answers for (1), (2) or (3). Here, we present three speculations that may partially provide negative
answers for the aforementioned subproblems:

– First, we have no evident solution for (1) at present. Especially, the solution (space) for a given
CSP instance is not a subgroup of Bn.



– Second, supposing (1) is solved, we still have no easy solution for (2) at present. The standard
approach of a quantum algorithm for HSP is to use the oracle f to create coset states ρH =
1
|G|

∑
g∈G |gH〉〈gH|, where |gH〉 = 1√

|H|

∑
h∈H |gh〉 [DMR09]. This means that |G| and |H|

should be finite, and thus the standard approach cannot be directly used for braid group Bn,
considering |Bn| = ∞. Although Shor [Sho97] worked with a finite additive cyclic group ZQ

with N2 ≤ Q < 2N2 for factoring N , at present we do not know how to translate Shor’s method
to braid groups, taking into account the fact that we do not know how to define a modular
operation for braids.

– Third, supposing (2) is solved, we might face new challenges in solving (3). The (quantum com-
putational) progress on HSP in the symmetric group Sn is rather limited and so far dominated
by negative results [Röt06]. It has been shown [GSVV04] that exponentially many repetitions
of quantum Fourier sampling are necessary for obtaining a non-negligible probability of dis-
tinguishing between the cases |H| = 2 and |H| = 1 (where H ⊆ Sn). Recently, Moore et al.
[MRV07,DMR09] speculated that HSP in the groups that contain the symmetric group Sn as a
subgroup may be resistant to all known quantum techniques. Although Sn is not a subgroup of
the braid group Bn, there is a one-to-one correspondence between the set of the permutation
braids in Bn and the set of the permutations in Sn. This suggests that there might exist some
HSP instances in braid groups to be intractable even by using all known quantum techniques.

In summary, the currently known quantum technique cannot break the one-wayness of the left
self-distributive system based on the intractability assumption of CSP in braid groups.

We claim again that the analysis in this subsection is not our contribution. But we need to
quote it in this paper for supporting the claimed advantages of our proposal.

5 Conclusion

Although CSP-based LD systems over any noncommutative groups are non-trivial, only those
based on a noncommutative group with the intractability assumption of CSP are suitable for our
proposal. It is worth mentioning that even if CSP assumption in braid groups were broken in future,
our method is still significant in building cryptosystems in other noncommutative groups provided
that CSP in these groups is intractable. For example, given a ring R with identity, the general
linear group GLn(R), i.e., the group of n× n invertible matrices with elements in R, can be taken
into account. Especially, considering that multiplications over 0-1 matrices can be implemented
much efficiently and these matrices have tightly relation with certain lattice problems, it seems
very promising to implement our proposal in GLn(Z2).
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A Proof of Proposition 1

Proof. Suppose F be a CSP-based LD system defined over noncommutative group G. Then, for
arbitrary a, b, c ∈ G, we have that

– Property (i): Idempotent. Since aaa−1 = a, i.e., a will remain unchanged when it conjugates to
itself. By using the notation as in the formula (1), we have Fa(a) = a.

– Property (ii): Mutual inverse. According to the definition of F (cf. (3)), we have

Fa(b) = c⇔ c = aba−1

⇔ a−1ca = b

⇔ Fa−1(c) = b.

– Property (iii): Homomorphic.

Fa(bc) = a(bc)a−1

= (aba−1)(aca−1)
= Fa(b)Fa(c).



– Property (iv): Self-reflective.

Fa(b) = aba−1

= (ab−1a−1)−1

= (Fa(b−1))−1

, F−1
a (b−1).

This concludes the proposition. ut

B Proof of Theorem 1

Proof. The proof for this theorem can be easily sketched in imitation of Jao’s[Jao08] proof for
the IND-CPA security of ElGamal scheme. Of course, special cautiousness should be taken into
consideration since we now work with a noncommutative group G. Assume that the CSP-DDH
assumption holds for the underlying noncommutative group G. We will prove by contradiction that
CSP-ElG is IND-CPA. Suppose that CSP-ElG is not IND-CPA, and let A be an algorithm which,
on the system parameters a, b ∈ G and a random public key Fas(b), has probability non-negligibly
greater than 1/2 of distinguishing random encryptions Enc(m0) and Enc(m1) of two messages
m0,m1 of its choice. Let (Fas(b), Fat(b), Fau(b)) ∈ G3 be either a random CSP-DDH triple or
a random triple, with equal probability. We will produce an algorithm B which can distinguish
between the two cases, using A as an oracle, with probability close to 1. (This result is stronger
than what we need to prove.) The algorithm B picks two random integers v, w and constructs the
triple of group elements

T = (Fas+v(b), Fat+w(b), Fau+v+w(b)),

which is easy to do since B knows Fas(b), Fat(b), Fau(b), a, b, v and w. The algorithm B then calls
A with the public key Fas+v(b), which is guaranteed to be random since v is chosen randomly.
Afterwards, the algorithm A selects two messages m0,m1 ∈ G, and B replies with the ciphertext
c∗β = (Fat+w(b),mβ ·Fau+v+w(b)) for randomly picked β ∈ {0, 1}. There are now two cases to consider.

1. Suppose that u = s + t. Then u + v + w = (s + v) + (t + w), so T is a CSP-DDH triple.
Moreover, all possible CSP-DDH triples w.r.t. (a, b) are equally likely to occur as T , since v
and w are random. Therefore c∗β is a valid random encryption of mβ (random since Fat+w(b) is
a random group element). Under these conditions, the algorithm A by hypothesis will succeed
in outputting β with probability exceeding 1/2 by a non-negligible quantity.

2. Suppose that u is random. Then T is a random triple of group elements, and all possible triples
of group elements occur with equal probability. In this situation, the probability distribution
of c∗0 is identical to that of c∗1, over all possible random choices of v and w. It follows that the
algorithm A cannot exhibit different behavior for β = 0 and β = 1. Note that we can arrive
at this conclusion even though the expression c∗β is an invalid encryption of mβ —that is, even
though we have no information about how A behaves on invalid inputs, we know for certain
that A cannot behave differently depending on the value of β.



The above analysis reveals that if (Fas(b), Fat(b), Fau(b)) is a CSP-DDH triple then A with non-
negligible probability exhibits different behavior depending on whether β = 0 or β = 1, whereas if
(Fas(b), Fat(b), Fau(b)) is not a CSP-DDH triple then A must behave identically regardless of the
value of β. Hence, by repeating this process with several different choices of random integers v, w,
the algorithm B can determine with high probability whether or not A can determine the value of
β. In this way B can determine whether or not (Fas(b), Fat(b), Fau(b)) is a CSP-DDH triple, thus
violating the CSP-DDH assumption for G. ut


