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Abstract. Signcryption is a cryptographic primitive that fulfills both the functions
of digital signature and public key encryption simultaneously, at a cost significantly
lower than that required by the traditional signature-then-encryption approach. In 2008,
Barbosa and Farshim introduced the notion of certificateless signcryption (CLSC) and
proposed the first CLSC scheme [3], but which requires six pairing operations in the
signcrypt and unsigncrypt phases. In this paper, aimed at designing an efficient CLSC
scheme, we propose a new efficient CLSC scheme from bilinear maps, which requires
only two pairing operations in the signcrypt and unsigncrypt phases and is more efficient
than all the schemes available.
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1 Introduction

In a traditional public key cryptography (PKC), any user of the system who wants to communicate
with others must obtain their authorized public key, that means any public key should be associated with
the owner by a certificate, which is a signature issued by the trusted Certificate Authority (CA). However
this brings a large amount of computation, communication cost and certificate management problems. In
order to solve those problems, Shamir [21] firstly introduced the concept of identity based cryptography
(ID-PKC) in 1984. A user can use an email address, an IP address or any other information related his
identity, that is publicly know and unique in the whole system, as his public key. The advantage of an
identity based cryptography is that anyone can simply use the user’s identity to communicate with each
other. This can be done even before the user gets its private key from the Key Generation Center (KGC).
∗Corresponding author (W. Xie). E-mail: wjxieem@gmail.com.
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However, the user must completely trust KGC, which can impersonate any user to sign or decrypt of
any message. This issue is generally referred to as key escrow problem in identity based cryptography.

In 2003, Al-Riyami and Paterson [1] introduced the concept of certificateless public key cryptogra-
phy (CL-PKC), which eliminate the use of certificates as in the traditional PKC and solve the key escrow
problem that is inherent in identity based cryptography. In a certificateless cryptosystem, the KGC is in-
volved to issue a user partial key dID for a user with identity ID. Then the user independently generates
his public/private key pair (pkID, skID) use dID and a secret value xID chosen by himself, and publishes
pkID. Since Al-Riyami and Paterson [1] proposed the first certificateless signature (CLS) scheme, but
unfortunately it was found insecure by Huang et al. [16], there are many CLS schemes proposed in the
literature later on.

In 1997, Zheng [24] proposed a novel cryptographic primitive which he called signcryption. Sign-
cryption is a new paradigm in public key cryptography that simultaneously fulfills both the functions of
digital signature and public key encryption in a logically single step, and with a cost significantly lower
than that required by the traditional signature followed by encryption. The original scheme in [24] is
based on the discrete logarithm problem but no security proof is given. Zheng’s original scheme was
only proven secure by Baek et al. [2] who described a formal security model in a multi-user setting.

In 2008, Barbosa and Farshim introduced the notion of certificateless signcryption (CLSC) and pro-
posed the first CLSC scheme [3], which requires six pairing operations in the signcrypt and unsigncrypt
phases. And aimed at designing a efficient CLSC scheme, Wu and Chen proposed an new efficient
CLSC scheme [23], which requires four pairing operations in the signcrypt and unsigncrypt phases, but
unfortunately it was found insecure by Sharmila et al. [20]. We note that in pairing based cryptosys-
tems, the computation of the pairing is the most time-consuming. Although numerous papers discuss
the complexity of pairings and how to speed up the pairing computation [5, 15], the computation of the
pairing still remains time-consuming.

Our Contribution. It is fair to say that devising an efficient certificateless signcryption still remains
an important problem. In this paper, motivated by identity-based signcryption scheme proposed in [6]
and certificateless public key encryption scheme [14], we present a new efficient certificateless pairing-
based signcryption scheme, which requires only two pairing operations in the signcrypt and unsigncrypt
phases. The new construction can benefit from the most efficient pairing calculation techniques for a
larger variety of elliptic curves than previous schemes. Indeed, as mentioned in [6], observations [22]
pinpointed problems arising when many provably secure pairing based protocols are implemented using
asymmetric pairings and ordinary curves. Our proposal avoids those problems thanks to the fact that it
does not require to hash onto an elliptic curve cyclic subgroup.

Organization. The rest of this paper is organized as follows: In next Section, we describe some pre-
liminaries, including bilinear map groups, our complexity assumptions and the notion of certificateless
signcryption scheme. We describe its security models in Section 3 and propose our new efficient certifi-
cateless signcryption scheme in Section 4. In Section 5, we present its security and efficiency analysis.
Finally, we conclude this paper in Section 6.
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2 Preliminaries

2.1 Bilinear Map Groups

Let k be a security parameter and p be a k-bit prime number. Let us consider groups G1, G2 and GT

of the same prime order p and P, Q be generators of respectively G1 and G2. We say that (G1,G2,GT )
are bilinear map groups if there exists a bilinear map e : G1 × G2 −→ GT satisfying the following
properties:

− Bilinearity: ∀(S ,T ) ∈ G1 × G2, ∀a, b ∈ Z∗p, e(aS , bT ) = e(S ,T )ab.
− Non-degeneracy: ∀S ∈ G1, e(S ,T ) = 1 for all T ∈ G2 iff S = O.
− Computability: ∀(S ,T ) ∈ G1 × G2, e(S ,T ) is efficiently computable.
− There exists an efficient, publicly computable (but not necessarily invertible) isomorphism ψ:
G2 → G1 such that ψ(Q) = P.

Such bilinear map (called bilinear pairing) groups are known to be instantiable with ordinary elliptic
curves such as those suggested in [8] or [18]. In this case, the trace map can be used as an efficient
isomorphism ψ as long as G2 is properly chosen [22]. With supersingular curves, symmetric pairings
(i.e. G1 = G2) can be obtained and ψ is the identity.

2.2 Related Complexity Assumptions

Definition 1. The Discrete Logarithm Problem (DLP) inG2 is, given (Q, αQ)∈ G2
2 for unknown α ∈ Z∗p,

to compute α.

The advantage of any probabilistic polynomial time algorithmA in solving the DLP in G2 is defined
as

AdvDLP
A = Pr[A(Q, αQ) = α|α ∈ Z∗p].

The DL Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDLP
A

is negligible.

Definition 2. The Computational Diffie-Hellman Problem (CDHP) in G2 is, given (Q, αQ, βQ)∈ G3
2 for

unknown α, β ∈ Z∗p, to compute αβQ.

The advantage of any probabilistic polynomial time algorithm A in solving the CDHP in G2 is
defined as

AdvCDHP
A = Pr[A(Q, αQ, βQ) = αβQ|α, β ∈ Z∗p].

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
AdvCDHP

A is negligible.

Definition 3. The q-Strong Diffie-Hellman Problem (q-SDHP) [11] in the groups (G1,G2) consists of,
given a (q+ 2)-tuple (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 ×Gq+1

2 for unknown α ∈ Z∗p, finding a pair (c, 1
α+c P)

with c ∈ Z∗p.

The advantage of any probabilistic polynomial time algorithmA in solving the q-SDHP in (G1,G2)
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is defined as

Advq-S DHP
A = Pr[A(P,Q, αQ, α2Q, . . . , αqQ) = (c,

1
α + c

P)|α, c ∈ Z∗p].

The q-SDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
Advq-S DHP

A is negligible.

Definition 4. The q-Bilinear Diffie-Hellman Inversion Problem (q-BDHIP) [10] in the groups (G1,G2,

GT) consists of, given a (q + 2)-tuple (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 × Gq+1
2 for unknown α ∈ Z∗p,

computing e(P,Q)1/α ∈ GT .

The advantage of any probabilistic polynomial time algorithmA in solving the q-BDHIP in (G1, G2,

GT ) is defined as

Advq-BDHIP
A = Pr[A(P,Q, αQ, α2Q, . . . , αqQ) = e(P,Q)1/α|α ∈ Z∗p].

The q-BDHI Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
Advq-BDHIP

A is negligible.

2.3 Certificateless Signcryption Scheme

A certificateless signcryption scheme is defined by seven algorithms: Setup, Partial-Private-Key-
Generation, Secret-Value-Generation, Public-Key-Generation, Private-Key-Generation, Signcrypt,
Unsigncrypt. The description of each algorithm is as follows:

Setup: This algorithm takes a security parameter k as input and returns the system parameters
params and a secret master key master-key.

Partial-Private-Key-Generation: This algorithm takes params, master-key and a user’s identity ID
as input. It returns a partial private key dID corresponding to the user.

Secret-Value-Generation: Taking params and a user’s identity ID as input, this algorithm generates
a secret value xID.

Public-Key-Generation: Taking params and a user’s identity ID and his secret value xID as input,
this algorithm generates pkID for the user with identity ID.

Private-Key-Generation: It takes params, a user’s partial private key dID and his secret value xID

as input, and returns the user’s full private key skID.

Signcrypt(skIDS , IDR, pkIDR , m): This algorithm takes as input the sender’s private key skIDS , the
receiver’s identity IDR and public key pkIDR , and a message m. It returns a ciphertext σ.

Unsigncrypt(IDS, pkIDS , skIDR , σ): It takes the sender’s identity IDS and public key pkIDS , the re-
ceiver’s private skIDR and the corresponding ciphertext σ as input, and outputs the message m if the
ciphertext σ is valid, or the symbol ⊥ otherwise.

params, as an implied inputs to Signcrypt and Unsigncrypt algorithms, is omitted. The Setup and
Partial-Private-Key-Generation algorithms are performed by KGC. Once a partial private key dID is
given to a user via secure channel, the user runs Secret-Value-Generation algorithm and generates his
own public/private key pair.
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3 Security Model for Signcryption

In [3], Barbosa and Farshim defined the formal security notions for certificateless signcryption
schemes. These notions are natural adaptations from the security notions of identity-based signcryption
[12, 13] by considering two different type adversaries, a Type I adversary AI and a Type II adversary
AII , and include the indistinguishability against adaptive chosen ciphertext attacks and the existential
unforgeability against adaptive chosen message attacks. The adversary AI represents a normal third
party attacker against the CLSC scheme. That is, AI is not allowed to access to the master-key but
AI may requests public key and replaces public keys with values of its choice. The adversary AII

represents a malicious KGC who generates partial private key of users. The adversary AII is allowed
to have access to the master-key but not replace a public key. Note that, as in [3, 12, 13], we do not
consider attacks targeting ciphertext where the sender and receiver identities are the same. In particular
we disallow such queries to relevant oracles and do not accept this type of ciphertext as a valid forgery.

3.1 Confidentiality Model for Certificateless Signcryption

The confidentiality property (indistinguishability of encryptions under adaptively chosen ciphertext
attacks (IND-CCA2)) required for certificateless signcryption is captured by the following two games
againstAI andAII .

Game IND-CCA2-I. Now we illustrate the first game performed between a challenger C and a Type
I adversaryAI for a certificateless signcryption scheme.

Initialization: C runs the algorithm Setup on input a security parameter k, and obtains master-key
and params, and sends params toAI .

Find stage: The adversary AI performs a polynomially bounded number of queries. These queries
may be made adaptively, i.e. each query may depend on the answers to the previous queries.

− Hash Queries: AI can request the hash values of any input.
− Partial Private Key Extraction: AI is able to ask for the partial private key dID for any ID. C

computes the partial private key dID corresponding to the identity ID and returns dID toAI .
− Public Key Extraction: On receiving a public key extraction for any identity ID, C computes the

corresponding public key pkID and sends it toAI .
− Private Key Extraction: For any ID, C computes the private key skID corresponding to the identity

ID and sends skID to AI . Here, AI is not allowed to query this oracle on any identity for which
the corresponding public key has been replaced. This restriction is imposed due to the fact that
it is unreasonable to expect that the challenger is able to provide a full private key for a user for
which it does not know the secret value.

− Public Key Replacement: For any identity ID, AI can pick a new secret value x′ID and compute
the new public pk′ID corresponding to the new secret value x′ID, and then replace pkID with pk′ID.

− Signcrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR and a message
m. C returns ciphertext σ=Signcrypt(skIDS , IDR, pkIDR , m) toAI as the response of signcryption
oracle’s answer. Note that, it is possible that the public key pkIDS has been replaced earlier byAI ,
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In this case, to correctness of the signcryption oracle’s answer, we assume that AI additionally
submits the corresponding secret value to C. And we disallow queries where IDS = IDR.

− Unsigncrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR and a cipher-
text σ. C sends the result of Unsigncrypt(IDS, pkIDS , skIDR , σ) toAI . Note that, it is possible that
the public key pkIDR has been replaced earlier by AI . In this case, to correctness of the unsign-
cryption oracle’s answer, we assume that AI additionally submits the corresponding secret value
to C. Again, we disallow queries where IDS = IDR.

Challenge: At the end of Find stage,AI returns two distinct messages m0 and m1 (assumed of equal
length), a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be challenged. The
adversary must have made no partial private key extraction and private key extraction on ID∗R. C picks
randomly a bit β ∈ {0, 1}, computes σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R , mβ) and returns it toAI .

Guess stage: AI asks a polynomial number of queries adaptively again as in the Find stage. It is not
allowed to extract the partial private key and private key corresponding to ID∗R and it is not allowed to
make an unsigncrypt query on σ∗ with sender ID∗S and receiver ID∗R unless the public key pkID∗

S
of the

sender or that of the receiver pkID∗R has been replaced after the challenge was issued.

Eventually,AI outputs a bit β′ and wins the game if β=β′.

AI’s advantage is defined as AdvIND−CCA2−I
AI

= 2Pr[β = β′] − 1.

Game IND-CCA2-II. This is the second game where C interacts with adversaryAII as follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate master-key
and params, and sends master-key and params toAII .

Find stage: In this stage, AII may adaptively make a polynomially bounded number of queries as
in Game IND-CCA2-I. The only constraint is thatAII can not replace any public keys. Obviously,AII

can compute the partial private keys of any identities by itself with the master-key.

Challenge: At the end of Find stage, AII returns two distinct messages m0 and m1 (assumed of
equal length), a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be challenged.
The adversary must have made no private key extraction on ID∗R. C picks randomly a bit β ∈ {0, 1},
computes σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R , mβ) and returns it toAII .

Guess stage: AII asks a polynomial number of queries adaptively again as in the Find stage. It is
not allowed to extract the private key corresponding to ID∗R and it is not allowed to make an unsigncrypt
query on σ∗ with sender ID∗S and receiver ID∗R.

Eventually,AII outputs a bit β′ and wins the game if β=β′.

AII’s advantage is defined as AdvIND−CCA2−II
AII

= 2Pr[β = β′] − 1.

Note that the security models described above deals with insider security since the adversary is as-
sumed to have access to the private key of the sender of ciphertextσ∗. This means that the confidentiality
is preserved even if a sender’s private key is compromised.

Definition 5 (IND-CCA2). An CLSC scheme is said to be IND-CCA2-I secure (resp. IND-CCA2-
II secure) if no polynomially bounded adversary AI (resp. AII) has a non-negligible advantage wins
Game IND-CCA2-I (resp. Game IND-CCA-II). A CLSC scheme is said to be IND-CCA2 secure if it
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is both IND-CCA-I secure and IND-CCA-II secure.

3.2 Unforgeability Model for Certificateless Signcryption

The authenticity property (existential unforgeability against chosen message attacks (EUF-CMA))
for certificateless signcryption schemes is captured by the following two games against AI and AII ,
respectively.

Game EUF-CMA-I. This is the game whereAI interacts with its Challenger C as follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate master-key
and params, and sends params toAI .

Queries: The adversary AI performs a polynomially bounded number of queries adaptively as in
Game IND-CCA2-I game.

Output: Finally,AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not produced by the

signcryption oracle) where the partial private key and the private key of ID∗S was not extract and wins
the game if the result of Unsigncrypt(ID∗S, pkID∗

S
, skID∗R , σ

∗) is not the ⊥ symbol.

The adversaryAI’s advantage is its probability of victory.

Game EUF-CMA-II. This is the game whereAII interacts with its Challenger C as follow:

Initialization: C runs the algorithm Setup on input a security parameter k to generate master-key
and params, and sends params and master-key toAI .

Queries: The adversary AII performs a polynomially bounded number of queries adaptively as in
Game IND-CCA2-II game.

Output: Finally, AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not produced by

the signcryption oracle) where the private key of ID∗S was not extract and wins the game if the result of
Unsigncrypt(ID∗S, pkID∗

S
, skID∗R , σ

∗) is not the ⊥ symbol.

The adversaryAII’s advantage is its probability of victory.

Note that this definition allows the adversary have access to the secret key of the receiver of the
forgery, which guarantees the insider security.

Definition 6 (UF-CMA). An CLSC scheme is said to be EUF-CMA-I secure (resp. EUF-CMA-II
secure) if no polynomially bounded adversary AI (resp. AII) has a non-negligible advantage wins
Game EUF-CMA-I (resp. Game EUF-CMA-II). A CLSC scheme is said to be EUF-CMA secure if it
is both UF-CMA-I secure and UF-CMA-II secure.

4 New efficient CLSC scheme

In this section, we propose a new efficient CLSC scheme which consists of the following seven
algorithms.
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Setup: Given a security parameter k, the algorithm works as follows:

− Outputs descriptions of bilinear map groups (G1,G2,GT ) of same prime order p > 2k.
− Chooses an arbitrary generator Q of G2 and sets P = ψ(Q) ∈ G1 and g = e(P,Q) ∈ GT .
− Randomly picks s ∈ Z∗p and sets Ppub = sQ as, respectively, master-key and system public key.
− Selects three distinct cryptographic hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}n×G2×GT×G3

2 →
Z∗p and H3 : GT × G2 → {0, 1}n where n is the length of message to be signcrypted.

− The system parameters are params =< G1,G2,GT , e, p, P,Q, g, Ppub, ψ,H1,H2,H3 > and pub-
lishes params.

Partial-Private-Key-Generation: Given params, master-key and an identity ID ∈ {0, 1}∗, this algorithm
works as follows: Compute QID = H1(ID) ∈ Z∗p and dID =

1
s+QID

P and sends dID to the user with identity
ID as his partial private key via a secure channel. The user can check its correctness by checking whether
e(dID, Ppub + QIDQ) = g. For convenience, we define TID = Ppub + H1(ID)Q.

Secret-Value-Generation: This algorithm takes as input params and a user’s identity ID. It picks a
random value xID ∈R Z

∗
p and outputs xID as the user’s secret value.

Public-Key-Generation: Given params, a user’s identity ID and the secret value xID, this algorithm
computes his public key pkID = xID(Ppub + H1(ID)Q).

Private-Key-Generation: Given params, the user’s partial private key dID and his secret value xID ∈ Z∗p,
and output a pair (dID, xID) as the user’s private key skID.

Signcrypt: To send a message m ∈ {0, 1}n to Bob with identity B and public key pkB, Alice with private
key skA works as follow:

− Randomly picks r1 ∈R Z
∗
p and computes u = r1(Ppub + H1(B)Q) and c = m ⊕ H3(gr1 , r1 pkB).

− Computes h2 = H2(m, u, gr1 , r1 pkB, pkA, pkB), v = r1+h2
r1

dA and w = xAh2 + r1.
− Sets ciphertext σ = (c, u, v,w).

Unsigncrypt: To unsigncrypt a ciphertext σ = (c, u, v,w) from Alice with identity A and public key pkA,
Bob with private key skB acts as follows:

− Computes gr1 ′ = e(dB, u) and m = c ⊕ H3(gr1 ′, xBu).
− Sets h2 = H2(m, u, gr1 ′, xBu, pkA, pkB) and r′1TA = wTA − h2 pkA.
− Accept m if and only if e(v, r′1TA) = gr1 ′gh2 hold, return ⊥ otherwise.

Consistency: The correctness of the proposed scheme can be easily verified with following:

gr1 ′ = e(dB, u) = e(
1

s + QB
P, r1(sQ + QBQ)) = gr1 ,

xBu = xBr1(sQ + QBQ) = r1xB(sQ + QBQ) = r1 pkB

and
e(v,wTA − h2 pkA) = e(v, r1TA) = e(

r1 + h2

r1

1
s + QA

P, r1(sQ + QAQ)) = gr1 gh2 .
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5 Analysis of the Proposed Scheme

5.1 Proof of security

In this section, we will provide two formal proofs that our scheme is IND-CCA2 secure under the
q-BDHI Assumption and CDH Assumption and UF-CMA secure under the q-SDH Assumption and
DL Assumption. We now present the security analysis of our proposed scheme in the random oracle
model [9].

Theorem 1. Under the q-BDHI Assumption and CDH Assumption, the proposed CLSC scheme is
IND-CCA2 secure in the random oracle model.

This theorem follows from Lemmas 1 and 2.

Lemma 1. Assume that an IND-CCA2-I adversary AI has non-negligible advantage ϵ against our
scheme when running in time T , asking qi queries to random oracles Hi (i = 1, 2, 3), qs Signcrypt
queries and qun Unsigncrypt queries. Then there is an algorithm C to solve the q-BDHIP for q = q1 + 1
with probability

ϵ′ ≥ ϵ

q1(q2 + q3 + qs)
(1 − qs

2q2 + q3 + 2qs

2k )(1 − qun

2k )

within a time T ′ < T +O(q1 + qs + qun)Tmult +O(qun)Texp +O(q2qs + q3qs + q2qun)Tp where Tmult and
Texp are respectively the costs of a multiplication in G1 or G2 and an exponentiation in GT whereas Tp

is the complexity of a pairing computation.

Proof. Suppose that there exists an adversaryAI can attack our scheme. We want to build an algorithm
C that runs AI as a subroutine to solve q-BDHIP. Assume that C gets a random instance of q-BDHIP
in as follows: Given (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 × Gq+1

2 for unknown α ∈ Z∗p. And its goal is to
compute e(P,Q)1/α ∈ GT by interacting with adversaryAI . In the preparation phase, C randomly picks
ω0, ω1, · · · , ωq−1 ∈R Z

∗
p. As in the technique of [6], it builds a generator G ∈ G1 such that it knows q− 1

pairs (ωi + ω0,
1

α+ωi
G) for i ∈ {1, 2, · · · , q − 1}. To do so,

− It expands f (z) =
∏q−1

i=1 (z + ωi) to obtain c0, c1, · · · , cq−1 ∈ Z∗p so that f (z) =
∑q−1

i=0 cizi.
− It sets generator H =

∑q−1
i=0 ci(αiQ) = f (α)Q ∈ G2 and G = ψ(H) = f (α)P ∈ G1. The system

public key is fixed to Ppub =
∑q

i=1 ci−1(αiQ)−ω0(
∑q−1

i=0 ci(αiQ)) so that Ppub = (α−ω0)H although
C does not know α − ω0.

− For 1 ≤ i ≤ q − 1, C expands fi(z) = f (z)/(z + ωi) =
∑q−2

j=0 d jz j and

q−2∑
j=0

d jψ(α jQ) = fi(α)P =
f (α)
α + ωi

P =
1

α + ωi
G. (1)

The pairs (ωi + ω0,
1

α+ωi
G) are computed using the left member of (1).

Throughout the game, we assume that H1 Queries are distinct, that the target identity ID∗R is sub-
mitted to H1 at some point and that any query involving an identity ID comes after a H1 Queries
on ID. To maintain consistency between queries made by AI , C keeps the following lists: Li for
i = 1, 2, 3 of data for query/response pairs to random oracle Hi; Lpk of data for query/response pairs
to Public Key Extraction oracle. Then, C randomly picks µ ∈R {1, 2, · · · , q1} and runs AI on input of
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< G1,G2,GT, e, p,G,H, g, Ppub, ψ > where g = e(G,H), and answers various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j(from this point on we denote the j-th non-repeat
identity query to this oracle with ID j), if j , µ, C sets QID j = ω j+ω0. It then adds < ID j,QID j ,

1
α+ω j

G >

to the list L1 which is initially empty and returns QID j . Otherwise, it returns QIDµ
= ω0 and adds

< IDµ,QIDµ
,⊥> to L1.

H2 Queries: For each query (m, S 1, S 2, S 3, pkIDS , pkIDR ), C proceeds as follows:

− If < m, S 1, S 2, S 3, pkIDS , pkIDR , S 4, h2, c >∈ L2 for some (S 4, h2, c), returns h2.
− C goes through the list L2 with entries < m, S 1, S 2,⊥, pkIDS , pkIDR , S 4, h2, c >(those entries

are added in answer AI’s signcrypt query), for some (S 4, h2, c), such that e(ψ(S 1), pkIDR ) =
e(ψ(S 4), S 3). If such a tuple exists, it returns h2 and replaces the symbol ⊥ with S 3.

− If C reaches this point of execution, it returns a random h2 ∈R Z
∗
p. Then, sets h3 = H3(S 2, S 3) ∈

{0, 1}n and updates L2 with input < m, S 1, S 2, S 3, pkIDS , pkIDR ,⊥, h2, c = m ⊕ h3 >.

H3 Queries: For each query (S 2, S 3), C proceeds as follows:

− If < S 2, S 3, h3, S 1, S 4, S 5 >∈ L3 for some (h3, S 1, S 4, S 5), returns h3.
− C goes through the list L3 with entries < S 2,⊥, h3, S 1, S 4, S 5 >(those entries are added in answer
AI’s signcrypt query), for some (h3, S 1, S 4, S 5), such that e(ψ(S 1), S 5) = e(ψ(S 4), S 3). If such a
tuple exists, it returns h3 and replaces the symbol ⊥ with S 3.

− If C reaches this point of execution, it returns a random h3 ∈ Z∗p and updates the list L3 with input
< S 2, S 3, h3,⊥,⊥,⊥>.

Partial Private Key Extraction: For each new query ID j, if j = µ, then C fails. Otherwise, finds
< ID j,QID j ,

1
α+ω j

G > in L1 and returns dID j =
1

α+ω j
G.

Public Key Extraction: For each query ID j, C checks in list Lpk, which is initially empty, if <
ID j, xID j , pkID j >∈ Lpk for some pkID j . If so, returns pkID j . Otherwise, C picks xID j ∈R Z

∗
p at random,

sets pkID j = xID j (Ppub + H1(ID j)H), then returns pkID j and adds < ID j, xID j , pkID j > in Lpk.

Private Key Extraction: For each new query ID j, if j = µ, then C aborts the simulation. Otherwise
finds < ID j,QID j ,

1
α+ω j

G > and < ID j, xID j , pkID j > in L1 and Lpk, respectively, and returns skID j =

( 1
α+ω j

G, xID j ).

Public Key Replacement: For each query < ID j, pk′ID j
>, C checks in list Lpk, if Lpk does not

contain < ID j, xID j , pkID j >, adds < ID j,⊥, pk′ID j
> to Lpk. Otherwise, finds < ID j, xID j , pkID j > in Lpk

and sets pkID j = pk′ID j
and xID j =⊥.

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , q1}. We observe that, if
a , µ , C knows the sender’s private key skIDa = ( 1

α+ωa
G, xIDa ) and can answer the query according to

the specification of Signcrypt algorithm. We thus assume a = µ and hence b , µ by the irreflexivity
assumption. Observe that C knows the receiver’s partial private key dIDb =

1
α+ωb

G by construction. The
difficulty is to find a random triple (c, u, v,w, h2) ∈ {0, 1}n × G2 × G1 × Z∗p × Z∗p for which

e(v,wTIDa − h2 pkIDa ) = e(dIDb , u)gh2

where TIDa = Ppub + H1(IDa)H. To do so, C randomly secrets r1, r2, r3 ∈R Z
∗
p and h3 ∈R {0, 1}n and

sets v = r1dIDb , w = r2, h2 = r3, u = r1r2TIDa − r1r3 pkIDa − r3TIDb and c = m ⊕ h3. Then, C sets
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S 2 = e(dIDb , u), adds < S 2,⊥, h3, u,TIDb , pkIDb > and < m, u, S 2,⊥, pkIDa , pkIDb ,TIDb , h2, c > to L3 and
L2 respectively (C fails if H2 or H3 is already defined in the corresponding value but this only happens
with probability small than (2q2 + q3 + 2qs)/p) , and returns ciphertext σ = (c, u, v,w).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, u, v,w)), where a, b ∈ {1, 2, · · · , q1}. we
assume that b = µ (and hence a , µ by the irreflexivity assumption), because otherwise C knows
the receiver’s private key skIDb = ( 1

α+ωb
G, xIDb ) and can answer the query according to the speci-

fication of Unsigncrypt algorithm. Note that, for all valid ciphertexts σ = (c, u, v,w), logTIDb
u =

logTIDa
(wTIDa − h2 pkIDb ), where h2 = H2(m, u, gr1 , xIDb u, pkIDa , pkIDb ) is the hash value obtained in

the Signcrypt algorithm. Hence, we have the relation

e(ψ(TIDa ), u) = e(ψ(TIDb ),wTIDa − h2 pkIDb ).

C finds < IDa, xIDa , pkIDa > and < IDb, xIDb , pkIDb > in Lpk, and searches through list L2 for entries of
the form < mk, u, S 2,k, xIDb u, pkIDa , pkIDb , S 4,k, h2,k, c > (Here, we needn’t to consider the entries in L2

with S 3 =⊥, because of a , µ) indexed by k ∈ {1, 2, · · · , q2}, where xIDb is the secret value of the IDb (if
pkIDb has been replaced byAI , C gets it fromAI). If none is found, σ is invalid, returns ⊥. Otherwise,
each one of them is further examined: for the corresponding indexes, C chicks if

e(ψ(TIDa ), u) = e(ψ(TIDb ),wTIDa − h2,k pkIDb ). (2)

Note that, if (2) is satisfied, means that h2,k is the correct hash value obtained in the Signcrypt algorithm.
And after gets the correct hash value h2,k, C tests if

e(v,wTIDa − h2,k pkIDb ) = S 2,kgh2,k , (3)

meaning that S 2,k = gr1 ∈ GT is the correct random value used in the Unsigncrypt algorithm. If the
unique k ∈ {1, 2, · · · , q2} satisfying (2) and (3) is detected, the matching mk is returned. Overall, an
inappropriate rejection occurs with probability smaller than qun/p across the whole game.

At the end of Find stage, AI outputs two distinct messages m0 and m1 (assumed of equal length),
a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be challenged. If ID∗R , IDµ,
C aborts. Otherwise, it randomly picks c ∈R {0, 1}n, r1,w ∈R Z

∗
p and v ∈R G

∗
1, sets u = r1H and

σ∗ = (c, u, v,w), and sends σ∗ toAI as the challenge ciphertext.

At the end of Guess stage,AI outputs its guess. Note that, AI cannot recognize that is not a proper
ciphertext unless it queries H3 on (e(dIDµ

, u), xIDµ
u). Along the guess stage, AI’s view is simulated

as before and its eventual output is ignored. Standard arguments can show that a successful AI is
very likely to query H3 on (e(dIDµ

, u), xIDµ
u) if the simulation is indistinguishable from a real attack

environment.

To produce a result C fetches a random entry < S 2, S 3, h3, S 1, S 4, S 5 > from L3. With probability
1/(q2 + q3 + qs) (as L3 contains no more than q2 + q3 + qs records by construction), the chosen entry
will contain the right element S 2 = e(dIDµ

, u) = e( 1
α

G, r1H) = e(G,H)r1/α = e( f (α)P, f (α)Q)r1/α, where
f (z) =

∑q−1
i=0 cizi is the polynomial for which H = f (α)Q. Then, q-BDHIP solution can be extracted by

noting that, if γ∗ = e(P,Q)1/α, then

e(G,H)1/α = γ∗(c
2
0)e(c0P,

q−2∑
i=0

ci+1(αiQ))e(
q−2∑
i=0

ci+1ψ(αiQ),H).
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In an analysis of C’s advantage, we note that it only fails in providing a consistent simulation because
one of the following independent events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Partial Private Key Extraction or Private Key Extraction query is made on IDµ.
E3 : C aborts in a Signcrypt query because of a collision on H2 or H3.
E4 : C rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already observed that
Pr[E3] ≤ (2q2 + q3 + 2qs)/2k and Pr[E4] ≤ qun/2k. We thus find that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
q1

(1 − qs
2q2 + q3 + 2qs

2k )(1 − qun

2k ).

We obtain the announced bound by noting that C selects the correct element from L3 with probability
1/(q2 + q3 + qs). Its workload is dominated by O(q1 + qs + qun)Tmult multiplications in the prepara-
tion phase and its simulation of Public Key Extraction, Signcrypt Queries and Unsigncrypt Queries
oracle , O(qun)Texp exponentiations in its simulation of Unigncrypt Queries oracles, and O(q2qs +

q3qs + q2qun)Tp pairing calculations in simulation of H2 Queries, H3 Queries, Signcrypt Queries and
Unsigncrypt Queries oracles.

Lemma 2. Assume that an IND-CCA2-II adversary AII has non-negligible advantage ϵ against our
scheme when running in time T , asking qi queries to random oracles Hi (i = 1, 2, 3), qs Signcrypt
queries and qun Unsigncrypt queries. Then there is an algorithm C to solve the CDHP with probability

ϵ′ ≥ ϵ

q1(q2 + q3 + qs)
(1 − qs

2q2 + q3 + 2qs

2k )(1 − qun

2k )

within a time T ′ < T +O(q1+qs)Tmult +O(qun)Texp+O(qs+q2qun)Tp where Tmult, Texp and Tp denote
the same quantities as in Lemma 1.

Proof. Suppose that there exists an adversaryAII can attack our scheme. We want to build an algorithm
C that runs AII as a subroutine to solve CDHP. Assume that C gets a random instance of CDHP as
follows: Given (Q, αQ, βQ) ∈ G3

2 for unknown α, β ∈ Z∗p. And its goal is to compute αβQ by interacting
with adversaryAII .

Throughout the game, we assume that H1 Queries are distinct, that the target identity ID∗R is sub-
mitted to H1 at some point and that any query involving an identity ID comes after a H1 Queries on
ID. To maintain consistency between queries made by AII , C keeps the lists: Li for i = 1, 2, 3 and
Lpk as in the proof of Lemma 1. C randomly picks s ∈R Z

∗
p as the master-key, computes Ppub = sQ,

and sends < G1,G2,GT , e, p, P,Q, g, Ppub, ψ > and the master-key s to AII . Then, C randomly picks
µ ∈R {1, 2, · · · , q1} and answers various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j (from this point on we denote the j-th non-repeat
identity query to this oracle with ID j), C randomly picks QID j ∈R Z

∗
p and adds < ID j,QID j > to L1,

which is initially empty, then returns QID j .

H2 Queries: For each query (m, S 1, S 2, S 3, pkIDS , pkIDR ), C proceeds as follows:

− If < m, S 1, S 2, S 3, pkIDS , pkIDR , h2, c >∈ L2 for some (h2, c), returns h2.
− Otherwise, C returns a random h2 ∈R Z

∗
p. Then, sets h3 = H3(S 2, S 3) ∈ {0, 1}n and updates L2

with input < m, S 1, S 2, S 3, pkIDS , pkIDR , h2, c = m ⊕ h3 >.
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H3 Queries: For each query (S 2, S 3), C returns the previously assigned value if it exists and a
random h3 ∈R Z

∗
p otherwise. In the latter case, C adds < S 2, S 3, h3 > to L3, which is which is initially

empty.

Public Key Extraction: For each query ID j, C proceeds as follows:

− If < ID j, xID j , pkID j >∈ Lpk for some pkID j , returns pkID j .
− Else, if j = µ, C returns pkID j = (s + H1(ID j))αQ and adds < ID j,⊥, pkID j > in Lpk.
− Else C picks xID j ∈R Z

∗
p at random, sets pkID j = xID j (Ppub + H1(ID j)Q), then returns pkID j and

adds < ID j, xID j , pkID j > in Lpk.

Private Key Extraction: For each new query ID j, if j = µ, then C aborts the simulation. Otherwise
finds < ID j, xID j , pkID j > in Lpk, and returns skID j = ( 1

s+H1(ID j)
P, xID j ).

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , q1}. We observe that, if
a , µ , C knows the sender’s private key skIDa = ( 1

s+QIDa
P, xIDa ) and can answer the query accord-

ing to the specification of Signcrypt algorithm, we thus assume a = µ. Observe that C knows the
receiver’s private key skIDb = ( 1

s+QIDb
P, xIDb ) by construction. The difficulty is to find a random triple

(c, u, v,w, h2) ∈ {0, 1}n × G2 × G1 × Z∗p × Z∗p for which

e(v,wTIDa − h2 pkIDa ) = e(u, dIDb )gh2

where TIDa = Ppub + H1(IDa)Q. To do so, C randomly secrets r1, r2, r3 ∈R Z
∗
p and h3 ∈R {0, 1}n and

sets v = r1dIDb , w = r2, h2 = r3, u = r1r2TIDa − r1r3 pkIDa − r3TIDb and c = m ⊕ h3. Then, C computes
S 2 = e(dIDb , u) and S 3 = xIDb u, adds < S 2, S 3, h3 > and < m, u, S 2, S 3, pkIDa , pkIDb , h2, c > to L3 and
L2 respectively (C fails if H2 or H3 is already defined in the corresponding value but this only happens
with probability small than (2q2 + q3 + 2qs)/p), and returns ciphertext σ = (c, u, v,w).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, u, v,w)), where a, b ∈ {1, 2, · · · , q1}. we
assume that b = µ, because otherwise C knows the receiver’s private key skIDb = ( 1

s+QIDb
P, xIDb ) and can

answer the query according to the specification of Unsigncrypt algorithm. Note that, for all valid cipher-
texts σ = (c, u, v,w), logTIDb

u = logTIDa
(wTIDa − h2 pkIDb ), where h2 = H2(m, u, gr1 , xIDb u, pkIDa , pkIDb )

is the hash value obtained in the Signcrypt algorithm. Hence, we have the relation

e(ψ(TIDa ), u) = e(ψ(TIDb ),wTIDa − h2 pkIDb ).

C searches through list L2 for entries of the form < mk, u, e( 1
s+H1(IDb) P, u), S 3,k, pkIDa , pkIDb , h2,k, c >

such that e(ψ(u), pkIDb ) = e(ψ(TIDb ), S 3,k), indexed by k ∈ {1, 2, · · · , q2}, If none is found, σ is invalid,
returns ⊥. Otherwise, each one of them is further examined: for the corresponding indexes, C chicks if

e(ψ(TIDa ), u) = e(ψ(TIDb ),wTIDa − h2,k pkIDb ). (4)

Note that, if (4) is satisfied, means that h2,k is the correct hash value obtained in the Signcrypt algorithm.
And after gets the correct hash value h2,k, C tests if

e(v,wTIDa − h2,k pkIDb ) = e(
1

s + H1(IDb)
P, u)gh2,k , (5)

meaning that σ = (c, u, v,w) is a valid ciphertext from IDa to IDb. If the unique k ∈ {1, 2, · · · , q2}
satisfying (4) and (5) is detected, the matching mk is returned. Overall, an inappropriate rejection occurs
with probability smaller than qun/p across the whole game.
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At the end of Find stage,AII outputs two distinct messages m0 and m1 (assumed of equal length), a
sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be challenged. If ID∗R , IDµ, C
aborts. Otherwise, it randomly picks c ∈R {0, 1}n, w ∈R Z

∗
p and v ∈R G∗1, sets u = (s + H1(IDµ))βQ and

σ∗ = (c, u, v,w), and sends σ∗ toAII as the challenge ciphertext.

At the end of Guess stage,AII outputs its guess. Note that,AII cannot recognize that is not a proper
ciphertext unless it queries H3 on (e(dIDµ

, u), xIDµ
u). Along the guess stage, AII’s view is simulated

as before and its eventual output is ignored. Standard arguments can show that a successful AII is
very likely to query H3 on (e(dIDµ

, u), xIDµ
u) if the simulation is indistinguishable from a real attack

environment.

To produce a result C fetches a random entry < S 2, S 3, h3 > from L3. With probability 1/(q2+q3+qs)
(as L3 contains no more than q2+q3+qs records by construction), the chosen entry will contain the right
element S 3 = xIDµ

u = (s + H1(IDµ))αβQ. Then, C returns αβQ = (s + H1(IDµ))−1S 3 as the solution of
CDHP.

In an analysis of C’s advantage, we note that it only fails in providing a consistent simulation because
one of the following independent events:

E1 : AII does not choose to be challenged on IDµ.
E2 : A Private Key Extraction query is made on IDµ.
E3 : C aborts in a Signcrypt query because of a collision on H2 or H3.
E4 : C rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already observed that
Pr[E3] ≤ (2q2 + q3 + 2qs)/2k and Pr[E4] ≤ qun/2k. We thus find that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
q1

(1 − qs
2q2 + q3 + 2qs

2k )(1 − qun

2k ).

We obtain the announced bound by noting that C selects the correct element from L3 with probabil-
ity 1/(q2 + q3 + qs). Its workload is dominated by O(q1 + qs)Tmult multiplications in simulation of
Public Key Extraction, Private Key Extraction and Signcrypt Queries oracle, O(qun)Texp exponentia-
tions in simulation of Unigncrypt Queries oracles, and O(qs + q2qun)Tp pairing calculations in simula-
tion of Signcrypt Queries and Unsigncrypt Queries oracles.

Theorem 2. Under the q-SDH Assumption and DL Assumption, the proposed CLSC scheme is EUF-
CMA secure in the random oracle model.

This theorem follows from Lemmas 3 and 4.

Lemma 3. Assume that there exists an EUF-CMA-I adversary AI that makes qi queries to random
oracles Hi (i = 1, 2, 3), qs Signcrypt queries and qun Unsigncrypt queries. Assume also that, within a
time T ,AI produces a forgery with probability ϵ ≥ 10(qs + 1)(qs + q2)/2k. Then, there is an algorithm
C to solve the q-SDHP for q = q1 + 1 with probability

ϵ′ ≥ 1
9q1

(1 − q − 1
2k )

in expected time T ′ ≤ 23q2
T+O(q1+qs+qun)Tmult+O(qun)Texp+O(q2qs+q3qs+q2qun)Tp

ϵ(1−qun/2k) where Tmult, Texp and Tp de-
note the same quantities as in Lemma 1.
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Proof. Suppose that there exists an adversaryAI can attack our scheme. We want to build an algorithm
C that runs AI as a subroutine to solve q-SDHP. Assume that C gets a random instance of q-SDHP as
follows: Given (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 ×Gq+1

2 for unknown α ∈ Z∗p. And its goal is to find a pair
(c, 1

c+αP) by interacting with adversaryAI . In the preparation phase, as in the technique of [6], C builds
a generator G ∈ G1 such that it knows q − 1 pairs (ωi,

1
α+ωi

G) for i ∈ {1, 2, · · · , q − 1}. To do so,

− It randomly picks ω1, ω2, · · · , ωq−1 ∈R Z
∗
p and expands f (z) =

∏q−1
i=1 (z + ωi) to obtain

c0, c1, · · · , cq−1 ∈ Z∗p so that f (z) =
∑q−1

i=0 cizi.
− It sets generators H =

∑q−1
i=0 ci(αiQ) = f (α)Q ∈ G2 and G = ψ(H) = f (α)P ∈ G1. The system

public key is fixed to Ppub =
∑q

i=1 ci−1(αiQ) so that Ppub = αH although C does not know α.
− For 1 ≤ i ≤ q − 1, C expands fi(z) = f (z)/(z + ωi) =

∑q−2
j=0 d jz j and

q−2∑
j=0

d jψ(α jQ) = fi(α)P =
f (α)
α + ωi

P =
1

α + ωi
G. (6)

The pairs (ωi,
1

α+ωi
G) are computed using the left member of (6).

Throughout the game, we assume that H1 Queries are distinct, that the target identity ID∗S is sub-
mitted to H1 at some point and that any query involving an identity ID comes after a H1 Queries on
ID. To maintain consistency between queries made by AII , C keeps the lists: Li for i = 1, 2, 3 and
Lpk as in the proof of Lemma 1. Then, C randomly picks µ ∈R {1, 2, · · · , q1} and runs AI on input of
< G1,G2,GT , e, p,G,H, g, Ppub, ψ > where g = e(G,H), and answers various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j (from this point on we denote the j-th non-repeat
identity query to this oracle with ID j), if j , µ, C sets QID j = ω j. It then adds < ID j,QID j ,

1
ω j+α

G > to
the list L1 which is initially empty and returns QID j . Otherwise, it returns a random ω∗ ∈R Z

∗
p and adds

< IDµ,QIDµ
= ω∗,⊥> to L1.

AI’s queries to other oracle (except H1 Queries oracle) are answered as in the proof of Lemma 1.

Eventually, AI outputs a valid ciphertext σ = (c, u, v,w) from ID∗S to ID∗R. If ID∗S , IDµ, C aborts.
Otherwise, having the knowledge of skID∗R , C computes h2 = H2(m∗, u, e(dID∗R , u), xID∗Ru, pkID∗

S
, pkID∗R ),

where m∗ = Unsigncrypt(ID∗S, pkID∗
S
, skID∗R , σ) (For simplicity, we denote σ = (c, u, v,w, h2) as AI’s

outputs). Then, using the oracle replay technique [19], C generates one more valid ciphertext from
σ = (c, u, v,w, h2) which is named as σ′ = (c, u, v′,w′, h′2). This is achieved by running the turing
machine again with the same random tape but with the different hash value.

Since σ = (c, u, v,w, h2) and σ′ = (c, u, v′,w′, h′2) are both valid ciphertext for the same message m∗

and randomness r1, we obtain the relations

w′TID∗
S
− h′2 pkID∗

S
= r1TID∗

S
= wTID∗

S
− h2 pkID∗

S
.

Then,we have
(w′ − w)TID∗

S
= (h′2 − h2)pkID∗

S
.

Hence, C can compute xID∗
S
= (w′ − w)/(h′2 − h2). From the specification of Unsigncrypt algorithm, we

know that
e(v,wTID∗

S
− h2 pkID∗

S
) = gr1 gh2 = e((r1 + h2)G,H)
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and
e(v′,w′TID∗

S
− h′2 pkID∗

S
) = gr1 gh′2 = e((r1 + h′2)G,H).

Hence, we have

e(v,wTID∗
S
)e(v,−h2 pkID∗

S
)e(−h2G,H) = e(v′,w′TID∗

S
)e(v′,−h′2 pkID∗

S
)e(−h′2G,H),

e(wv,TID∗
S
)e(−h2v, pkID∗

S
)e(−h2G,H) = e(w′v′,TID∗

S
)e(−h′2v′, pkID∗

S
)e(−h′2G,H),

e(wv − w′v′,TID∗
S
)e(h′2v′ − h2v, pkID∗

S
) = e((h2 − h′2)G,H),

e(wv − w′v′,TID∗
S
)e(xID∗

S
(h′2v′ − h2v),TID∗

S
) = e((h2 − h′2)G,H),

e((h2 − h′2)−1[wv − w′v′ + xID∗
S
(h′2v′ − h2v)],TID∗

S
) = e(G,H).

Hence, C can compute 1
α+ω∗G = (h2 − h′2)−1[wv−w′v′ + (w′ −w)(h′2v′ − h2v)/(h′2 − h2)]. From 1

α+ω∗G, C
can proceed as in [6] to extract 1

α+ω∗ P: it first obtains γ−1, γ0, · · · , γq−2 ∈ Z∗p for which f (z)/(z + ω∗) =
γ−1/(z + ω∗) +

∑q−2
i=0 γizi and eventually computes

1
α + ω∗

P =
1
γ−1

 1
α + ω∗

G −
q−2∑
i=0

γiψ(αiQ)


before returning the pair (ω∗, 1

α+ω∗ P) as the solution of q-SDHP.

In an analysis of C’s advantage, we note that it only fails because one of the following independent
events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Partial Private Key Extraction or Private Key Extraction query is made on IDµ.
E3 : C fails in using the oracle replay technique [19] to generate one more valid ciphertext.
E4 : ω∗ = ωi for i ∈ {1, 2, · · · , q − 1}.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already observed that
Pr[¬E3] ≥ 1/9 [19] and Pr[E4] ≤ (q − 1)/2k. We obtain the announced bound by noting that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
9q1

(1 − q − 1
2k ).

From the proof of Lemma 12 in [19], we know that the total running time T ′ of solving the q-SDHP
with probability ϵ′ ≥ 1

9q1
(1 − q−1

2k ) is bound by 23q2
T+O(q1+qs+qun)Tmult+O(qun)Texp+O(q2qs+q3qs+q2qun)Tp

ϵ(1−qun/2k) , as
desired. Thus, this completes the proof.

Lemma 4. Assume that there exists an EUF-CMA-II adversary AII that makes qi queries to random
oracles Hi (i = 1, 2, 3), qs Signcrypt queries and qun Unsigncrypt queries. Assume also that, within a
time T ,AII produces a forgery with probability ϵ ≥ 10(qs + 1)(qs + q2)/2k. Then, there is an algorithm
C to solve the DLP with probability

ϵ′ ≥ 1
9q1

in expected time T ′ ≤ 23q2
T+O(q1+qs)Tmult+O(qun)Texp+O(qs+q2qun)Tp

ϵ(1−qun/2k) where Tmult, Texp and Tp denote the
same quantities as in Lemma 1

Proof. Suppose that there exists an adversaryAII can attack our scheme. We want to build an algorithm
C that runsAII as a subroutine to solve DLP. Assume that C gets a random instance of DLP as follows:
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Given (Q, αQ) ∈ G2
2 for unknown α ∈ Z∗p. And its goal is to compute α by interacting with adversary

AII .

Throughout the game, we assume that H1 Queries are distinct, that the target identity ID∗S is sub-
mitted to H1 at some point and that any query involving an identity ID comes after a H1 Queries on
ID. To maintain consistency between queries made by AII , C keeps the lists: Li for i = 1, 2, 3 and
Lpk as in the proof of Lemma 1. C randomly picks s ∈R Z

∗
p as the master-key, computes Ppub = sQ.

and sends < G1,G2,GT , e, p, P,Q, g, Ppub, ψ > and the master-key s to AII . Then, C randomly picks
µ ∈R {1, 2, · · · , q1} and answers various oracle queries as in the proof of Lemma 2.

Eventually, AI outputs a valid ciphertext σ = (c, u, v,w) from ID∗S to ID∗R. If ID∗S , IDµ, C aborts.
Otherwise, having the knowledge of skID∗R , C computes h2 = H2(m∗, u, e(dID∗R , u), xID∗Ru, pkID∗

S
, pkID∗R ),

where m∗ = Unsigncrypt(ID∗S, pkID∗
S
, skID∗R , σ) (For simplicity, we denote σ = (c, u, v,w, h2) as AI’s

outputs). Then, using the oracle replay technique [19], C generates one more valid ciphertext from
σ = (c, u, v,w, h2) which is named as σ′ = (c, u, v′,w′, h′2). This is achieved by running the turing
machine again with the same random tape but with the different hash value.

Since σ = (c, u, v,w, h2) and σ′ = (c, u, v′,w′, h′2) are both valid ciphertext for the same message m∗

and randomness r1, we obtain the relations

w′TID∗
S
− h′2 pkID∗

S
= r1TID∗

S
= wTID∗

S
− h2 pkID∗

S
.

Then, we have

(w′ − w)TID∗
S
= (h′2 − h2)pkID∗

S
,

(h′2 − h2)−1(w′ − w)TID∗
S
= αTID∗

S
.

Hence, C can compute α = (h′2 − h2)−1(w′ − w) as the solution of DLP.

In an analysis of C’s advantage, we note that it only fails because one of the following independent
events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Private Key Extraction query is made on IDµ.
E3 : C fails in using the oracle replay technique [19] to generate one more valid ciphertext.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already observed that
Pr[¬E3] ≥ 1/9 [19]. We obtain the announced bound by noting that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥ 1
9q1

.

From the proof of Lemma 12 in [19], we know that the total running time T ′ of solving the DLP
with probability ϵ′ ≥ 1

9q1
is bound by 23q2

T+O(q1+qs)Tmult+O(qun)Texp+O(qs+q2qun)Tp

ϵ(1−qun/2k) , as desired. Thus, this
completes the proof.

5.2 Efficiency

There are almost three CLSC schemes in the literature [3], [23] and [17]. And the CLSC scheme
proposed in [23] is insecure [20]. We now compare our CLSC scheme with the scheme proposed in [3],
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[23] and [17] from the aspect of computational cost in Table 1. In Table 1 we use Hash, Mult, Exp, and
Paring as abbreviations for hash operations, point multiplications in G1 or G2, exponentiations in GT

and pairing computations respectively.

Table 1: Comparison of the CLSC Schemes

Schemes Hash Mult Exp Paring

Barbosa-Farshim [3] 6 5 1 6

Wu-Chen [23] 3 3 8 4

Liu-Hu-Zhang-Ma [17] 2 3 1 5

Our Scheme 4 7 2 2

According to the result in [4, 7], the pairing operation is several times more expensive than the
multiplication in G1 and G2 and exponentiation in GT . Hence reducing the number of pairing operations
is critical. As shown in Table 1, our CLSC scheme only requires two pairing operations in signcrypt and
unsigncrypt phases. Above all, our scheme is more efficient than all the schemes available.

6 Conclusion

Certificateless public key cryptography is receiving significant attention because it is a new paradigm
that simplifies the traditional PKC and solves the inherent key escrow problem suffered by ID-PKC.
Certificateless signcryption is one of the most important security primitives in CL-PKC. In this paper,
we proposed a new efficient certificateless signcryption scheme based on bilinear pairing, which requires
only two pairing operations in the signcrypt and unsigncrypt phases. The security of our scheme is based
on the hardness assumptions of DLP, CDHP, q-SDHP and q-BDHIP.
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