
Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes

N.P. Smart1 and F. Vercauteren2

1 Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

nigel@cs.bris.ac.uk
2 COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10,
B-3001 Heverlee,

Belgium.
fvercaut@esat.kuleuven.ac.be

Abstract. We present a fully homomorphic encryption scheme which
has both relatively small key and ciphertext size. Our construction fol-
lows that of Gentry by producing a fully homomorphic scheme from
a “somewhat” homomorphic scheme. For the somewhat homomorphic
scheme the public and private keys consist of two large integers (one of
which is shared by both the public and private key) and the ciphertext
consists of one large integer. As such, our scheme has smaller message
expansion and key size than Gentry’s original scheme. In addition, our
proposal allows efficient fully homomorphic encryption over any field of
characteristic two.

1 Introduction

A fully homomorphic public key encryption scheme has been a “holy grail” of
cryptography for a very long time. In the last year this problem has been solved
by Gentry [7, 8], by using properties of ideal lattices. Various cryptographic
schemes make use of lattices, sometimes just to argue about their security (such
as NTRU [11]), in other cases lattices are vital to understand the workings of
the scheme algorithms (such as [9]). Gentry’s fully homomorphic scheme falls
into the latter category. In this paper we present a fully homomorphic scheme
which can be described using the elementary theory of algebraic number fields,
and hence we do not require lattices to understand its encryption and decryption
operations. However, our scheme does fall into the category of schemes whose
best known attack is based on lattices.

At a high level our scheme is very simple, and is mainly parametrized by an
integer N (there are other parameters which are less important). The public key

consists of a prime p and an integer α modulo p. The private key consists of
either an integer z (if we are encrypting bits), or an integer polynomial Z(x) of
degree N − 1 (if we are encrypting general binary polynomials of degree N − 1).
To encrypt a message one encodes the message as a binary polynomial, then one
randomizes the message by adding on two times a small random polynomial. To
obtain the ciphertext, the resulting polynomial is simply evaluated at α modulo
p. As such, the ciphertext is simply an integer modulo p (irrespective of whether
we are encrypting bits or binary polynomials of degree N − 1).

To decrypt in the case where we know the message is a single bit, we mul-
tiply the ciphertext by z and divide by p. We then round this rational number
to the nearest integer value, and subtract the result from the ciphertext. The
plaintext is then recovered by reducing this intermediate result modulo 2. When
we are decrypting a binary polynomial we follow the same procedure, but this
time we multiply by the polynomial Z(x) and divide by p, to obtain a rational
polynomial. Rounding the coefficients of this polynomial to the nearest integer,
subtracting from the original ciphertext, and reducing modulo two will result
again in recovering the plaintext.
Acknowledgements: The authors would like to thank the eCrypt NoE funded
by the EU for partially supporting the work in this paper. The first author
was supported by a Royal Society Wolfson Merit Award, whilst the second was
supported by a post-doctoral fellowship of the Research Foundation - Flanders.

2 Preliminaries

2.1 Notation

Given a polynomial g(x) =
∑t

i=0 gix
i ∈ Q[x], we define the 2-norm and∞-norm

as

‖g(x)‖2 =

√√√√ t∑
i=0

g2
i and ‖g(x)‖∞ = max

i=0,...,t
|gi| .

For a positive value r, we define two corresponding types of “ball” centered at
the origin:

B2,N (r) =

{
N−1∑
i=0

aix
i :

N−1∑
i=0

a2
i ≤ r2

}
,

B∞,N (r) =

{
N−1∑
i=0

aix
i : −r ≤ ai ≤ r

}
.

We have the usual inclusions B2,N (r) ⊂ B∞,N (r) and B∞,N (r) ⊂ B2,N (
√
N · r).

We also define the following half-ball

B+
∞,N (r) =

{
N−1∑
i=0

aix
i : 0 ≤ ai ≤ r

}
.

All reductions in this paper modulo an odd integer m are defined to result in
a value in the range [−(m − 1)/2, . . . , (m − 1)/2]. The notation a ← b, means
assign the value on the left to the value on the right. Whereas a←R A where A
is a set, means select a from the set A using a uniform distribution.

2.2 Ideals in Number Fields

Since the underlying workings of our scheme are based on prime ideals in a
number field, we first recap on some basic properties. See [4] for an introduction
to the elementary computational number theory needed.

Let K be a number field Q(θ) where θ is a root of a monic irreducible poly-
nomial F (x) ∈ Z[x] of degree N . Consider the equation order Z[θ] inside the
ring of integers OK . For our parameter choices we typically have OK = Z[θ],
but this need not be the case in general. Our scheme works with ideals in Z[θ]
that are assumed coprime with the index [OK : Z[θ]], so there is little difference
with working in OK . These ideals can be represented in one of two ways, either
by an N -dimensional Z-basis or as a two element Z[θ]-basis. When presenting
an ideal a as an N -dimensional Z basis we give N elements γ1, . . . , γn ∈ Z[θ],
and every element in a is represented by the Z-module generated by γ1, . . . , γn.
It is common practice to present this basis as an n × n-matrix. The matrix is
then set to be (γi,j), where we set γi =

∑N−1
j=0 γi,jθ

j , i.e. we take a row ori-
ented formulation. Taking the Hermite Normal Form (HNF) of this basis will
produce a lower triangular basis in which the leading diagonal (d1, . . . , dN) sat-
isfies di+1|di. Note that this last property of the HNF of a basis only follows for
matrices corresponding to ideals [5] (who use a different orientation).

However, every such ideal can also be represented by a Z[θ]-basis given by
two elements, 〈δ1, δ2〉. In particular one can always select δ1 to be an integer.
For ideals lying above a rational prime p, it is very easy to write down a two
element representation of an ideal. If we factor F (x) modulo p into irreducible
polynomials

F (x) =
t∏

i=1

Fi(x)ei (mod p)

then, for p not dividing [OK : Z[θ]], the prime ideals dividing pZ[θ] are given by
the two element representation

pi = 〈p, Fi(θ)〉 .

We define the residue degree of pi to be equal to the degree di of the polynomial
Fi(x). Reduction modulo pi produces a homomorphism

ιpi : Z[θ] −→ Fpdi .

We will be particularly interested in prime ideals of residue degree one. These
can be represented as a two element representation by 〈p, θ − α〉 where p is the
norm of the ideal and α is a root of F (x) modulo p. If χ ∈ Z[θ] is given by

χ =
∑N−1

i=0 ciθ
i then the homomorphism ιp simply corresponds to evaluation of

the polynomial χ(θ) in α modulo p.

Given a prime ideal of the form 〈p, θ − α〉, the corresponding HNF repre-
sentation is very simple to construct, and is closely related to the two element
representation, as we shall now show. We need to row reduce the matrix

p
p 0

. . .
0

p
−α 1 0

−α 1

0
.

−α 1
−F0 −F1 −F2 . . . −FN−2 −FN−1 − α

where F (x) =
∑N

i=0 Fix
i. It is not hard to see that the HNF of the above matrix

is then given by

H =

p 0
−α 1
−α2 1

...
. . .

−αN−1 0 1

 ,

where all the integers in the first column, in rows two and onward, are taken
modulo p.

Recall that an ideal is called principal if it is generated by one element,
i.e. we can write p = 〈γ〉 = γ · Z[θ]. Note that given an HNF or two-element
representation of an ideal, determining whether it is principal, and finding a
generator is considered to be a hard problem. Indeed the best known algorithms
(which are essentially equivalent to finding the class and unit group of a number
field) run in exponential time in the degree of the field. For fixed degree they
run in sub-exponential time in the discriminant [2]. In addition the generator
of a principal ideal output by these algorithms will be very large. Indeed, this
generator will typically be so large that writing it down as a polynomial in θ may
itself take exponential time [14]. Thus finding a small generator of a principal
ideal is possibly an even harder problem. Quantumly finding a generator of a
principal ideal is relatively easy [10], however writing down a small generator is
not known to be easy.

3 Our Somewhat Homomorphic Scheme

In this section we present our somewhat homomorphic scheme and analyze for
which parameter sets decryption works. To simplify the presentation we present
the scheme at this point as one which just encrypts elements in P = {0, 1}.

3.1 The Scheme

A somewhat homomorphic encryption scheme consists of five algorithms: {KeyGen,
Encrypt, Decrypt,Add,Mult}. We shall describe each in turn; notice that the most
complex phase is that of KeyGen. The scheme is parametrized by three values
(N, η, µ). Later we shall return to discussing the effects of the sizes of these
values on the security level λ and performance of the scheme.
KeyGen():

– Set the plaintext space to be P = {0, 1}.
– Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree N .
– Repeat:
• S(x)←R B∞,N (η/2).
• G(x)← 1 + 2 · S(x).
• p← resultant(G(x), F (x)).

– Until p is prime.
– D(x)← gcd(G(x), F (x)) over Fp[x].
– Let α ∈ Fp denote the unique root of D(x).
– Apply the XGCD-algorithm over Q[x] to obtain Z(x) =

∑N−1
i=0 zix

i ∈ Z[x]
such that

Z(x) ·G(x) = p mod F (x).

– B ← z0 (mod 2p).
– The public key is PK = (p, α), whilst the private key is SK = (p,B).

Encrypt(M,PK):

– Parse PK as (p, α).
– If M 6∈ {0, 1} then abort.
– R(x)←R B∞,N (µ/2).
– C(x)←M + 2 ·R(x).
– c← C(α) (mod p).
– Output c.

Decrypt(c,SK):

– Parse SK as (p,B).
– M ← (c− bc ·B/pe) (mod 2).
– Output M .

Add(c1, c2,PK):

– Parse PK as (p, α).
– c3 ← (c1 + c2) (mod p).
– Output c3.

Mult(c1, c2,PK):

– Parse PK as (p, α).
– c3 ← (c1 · c2) (mod p).
– Output c3.

3.2 Analysis

In this section we analyze for which parameter sets our scheme is correct and
also determine how many homomorphic operations can be performed before
decryption will fail.

KeyGen algorithm: We can see that KeyGen generates an element γ = G(θ)
of prime norm in the number field K defined by F (x). In addition α is selected
to be the root of F (x) modulo p which corresponds to the prime ideal

p = γ · Z[θ] = p · Z[θ] + (θ − α) · Z[θ].

Since γ = G(θ) ∈ p, we have that G(α) ≡ 0 mod p, so G(x) and F (x) have at
least one common root modulo p. Furthermore, there will be precisely one root
in common, since otherwise γ would generate two different prime ideals, which
clearly is impossible. This explains the fact that D(x) has degree one; we are
using D(x) to select the precise root of F (x) which corresponds to the ideal p
generated by γ.

Encrypt algorithm: The message M is added to twice a small random polyno-
mial R(x) resulting in a polynomial C(x). The∞-norm of the polynomial R(x) is
controlled by the parameter µ. Encryption then simply equals reduction of C(θ)
modulo p using the public two element representation 〈p, θ − α〉. As explained
before, this simply corresponds to evaluating C(x) in α modulo p. Furthermore,
note that this precisely implies that C(θ)− c ∈ p.

Decrypt algorithm: By definition of encryption, we have that C(θ)−c ∈ p and
p is principal and generated by γ = G(θ). Hence, we can write

C(θ)− c = q(θ) · γ ,

with q(θ) ∈ Z[θ]. It is clear that if we recover the element C(θ), then decryption
will work since C(θ) = M +2 ·R(θ). Note that γ−1 is precisely given by Z(θ)/p,
where Z was computed in KeyGen. Dividing by γ therefore leads to the following
equality

−c · Z(θ)/p = q(θ)− (C(θ) · Z(θ)) /p .

The above equation shows that if ‖C(θ) ·Z(θ)/p‖∞ < 1/2, then simply rounding
the coefficients of −c · Z(θ)/p will result in the correct quotient q(θ). This will
allow for correct decryption by computing C(θ) = c+ q(θ) · γ. The crucial part
therefore is to obtain a bound on ‖Z(x)‖∞.

Lemma 1. Let F (x), G(x) ∈ Z[x] with F (x) monic, deg(F) = N and deg(G) =
M < N and resultant(F,G) = p, then there exists a polynomial Z(x) ∈ Z[x] with
Z(x) ·G(x) = p mod F (X) and

‖Z(x)‖∞ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖M2 .

Proof: Over Q[x], we have that gcd(G(x), F (x)) = 1, so there exists poly-
nomials S(x), T (x) ∈ Q[x] with deg(S) < N and deg(T) < M such that
S(x) · G(x) + T (x) · F (x) = 1. It is well known (see for instance Corollary
6.15 of [6]) that the polynomials S and T are given by S =

∑N−1
i=0 six

i and
T =

∑M−1
i=0 tix

i, where the si and ti are the solutions of

Syl(G,F)T ·

sN−1

...
s0

tM−1

...
t0

=

0
...

...
0
1

,

where Syl(G,F) is the Sylvester matrix of G and F . The resultant is precisely
det(Syl(G,F)) = p, so by Cramer’s rule we find an explicit expression for the
coefficients si, namely, the determinant of a submatrix of Syl(G,F)T (remove
one of the columns containing the coefficients of G and the last row) divided by
p. Using Hadamard’s inequality to bound the determinant of such submatrices,
we finally conclude that |zi| ≤ ‖G‖N−1

2 · ‖F‖M2 . �

In the remainder of the paper we will assume that M = N−1 which will happen
with very high probability.

Define

δ∞ := sup
{
‖g(x) · h(x) mod F (x)‖∞
‖g(x)‖∞ · ‖h(x)‖∞

| deg(g),deg(h) < N

}
.

We then have that

‖g(θ) · h(θ)‖∞ ≤ δ∞ · ‖g‖∞ · ‖h‖∞,

where deg(g),deg(h) < N . Gentry [8, Section 7.4] derives several bounds on the
above quantity but for the 2-norm and it is easy to obtain the equivalent bounds
for the∞-norm. To illustrate the two extreme cases, i.e. that δ∞ can range from
fully exponential in N to linear in N , we give the following lemma, which also
motivates why we propose to use F (x) = x2n

+ 1 in practice.

Lemma 2. Let F1(x) = xN − a and F2(x) = xN − axN−1 then

δ∞(F1) ≤ aN and δ∞(F2) ≤ aN−1N .

Proof: Let g =
∑N−1

i=0 gix
i and h =

∑N−1
i=0 hix

i, then

g · h mod F1 =
N−1∑
k=0

 ∑
0≤i≤k

gihk−i + a
∑

k<i<N

gihN+k−i

xk ,

from which the bound on δ∞(F1) immediately follows. Similarly, write g · h =∑2N−2
k=0 ckx

k, then g ·h mod F2 =
∑N−1

k=0 dkx
k with dk = ck for k = 0, . . . , N − 2

and

dN−1 =
N−1∑
i=0

cN−1+ia
i

Since all ci clearly are smaller than N‖g‖∞‖h‖∞ the bound on δ∞(F2) follows.
�

From this we can conclude that∥∥∥∥C(θ) · Z(θ)
p

∥∥∥∥
∞
≤ δ∞ · ‖C‖∞ · ‖G‖N−1

2 · ‖F‖N−1
2

p
,

so decryption will work as long as

‖C‖∞ <
p

2 · δ∞ · ‖G‖N−1
2 · ‖F‖N−1

2

= rDec.

Note that the expected value of rDec will be roughly ‖G‖2/2δ∞, since the resul-
tant p will be about ‖G‖N2 · ‖F‖N−1

2 . So for ‖C‖∞ < rDec, we have

C(x) = c+ q(θ) · γ = c− bc · Z(x)/peγ ,

and since M ≡ C(x) mod 2 and γ ≡ 1 mod 2 we finally obtain the simplified
decryption function

M ≡ c− bc ·B/pe mod 2,

where B is z0. Note, we can take B as z0 modulo 2p as we are only interested
in rounding c · B/p to the nearest integer and then taking the result modulo 2.
Furthermore, Lemma 1 implies that all coefficients of Z(x) typically will be
smaller than p, since p = resultant(F,G) and thus p ' ‖G(x)‖N2 · ‖F (x)‖M2 . This
means that the reduction modulo 2p in the key generation will have no effect in
most cases. However, it will turn out to be a necessary assumption in assuring
a uniform distribution when we switch to the full homomorphic scheme.

For our KeyGen algorithm we have that each coefficient of G has size approx-
imately η, which implies that we have the estimate

rDec ≈
√
N · η

2 · δ∞
.

For F (x) = xN + 1 we thus obtain the estimate rDec ≈ η/(2 ·
√
N). In the

remainder of the paper we will also sometimes use rEnc instead of µ. Note that
if one wants to compare with Gentry’s scheme, one should take into account
that our bounds are formulated for the∞-norm, whereas Gentry works with the
2-norm.

Add and Mult algorithms: It is clear that both algorithms are correct. How-
ever, we need to consider how the error values propagate as we apply Add and
Mult. In particular, decryption of c = C(α) will work for a polynomial C(x)
if C(x) ∈ B∞,N (rDec). However, as we apply Add and Mult to a ciphertext
the value of C(x) starts to lie in balls of larger and larger radius. As soon as
C(x) 6∈ B∞,N (rDec), we are no longer guaranteed to be able to decrypt correctly.
This is why our basic scheme is only somewhat homomorphic, since we are only
able to apply Add and Mult a limited number of times.

Let c1 and c2 denote two ciphertexts, corresponding to two randomizations
C1(x) = M1 + N1(x) and C2(x) = M2 + N2(x); where Mi ∈ {0, 1} are the
messages and Ni(x) ∈ B∞,N (ri − 1) is the randomness, i.e. Ci(x) ∈ B∞,N (ri).
We let

C3(x) = M3 +N3(x) = (M1 +N1(x)) + (M2 +N2(x)),
C4(x) = M4 +N4(x) = (M1 +N1(x)) · (M2 +N2(x)),

where M3,M4 ∈ {0, 1}. Then

C3(x) ∈ B∞,N (r1 + r2)

and

C4(x) ∈ B∞,N (δ∞ · r1 · r2 + r1 + r2).

Initially we start with a ciphertext with C(x) lying in B∞,N (µ+1). After execut-
ing a circuit with multiplicative depth d, we expect the ciphertext to correspond
to a polynomial C ′(x) lying in the ball B∞,N (r), with

r ≈ (δ∞ · µ)2
d

.

Thus we can only decrypt the output of such a circuit if r ≤ rDec, i.e.

d log 2 ≤ log log rDec − log log(δ∞ · µ)

≈ log log

(√
N · η

2 · δ∞

)
− log log(δ∞ · µ).

4 Security Analysis

We consider three aspects of security; key recovery, onewayness of the encryption
and semantic security. Whilst semantic security is based on what might at first
appear a non-traditional problem, the other two notions of security are related to
well studied problems in number theory. However, we first show that our scheme
is in some sense a specialisation and optimization of Gentry’s scheme.

Link With Gentry’s Scheme: To discuss the security in more detail, we first
show that our scheme is in fact a specialisation and simplification of the lattice
based scheme of Gentry [7]. The generator γ in our scheme is equivalent to the
private basis of the ideal J in Gentry’s scheme, the public basis is then the two
element representation 〈p, θ − α〉. The ideal I of Gentry’s scheme is simply set
to the principal ideal 〈2〉. Therefore, we see that KeyGen is a specialised form
of KeyGen for Gentry’s scheme: in particular we use the compact two element
representation 〈p, α〉 of the public basis, instead of the larger HNF representation
as Gentry does.

We now turn to the encryption algorithm. The element C(θ) = M(θ)+2·R(θ)
is precisely the value of ψ′ computed in Gentry’s encryption algorithm, with a
value of rEnc (in the 2-norm) equal to

√
N ·µ. Gentry then produces his ciphertext

ψ by reducing ψ′ modulo the ideal J using the HNF basis. It is at this point
that we seem to depart from Gentry’s presentation: we actually compute the
reduction of ψ′ modulo p using the public two element representation. Given
ψ′ as a polynomial in θ, this involves replacing θ by α and reducing the result
modulo p. So given C(x), we produce c by simply computing c = ιp(C(θ)) ∈ Fp.
However, given our earlier discussion on the HNF of the ideal given by 〈p, θ−α〉
we see that the two reduction algorithms are equivalent when we are working in
the equation order Z[θ].

Hence, we conclude that our scheme is a specialisation of Gentry’s scheme.
Indeed the linkage between the two schemes, and the relative simplicity of our
scheme, may help shed light on parameter choices in Gentry’s original scheme.

Key Recovery: Recall the public key in our scheme consists of a principal
degree one prime ideal in two element representation, whilst the private key
consists of the inverse of a small generator of this principal prime ideal. To see
that the generator γ is small, notice that the polynomial G(x) has an ∞-norm
given roughly by η, whereas the size of p is roughly

√
N

N
ηN ·‖F‖N−1

2 . Recovering
the private key given the public key is therefore an instance of the small principal
ideal problem:

Definition 1 (Small Principal Ideal Problem (SPIP)) Given a principal
ideal a in either two element or HNF representation compute a “small” generator
of the ideal.

This is one of the core problems in computational number theory. Indeed it
has formed the basis of previous cryptographic proposals, see for example [3].
There are currently two approaches to the above problem. The first approach is
a deterministic method based on the Baby-Step/Giant-Step method attributed
to [1]. This takes time

NO(N) ·
√

minA,R · |∆|o(1),

where ∆ is the discriminant of Z[θ], R is the regulator and A = minN
i=1 log |γ(i)|

is the mimimal logarithmic embedding of γ. Clearly A can itself be bounded by
η, a minor detail which we leave to the reader.

The second approach to this problem is via Buchmann’s sub-exponential
algorithm for units and class groups which is described in [2] and [4][Chapter 6].
This method has complexity

exp
(
O(N logN) ·

√
log(∆) · log log(∆)

)
where again ∆ is the discriminant of the order Z[θ]. However, this method is
likely to produce a generator of large height, i.e. with large coefficients. Indeed
so large, that writing the obtained generator down as a polynomial in θ may
take exponential time.

In conclusion determining the private key given only the public key is an
instance of a classical and well studied problem in algorithmic number theory.
In particular there are no efficient solutions for this problem, and the only sub-
exponential method does not find a solution which is equivalent to our private
key.

Onewayness of Encryption: In this section we consider the problem of re-
covering a message given a ciphertext element. It is readily seen that this is
equivalent to solving the following problem: Given p and α, c ∈ Fp find xi for
i = 0, . . . , N − 1, such that

N−1∑
i=0

xi · αi = c− k · p,

where |xi| ≤ rEnc, for some integer value of k.
To recast this as a lattice problem, consider the lattice generated by the rows

of the matrix H given earlier. Consider the lattice vector

(k,−x1, . . . ,−xn) ·H = (c− x0,−x1, . . . ,−xn).

This is a lattice vector which is very close (within rEnc in the∞-norm, or
√
N ·rEnc

in the 2-norm) to the non-lattice vector (c, 0, . . . , 0). Hence, determining the
underlying plaintext given the ciphertext is an instance of the closest vector
problem.

However, the underlying lattice is a well-studied lattice in algorithmic num-
ber theory, see for example the applications of LLL described in [12, 13, 15] for
instance. A lattice generator by a matrix such as H, namely a matrix in Hermite
Normal Form in which all but one diagonal entry is equal to one, is probably the
most studied lattice problem from the computational perspective in number the-
ory. Thus whilst we are unable to make use of modern worst-case/average-case
reductions for our scheme, the underlying lattice problem is well studied.

However, for later use, we will recap on the analysis Gentry has given for
this problem. Although one should bear in mind that Gentry’s analysis is for a
general lattice arising from the HNF of an ideal and not for the specific one in our
scheme. The best known attack on Gentry’s scheme is one of lattice reduction,
related to the bounded distance decoding problem (BDDP). In particular it is

related to finding short/closest vectors within a multiplicative factor of rDec/rEnc

in a lattice of dimension N . If we set

2ε =
rDec

rEnc
=
√
N · η

2 · δ∞ · µ
,

then it is believed that solving BDDP has difficulty 2N/ε (see [8][Section 7.7]). We
shall refer to the value 2N/ε as the security level of our somewhat homomorphic
scheme.

Semantic Security: Finally we discuss the semantic security of our somewhat
homomorphic encryption scheme. Consider the following distinguishing problem:

Definition 2 (Polynomial Coset Problem (PCP)) The challenger first se-
lects b←R {0, 1} and runs KeyGen as above to obtain a value of α and p. If b = 0
then the challenger performs

– R(x)←R B∞,N (rEnc).
– r ← R(α) (mod p).

Whilst if b = 1 the challenger performs

– r ←R Fp.

Given (r,PK) the problem is to guess whether b = 0 or b = 1.

We call the problem the Polynomial Coset Problem as it is akin to Gentry’s
Ideal Coset Problem from [7]. The problem basically says one cannot determine
whether r is the evaluation of some small polynomial at α or is a random value.
Note that the size of the space B∞,N (rEnc) is roughly rEnc

N , whereas Fp has size
ηN . So if rEnc is much smaller than η, we are trying to distinguish a relatively
small space within a larger one. Note, in the case where b = 0 we generate the
value R(x) from B∞,N (rEnc) as opposed to B∞,N (rDec), since we are interested in
arguing about semantic security for the what could be the simplest ciphertexts
to break.

The proof of the following theorem closely follows the proof of Theorem 7
of [7], but we include it here for completeness.

Theorem 1. Suppose there is an algorithm A which breaks the semantic secu-
rity of our somewhat homomorphic scheme with advantage ε. Then there is an
algorithm B, running in about the same time as A, which solves the PCP with
advantage ε/2.

Proof: The algorithm B creates a challenge ciphertext for algorithm A from
its own challenge (r,PK) by setting

c← (Mβ(α) + 2 · r) (mod p),

where M0 and M1 are A’s two challenge messages and β ←R {0, 1}, is B’s choice
of a challenge bit. A sends back a guess β′ for β and B returns β ⊕ β′.

When b = 0 in the PCP problem, it is clear that the challenge ciphertext c
has the correct distribution, so B obtains the same advantage as A, namely ε.
When b = 1, r is uniformly random modulo p and since p is odd, 2r is uniformly
random modulo p and therefore so is c. Hence, the advantage of A is 0, which
implies that B’s overall advantage is ε/2. �

5 A Fully Homomorphic Scheme

We now proceed to turning the somewhat homomorphic scheme into a fully
homomorphic scheme. Since we have shown that our scheme is a specialisation
of Gentry’s scheme, we only need to recast Gentry’s method for our parameters.
Indeed we can simplify the method somewhat, since our ciphertext is an integer
rather than a vector. We assume that our scheme is secure under key dependent
encryptions, purely to keep the notation simpler; to deal with the more general
case is immediate from our discussion.

At a high level we need to define a new algorithm called Recrypt, which takes
a ciphertext c and rencrypts it to cnew, whilst at the same time removing some
of the errors in c. Intuitively this takes a “dirty ciphertext” c and “cleans it” to
obtain the ciphertext cnew.

To do this we augment the encryption key with some additional information,
by extending the algorithm KeyGen with the following additional operations,
based on two integer parameters s1 and s2. We make use of the fact that we are
only interested in the coefficients of Z(x) modulo 2p.

– Generate s1 uniformly random integers Bi in [−p, . . . , p] such that there
exists a subset S of s2 elements with∑

j∈S

Bj = B

over the integers.
– Define ski = 1 if i ∈ S and 0 otherwise. Notice that only s2 of the bits {ski}

are set to one.
– Encrypt the bits ski under the somewhat homomorphic scheme to obtain

ci ← Encrypt(ski,PK).
– The public key now consists of

PK = (p, α, s1, s2, {ci, Bi}s1
i=1) .

We can now describe the re-encryption operation.
Recrypt(c,PK): This algorithm takes as input a “dirty” ciphertext c, and then
produces a “cleaner” ciphertext cnew of the same message, but with less “errors”
in its randomization vector. The re-encryption works by performing a homomor-
phic decryption on an encryption of the ciphertexts bits.

– ri ← (Bi · c)/p over the reals, we only take log s2 + 2 bits of precision in the
result, and we ignore any integer part greater than one.

– Let the bits of ri be ri,j , for j = 1, . . . , log s2 + 2.
– ei,j ← Encrypt(ri,j ,PK).
– ti,j ← Mult(ei,j , ci,PK), so ti,j is an encryption of the bits of ri · ski.
– Homomorphically add the decimal numbers ri · ski together.
– Output the ciphertext corresponding to the bit to the left of the “binary

point”.

The penultimate step is obtained using the method based on Hamming Weights,
symmetric polynomials and the 3-for-2 trick, all of which are explained in [8] so
we will not discuss them further here. The final step produces an encryption
of the correct bit if we select rDec to ensure that

∑
ri · ski is within 1/4 of an

integer value, i.e. we only apply this to ciphertexts whose “noise” polynomial
lies in B2,N (rDec/2).

Note that we have

B =
s1∑

i=1

ski ·Bi,

hence we will now require that this additional information in the public key does
not compromise the security of the scheme. Gentry reduces this security issue
to the decisional version of the sparse subset-sum problem (SSSP), and hence
the same assumption needs to be made in our situation. The SSSP problem is
believed to take at least

√(
s1
s2

)
> (s1/s2)s2/2 steps to solve, assuming we are not

in a low density subset sum, i.e. s1/ log p > 1. If we take s1 to be slightly greater
than log p, then we need to select s2 such that(

log p
s2

)s2/2

> 2N/ε,

so as to ensure that the SSSP difficulty is at least as difficult as the difficulty of
the BDDP underlying the somewhat homomorphic scheme.

6 Extension To Large Message Space

We now show that our scheme provides for a more powerful fully homomorphic
scheme than that of Gentry. In [7] the fully homomorphic property can only
be applied to single bit messages, since the Recrypt algorithm for full size mes-
sages is relatively complicated. We shall show we can obtain fully homomorphic
encryption on N -bit messages and then discuss what this actually “means”.

First return to our basic scheme. We first alter the KeyGen algorithm to
output the whole polynomial Z(x) =

∑N−1
i=0 zix

i modulo 2p as the secret key
as opposed, to the single term B. Let the resulting polynomial be denoted
B(x) =

∑N−1
i=0 bix

i. Encryption is now modified to take any message from the
space B+

∞,N (2), i.e. any binary polynomial of degree less than N . Decryption is

then performed coefficient wise, namely each coefficient mi of M is recovered by
computing

mi ← (c− bc · bi/pe) (mod 2).

It is easily seen that this modification results in a somewhat homomorphic
scheme with the same multiplicative depth as the original scheme.

We now extend this somewhat homomorphic scheme to a fully homomorphic
scheme. We write each coefficient of B(x) as a different sum, over a different set
of indices Si, ∑

j∈Si

Bi,j = bi.

The secret key is now defined to be ski,j = 1 if j ∈ Si and 0 otherwise. The
Recrypt algorithm is now immediate. We first apply the Recrypt algorithm as
above, coefficient wise, to obtain new “cleaner” encryptions of each bit of the
message, i.e. we obtain

c(i)new = Encrypt(mi,PK).

To obtain the encryption of the entire message we simply compute

cnew = Encrypt(m,PK) =
N−1∑
i=0

c(i)new · αi (mod p).

Note that recombining the different encryptions causes an extra increase in the
error term with a factor of δ∞. This increase in the error term is due to the
multiplication, by αi, of the error term underlying c(i)new.

Hence, we can obtain fully homomorphic encryption with respect to the alge-
bra F2[x]/(F). To see the power of this we need to examine the algebra F2[x]/(F).
If F (x) splits as

∏t
i=1 fi (mod 2) with fi coprime and deg fi = di then by the

Chinese Remainder Theorem we have

F2[x]/(F) ≡ F2d1 × · · · × F2dt .

By concentrating on a single component of the product on the right we therefore,
by careful choice of F , obtain fully homomorphic encryption in any finite field
of characteristic two of degree less than N . What is more, we could also obtain
SIMD style homomorphic encryption in multiple finite fields of characteristic
two at the same time.

7 Implementation Results

We now examine a practical instantiation of our scheme. We take the polynomial
F (x) = X2n

+ 1, which is always irreducible. In particular our main parameter
N is equal to 2n, and we have δ∞ = N . We take η = 2

√
N and either µ =

√
N

or µ = 2. The case of η = 2
√

N and µ =
√
N are (for comparison) also the

suggested parameter choices made in [7] (albeit in the 2-norm). The case of

µ = 2 is chosen to try to obtain as large a depth for the somewhat homomorphic
scheme as possible.

Recall that if we write η/(2 ·
√
N ·µ) = 2ε, then the security of our somewhat

homomorphic scheme is assumed to be 2N/ε. We then select s1 = log p and s2
to be such that (

log p
s2

)s2/2

> 2N/ε,

which ensures the difficulty of the SSSP is at least 2N/ε. In addition, for our
choice of F (x), the expected depth d for our somewhat homomorphic scheme, is
estimated by

d log 2 ≤ log log
(

η

2 ·
√
N

)
− log log(N · µ),

We present the implications in the following table, for increasing values of n.

µ = 2 µ =
√
N

n log2 p 2N/ε s2 d 2N/ε s2 d
8 4096 225 6 0.3 236 9 0.0
9 11585 231 6 0.8 240 8 0.3
10 32768 241 7 1.2 248 9 0.8
11 92681 254 9 1.7 261 10 1.2
12 262144 273 10 2.1 280 12 1.6
13 741455 2100 13 2.5 2107 14 2.1

For each value of s2 we can compute the multiplicative depth d̂ which would
be required to obtain a fully homomorphic scheme. This value is computed by
explicitly evaluating the resulting circuit, for the specific value of s2. In the
following table we present the value of d̂ required. We note that we only obtain
a fully homomorphic scheme if d̂ < d, so we see that for practical values of n our
scheme cannot be made fully homomorphic, although asymptotically it can be.

s2 6 7 8 9 10 11 12 13
d̂ 4 4 5 5 5 5 5 5

Despite this problem with obtaining a fully homomorphic scheme, we timed
the various algorithms for the somewhat homomorphic scheme on a desk-top
machine using the NTL library: This was an x86-64 platform, and housed 2.4
GHz Intel Core2 (6600) processor cores and used the GCC 4.3.2 C compiler.
We were unable to generate keys for the parameter size of N = 212, and smaller
values of N key generation could take many hours. We thus do not present times
for the KeyGen algorithm. The times (in milli-seconds), and the actual value of
d computed for the specific key, are presented in the following table;

d

n Encrypt Decrypt Mult µ = 2 µ =
√
N

8 4.2 0.2 0.2 1.0 0.0
9 38.8 0.3 0.2 1.5 1.0
10 386.4 0.6 0.4 2.0 1.0
11 3717.2 3.0 1.6 2.5 1.5

We see that in practice our scheme appears to obtain a better depth of decryp-
tion circuit than theory predicts, although still not deep enough to enable fully
homomorphic encryption; at least at practical key sizes.

References

1. J. Buchmann. Zur Komplexität der Berechungung von Einheiten und Klassen-
zahlen algebraischer Zahlkörper, Habilitationsschrift, 1987.

2. J. Buchmann. A subexponential algorithm for the determination of class groups
and regulators of algebraic number fields. Séminaire de Théorie des Nombres –
Paris 1988-89, 27–41, 1990.

3. J. Buchmann, M. Maurer and B. Möller. Cryptography based on number fields
with large regulator. Journal de Théorie des Nombres de Bordeaux, 12, 293–307,
2000.

4. H. Cohen. A Course in Computational Algebraic Number Theory. Springer GTM
138, 1993.

5. J. Ding and R. Lindner. Identifying ideal lattices. IACR eprint 2009/322.
6. J. Von Zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-

versity Press, 1999.
7. C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on

Theory of Computing – STOC 2009, ACM, 169–178, 2009.
8. C. Gentry. A fully homomorphic encryption scheme. Manuscript, 2009.
9. O. Goldreich, S. Goldwasser and S. Halevi. Public-key cryptosystems from lattice

reduction problems. In Advances in Cryptology – CRYPTO ’97, Springer-Verlag
LNCS 1294, 112–131, 1997.

10. S. Hallgren. Fast quantum algorithms for computing the unit group and class
group of a number field. In Symposium on Theory of Computing – STOC 2005,
ACM 468–474, 2005.

11. J. Hoffstein, J. Pipher and J.H. Silverman. NTRU: a ring-based public key cryp-
tosystem. Algorithmic number theory – ANTS III, Springer-Verlag LNCS 1423,
267–288, 1998.

12. A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász. Factoring polynomials with ratio-
nal coefficients. Mathematische Ann., 261, 513-534, 1982.

13. P.Q. Nguyen and J. Stern The two faces of lattices in cryptology. In Cryptography
and Latticesm – CaLC 2001, Springer-Verlag LNCS 2146, 146–180, 2001.

14. C. Thiel. On the complexity of some problems in algorithmic algebraic number
theory. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 1995.

15. B.M.M. de Weger. Algorithms for Diophantine Equations. PhD thesis, University
of Leiden, 1987.

