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Abstract. Cloud Computing is the long dreamed vision of computing as a utility, where
users can remotely store their data into the cloud so as to enjoy the on-demand high quality
applications and services from a shared pool of configurable computing resources. By data
outsourcing, users can be relieved from the burden of local data storage and maintenance.
However, the fact that users no longer have physical possession of the possibly large size of
outsourced data makes the data integrity protection in Cloud Computing a very challenging
and potentially formidable task, especially for users with constrained computing resources
and capabilities. Thus, enabling public auditability for cloud data storage security is of
critical importance so that users can resort to an external audit party to check the integrity
of outsourced data when needed. To securely introduce an effective third party auditor
(TPA), the following two fundamental requirements have to be met: 1) TPA should be
able to efficiently audit the cloud data storage without demanding the local copy of data,
and introduce no additional on-line burden to the cloud user; 2) The third party auditing
process should bring in no new vulnerabilities towards user data privacy. In this paper,
we utilize the public key based homomorphic authenticator and uniquely integrate it with
random mask technique to achieve a privacy-preserving public auditing system for cloud
data storage security while keeping all above requirements in mind. To support efficient
handling of multiple auditing tasks, we further explore the technique of bilinear aggregate
signature to extend our main result into a multi-user setting, where TPA can perform
multiple auditing tasks simultaneously. Extensive security and performance analysis shows
the proposed schemes are provably secure and highly efficient.

1 Introduction

Cloud Computing has been envisioned as the next-generation architecture of IT enterprise, due
to its long list of unprecedented advantages in the IT history: on-demand self-service, ubiquitous
network access, location independent resource pooling, rapid resource elasticity, usage-based pric-
ing and transference of risk [1]. As a disruptive technology with profound implications, Cloud
Computing is transforming the very nature of how businesses use information technology. One
fundamental aspect of this paradigm shifting is that data is being centralized or outsourced into
the Cloud. From users’ perspective, including both individuals and IT enterprises, storing data
remotely into the cloud in a flexible on-demand manner brings appealing benefits: relief of the
burden for storage management, universal data access with independent geographical locations,
and avoidance of capital expenditure on hardware, software, and personnel maintenances, etc [2].

While these advantages of using clouds are unarguable, due to the opaqueness of the Cloud—as
separate administrative entities, the internal operation details of cloud service providers (CSP)
may not be known by cloud users—data outsourcing is also relinquishing user’s ultimate control
over the fate of their data. As a result, the correctness of the data in the cloud is being put at
risk due to the following reasons. First of all, although the infrastructures under the cloud are
much more powerful and reliable than personal computing devices, they are still facing the broad
range of both internal and external threats for data integrity. Examples of outages and security
breaches of noteworthy cloud services appear from time to time [3–6]. Secondly, for the benefits
of their own, there do exist various motivations for cloud service providers to behave unfaithfully
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towards the cloud users regarding the status of their outsourced data. Examples include cloud
service providers, for monetary reasons, reclaiming storage by discarding data that has not been
or is rarely accessed, or even hiding data loss incidents so as to maintain a reputation [7–9].
In short, although outsourcing data into the cloud is economically attractive for the cost and
complexity of long-term large-scale data storage, it does not offer any guarantee on data integrity
and availability. This problem, if not properly addressed, may impede the successful deployment
of the cloud architecture.

As users no longer physically possess the storage of their data, traditional cryptographic prim-
itives for the purpose of data security protection can not be directly adopted. Thus, how to effi-
ciently verify the correctness of outsourced cloud data without the local copy of data files becomes
a big challenge for data storage security in Cloud Computing. Note that simply downloading the
data for its integrity verification is not a practical solution due to the expensiveness in I/O cost
and transmitting the file across the network. Besides, it is often insufficient to detect the data
corruption when accessing the data, as it might be too late for recover the data loss or damage.
Considering the large size of the outsourced data and the user’s constrained resource capability,
the ability to audit the correctness of the data in a cloud environment can be formidable and
expensive for the cloud users [9,10]. Therefore, to fully ensure the data security and save the cloud
users’ computation resources, it is of critical importance to enable public auditability for cloud
data storage so that the users may resort to a third party auditor (TPA), who has expertise and
capabilities that the users do not, to audit the outsourced data when needed. Based on the audit
result, TPA could release an audit report, which would not only help users to evaluate the risk
of their subscribed cloud data services, but also be beneficial for the cloud service provider to
improve their cloud based service platform [8]. In a word, enabling public risk auditing protocols
will play an important role for this nascent cloud economy to become fully established, where
users will need ways to assess risk and gain trust in Cloud.

Recently, the notion of public auditability has been proposed in the context of ensuring remotely
stored data integrity under different systems and security models [7, 9, 11, 12]. Public auditability
allows an external party, in addition to the user himself, to verify the correctness of remotely
stored data. However, most of these schemes [7, 9, 11] do not support the privacy protection of
users’ data against external auditors, i.e., they may potentially reveal user data information to the
auditors, as will be discussed in Section 3.3. This drawback greatly affects the security of these
protocols in Cloud Computing. From the perspective of protecting data privacy, the users, who
own the data and rely on TPA just for the storage security of their data, do not want this auditing
process introducing new vulnerabilities of unauthorized information leakage towards their data
security [13]. Moreover, there are legal regulations, such as the US Health Insurance Portability
and Accountability Act (HIPAA) [14], further demanding the outsourced data not to be leaked to
external parties [8]. Exploiting data encryption before outsourcing [12] is one way to mitigate this
privacy concern, but it is only complementary to the privacy-preserving public auditing scheme
to be proposed in this paper. Without a properly designed auditing protocol, encryption itself can
not prevent data from “flowing away” towards external parties during the auditing process. Thus,
it does not completely solve the problem of protecting data privacy but just reduces it to the one
of managing the encryption keys. Unauthorized data leakage still remains a problem due to the
potential exposure of encryption keys.

Therefore, how to enable a privacy-preserving third-party auditing protocol, independent to
data encryption, is the problem we are going to tackle in this paper. Our work is among the first
few ones to support privacy-preserving public auditing in Cloud Computing, with a focus on data
storage. Besides, with the prevalence of Cloud Computing, a foreseeable increase of auditing tasks
from different users may be delegated to TPA. As the individual auditing of these growing tasks
can be tedious and cumbersome, a natural demand is then how to enable TPA to efficiently perform
the multiple auditing tasks in a batch manner, i.e., simultaneously. To address these problems,
our work utilizes the technique of public key based homomorphic authenticator [7, 9, 11], which
enables TPA to perform the auditing without demanding the local copy of data and thus drastically
reduces the communication and computation overhead as compared to the straightforward data
auditing approaches. By integrating the homomorphic authenticator with random mask technique,
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our protocol guarantees that TPA could not learn any knowledge about the data content stored in
the cloud server during the efficient auditing process. The aggregation and algebraic properties of
the authenticator further benefit our design for the batch auditing. Specifically, our contribution
in this work can be summarized as the following three aspects:

1) We motivate the public auditing system of data storage security in Cloud Computing and
provide a privacy-preserving auditing protocol, i.e., our scheme supports an external auditor to
audit user’s outsourced data in the cloud without learning knowledge on the data content.

2) To the best of our knowledge, our scheme is the first to support scalable and efficient public
auditing in the Cloud Computing. In particular, our scheme achieves batch auditing where multiple
delegated auditing tasks from different users can be performed simultaneously by the TPA.

3) We prove the security and justify the performance of our proposed schemes through concrete
experiments and comparisons with the state-of-the-art.

The rest of the paper is organized as follows. Section II introduces the system and threat
model, our design goals, notations and preliminaries. Then we provide the detailed description
of our scheme in Section III. Section IV gives the security analysis and performance evaluation,
followed by Section V which overviews the related work. Finally, Section VI gives the concluding
remark of the whole paper.

2 Problem Statement

2.1 The System and Threat Model

We consider a cloud data storage service involving three different entities, as illustrated in Fig.
1: the cloud user (U), who has large amount of data files to be stored in the cloud; the cloud
server (CS), which is managed by cloud service provider (CSP) to provide data storage service
and has significant storage space and computation resources (we will not differentiate CS and CSP
hereafter.); the third party auditor (TPA), who has expertise and capabilities that cloud users do
not have and is trusted to assess the cloud storage service security on behalf of the user upon
request.

Users rely on the CS for cloud data storage and maintenance. They may also dynamically
interact with the CS to access and update their stored data for various application purposes.
The users may resort to TPA for ensuring the storage security of their outsourced data, while
hoping to keep their data private from TPA. We consider the existence of a semi-trusted CS in the
sense that in most of time it behaves properly and does not deviate from the prescribed protocol
execution. While providing the cloud data storage based services, for their own benefits the CS
might neglect to keep or deliberately delete rarely accessed data files which belong to ordinary
cloud users. Moreover, the CS may decide to hide the data corruptions caused by server hacks or
Byzantine failures to maintain reputation. We assume the TPA, who is in the business of auditing,
is reliable and independent, and thus has no incentive to collude with either the CS or the users
during the auditing process. TPA should be able to efficiently audit the cloud data storage without
local copy of data and without bringing in additional on-line burden to cloud users. However, any
possible leakage of user’s outsourced data towards TPA through the auditing protocol should be
prohibited.

Note that to achieve the audit delegation and authorize CS to respond to TPA’s audits, the
user can sign a certificate granting audit rights to the TPA’s public key, and all audits from the
TPA are authenticated against such a certificate. These authentication handshakes are omitted in
the following presentation.

2.2 Design Goals

To enable privacy-preserving public auditing for cloud data storage under the aforementioned
model, our protocol design should achieve the following security and performance guarantee: 1)
Public auditability: to allow TPA to verify the correctness of the cloud data on demand without
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Fig. 1: The architecture of cloud data storage service

retrieving a copy of the whole data or introducing additional on-line burden to the cloud users; 2)
Storage correctness: to ensure that there exists no cheating cloud server that can pass the audit
from TPA without indeed storing users’ data intact; 3) Privacy-preserving: to ensure that there
exists no way for TPA to derive users’ data content from the information collected during the
auditing process; 4) Batch auditing: to enable TPA with secure and efficient auditing capability
to cope with multiple auditing delegations from possibly large number of different users simul-
taneously; 5) Lightweight: to allow TPA to perform auditing with minimum communication and
computation overhead.

2.3 Notation and Preliminaries

– F – the data file to be outsourced, denoted as a sequence of n blocks m1, . . . , mn ∈ Zp for
some large prime p.

– fkey(·) – pseudorandom function (PRF), defined as: {0, 1}∗ × key → Zp.
– πkey(·) – pseudorandom permutation (PRP), defined as: {0, 1}log2

(n) × key → {0, 1}log2
(n).

– MACkey(·) – message authentication code (MAC) function, defined as: {0, 1}∗×key→ {0, 1}l.
– H(·), h(·) – map-to-point hash functions, defined as: {0, 1}∗ → G, where G is some group.

We now introduce some necessary cryptographic background for our proposed scheme.
Bilinear Map Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Let g1 and
g2 be generators of G1 and G2, respectively. A bilinear map is a map e : G1 × G2 → GT with
the following properties [15, 16]: 1) Computable: there exists an efficiently computable algorithm
for computing e; 2) Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab; 3)
Non-degenerate: e(g1, g2) 6= 1; 4) for any u1, u2 ∈ G1, v ∈ G2, e(u1u2, v) = e(u1, v) · e(u2, v).

3 The Proposed Schemes

In the introduction we motivated the public auditability with achieving economies of scale for
cloud computing. This section presents our public auditing scheme for cloud data storage security.
We start from the overview of our public auditing system and discuss two straightforward schemes
and their demerits. Then we present our main result for privacy-preserving public auditing to
achieve the aforementioned design goals. We also show how to extent our main scheme to support
batch auditing for TPA upon delegations from multi-users. Finally, we discuss how to adapt our
main result to support data dynamics.

3.1 Definitions and Framework of Public Auditing System

We follow the similar definition of previously proposed schemes in the context of remote data
integrity checking [7, 11, 12] and adapt the framework for our privacy-preserving public auditing
system.
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A public auditing scheme consists of four algorithms (KeyGen, SigGen, GenProof, VerifyProof).
KeyGen is a key generation algorithm that is run by the user to setup the scheme. SigGen is used
by the user to generate verification metadata, which may consist of MAC, signatures, or other
related information that will be used for auditing. GenProof is run by the cloud server to generate
a proof of data storage correctness, while VerifyProof is run by the TPA to audit the proof from
the cloud server.

Our public auditing system can be constructed from the above auditing scheme in two phases,
Setup and Audit:

– Setup: The user initializes the public and secret parameters of the system by executing KeyGen,
and pre-processes the data file F by using SigGen to generate the verification metadata. The
user then stores the data file F at the cloud server, deletes its local copy, and publishes the
verification metadata to TPA for later audit. As part of pre-processing, the user may alter the
data file F by expanding it or including additional metadata to be stored at server.

– Audit: The TPA issues an audit message or challenge to the cloud server to make sure that
the cloud server has retained the data file F properly at the time of the audit. The cloud
server will derive a response message from a function of the stored data file F by executing
GenProof. Using the verification metadata, the TPA verifies the response via VerifyProof.

Note that in our design, we do not assume any additional property on the data file, and thus
regard error-correcting codes as orthogonal to our system. If the user wants to have more error-
resiliency, he/she can first redundantly encode the data file and then provide us with the data file
that has error-correcting codes integrated.

3.2 The Basic Schemes

Before giving our main result, we first start with two warmup schemes. The first one does not
ensure privacy-preserving guarantee and is not as lightweight as we would like. The second one
overcomes the first one, but suffers from other undesirable systematic demerits for public auditing:
bounded usage and auditor statefulness, which may pose additional on-line burden to users as will
be elaborated shortly. We believe the analysis of these basic schemes will lead us to our main
result, which overcomes all these drawbacks.
Basic Scheme I The cloud user pre-computes MACs σi = MACsk(i||mi) of each block mi

(i ∈ {1, . . . , n}), sends both the data file F and the MACs {σi}1≤i≤n onto the cloud server, and
releases the secret key sk to TPA. During the Audit phase, the TPA requests from the cloud server
a number of randomly selected blocks and their corresponding MACs to verify the correctness of
the data file. The insight behind this approach is that auditing most of the file is much easier
than the whole of it. However, this simple solution suffers from the following severe drawbacks:
1) The audit from TPA demands retrieval of users’ data, which should be prohibitive because
it violates the privacy-preserving guarantee; 2) Its communication and computation complexity
are both linear with respect to the sampled data size, which may result in large communication
overhead and time delay, especially when the bandwidth available between the TPA and the cloud
server is limited.
Basic Scheme II To avoid retrieving data from the cloud server, one may improve the above so-
lution as follows: Before data outsourcing, the cloud user chooses s random message authentication
code keys {skτ}1≤τ≤s, pre-computes s MACs, {MACskτ

(F )}1≤τ≤s for the whole data file F , and
publishes these verification metadata to TPA. The TPA can each time reveal a secret key skτ to
the cloud server and ask for a fresh keyed MAC for comparison, thus achieving privacy-preserving
auditing. However, in this method: 1) the number of times a particular data file can be audited
is limited by the number of secret keys that must be a fixed priori. Once all possible secret keys
are exhausted, cloud user then has to retrieve data from the server in order to re-compute and
re-publish new MACs to TPA. 2) The TPA has to maintain and update state between audits,
i.e., keep a track on the possessed MAC keys. Considering the potentially large number of audit
delegations from multiple users, maintaining such states for TPA can be difficult and error prone.
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Note that another common drawback of the above basic schemes is that they can only support
the case of static data, and none of them can deal with data dynamics. For the reason of brevity
and clarity, our main result will focus on the static data, too. In Section 3.5, we will show how to
adapt our main result to support dynamic data update.

3.3 The Privacy-Preserving Public Auditing Scheme

To effectively support public auditability without having to retrieve the data blocks themselves,
we resort to the homomorphic authenticator technique [7,9,11]. Homomorphic authenticators are
unforgeable verification metadata generated from individual data blocks, which can be securely
aggregated in such a way to assure an auditor that a linear combination of data blocks is correctly
computed by verifying only the aggregated authenticator. However, the direct adoption of these
techniques is not suitable for our purposes, since the linear combination of blocks may potentially
reveal user data information, thus violating the privacy-preserving guarantee. Specifically, if enough
number of the linear combinations of the same blocks are collected, the TPA can simply derive
the user’s data content by solving a system of linear equations.

Overview To achieve privacy-preserving public auditing, we propose to uniquely integrate the
homomorphic authenticator with random mask technique. In our protocol, the linear combination
of sampled blocks in the server’s response is masked with randomness generated by a pseudo
random function (PRF). With random mask, the TPA no longer has all the necessary information
to build up a correct group of linear equations and therefore cannot derive the user’s data content,
no matter how many linear combinations of the same set of file blocks can be collected. Meanwhile,
due to the algebraic property of the homomorphic authenticator, the correctness validation of the
block-authenticator pairs will not be affected by the randomness generated from a PRF, which will
be shown shortly. Note that in our design, we use public key based homomorphic authenticator,
specifically, the BLS based signature [11], to equip the auditing protocol with public auditability.
Its flexibility in signature aggregation will further benefit us for the multi-task auditing.

Scheme Details Let G1, G2 and GT be multiplicative cyclic groups of prime order p, and e :
G1 × G2 → GT be a bilinear map as introduced in preliminaries. Let g be the generator of G2.
H(·) is a secure map-to-point hash function: {0, 1}∗ → G1, which maps strings uniformly to G1.
Another hash function h(·) : GT → Zp maps group element of GT uniformly to Zp. The proposed
scheme is as follows:

Setup Phase:

1) The cloud user runs KeyGen to generate the system’s public and secret parameters. He
chooses a random x← Zp, a random element u← G1, and computes v ← gx. The secret parameter
is sk = (x) and the public parameters are pk = (v, g, u, e(u, v)). Given data file F = (m1, . . . , mn),
the user runs SigGen to compute signature σi for each block mi: σi ← (H(i) · umi)x ∈ G1

(i = 1, . . . , n). Denote the set of signatures by Φ = {σi}1≤i≤n. The user then sends {F, Φ} to the
server and deletes them from its local storage.

Audit Phase:

2) During the auditing process, to generate the audit message “chal”, the TPA picks a random
c-element subset I = {s1, . . . , sc} of set [1, n], where sq = πkprp

(q) for 1 ≤ q ≤ c and kprp is
the randomly chosen permutation key by TPA for each auditing. We assume that s1 ≤ · · · ≤ sc.
For each element i ∈ I, the TPA also chooses a random value νi (of a relative small bit length
compared to |p|). The message “chal” specifies the positions of the blocks that are required to be
checked in this Audit phase. The TPA sends the chal = {(i, νi)}i∈I to the server.

3) Upon receiving challenge chal = {(i, νi)}i∈I , the server runs GenProof to generate a response
proof of data storage correctness. Specifically, the server chooses a random element r ← Zp via
r = fkprf

(chal), where kprf is the randomly chosen PRF key by server for each auditing, and
calculates R = e(u, v)r. Let µ′ denote the linear combination of sampled blocks specified in chal:
µ′ =

∑
i∈I νimi. To blind µ′ with r, the server computes: µ = r + γµ′ mod p, where γ = h(R).

Meanwhile, the server also calculates an aggregated signature σ =
∏

i∈I σνi

i ∈ G1. It then sends
{µ, σ, R} as the response proof of storage correctness to the TPA. With the response from the
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server, the TPA runs VerifyProof to validate the response by first computing γ = h(R) and then
checking the verification equation

R · e(σγ , g)
?
= e((

sc∏

i=s1

H(i)νi)γ · uµ, v) (1)

The correctness of the above verification equation can be elaborated as follows:

R · e(σγ , g) = e(u, v)r · e((

sc∏

i=s1

(H(i) · umi)x·νi)γ , g)

= e(ur, v) · e((

sc∏

i=s1

(H(i)νi · uνimi)γ , g)x

= e(ur, v) · e((

sc∏

i=s1

H(i)νi)γ · uµ′γ , v)

= e((

sc∏

i=s1

H(i)νi)γ · uµ′γ+r, v)

= e((

sc∏

i=s1

H(i)νi)γ · uµ, v)

It is clear that the random mask r and related R = e(u, v)r has no effect on the validity of the
checking result. The security of this protocol will be proved in Section 4.

Discussion As analyzed at the beginning of this section, this approach ensures the privacy of
user data content during the auditing process. Meanwhile, the homomorphic authenticator helps
achieve the constant communication overhead for server’s response during the audit: the size of
{σ, µ, R} is fixed and has nothing to do with the number of sampled blocks c. Note that there is
no secret keying material or states for TPA to keep or maintain between audits, and the auditing
protocol does not pose any potential on-line burden toward users. Since the TPA could “re-
generate” the random c-element subset I = {s1, . . . , sc} of set [1, n], where sq = πkprp

(q), for
1 ≤ q ≤ c, unbounded usage is also achieved.

Previous work [7,9] showed that if the server is missing a fraction of the data, then the number
of blocks that needs to be checked in order to detect server misbehavior with high probability is
in the order of O(1). For example, if the server is missing 1% of the data F , the TPA only needs
to audit for c = 460 or 300 randomly chosen blocks of F so as to detect this misbehavior with
probability larger than 99% or 95%, respectively. Given the huge volume of data outsourced in
the cloud, checking a portion of the data file is more affordable and practical for both TPA and
cloud server than checking all the data, as long as the sampling strategies provides high probability
assurance. In Section 4, we will present the experiment result based on these sampling strategies.

3.4 Support for Batch Auditing

With the establishment of privacy-preserving public auditing in Cloud Computing, TPA may
concurrently handle multiple auditing delegations upon different users’ requests. The individual
auditing of these tasks for TPA can be tedious and very inefficient. Given K auditing delegations
on K distinct data files from K different users, it is more advantageous for TPA to batch these
multiple tasks together and audit at one time. Keeping this natural demand in mind, we propose
to explore the technique of bilinear aggregate signature [15], which supports the aggregation of
multiple signatures by distinct signers on distinct messages into a single signature and thus provides
efficient verification for the authenticity of all messages. Using this signature aggregation technique
and bilinear property, we can now aggregate K verification equations (for K auditing tasks) into
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a single one, as shown in equation 2, so that the simultaneous auditing of multiple tasks can be
achieved.

The details of extending our main result to this multi-user setting is described as follows:
Assume there are K users in the system, and each user k has a data file Fk = (mk,1, . . . , mk,n) to
be outsourced to the cloud server, where k ∈ {1, . . . , K}. For a particular user k, denote his secret
key as xk ← Zp, and the corresponding public parameter as (vk, g, uk, e(uk, vk)) where vk = gxk . In
the Setup phase, each user k runs SigGen and computes signature σk,i ← [H(k||i) · u

mk,i

k ]xk ∈ G1

for block mk,i (i ∈ {1, . . . , n}). In the Audit phase, the TPA sends the audit challenge chal =
{(i, νi)}i∈I to the server for auditing data files of all K users. Upon receiving chal, for each user
k (k ∈ {1, . . . , K}), the server randomly picks rk ∈ Zp and computes

µk = γk

sc∑

i=s1

νimk,i + rk mod p and σk =

sc∏

i=s1

σνi

k,i,

where γk = h(Rk) = h(e(uk, vk)rk). The server then responses the TPA with {σk, µk, Rk}1≤k≤K .
Similar as the single user case, using the properties of the bilinear map, the TPA can first compute
γk = h(Rk) for 1 ≤ k ≤ K and then check if the following equation holds:

R1 ·R2 · · ·RK · e(

K∏

k=1

σk
γk , g)

?
=

K∏

k=1

e((

sc∏

i=s1

H(k||i)νi)γk · uµk

k , vk) (2)

The left-hand side (LHS) of the equation expands as:

LHS = R1 ·R2 · · ·RK ·

K∏

k=1

e(σk
γk , g)

=

K∏

k=1

Rk · e(σk
γk , g)

=

K∏

k=1

e((

sc∏

i=s1

H(k||i)νi)γk · uµk

k , vk)

which is the right hand side, as required. Note that the last equality follows from equation 1.
Discussion As shown in equation 2, batch auditing not only allows TPA to perform the mul-
tiple auditing tasks simultaneously, but also greatly reduces the computation cost on the TPA
side. This is because aggregating K verification equations into one helps reduce the number of
expensive pairing operations from 2K, as required in the individual auditing, to K + 1. Thus, a
considerable amount of auditing time is expected to be saved. Note that the verification equation
2 only holds when all the responses are valid, and fails with high probability when there is even
one single invalid response in the batch auditing. In many situations, a response collection may
contain invalid responses, especially {µk}1≤k≤K , caused by accidental data corruption, or possibly
malicious activity by a cloud server. The ratio of invalid responses to the valid could be quite
small, and yet a standard batch auditor will reject the entire collection. To further sort out these
invalid responses in the batch auditing, we can utilize a recursive divide-and-conquer approach
(binary search), as suggested by [17]. Specifically, if the batch auditing fails, we can simply divide
the collection of responses into two halves, and recurse the auditing on halves via equation 2.
In Section 4.2, we show through carefully designed experiment that using this recursive binary
search approach, even if up to 18% of responses are invalid, batch auditing still performs faster
than individual verification.

3.5 Support for Data Dynamics

In Cloud Computing, outsourced data might not only be accessed but also updated frequently
by users for various application purposes [9,18,19]. Hence, supporting data dynamics for privacy-
preserving public risk auditing is also of paramount importance. Now we show how our main
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scheme can be adapted to build upon the existing work [9] to support data dynamics, including
block level operations of modification, deletion and insertion.

In [9], data dynamics support is achieved by replacing the index information i with mi in the
computation of block signatures and using the classic data structure-Merkle hash tree (MHT) [20]
for the underlying block sequence enforcement. As a result, the signature for each block is changed
to σi = (H(mi) · u

mi)x. We can adopt this technique in our design to achieve privacy-preserving
public risk auditing with support of data dynamics. Specifically, in the Setup phase, the user has
to generate and send the tree root TRMHT to TPA as additional metadata, where the leaf nodes
of MHT are values of H(mi). In the Audit phase, besides {µ, σ, R}, the server’s response should
also include {H(mi)}i∈I and their corresponding auxiliary authentication information (AAI) in
the MHT. Upon receiving the response, TPA should first use TRMHT and the AAI to authenticate
{H(mi)}i∈I computed by the server. Once {H(mi)}i∈I are authenticated, TPA can then perform
the auditing on {µ, σ, R, {H(mi)}i∈I} via equation 1, where

∏
s1≤i≤sc

H(i)νi is now replaced by∏
s1≤i≤sc

H(mi)
νi . Note that data privacy is still preserved due to the random mask R. The details

of handling dynamic operations are similar to [9] and thus omitted.

4 Security Analysis and Performance Evaluation

4.1 Security Proofs

We evaluate the security of the proposed scheme by analyzing its fulfillment of the security guar-
antee described in Section 2, namely, the storage correctness and privacy-preserving. We start
from the single user case, where our main result is originated. Then we show how to extend the
security guarantee to a multi-user setting, where batch auditing for TPA is enabled. All proofs
are derived on the probabilistic base, i.e., with high probability assurance, which we omit writing
explicitly.

Storage Correctness Guarantee We need to prove that the cloud server can not generate valid
response toward TPA without faithfully storing the data, as captured by Theorem 1.

Theorem 1. If the cloud server passes the Audit phase, then it must indeed possess the specified
data intact as it is.

Proof (Proof Sketch). The proof consists of three steps. First, we show that there exists no ma-
licious server that can forge a valid response {σ, µ, R} to pass the verification equation 1. The
correctness of this statement follows from the Theorem 4.2 proposed in [11]. Note that the value
R in our protocol, which enables the privacy-preserving guarantee, will not affect the validity of
the equation, due to the circular relationship between R and γ in γ = h(R) and the verification
equation.

Next, we show that if the response {σ, µ, R} is valid, where µ = γµ′ + r and γ = h(R) =
h(e(u, v)r), then the underlying µ′ must be valid too. This can be derived immediately from the
collision-free property of hash function h(·) and determinism of discrete exponentiation.

Finally, similar to the argument in [11], we show that the validity of µ′ implies the correctness
of {mi}i∈I where µ′ =

∑
i∈I νimi. Here we utilize the small exponent (SE) test technique of batch

verification in [21]. Because {νi} are picked up randomly by the TPA in each Audit phase, {νi} can
be viewed similarly as the random chosen exponents in the SE test [21]. Therefore, the correctness
of individual sampled blocks is ensured. All above sums up to the storage correctness guarantee.

Privacy Preserving Guarantee We want to make sure that TPA can not derive users’ data
content from the information collected during auditing process. This is equivalent to prove the
Theorem 2. Note that if µ′ can be derived by TPA, then {mi}i∈I can be easily obtained by solving
a group of linear equations when enough combinations of the same blocks are collected.

Theorem 2. From the server’s response {σ, µ, R}, no information of µ′ will be leaked to TPA.
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Proof (Proof Sketch). Again, we prove the Theorem 2 in three steps. First, we show that no
information on µ′ can be learned from µ. This is because µ is blinded by r as µ = γµ′ + r and
R = e(u, v)r, where r is chosen randomly by cloud server and is unknown to TPA. Note that even
with R, due to the hardness of discrete-log assumption, the value r is still hidden against TPA.
Thus, privacy of µ′ is guaranteed from µ.

Second, we show that no information on µ′ can be learned from σ, where

σ =
∏

i∈I

σνi

i =
∏

i∈I

(H(i) · umi)x·νi

= [
∏

i∈I

H(i)νi · uµ′

]x = [
∏

i∈I

H(i)νi ]x · [(uµ′

)x].

This can be analyzed as follows: (uµ′

)x is blinded by [
∏

i∈I H(i)νi ]x. However, to compute [
∏

i∈I H(i)νi ]x

from [
∏

i∈I H(i)νi ] and gx, which is the only information TPA can utilize, is a computational Diffie-

Hellman problem, which can be stated as: given g, ga, gb, compute gab. This problem is hard for
unknown a, b ∈ Zp. Therefore, on the basis of computational Diffie-Hellman assumption, TPA can

not derive the value of (uµ′

)x, let alone µ′.
Finally, all that remains is to prove from {σ, µ, R}, still no information on µ′ can be obtained

by TPA. Recall that r is a random private value chosen by the server and µ = γµ′ + r, where γ =
h(e(u, v)r). Following the same technique of Schnorr signature [22], our auditing protocol between
TPA and cloud server can be regarded as a provably secure honest zero knowledge identification
scheme [23], by viewing µ′ as a secret key and γ as a challenge value, which implies no information
on µ′ can be leaked. This completes the proof of Theorem 2.

Security Guarantee for Batch Auditing Now we show that extending our main result to a
multi-user setting will not affect the aforementioned security insurance, as shown in Theorem 3:

Theorem 3. Our batch auditing protocol achieves the same storage correctness and privacy pre-
serving guarantee as in the single-user case.

Proof (Proof Sketch). We only prove the storage correctness guarantee, as the privacy-preserving
guarantee in the multi-user setting is similar to that of Theorem 2, and thus omitted here. The
proposed batch auditing protocol is built upon the aggregate signature scheme proposed in [15].
According to the security strength of aggregate signature [15], in our multi-user setting, there exists
no malicious cloud servers that can forge valid µ1, . . . , µk in the responses to pass the verification
equation 2. Actually, the equation 2 functions as a kind of screening test as proposed in [21].
While the screening test may not guarantee the validity of each individual σk, it does ensure the
authenticity of µk in the batch auditing protocol, which is adequate for the rationale in our case.
Once the validity of µ1, . . . , µk is guaranteed, from the proof of Theorem 1, the storage correctness
guarantee in the multi-user setting is achieved.

Table 1: Notation summary of cryptographic operations.

Hasht
G hash t values into the group G.

Addt
G t additions in group G.

Multt
G t multiplications in group G.

Expt
G(ℓ) t exponentiations gai , where g ∈ G, |ai| = ℓ.

m-MultExpt
G(ℓ) t m-term exponentiations

∏m

i=1
gai .

Pairt
G,H t pairings e(gi, hi), where gi ∈ G, hi ∈ H.

m-MultPairt
G,H t m-term pairings

∏m

i=1
e(gi, hi).
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Table 2: Performance comparison under different number of sampled blocks c for high assurance auditing.

Our Scheme [11]

Sampled blocks c 460 300 460 300

Sever compt. time (ms) 411.00 270.20 407.66 265.87

TPA compt. time (ms) 507.79 476.81 504.25 472.55

Comm. cost (Byte) 160 40 160 40

4.2 Performance Analysis

We now assess the performance of the proposed privacy-preserving public auditing scheme. We will
focus on the extra cost introduced by the privacy-preserving guarantee and the efficiency of the
proposed batch auditing technique. The experiment is conducted using C on a Linux system with
an Intel Core 2 processor running at 1.86 GHz, 2048 MB of RAM, and a 7200 RPM Western Digital
250 GB Serial ATA drive with an 8 MB buffer. Algorithms use the Pairing-Based Cryptography
(PBC) library version 0.4.18. The elliptic curve utilized in the experiment is a MNT curve, with
base field size of 159 bits and the embedding degree 6. The security level is chosen to be 80 bit,
which means |νi| = 80 and |p| = 160. All experimental results represent the mean of 20 trials.

Cost of Privacy-preserving Guarantee We begin by estimating the cost in terms of basic
cryptographic operations, as notated in Table 1. Suppose there are c random blocks specified in
the chal during the Audit phase. Under this setting, we quantify the extra cost introduced by
the support of privacy-preserving into server computation, auditor computation as well as com-
munication overhead. On the server side, the generated response includes an aggregated signature
σ =

∏
i∈I σνi

i ∈ G1, a random metadata R = e(u, v)
r
∈ GT , and a blinded linear combination of

sampled blocks µ = γ
∑

i∈I νimi + r ∈ Zp, where γ = h(R) ∈ Zp. The corresponding computation

cost is c-MultExp1
G1

(|νi|), Exp1
GT

(|p|), and Hash1
Zp

+ Addc
Zp

+ Multc+1
Zp

, respectively. Compared

to the existing homomorphic authenticator based solution for ensuring remote data integrity [11]3,
the extra cost for protecting the user privacy, resulted from the random mask R, is only a constant:
Exp1

GT
(|p|) + Mult1

Zp
+ Hash1

Zp
+ Add1

Zp
, which has nothing to do with the number of sampled

blocks c. When c is set to be 460 or 300 for high assurance of auditing, as discussed in Section 3.3,
the extra cost for privacy-preserving guarantee on the server side would be negligible against the
total server computation for response generation.

Similarly, on the auditor side, upon receiving the response {σ, R, µ}, the corresponding compu-
tation cost for response validation is Hash1

Zp
+c-MultExp1

G1
(|νi|)+Hashc

G1
+Mult1G1

+Mult1GT
+

Exp3
G1

(|p|) + Pair2
G1,G2

, among which only Hash1
Zp

+ Exp2
G1

(|p|) + Mult1GT
account for the ad-

ditional constant computation cost. For c = 460 or 300, and considering the relatively expensive
pairing operations, this extra cost imposes little overhead on the overall cost of response valida-
tion, and thus can be ignored. For the sake of completeness, Table 2 gives the experiment result on
performance comparison between our scheme and the state-of-the-art [11]. It can be shown that
the performance of our scheme is almost the same as that of [11], even if our scheme supports
privacy-preserving guarantee while [11] does not. Note that in our scheme, the server’s response
{σ, R, µ} contains an additional random element R, which is a group element of GT and has the
size close to 960 bits. This explains the extra communication cost of our scheme opposing to [11].

Batch Auditing Efficiency Discussion in Section 3.4 gives an asymptotic efficiency analysis on
the batch auditing, by considering only total number of expensive pairing operations. However, on
the practical side, there are additional operations required for batching, such as modular exponen-
tiations and multiplications. Meanwhile, the different sampling strategies, i.e., different number

3 We refer readers to [11] for detailed description of homomorphic authenticator based solutions.
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Fig. 2: Comparison on auditing time between batch auditing and individual auditing. Per task auditing
time denotes the total auditing time divided by the number of tasks. For clarity reasons, we omit the
straight curve for individual auditing when c=300.
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Fig. 3: Comparison on auditing time between batch auditing and individual auditing, when α-fraction of
256 responses are invalid. Per task auditing time denotes the total auditing time divided by the number
of tasks.

of sampled blocks c, is also a variable factor that affects the batching efficiency. Thus, whether
the benefits of removing pairings significantly outweighs these additional operations is remained
to be verified. To get a complete view of batching efficiency, we conduct a similar timed batch
auditing test as in [17], where the number of auditing tasks is increased from 1 to approximately
200 with intervals of 8. The performance of the corresponding non-batched (individual) auditing
is provided as a baseline for the measurement. Following the same experimental setting as c = 460
and 300, the average per task auditing time for both batch auditing and the individual auditing is
shown in Fig. 2, where the per task auditing time is computed by dividing total auditing time by
the number of tasks. It can be shown that compared to individual auditing, batch auditing indeed
helps reduce the TPA’s computation cost, as more than 11% and 14% of per-task auditing time
is saved, when c is set to be 460 and 300, respectively.

Sorting out Invalid Responses Now we use experiment to justify the efficiency of our recursive
binary search approach for TPA to sort out the invalid responses when batch auditing fails, as
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discussed in Section 3.4. Note that this experiment is tightly pertained to works by [17,24], which
evaluates the batch verification efficiency of various short signature schemes.

To evaluate the feasibility of the recursive approach, we first generate a collection of 256 valid
responses, which implies the TPA may concurrently handle 256 different auditing delegations.
We then conduct the tests repeatedly while randomly corrupting an α-fraction, ranging from 0
to 18%, by replacing them with random values. The average auditing time per task against the
individual auditing approach is presented in Fig. 3. The result shows that even the number of
invalid responses exceeds 15% of the total batch size, the performance of batch auditing can still
be safely concluded as more preferable than the straightforward individual auditing. Note that
this is consistent with the experiment results derived in [17].

5 Related Work

Ateniese et al. [7] are the first to consider public auditability in their defined “provable data
possession” (PDP) model for ensuring possession of data files on untrusted storages. Their scheme
utilizes the RSA-based homomorphic authenticators for auditing outsourced data and suggests
randomly sampling a few blocks of the file. However, the public auditability in their scheme
demands the linear combination of sampled blocks exposed to external auditor. When used directly,
their protocol is not provably privacy preserving, and thus may leak user data information to the
auditor. Juels et al. [12] describe a “proof of retrievability” (PoR) model, where spot-checking
and error-correcting codes are used to ensure both “possession” and “retrievability” of data files
on remote archive service systems. However, the number of audit challenges a user can perform
is a fixed priori, and public auditability is not supported in their main scheme. Although they
describe a straightforward Merkle-tree construction for public PoRs, this approach only works with
encrypted data. Shacham et al. [11] design an improved PoR scheme built from BLS signatures
with full proofs of security in the security model defined in [12]. Similar to the construction in [7],
they use publicly verifiable homomorphic authenticators that are built from provably secure BLS
signatures. Based on the elegant BLS construction, public retrievability is achieved. Again, their
approach does not support privacy-preserving auditing for the same reason as [7]. Shah et al. [8,13]
propose allowing a TPA to keep online storage honest by first encrypting the data then sending
a number of pre-computed symmetric-keyed hashes over the encrypted data to the auditor. The
auditor verifies both the integrity of the data file and the server’s possession of a previously
committed decryption key. This scheme only works for encrypted files, and it suffers from the
auditor statefulness and bounded usage, which may potentially bring in on-line burden to users
when the keyed hashes are used up.

In other related work, Ateniese et al. [25] propose a partially dynamic version of the prior
PDP scheme that uses only symmetric key cryptography. However, the system imposes a priori
bound on the number of audits and does not support public auditability. In [18], Wang et al.
consider a similar support for partial dynamic data storage in distributed scenario. The proposed
challenge-response protocol can both determine the data correctness and locate possible errors.
In a subsequent work, Wang et al. [9] propose to combine BLS based homomorphic authenticator
with MHT to support both public auditability and fully data dynamics. Almost simultaneously,
Erway et al. [19] developed a skip lists based scheme to enable provable data possession with fully
dynamics support. However, all their protocol requires the linear combination of sampled blocks
just as [7, 11], and thus does not support privacy-preserving auditing on user’s outsourced data.

While all above schemes provide methods for efficient auditing and provable assurance on the
correctness of remotely stored data, none of them meet all the requirements for privacy-preserving
public auditing in Cloud Computing, as supported in our result. More importantly, none of these
schemes consider batch auditing, which will greatly reduce the computation cost on the TPA when
coping with large number of audit delegations.
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6 Conclusion

In this paper, we propose a privacy-preserving public auditing system for data storage security
in Cloud Computing, where TPA can perform the storage auditing without demanding the local
copy of data. We utilize the homomorphic authenticator and random mask technique to guarantee
that TPA would not learn any knowledge about the data content stored on the cloud server during
the efficient auditing process, which not only eliminates the burden of cloud user from the tedious
and possibly expensive auditing task, but also alleviates the users’ fear of their outsourced data
leakage. Considering TPA may concurrently handle multiple audit sessions from different users for
their outsourced data files, we further extend our privacy-preserving public auditing protocol into
a multi-user setting, where TPA can perform the multiple auditing tasks in a batch manner, i.e.,
simultaneously. Extensive security and performance analysis shows that the proposed schemes are
provably secure and highly efficient. We believe all these advantages of the proposed schemes will
shed light on economies of scale for Cloud Computing.
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