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Abstract. In this paper, we investigate the difficulty of the Isomorphism of Polynomials (IP) Problem
as well as one of its variant IP1S. The Isomorphism of Polynomials is a well-known problem studied in
multivariate cryptography. It is related to the hardness of the key recovery of some cryptosystems. The
problem is the following: given two families of multivariate polynomials a and b, find two invertible
linear (or affine) mappings S and T such that b = T ◦a◦S. For IP1S, we suppose that T is the identity.
It is known that the difficulty of such problems depends on the structure of the polynomials (i.e., homo-
geneous, or not) and the nature of the transformations (affine, or linear). Here, we analyze the different
cases and propose improved algorithms. We precisely describe the situation in term of complexity and
sufficient conditions so that the algorithms work. The algorithms presented here combine linear alge-
bra techniques, including the use of differentials, together with Gröbner bases. We show that random
instances of IP1S with quadratic polynomials can be broken in time O

`
n6

´
, where n is the number

of variables, independently of the number of polynomials. For IP1S with cubic polynomials, as well as
for IP, we propose new algorithms of complexity O

`
n6

´
if the polynomials of a are inhomogeneous

and S, T linear. In all the other cases, we propose an algorithm that requires O
`
n6qn

´
computation.

Finally, if a and b have a small number of non-trivial zeros, the complexity solving the IP instance is
reduced to O

`
n6 + qn

´
. This allows to break a public-key authentication scheme based on IP1S, and

to break all the IP challenges proposed by Patarin in 1996 in practical time: the more secure parameters
require less than 6 months of computations on 10 inexpensive GPUs. A consequence of our results is
that HFE can be broken in polynomial time if the secret transforms S and T are linear and if the internal
polynomial is made public and contains linear and constant terms.

1 Introduction

Multivariate cryptography is concerned with the use of multivariate polynomials over finite fields in cryp-
tographic schemes. The use of polynomial systems in cryptography dates back to the mid eighties with the
design of C∗ [34], and many other proposals appeared afterwards [38,39,40,30,45]. The security of multi-
variate schemes is in general related to the difficulty of solving random or structured systems of multivariate
polynomials. This problem has been proved to be NP-complete [25], and it is conjectured [2] that systems
of random polynomials are hard to solve in practice. As usual when a trapdoor must be embedded in a hard
problem, easy instances are transformed into random-looking instances using secret transformations. In
multivariate cryptography, it is common to turn an easily-invertible collection of polynomials a into an ap-
parently random one b. It is then assumed that, being supposedly indistinguishable from random, b should
be hard to solve. The structure-hiding transformation is very often the composition with linear (or affine)
invertible mappings S and T : b = T ◦ a ◦ S. The matrices S and T are generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recovering the secret transformations S and
T given a and b. It is a fundamental problem of multivariate cryptography, since its hardness implies the
hardness of the key-recovery for various multivariate cryptosystems. With the notable exception of the HFE
encryption and signature scheme [36], most of the multivariate schemes that were broken fell victim of a
key-recovery attack, i.e., of a customized IP algorithm. Notorious examples include C∗ [34], the traitor
tracing scheme proposed by Billet and Gilbert [7], the SFLASH signature scheme [39], the square-vinegar
signature scheme [1] and the Square encryption scheme [11]. The hardness of the key-recovery problem
for HFE does not rely on the hardness of IP, since the easily-invertible mapping a is kept secret. One could
however consider a variant of HFE where a is made public; its security would rely directly on the hardness
of IP. In this paper, we do not target a specific cryptosystem nor use the fact that the system a is built in



a special way so that it is efficient to invert. We in fact consider both a and b to be random collections of
polynomials, which is to some extent a worst-case assumption.

An important special case of IP is the IP problem with one secret (IP1S for short). Patarin suggested in
1996 [36] to construct a zero-knowledge public-key authentication scheme relying on the hardness of IP1S,
inspired by the Zero-Knowledge proof system for Graph Isomorphism of [28]. The proposed parameters
lead to small key sizes (for instance to secret and public keys of 256 bits each), as the complexity of the
problem was believed to be exponential. These parameters have not been broken so far. The IP1S problem
is also interesting from a complexity-theoretic point of view: it has been proved [41] that IP1S is Graph
Isomorphism-hard (GI-hard for short). This leads Patarin et al. to claim that IP1S (and a fortiori IP) is
unlikely to be solvable in polynomial time, because no polynomial algorithm is known for GI in spite of
more than forty years of research. On the other hand, GI is not known to be NP-complete. Forging hard
instances of the GI problem is pretty non-trivial, and there are powerful heuristics as well as expected linear
time algorithms for random graphs [21]. This compromises the use of GI as an authentication mechanism,
and was part of the motivation for introducing IP1S as an alternative.

Related Work. As already explained, the IP problem has been introduced by Patarin in [36,37]. In this
section, we summarize existing results on the IP and IP1S problems.

The first algorithm for IP, known as the “To and Fro” technique, is due to Courtois et al. [41]. In its
primitive form, this algorithm assumes the ability to inverse the polynomial systems, and has therefore an
exponential complexity. Moreover, the image of S has to be known on at least one point, and is found via
exhaustive search if no other solution applies. An improved, birthday-based version of this algorithm is
claimed to find a few relations on S in time and space O

(
qn/2

)
.

In [20], Perret and Faugère present a new technique for solving IP when S and T are linear (as opposed
to affine) invertible mappings. The idea is to model the problem as an algebraic system of equations and
solve it by means of Gröbner bases [9,12]. In practice, the technique turns out to be efficient for instances
of IP where the coefficients of all the monomials of all degree are randomly chosen in Fq . For random
instances of IP, the practical complexity of [20] is estimated to be O

(
n9
)
. This complexity corresponds to

the empirical observation that the maximum degree reached during the Gröbner basis computation [17,18]
seems to bounded from above by 3. Note this result no longer holds as soon as the IP instances are “struc-
tured”. Typically, [20] observed that homogeneous instances of IP (in which the polynomials of a and b are
homogeneous) are much harder to solve in practice.

To conclude about the full IP problem, we mention the work of Fouque, Macario-Rat and Stern in [22].
They proposed a dedicated algorithm to solve the IP problem arising in C∗ [34] (and variants). Using a dif-
ferential technique, they mounted an efficient polynomial-time key-recovery against C∗ [34] and SFLASH [39].
In this paper, we will combine ideas from this work, namely the use of differentials, together with Gröbner
bases techniques of [20].

IP1S is a subcase of IP, thus most of the algorithms presented above could be applied to the one secret
variant almost directly. However, several algorithms were developed to exploit the specificities of IP1S. It
was shown in [41] that linear equations on the coefficients of the secret matrix can be obtained in some
cases. Our quadratic IP1S technique is based on an extension of this observation. To our knowledge, the
first algorithm dedicated to IP1S can be found in [26]. We briefly explain the idea in the linear case. The au-
thors of [26] remarked that each row of a matrix solution of IP1S verifies an algebraic system of equations.
They then used an exhaustive search to find the solutions of such system. Soon after, this technique has
been improved by [13] who replaced this exhaustive search by a Gröbner basis computation. The improve-
ment yielded by this replacement is as significant as the gain obtained when comparing Gröbner basis and
exhaustive search for solving random algebraic systems. It is negligible over small field (i.e., typically, F2),
but significant for instances of IP1S over large fields. However, the complexity of those algorithms remains
exponential by nature.

Finally, [42] shows that the affine and linear variants of IP1S are equivalent, i.e., one can without loss
of generality restrict our attention to the linear case. In addition, a new approach for solving IP1S using the
Jacobian matrix was proposed. The algorithm is polynomial when the number u of polynomials in a and b
is equal to the number of variables n. However, when u < n, the complexity of this approach is not well
understood. Moreover, when the number of polynomials is very small, for instance u = 2, this algorithm is
totally inefficient. Whilst the case u = n is the classical setting for IP, it is less interesting for IP1S. Indeed,
the main application of IP1S is the authentication scheme proposed in [41]. The public key being composed
of two sets of u polynomials, it is interesting to keep the number of polynomials as small as possible (1 or



2). For such parameters, the authentication mechanism based on IP1S looks appealing in terms of key size.
In this paper, we will break all the proposed parameters. As a consequence, we believe that this makes the
IP1S authentication scheme much less interesting for practical purposes.

All in all, the existing literature on the IP problem discussed above can be split in two categories: heuris-
tic algorithms with “known” complexity and unknown success probability [41], and rigourous algorithms
that always succeeds but with unknown complexity [20,42,13,26]. This situation makes it very difficult, if
not plainly impossible to compare these algorithms based on their theoretical features. The class of instances
that can be solved by a given algorithm of the first type is in general not known. Conversely, the class of
instances over which an algorithm of the second type terminates quickly are often not known as well. This
lead the authors of IP algorithms to measure the efficiency of their techniques in practice, or even not to
measure it at all [41]. Several IP and IP1S challenges were proposed by Patarin in [36], and can be used
to measure the progress accomplished since their introduction. Also, the lack of theoretical understanding
of the previous techniques makes it quite difficult to get a clear picture of the secure and broken ranges of
parameters.

Our Results. In this paper, we present four new algorithms: the first one deals with quadratic IP1S in-
stances, the second with cubic IP1S instances, and the last two ones with linear inhomogeneous IP instances.
These algorithms combine the two weapons that have dealt a severe blow to multivariate cryptography: lin-
ear algebra and Gröbner bases.

On the practical side, these algorithms are efficient: random quadratic IP1S instances, random inho-
mogeneous linear cubic IP1S instances and random inhomogeneous linear quadratic IP instances can all
be broken in practical time for any size of the parameters. In particular, all the quadratic IP1S challenges
are now broken in a few seconds. The biggest cubic IP1S challenge is broken in 2 CPU-month. The IP1S
authentication scheme is thus broken beyond repair in the quadratic case. In the case of cubic IP1S, the
security parameter have to be seriously reconsidered, which makes the scheme much less attractive in terms
of key size. HFE with linear secret transformations S and T , and public internal polynomial is completely
insecure.

A rigorous analysis of our algorithms is both necessary and tricky. When generating linear equations,
special care has to be taken to count how many of them are independent. The recent history of algebraic
cryptanalysis taught us that failure to do so may have drastic consequences. On the other hand, the com-
plexity of Gröbner bases computation, even though a bit more well-understood now in the generic case, is
still often a delicate matter. Most algorithms presented in this paper belongs to “rigorous” type (with the
exception of the heuristic for linear inhomogeneous IP presented in section 4.1).

A distinctive feature of our algorithms compared to the previous state of affairs, and one of our main
theoretical contribution, is that we characterize the class of instances that can be solved by each algorithm
in polynomial time. We then estimate as rigorously as possible the probability that a random instance falls
in this class. The rigorous analysis of the algorithm of section 4.2 shows that it solves random linear inho-
mogeneous instances of IP in time O

(
n6
)

with non-negligible probability, and gives en route a theoretical
justification to the empirical observation of a polynomial behavior for the same subproblem in [20].

On the theoretical side again, we clarify the question of the relative complexity of various classes of IP
subproblems. We identify the parameters that make an IP instance easy or hard. Such parameters include
the homogeneousness of the polynomials, their degree, the parity of the characteristic of the field, and the
presence of an affine part in the linear masks S and T . We extend the affine/linear equivalence result of [42]
to the full IP problem. A consequence is that the hardest IP instances are not the affine ones, but the linear
homogeneous ones. All the previous algorithms that were dealing with the affine case [41,26] first guessed
the affine component of S or T in order to reduce the affine instance to a linear one; these algorithms were
exponential by nature. Our algorithm for random quadratic IP1S instances is polynomial even in the affine
case. We discuss various technique to deal with the linear homogeneous IP case, but our techniques are all
exponential.

We lastly revisit an algorithm published twelve years ago in [41]. The algorithm is birthday-based and
supposedly has an interesting complexity of O

(
qn/2

)
. It has never been implemented, and we show that

several heuristic assumptions used to establish its complexity and success probability are in fact not true.
As a consequence, we show that its domain of applicability is restricted to F2, and that its complexity is
higher than expected. This advocates for a more in-depth analysis.



Organisation of the paper. In section 2, we present some basic ingredients that explain the Faugère and
Perret algorithm and our basic strategy to solve the IP problem. Then, in section 3, we present our results
concerning the IP1S problem with quadratic and cubic polynomials. Finally, in section 4, we present and
analyze our algorithms to solve the IP problem with two secrets.

2 Preliminaries

In this section, we remind the definition of the differential of a function and we present a basic fact which
is the core of the Perret-Faugère algorithm [20]. Then, we present our meta-algorithm for the IP problem.

Differentials. We denote by Df : Dom2 → Rng the differential of a function f : Dom → Rng. Df is
defined by:

Df(x,y) = f(x + y)− f(x)− f(y) + f(0)

It is easy to see that Df(x,y) = Df(y,x). If f is a polynomial of total degree d, then Df is a polynomial
of total degree d, but of degree d− 1 in x and y. For a given point c ∈ (Fq)n, we define:

∂f

∂c
= Df(c,x)

When f is quadratic, then Df is a symmetric bilinear function, and therefore ∂f
∂c is a linear mapping. By an

abuse of notation, we also denote by ∂f
∂c the corresponding matrix.

A Structural Observation on IP Problems. Amongst the various parameters that influence the hardness
of breaking instances of the IP problem, two play a special, correlated role: whether S and T are linear or
affine transforms on the one hand, and whether the polynomials in a and b are homogeneous or not. Let us
assume that T (x) = Tc + T` · x, and S(x) = Sc + S` · x, with S`, T` ∈ GLn (Fq). The following lemma is
the fundamental result over which the Gröbner-based algorithm of [20] is built:

Lemma 1. i) For all k ≥ 1, we have:

b(k) = T` ◦
(

a +
∂a
∂Sc

)(k)

◦ S`

ii) In particular, if S and T are linear, then for all k we have: b(k) = T ◦ a(k) ◦ S

Proof. See annex A.1.

If k denotes the total degree of a, then
(
∂a
∂x

)(k)
= 0. The first point of lemma 1 then shows that the

solution of an affine instance is also the solution of the linear homogeneous instance formed by taking only
the homogeneous component of higher degree of a and b.

Conversely, if the linear component of the solution of an affine instance is known, retrieving the affine
part of the solution is often easy, and it can be accomplished using the technique shown in [27], which we
recall. Lemma 1, point i) shows that

T−1
` ◦ b(1) ◦ S−1

` − a(1) =
(
∂a
∂Sc

)(1)

. (1)

Once S` and T` is known, then the left-hand side of (1) may be computed, and the right-hand side is a
function of degree d − 1 of Sc. In the particular case where d = 2, equation (1) in fact describes a system
of linear equation that admits Sc as a solution.

A conclusion is that when the polynomials are quadratic, the linear homogeneous case is complete,
and thus contains the hardest instances. This is in accordance with the experimental results of [20]: they
found that their algorithm was polynomial on linear inhomogeneous instances, and exponential on linear
homogeneous instances. This is also in accordance with the results presented in this paper: polynomial
time algorithms are sometimes applicable to the inhomogeneous case (section 3.2 and 4), but often only
exponential algorithms deal with the homogeneous case.

It should also be clear that S transforms the set of common zeroes of a into the set of common zeroes
of b. The consequences of this simple fact are discussed in sections 3.2 and 4.3.



A Meta-Algorithm For IP Problems. In this section, we present a meta-algorithm that can be applied to
a wide variety of “IP-like” situations. To recover the isomorphism between two vectors of polynomials, we
go through the following steps:

1. Find as many independent linear equations between the coefficients of S and those of T−1 as possible.
Denote them by S.

2. If S has rank 2n2 − 1, then both S and S−1 can be retrieved, and we are done.
3. Otherwise, (S, T−1) lives in a vector space of dimension k = dim kerS. Applying the algorithm

of [20] yields a system Squad of un2/2 quadratic equations in k unknown.
4. Solve the system of quadratic equations by computing a Gröbner basis of Squad. This yields S.

This method yields all the possible solutions of a given instance. Moreover, it succeeds with probability
one, and is deterministic. At the beginning of stage 3, S and T−1 can be expressed as a linear combinaison
of k elements. It is expected that the complexity of the whole procedure is dominated by the last step, the
complexity of which is difficult to predict in general. However, if all the equations of Squad were linearly
independent, and k(k − 1)/2 ≤ u · n2/2, then the equations of Squad could be solved by linearization
in time O

(
n6
)

(and likely O
(
n5
)

using more sophisticated sparse algebra subroutines). This is the first
time in this paper that we point out that bigger values of u actually make the problem easier. In practice, if
Squad is that overdetermined, the computation of the Gröbner basis will also be polynomial (with roughly
the same complexity).

The heart of the meta-algorithm therefore lies in collecting independent linear equations, and the main
difficulty in analyzing its complexity is estimating the rank of S . This general strategy will be instantiated
twice in this paper: for the IP1S problem in section 3 and for a particular case of the full IP problem in
section 4.2.

3 Isomorphism of Polynomials with One Secret

In this section, we investigate more particularly the IP1S problem; i.e. given two sets of polynomials b and
a the task is to find S such that:

b = a ◦ S. (2)

A consequence of the structural observation of section 2 is that solving the linear homogeneous case is
sufficient to solve all the other ones (this observation was also present in [42]). It was pointed out before
that if there is only one quadratic polynomial, then the problem is easily solved in polynomial time (because
quadratic forms admit a canonical representation, see [32]). We will therefore focus on the case of u ≥ 2
quadratic polynomials, and on the case of one cubic polynomial. These problems are qualitatively pretty
different, therefore we study them separately.

3.1 Quadratic IP1S

The quadratic IP1S problem is a good candidate for the application of the general strategy described in
section 2. The important idea that we will use throughout this paper is that by differentiating equation (2),
it will be possible to collect linear equations between the coefficients of S and those of S−1. Indeed, for all
vectors x,y ∈ (Fq)n, we have:

∀x,y ∈ (Fq)n , Db(x,y) = Da (S · x, S · y) .

Using the change of variable y′ = S · y, this equation becomes:

∀x,y′ ∈ (Fq)n , Db(x, S−1 · y′) = Da(S · x,y′). (3)

When a and b are of total degree 2, Da and Db are bilinear (symmetric) mappings. In this case, since
equation (3) is valid for all x and y, then in particular it is valid on a basis of (Fq)n×(Fq)n, and substituting
fixed basis vectors for x and y yields linear equations between the coefficients of S and those of S−1. This
way of presenting things generalizes an idea suggested in section 9 of [41], but tested only on toy examples
that could be solved by hand, and not analyzed in a more general setting. We will show that the technique
presented in [41] cannot by itself break reasonably-sized IP1S instances, but that it can be used successfully
as the first step of our meta-algorithm. Obtaining linear equations can be described relatively simply using
the usual theory of quadratic forms. This highlight the fact that the IP1S problem is a bit different in odd
and even characteristic.



Quadratic IP1S in Odd Characteristic. If Fq is a field of odd characteristic, then the set of (homogeneous)
quadratic polynomials is in one-to-one correspondance with the set of symmetric matrices. LetP (ak) (resp.
P (bk)) denote the matrix of the bilinear form associated with ak (resp bk). This is sometimes called the
polar form of ak. Recall that the coefficient of index (i, j) of P (ak) is Dak (ei, ej) /2, where (ei)1≤i≤n is
a basis of (Fq)n. We then have:

S−1 · P (bk) = P (ak) · tS (4)

We always have at least two such equations. Assume that P (b1) and P (b2) were invertible. Then we
obtain:

S−1 = P (a1) · tS · P (b1)−1

S−1 = P (a2) · tS · P (b2)−1

And therefore we obtain the equation given in [41]:

P (a1) · tS · P (b1)−1 = P (a2) · tS · P (b2)−1 (5)

It is implicitly suggested in [41] that this is sufficient to recover S. We now move on the analysis of this
technique, and more specifically we discuss the rank of the equations on S obtained this way. If P (b1) is
invertible, then so is P (a1), and we get:

tS · P (b1)−1 · P (b2) = P (a1)−1 P (a2) · tS

Clearly, tS is the solution of the following matrix equation:

X · P (b1)−1 · P (b2) = P (a1)−1 · P (a2) ·X

However, P (b1) and P (a1) are clearly related, which leads to:

P (b1)−1 · P (b2) = tS−1 · P (a1)−1 · P (a2) · tS

And the previous matrix equation is equivalent to:(
X · tS−1

)
· P (a1)−1 · P (a2) = P (a1)−1 P (a2) ·

(
X · tS−1

)
Therefore, there is a vector-space isomorphism between the set of solutions of (5) and the commutant

of P (a1)−1 · P (a2), which we will denote by C. Now, it is well-known that the dimension of C is lower-
bounded by n (see [6, Fact 2.18.9], for instance). This brings us to a conclusion. By itself, the technique
presented in [41] cannot solve the quadratic IP1S problem in odd characteristic, even when both quadratic
forms are non-degenerate. The reason for this is that equation (5) never has less than qn solutions.

However, the linear equation collected this way can be used in the context of our meta-algorithm de-
scribed in section 2. For that, we would need to know an upper-bound on the dimension of C. We address a
slightly more general version of this problem below.

Quadratic IP1S in Characteristic Two. The case where Fq is a field of characteristic two is more in-
teresting from the cryptographic point of view, and more challenging. The theory of quadratic forms is
completely different in characteristic two, and in particular there is no longer a canonical representation
of quadratic forms by symmetric matrices that would yield convenient linear relations. This is fact not a
problem, as we may still define P (ak)i,j = Dak (ei, ej), and equation (4) still holds.

Towards a Complexity Analysis. In both case, we obtain u matrix equations following the pattern of
equation (4). The rank of the equations between the individual coefficients of S and S−1 is therefore clearly
an increasing function of u. For this reason, and because of the previous observation that big values of u
make the last step of the attack easier, we will focus on the hardest case where u = 2. The problem we are
facing now is to evaluate the rank of the following system of homogeneous linear equations:

S :
{
S−1 · P (b1) = P (a1) · tS
S−1 · P (b2) = P (a2) · tS

This system is made of 2n2 linear equations in 2n2 unknowns (the coefficients of S and S−1). What makes
its study a bit delicate is that P (bk) and P (bk) are not at all statistically independent. For instance, we
know that S admits a non-trivial solution, which is precisely (S, S−1). Therefore all the equations cannot
be linearly independent, and the rank of S has to be studied carefully.



Practical Behavior of the Algorithm. As a foreword, we would like to point out that the rank of S
is usually higher in practice than what the analysis suggests. Therefore, the algorithm empirically works
better than what the analysis suggests. For the sake of simplicity, the analysis presented below only works
under some hypotheses. For instance, we require one of the two quadratic forms to be non-degenerate, and
this happens with a non-negligible probability in the random case. However, if both quadratic forms are of
rank, say, n− 1, then the algorithm still works pretty well, even though our analysis says nothing about it.

For this reason, we would like to expose the practical behavior of the algorithm before going into the
detail of its complexity analysis. We measured the actual rank of S with u = 2 for various values of q and
n, and we observed that for bigger fields (say F16), the dimension of the kernel of S, denoted by k, is 2n
all the time. Over F2, accidental cancellation of coefficients is more likely, and we have measured:

n P
[
k = 2n

]
P
[
k = 2n+ 4

]
P
[
k = 2n+ 8

]
P
[
k = 2n+ 12

]
8 0.88 0.05 0.05 0.02

16 0.96 0.04
32 0.94 0.06
64 0.96 0.04

The algorithm has been implemented using the computer algebra system MAGMA [8]. Solving the
equations of Squad is achieved by first computing a Gröbner basis of these equations for the Graded-Reverse
Lexicographic order using the F4 algorithm [16], and then converting it to the Lexicographic order using the
FGLM algorithm [15]. The implementation breaks all the proposed quadratic IP1S challenges in negligible
time, less than 30 seconds for the biggest one. To illustrate its effectiveness, we built and broke a random
IP1S instance with q = 2, u = 2 and n = 32 in a matter of seconds (recall that the biggest proposed
quadratic IP1S challenge, and never broken before was q = u = 2 and n = 16). The dominating part in the
execution of the algorithm is in fact the symbolic manipulation of polynomials required to write down the
equations of Squad. Actually solving the resulting quadratic equations turns out to be easier than generating
them.

Analysis of the Rank of S. We now undertake the task of theoretically justifying the empirical success of
the algorithm. The main parameter influencing its complexity is the number of independent linear equations
in S.

To make the analysis simpler, we will assume that a1 (and therefore b1) is non-degenerate. This is
equivalent to saying that P (a1) is invertible. We discuss below the probability that this event is realized.

We are now ready to state the technical result that underlies our analysis. This theorem will use well-
known result about the Smith Normal Form of a characteristic matrix and its invariants. Given a square
matrix M , the non-unit polynomials p1, . . . ps on the diagonal of the Smith Normal Form of the character-
istic M −x1n are the invariant factors of M . Their product is the characteristic polynomial of M , ps is the
minimal polynomial of M , and pi divides pi+1.

Theorem 1. LetA1, A2, B1, B2 be four given matrices of size n×n with coefficients in Fq . Let us consider
the set of all pairs (X,Y ) of n× n matrices satisfying the following linear equations:

S :
{
X ·B1 −A1 · Y = 0
X ·B2 −A2 · Y = 0

If A1 and B1 are invertible, we define:

MA = A−1
1 ·A2

MB = − t
(
B−1

1 ·B2

)
Let p1, . . . , ps denote the invariant factors of MB . We then have:

rankS = 2n(n− s) +
s∑
i=1

rank pi (MA)

Proof. See annex A.2.

The analysis below estimates the probability of success of the attack by computing the probability that
A1 is invertible (that depends on the field characteristic) and we estimate the probability that the rank of S is
2n2 − 2n by estimating the probability that s = 1 or 2. This is achieved by using a result on the probability
that the characteristic polynomial of a random matrix be its minimal polynomial.



Application of theorem 1 to the Random Case. Theorem 1 holds only if P (b1) or P (b2) is invertible
(we may swap them if we wish). If q is odd, then P (b1) is a random symmetric matrix, and the probability
that it has a given rank is given by lemma 7 (found in annex B). The probability that P (b1) is invertible
is about 0.639 for q = 3, and is a (rapidly) increasing function of q. The probability that either P (b1)
or P (b2) is invertible is about 0.870 for q = 3. If q is even, then P (b1) is a random symmetric matrix
with zeros on the diagonal, and the probability that it has a given rank is given by lemma 8 (also found in
annex B). The probability that P (b1) is invertible if q = 2 is about 0.419 (again, this probability increase
exponentially with q). The probability that either P (b1) or P (b2) is invertible is about 0.662 for q = 2.

Theorem 1 is then applicable in more than half of the cases. When it is applicable, what guarantee does
it exactly offer? We would need to know something about the invariant factors of MB . It is shown in [43,
proposition 12] that the expected number of invariant factors (counting multiplicities) in a random invertible
matrix over Fq is log n + O (1). An easy case would be when the minimal and characteristic polynomials
are the same (then there is only one invariant factor, and it is χMB

). The probability of this event is given by
lemma 9 (found in annex B): for random matrices over F2, and for n big enough, the proportion of cyclic
matrices approaches 0.746. Unfortunately, in even characteristic, MB is never cyclic: we observed (but did
not succeed to prove) that if U and V are zero-diagonal symmetric matrices over F2, χUV is a square, and
that
√
χUV is an annihilator of UV . The minimal polynomial of UV is therefore of degree at most n/2: the

product of two zero-diagonal symmetric matrices over F2 is thus far from behaving randomly.
As mentioned above, UV cannot have only one invariant factor (because this would mean that the

minimal and characteristic polynomials are the same, which is not the case). We measured that UV has
exactly two invariant factors (both being

√
χUV ) with probability about 0.74 for q = 2 (this probability

seems to increase with q and n, and is strikingly close to the proportion of cyclic random matrices...). In
this setting, theorem 1 guarantees that the dimension of kerS is exactly 2n (because MA and MB are
similar, therefore the minimal polynomial of MB vanishes on MA). This is not completely sufficient to
guarantee that we will be able to solve the equations of Squad by linearization (because we would have
2n2 equations in 4n2 variables). However, it creates a system of quadratic equations so overdefined that
the maximal degree of polynomials reached when computing a Gröbner basis appears to be always upper-
bounded by 2 in practice. The computation of the Gröbner basis therefore terminates in time O

(
n6
)

in
most cases.

3.2 Cubic IP1S

In this section, we focus on the case where a and b are composed of a single cubic polynomial. We assume
that a and b are given explicitly, i.e.:

a =
n∑
i=1

n∑
j=i

n∑
k=j

Ai,j,k · xixjxk, b =
n∑
i=1

n∑
j=i

n∑
k=j

Bi,j,k · xixjxk.

As already explained, we can restrict our attention to the homogenous case. The techniques developed
previously for the quadratic case cannot directly applied in this setting. Indeed, the differential is no longer
a bilinear mapping, and then there is no obvious linear equations between the coefficients of a solution and
those of its inverse. However, we can combine the use of the differential together with the Gröbner basis
approach proposed in [20]. We will denote by S0 = {s0i,j}1≤i,j≤n a particular solution of IP1S between a
and b, i.e. it holds that b = a ◦ S0. For all vectors x,y ∈ (Fq)n, we have:

Da(S0 · x,y) = Db(x, S−1
0 · y).

a and b being of total degree 3, the coefficients of S0 and S−1
0 appear with degree two in the expression of

Da and Db above. Let R be the ring K[s1,1, . . . , sn,n, u1,1, . . . , un,n]. We consider the algebra As of all
n× n matrices over the ring R. Let S = {si,j} and U = {ui,j} in As be symbolic matrices. We denote by
Ia,b the ideal generated by all the coefficients in R of the equations:

Da(S · x,y)−Db(x, U · y) = 0, U · S − 1n = 0n, S · U − 1n = 0n.

It is easy to see that U = S−1
0 and S = S0 is particular solution of this system, and also a solution of IP1S

between b and a.



Our goal is to provide an upper bound on the maximum degree reached during a Gröbner basis computa-
tion of Ia,b. This degree, called degree of regularity, is the key parameter in establishing the complexity of
the Gröbner basis computation. Indeed, the cost of computing a Gröbner basis is polynomial in the degree
of regularity Dreg of the system4 considered: O(Nω·Dreg), with 2 < ω ≤ 3 the linear algebra constant, and
N the number of variables of system considered. In our case, N = n2.

The behavior of the degree of regularity is well understood for “random” systems of equations [3,4,5]
(i.e., regular or semi-regular systems). On the other hand, as soon as the system has some kind of structure,
which is always the case in cryptography, this degree is much more difficult to predict. In some particular
cases, it is however possible to bound the degree of regularity (see for HFE [19,29]). We prove here that
Dreg = 2 for Ia,b under the hypothesis that we know one row of a particular solution S0. We assume then
that we know the following ideal:

J =
〈
s1,j − s(0)1,j | j = 1, . . . , n

〉
.

Theorem 2. The degree of regularity of the ideal Ia,b + J is 2. Therefore, computing a Gröbner basis of
this ideal takes time O

(
n6
)
.

Proof of theorem 2. We use the fact that the degree of regularity of an ideal is generically left invariant by
any linear change of the variables or generators [31]. In particular, we consider the ideal I ′a,b generated by
all the coefficients in K[x1, . . . , xn, y1, . . . , yn] of the equations:

Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y) = 0, U · S = 0n, S · U = 0n.

It is clear that I ′a,b is obtained from Ia,b by replacing S (resp. U ) by (In+S0)S (resp. (U+In)S−1
0 ). Thus,

the degree of regularity of I ′a,b and Ia,b are equal. Using the same transformation, the ideal J becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

We now estimate the degree of regularity of the ideal I ′a,b + J ′. For a reason which will become clear
in the sequel, it is more convenient to work with I ′a,b + J ′. In what follows, F will denote the generators
of I ′a,b +J ′. We will show that many new linear equations appear when considering equations of degree 2.
To formalize this, we introduce some definitions related to the F4 algorithm to compute Gröbner bases [17].
In particular, we will denote by Id,k the linear space generated during the k-th step of F4 when considering
polynomials of degree d.

Definition 1. We have the following recursive definition of Id,k:

Id,0(F ) = VectK (F )
Id,1(F ) = VectK (si,jf | 1 6 i, j 6 n and f ∈ Id,0(F ))

+VectK (ui,jf | 1 6 i, j 6 n and f ∈ Id,0(F ))
Id,k(F ) = VectK (si,jf | 1 6 i, j 6 n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1)

+VectK (ui,jf | 1 6 i, j 6 n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1) .

Roughly speaking, the index k is the number of steps in the F4/F5 [18] algorithm to compute an element
f ∈ Id,k(F ). We will show that I2,1(F ) contains exactly n2 +2n linear equations. This means that we have
already many linear equations generated during the first step of the computation of a Gröbner basis of F .

Lemma 2. I2,1(F ) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (6)

Proof. From the first row of the following zero matrix S · U we obtain the following equations:

s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · ·+ s1,n un,1 = 0,
s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · ·+ s1,n un,2 = 0,
s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · ·+ s1,n un,3 = 0,
· · ·
s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · ·+ s1,n un,n = 0

4 This is true in the zero-dimensionnal case, i.e., when the number of solutions is finite.



Using the equations s1,j = 0 from the ideal J ′, we obtain then u1,1 = 0, u1,2 = 0, . . . , u1,n = 0. ut

We can also predict the existence of other linear equations in I2,1(F ).

Lemma 3. For all (i, j) ∈ {1, . . . , n}2 the coefficient of y1yixj in Da(S0(S + In)x,y) − Db(x, (U +
In)S−1

0 y) is a non zero5 linear equation modulo the equations of the ideal J ′ and (6). Among these equa-
tions, there are n which depend only of the variables {sk,` | 1 ≤ k, ` ≤ n}.

Proof. See Annex A.3.

To summarize:

Lemma 4. I2,1(F ) contains exactly n2 + 2n linear equations.

Proof. In I2,1(F ), we have: n linear equations from Lemma 3, n linear equations from the very definition
of J ′, and n2 linear equations from lemma 3 ut

As explained before, we obtain n2 + 2n linear equations for I2,1(F ). However, we have 2n2 variables.
So, we have to consider I2,2(F ), i.e., the equations generated at degree 2 during the second step. Thanks
to lemma 4, we can reduce the original system to a quadratic system in 2n2 − (2n + n2) = (n − 1)2

variables. W.l.o.g we can assume that we keep only the variable ui,j where 2 ≤ i, j ≤ n. Let F ′ be the
system obtained from F after substituting the 2n + n2 linear equations of lemma 4. All the monomials in
K[x1, . . . , xn, y1, . . . , yn] of Da(S0(S + In)x,y)−Db(x, (U + In)S−1

0 y) have the following shape:

xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is 2nn(n+1)
2 = n2(n + 1) ≈ n3, which implies that the number of

equations in F ′ is also n3. Thanks to this remark, we will now prove that we can linearize F ′. Let T (F ′)
be the set of all monomials occurring in F ′. We can assume that T (G′) = [t1 < t2 < · · · < tN ]. It is
important to remark that t1 = u2,2 up to t(n−1)2 = un,n are in fact variables. Now, let M be the matrix
representation of G′ w.r.t. T (G′). Since we know precisely the shape of the equations from the proof of
lemma 3, it is possible to establish that:

1. most of the equations are very sparse, namely each equation contains about n2 non-zero terms.
2. all the variables t1, . . . , t(n−1)2 occur in all the equations

After a Gaussian elimination of the matrix M , we obtain the following shape:

M̃ =


1(n−1)2 0 0 0

0 × · · · · · ·

0 ×
. . .

...

0 × · · ·
. . .


Hence, we obtain after a second step of computation in degree 2 the equations u2,2 = · · · = un,n = 0. This
means that after 2 steps of computation at degree 2, we obtain (n−1)2 +2n+n2 = 2n2 linear equations in
2n2. This explains why the maximum degree reached during the Gröbner basis computation of I ′a,b + J ′
is bounded by 2, and concludes the proof of theorem 2.

Application to the Linear Inhomogeneous Case. If S can be assumed to be a linear bijective mapping,
and if a has a non-trivial homogeneous component of degree 1, then we are in a situation where theorem 2 is
applicable, and S can be determined though a Gröbner basis computation which terminates in timeO

(
n6
)
.

5 more precisely, generically non zero.



Application to the Other Cases. All the other cases reduce to the linear homogeneous case, as mentionned
in section 2. In this setting, the problem is that we do not have enough knowledge on S to make the Gröbner
basis computation efficient. A simple idea would be to guess a colum of S then compute the Gröbner basis.
This approach has complexity O

(
n6qn

)
.

We discuss a possible idea to improve this complexity. We already mentionned that S sends the zeroes
of a onto those of b. Let us denote by Za (resp. Zb) the set of zeroes of a (resp. b). We have S(Za) = Zb.
In particular, by the linearity of S we have:

S

(∑
x∈Za

x

)
=
∑
y∈Zb

y

This yields a relation on S, which is enough to use theorem 2. a and b may be assumed to have about
qn−1 zeroes. Finding them requires time O (qn). The complexity of the attack could thus be improved
to O

(
n6 + qn

)
. Unfortunately, this trick fails systematically, as a consequence of the Chevalley-Warning

theorem.

Lemma 5. The sum of the zeroes of a cubic form on 5 variables or more over Fq is always zero.

Proof. Let us consider the elements of Za having α as their first coordinate, and let us denote by nα their
number. These are in fact the common zeroes of (a, x1 − α). By the Chevalley-Warning theorem [10,44],
if a has at least 5 variables, then the characteristic of the field divides nα. Therefore, their sum has zero on
the first coordinate. Applying this result for all values of α shows that the sum of zeroes of a has a null first
coordinate. We then just consider all coordinates successively. ut

4 Isomorphisms of Polynomials with Two Secrets

In this section we focus on the full IP problem (with two secret affine or linear mappings S and T ). Recall
that finding a polynomial isomorphism between two vectors of multivariate polynomials a and b means
finding two matrices S` and T`, as well as two vectors Sc and Tc such that:

b (x) = Tc + T` (a (S` · x+ Sc)) (7)

Similarly to the IP1S problem, the hardness of the unrestricted IP problem depends on the parity of the
characteristic of the field. As opposed to the IP1S problem though, it also depends pretty much on whether
u = n, whether the polynomials are homogeneous and whether S and T are linear or affine. We first present
two polynomial algorithms that solve the easiest case, namely the linear homogeneous IP problem with as
many polynomial as variables, for which the Gröbner-based algorithm of [20] is also polynomial. While
the latter runs in timeO

(
n9
)
, a new heuristic algorithm runs in timeO

(
n3
)
, and a more rigorous variation

runs in time between O
(
n4
)

and O
(
n6
)
.

4.1 A Fast Heuristic for the Linear Inhomogeneous Case

We first present a simple heuristic which combine the structural observation of section 2 and the to-and-fro
approach [41]. As before, we will denote by a(1) the homogeneous component of degree one of a (i.e., the
linear terms of a). The application of lemma 1 immediately yields:

b(1) = T` · a(1) · S` (8)

If a(1) and b(1) are invertible and if a(0) 6= 0, then equation (8) allows us to use a very efficient variation
of the to-and-fro method, which is shown in figure 1. The complexity of this algorithm is O

(
n3
)
. Inverting

both a(1) and b(1) can be done once for all. The matrix-vector products take O
(
n2
)

and there are n of
them. Lastly, reconstructing S` and T` takes only O

(
n3
)
, because in the basis (xi)i≤n, S is made of the

yi’s. Changing the basis amounts to performing one matrix inversion and two matrix-matrix products.
This heuristic works well for random inhomogeneous instances (i.e., instances where all the coefficients

of all degrees are randomly chosen). It is straightforward that the number of n× n invertible matrices over
Fq is

∏n−1
i=0

(
qn − qi

)
. This tells us that the probability that a(1) is invertible is about 0.288 (for q = 2,

higher for bigger q) and the probability that a(0) 6= 0 is 1 − 1/qn. Again, q = 2 looks like a worst case.



Fig. 1 A variant of the “To-and-Fro” IP algorithm using linear terms to go back
1: x1 ← a(0)
2: y1 ← b(0)
3: for i = 1 to n do // At this point one has yi = T` · xi

4: y′i ←
“
a(1)

”−1

· xi

5: x′i ←
“
b(1)

”−1

· yi

6: // And we obtain y′i = S` · x′i
7: yi+1 ← b (x′i)
8: xi+1 ← a (y′i)
9: end for

10: Reconstruct S` from the pairs (x′i, y
′
i) and T` from the pairs (xi, yi).

For all realistic sets of parameters, the heuristic either fails or terminates in less than a second, even for
parameters that were taking several minutes to the Gröbner-based algorithm of [20].

While this technique works well on random instances, it is not very difficult to cook an instance on
which it fails completely. The heuristic is not very “robust”, in the sense that not only it requires a(1) and
b(1) to be invertible and a(0) 6= 0, but it may also fail unexpectedly if a and b are not “random” enough.
Indeed, the non-linearity of a and b plays a crucial role in making each new relation on S` and T` linearly
independent from the previous ones, which is required for the algorithm to work.

Here is an example over which the heuristic fails. Suppose that a = T` ◦a ◦S`. Such an example in fact
came up naturally when studying a variation of HFE (paper to appear). Our initial “bootstrapping” relation
T` ·a(0) = a(0) in fact describes an eigenvector x satisfying the equation T` ·x = x. Thanks to equation (8),
this relation is transferred to an eigenvector of S` satisfying the equation S` · y = y (with y = a(1)−1 · x).
Now, using the easy and natural way to produce new relations on T`, we obtain other eigenvectors of T`
satisfying the same eigenvalue equation: T` · a(y) = a(y).

The number of independent linear relations that we may accumulate this way is upper-bounded by
the dimension of the eigenspace of T` for the eigenvalue 1. This eigenspace cannot span the whole (Fq)n

(otherwise T` would be the identity matrix...). The heuristic thus cannot fully determine T`, as after a given
point, all the new linear relations found at each iteration will be linearly dependent from the previous ones.

4.2 A More Robust Algorithm

To overcome this situation, we propose a new algorithm based on the meta-strategy that was successful
with IP1S, namely obtaining linear equations by differentiating equation (7), and then solving the system
of quadratic equations resulting obtained through the use of the Gröbner-based algorithm of [20] via lin-
earization. This yields a more “robust”, less heuristic, slightly less efficient algorithm. The starting point is
the fact that equation (8) provides n2 linear relations between the coefficients of S` and those of T−1

` . This
is not enough to recover the two matrices by linear algebra, since there are 2n2 unknowns. However, we
will now show that we can obtain an additional matrix equality thanks to the differential, yielding enough
linear equations. Differentiating equation (7) yields:

Db(x,y) = T` ·Da(S` · x, S` · y) (9)

Reusing the notations of the algorithm of figure 1, we have: x′1 =
(
b(1)

)−1 · b(0) and y′1 =
(
a(1)

)−1 ·
a(0), so that S · x′1 = y′1. Fixing x = x′1 in equation (9) gives:

∂b
∂x′1

= T` ·
∂a
∂y′1
· S` (10)

which provides the n2 new linear equations between the coefficients of S` and T−1
` that were required.

Note that this technique requires a known relation on S`, which in turn requires that a(0) 6= 0 and that a(0)
belongs to the range of a(1).



Analysis. Again, analyzing this algorithm boils down to estimate the rank of the following system of linear
equations:

S :

{
T−1
` · b(1) = a(1) · S
T−1
` · ∂b∂x′

1
= ∂a

∂y′
1
· S (11)

This task is again non-trivial, and we will establish that the rank of S is at most 2n2 − n, even if all the
matrices above are invertible. The matrix b(1) is completely random, thus it is invertible with probability∏n−1
i=0

(
1− qi−n

)
(greater than 0.288 for q = 2). Because of lemma 1, we know that b(1) is invertible if

and only if a(1) is. The case of ∂b
∂x′

1
is a bit more subtle. In odd characteristic, it can be shown that is a

random matrix, and thus the probability that it is invertible is also known. In characteristic two, we have
∂b
∂x′

1
· x′1 = 0. Thus ∂b

∂x′
1

is not invertible, and is not a priori random. The application of theorem 1 yields
that the rank of S is 2n(n− s) +

∑s
i=1 rank pi(MA), where:

MA =
(
a(1)

)−1

· ∂a
∂y′1

MB = −t
((

b(1)
)−1

· ∂b
∂x′1

)
and the pi are the invariant factors of MB . It must be noted that once more MA and MB are similar, which
shows that the dimension of kerS is lower-bounded by n (because ps is the minimal polynomial of MB ,
which also vanish on MA). Now, the rank of S will be exactly 2n2 − n if and only if the minimal and
characteristic polynomial of MB are the same. We already mentioned that this happens with a noticeable
probability for random matrices, but unfortunately MB is not random, as it always has a non-trivial kernel.
However, the following lemma tells us that MB is in fact random amongst the set of linear mappings that
vanish at x′1.

Lemma 6 ([14], theorem 2). Let Fq be a field of characteristic two. Given a random quadratic map f :
(Fq)n → (Fq)n, and a non-zero element x of (Fq)n, the rank of ∂f

∂x follows the distribution of ranks of
endomorphisms of (Fq)n vanishing at x. Therefore, for any t in [1, n] the probability that ∂f∂x has rank n− t
is:

λ(n− 1)λ(n)
λ(n− t)λ(t− 1)λ(t)

· q(−t)(t−1) with λ(k) =
k∏
i=1

(
1− 1

qi

)
Let en = x′1, and let us extend it to a basis e1, . . . , en of (Fq)n. In this new basis, the last column of

MB is zero. Expanding the determinant of MB − x · 1n along the last column yields χMB
= x · χM ′

B
,

where M ′B is the matrix obtained by removing the last row and the last column of the matrix representing
the same endomorphism as MB in the new basis. This shows that the characteristic polynomial of MB is
the product of x and of the characteristic polynomial of a random matrix of dimension (n− 1)× (n− 1).
This time, since M ′B is random, lemma 9 is applicable and guarantees that the minimal polynomial of M ′B
is of degree n − 1 with probability 0.746 (for q = 2, higher for bigger q). It is not hard to see that the
minimal polynomial of M ′B divides that of MB . There are therefore two possible situations:

1. Either Mb has only one invariant factor, and the rank of S is exactly 2n2 − n.
2. Or MB has two invariant factors, x and χM ′

B
, and the rank of S is 2n2−2n+ rank ∂a

∂y′
1

. Lemma 6 then
allows us to conclude that S has rank 2n2 − n− 1 or 2n2 − n− 2 with high probability.

4.3 The Affine Case and/or Homogeneous case

As pointed out in section 2, the affine case may be solved easily if the linear homogeneous case can be
solved. Unfortunately, the two previous methods cannot be applied in the homogeneous case. It is therefore
natural to try to “de-homogenize” the problem as was done for the cubic IP1S problem in section 3.2. This
requires one known relation on S`: if we know y0 = S` · x0, then we define a′(x) = a(x + y0) and
b′(x) = b(x + x0), and we have b′ = T ◦ a′ ◦ S`. It follows that:

a′(2) = a(2) a′(1) =
∂a
∂y0

A first consequence is that the homogeneous linear component of the de-homogenized version of the
instance is never invertible in even characteristic. For this reason, the heuristic of section 4.1 is bound to



fail. This again highlight the interest of the more robust algorithm of section 4.2. However, its rank analysis
should be revised, because one of the assumption (the invertibility of the linear part) is no longer true.
There is also a further difficulty. The algorithm of section 4.2 requires a boostrapping relation on S`. Using
y0 = S` · x0 is not possible, as we would have b(1) = ∂b

∂x0
, and the two equations of (11) would in fact be

the same. We know that a′(0) 6= 0 yields a relation on T`, but this relation can only be transferred to S` if
a′(0) belongs to the range of a′(1). Since a′(1) is not invertible in even characteristic, the probability that
one relation on S` is sufficient to solve the problem is at most 1/q. Therefore, in even characteristic, there
is a pretty non-negligible chance that two independent relations on S` are in fact needed. The problem is
then to acquire the initial relation(s) on S`. Several options are possible:

1. Guess the image of S` on two chosen point, and run the algorithm of section 4.2. This method has
complexity O

(
n6 · q2n

)
. If it succeeds, then the guesses were right.

2. Choose a point x0 such that rank ∂B
∂x0

= n−2. Then, guess y0 = S·x0. Because ker ∂a
∂y0

= S
(

ker ∂b
∂x0

)
is of dimension two, we find another relation on S. However, this yields a complex situation, where the
two matrix equations of (11) are not statistically independent, and a dedicated rank analysis is required.

3. Find the non-trivial zeroes of a and b. If there are k of them, then there are
(
k
2

)
ways to match them to

obtain two relations on S. The algorithm of section 4.2 has to be run for each combination.

The last method seems the most promising. It is known [24] that a random system of n polynomials in
n variables has exactly s ≥ 0 common zeroes with probability 1/(e · s!). Finding the zeroes of a and b thus
permits to find at least one relation on S` with probability 0.632, and two with probability 0.264. Thus, one
fourth of the random instances can be solved in polynomial time after the zeroes have been found.

Depending on the value of q, solving quadratic equations will be faster with Gröbner bases (big q), or
via exhaustive search (small q). For q = 2, a GPU-based implementation of exhaustive search (to appear)
solves 48 equations in 48 variables in 30 minutes on a $500 GPU (a Nvidia GT280). Thus the challenge
with n = 64 can theoretically be broken with probability 1/4 in less than 4 GPU-year with inexpensive
hardware.

If only one relation is found, then all hope is not lost, because there are ways to compute a new relation
from the first one with a certain probability, for instance by looking at the kernel of the differential. This
naturally brings us to the study of an algorithm presented twelve years ago, that relied heavily on this idea.

4.4 About a Previous Algorithm

The algorithm we give for the hardest case has a complexity of order qn. In the extended version of [41], an
algorithm is given which supposedly solves this hardest case in time and memoryO

(
qn/2

)
. This algorithm

has never been implemented nor tested, and its practical impact is therefore unknown. It is highly heuris-
tic, and its precise complexity and success probability are unknown. In this section, we point out several
shortcomings in its description and analysis which convinced us that further analysis is required to fully
understand its complexity and its behavior. More specifically, we will prove the following facts:

1. This algorithm fails systematically over Fq with q = 2m if m > 1.
2. One of the suggested “boosting functions” fails systematically
3. The non-failing one succeeds with probability 0.144 (instead of 1/2 as claimed originally).
4. The complexity of the whole procedure is of order Ω

(
n4 · qn/2

)
.

We believe that this is enough to justify that this algorithm deserves a further analysis. Its study is non-
trivial and makes an extensive use of lemma 6. Besides being an interesting problem that extends beyond the
scope of this paper, the complete study of this algorithm raises many questions about the IP problem. It is
yet completely unclear whether there exist a birthday-based algorithm with a complexity of orderO

(
qn/2

)
.

In the annex C, we justify the four points enumerated above.

5 Experimental Results

We report on experimental results obtained with our algorithms.
Cubic IP1S instances.

– u = 1, n = 16, q = 2: broken in 2 CPU-month (section 3.2).
– u = 1, n = 6, q = 16: Directly solving the first differential equation of section 3.2 for S and S−1 can

be done in 490s using 259Mbyte using the F4 algorithm.



Quadratic IP1S instances.
– u = 2, n = 32, q = 2. Broken instantly (section 3.1).
– u = 2, n = 6, q = 16. Idem.

Quadratic IP instances.
– u = n = 64 avec q = 2, linear inhomogeneous. Broken in negligible time (section 4.2)
– u = n = 64 avec q = 2, linear homogeneous. Broken in 4 GPU-year with probability 0.264 (sec-

tion 4.3).
– u = n = 8, q = 28, homogeneous. Broken by [20] in time 5211s and space 2Gbyte.

6 Conclusion

In this paper, we present algorithms for the IP problem that solve the IP problem with one secret for random
quadratic equations and one cubic equation and with two secrets. Moreover, we explain the complexity, suc-
cess probability and give sufficient conditions so that the algorithms work. The basic idea of our algorithm
is simple and some of them have been proposed for example on the IP with one secret but never formally
analyzed. We try to find linear relations on the secrets and then apply Gröbner basis algorithm to linearize
the system. In order to find linear relations we use the idea of Faugère and Perret and the differential of the
systems. Finally, we highlight the following open problem that we face: is there a rigorous birthday paradox
algorithm for the IP problem ?
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A Some Proofs

A.1 Proof of lemma 1

Proof.

b(x) = Tc + T` · a(S` · x+ Sc)

= Tc + T` ·
(

Da(S` · x, Sc) + a(S` · x) + a(Sc)− a(0)
)

=
[
Tc + T` ·

(
a (Sc)− a(0)

)]
+
(
T` ◦

∂a
∂Sc
◦ S`

)
(x) + (T` ◦ a ◦ S`) (x)

The first statement follows from the application of [20, lemma 4] to the last equality. The second state-
ment is a direct consequence of the first one. ut

A.2 Proof of theorem 1

Proof. A single matrix equation X · B − A · Y = 0 yields structured equations between the Xi,j and the
Yi,j . Let us denote by Mi the i-th row of the matrix M . The equation X ·B −A · Y = 0 translates to:

A1

tB
. . .

A1

A2

tB
. . .

A2

. . .
...

An

tB
. . .

An



×



X1

...
Xn
tY1

...
tYn


= 0

The equations defining S thus have a nice block structure, but to make it simpler, we define the following
n× n2 block-matrices:

Pj =

A1 · ej
. . .

A1 · ej

 Qj =

A2 · ej
. . .

A2 · ej


And then we see that:

S :



tB1 P1
tB2 Q1

tB1 P2
tB2 Q2

. . .
...

tB1 Pn
tB2 Qn


×



X1

...
Xn
tY1

...
tYn


= 0

We now proceed through the echelonization of S. Let us define the following partial echelonization
matrix:

∆ =



tB−1
1

MB 1n
tB−1

1

MB 1n
. . .

tB−1
1

MB 1n





∆ is invertible, since it is block-lower-triangular, and all the diagonal blocks are invertible. Therefore S
has the same rank as:

S ′ = ∆× S =



1n tB−1
1 P1

0n Q1 +MBP1

1n tB−1
1 P2

0n Q2 +MBP2

. . .
...

1n tB−1
1 Pn

0n Qn +MBPn


Reordering the rows yields:

S ′′ =



1n tB−1
1 P1

1n tB−1
1 P2

. . .
...

1n tB−1
1 Pn

Q1 +MBP1

Q2 +MBP2

...
Qn +MBPn


Here, we give some notations. Let A and M be two matrices over Fq of dimension n×n. We denote by

A⊗M the n2 × n2 matrix with the following block-structure: the n× n block starting at row (i− 1)n+ 1
and column (j − 1)n+ 1 is Mi,j ·A. It is not difficult to see that rankA⊗M = (rankA)(rankM).

And we are therefore left with the task of estimating the rank of the lower-right block, which we denote
by T (it has dimension n2 × n2). Reordering its rows (more precisely, swapping row (i− 1)n+ j and row
(j − 1)n+ i) shows a different, more complicated, block-structure:

T ′ = A1 ⊗MB +A2 ⊗ 1n

Since A1 is invertible as well, we obtain:

T ′ = (A1 ⊗ 1n) · (1n ⊗MB +MA ⊗ 1n)

The left member of this product is obviously invertible, therefore, the rank of T is the rank of T ′′ =
1n ⊗MB +MA ⊗ 1n. Let us define U , a n× n matrix over Fq[x]:

U = MB − x · 1n

Then the n × n matrix Ui,j (MA) is precisely the n × n block of indices (i, j) of T ′′. This allows us
to work on U and lift the result back to T ′′. The determinant of U , which is a polynomial of degree n, is
precisely the characteristic polynomial of MB (which we denote χMB

). The Smith Normal Form of U is:

U ′ =



1
. . .

1
p1

. . .
ps


And there exist two unimodular matrices (i.e., with determinant one) V and V ′ such that U = V · U ′ · V ′.
The monic polynomials p1, . . . , pn ∈ Fq[x] are such that pi divides pi+1. In fact, U ′i,j(B) is simply the
block of indices (i, j) of:

T ′′′ = (1n ⊗ V −1) · T ′′ · (1n ⊗ V ′−1).

This means that T and T ′′′ have the same rank. Because T ′′′ is block-diagonal, its rank is the sum of the
rank of the diagonal elements, namely U ′ii(MA). This concludes the proof. ut



A.3 Proof of lemma 4

Proof. We consider the coefficient of the monomial m = y1yixj in the expression

∆ = ∆a −∆b = Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y).

Since the monomial m is linear in xj it is clear that the corresponding coefficient in ∆a = Da(S0(S +
In)x,y) is also linear in the variables si,j ; moreover this coefficient is non zero. We have now to consider
the coefficient of m in ∆b. Since Db(x,y) is the differential of an homogenous polynomial of degree 3 we
can always write:

Db(x,y) =
n∑
i=1

n∑
j=i

`i,j(y1, . . . , yn)xixj +
n∑
i=1

qi(y1, . . . , yn)xi (12)

where `i,j (resp. qi) is a polynomial of degree 1 (resp. 2). Consequently, the coefficient of m in Db is
also the coefficient of y1yi in qj((U + In)S−1

0 y). That is to say, in qj(y) we have now to replace y =
(y1, . . . , yn) by ((U + In)S−1

0 y). Thus, modulo the equations of the ideal J ′ and (6), we can write the
product ((U + In)S−1

0 y) as

=


y1
...
...
yn




1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · ·
...

un,1 · · · · · · un,n



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



=


y1
...
...
yn




∗ ∗ ∗ ∗
(∗u2,1 + · · ·+ ∗u2,n) · · · · · · (∗u2,1 + · · ·+ ∗u2,n)

... · · · · · ·
...

(∗un,1 + · · ·+ ∗un,n) · · · · · · (∗u2,1 + · · ·+ ∗un,n)



=


∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

...
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn


Hence the coefficient of y1yi in qj((U + In)S−1

0 y) is linear in the variables uk,l when i 6= 1 and the
coefficient of y2

1 is a constant. ut

B Probabilities For Random Matrices

If q is odd, then the probability that a random symmetric matrix has a given rank is given by the following
result.

Lemma 7 ([33], theorem 2). Let N(n, r) denote the number of symmetric matrices of size n× n over Fq
and of rank r.

N(n, 2s) =
s∏
i=1

q2i

q2i − 1
·
2s−1∏
i=1

(
qn−i − 1

)
N(n, 2s+ 1) =

s∏
i=1

q2i

q2i − 1
·

2s∏
i=1

(
qn−i − 1

)

If q is even, then the probability that a random symmetric matrix with zeros on the diagonal, has a given
rank is given by this other result.



Lemma 8 ([33], theorem 3). Let N0(n, r) denote the number of symmetric matrices of size n× n over Fq
with zeros on the diagonal and of rank r.

N0(n, 2s) =
s∏
i=1

q2i−2

q2i − 1
·
2s−1∏
i=1

(
qn−i − 1

)
N0(n, 2s+ 1) = 0

Lemma 9 ([23], theorem 1). Let c(n, q) be the proportion of cyclic n×n matrices (i.e., matrices for which
the minimal polynomial is of degree n). We have:

1
q2(q + 1)

< 1− c(n, q) < 1
(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞

c(n, q) =
q5 − 1

q(q − 1)(q2 − 1)
·
∞∏
i=1

(
1− 1

qi

)

C A Birthday Paradox Algorithm?

Complete Failure over F2m , m > 1. This algorithm makes a critical use of so-called “boosting func-
tions”. A boosting function is in fact a pair of functions Fa and Fb such that S` ·x = y implies S` ·Fb(x) =
Fa(y) with non-negligible probability. The evaluation of Fa and Fb must be efficient (typically, polyno-
mial in the parameters), and the functions are not assumed to be deterministic. It is expected that Fb(x) is
different from both zero and x with a noticeable probability (otherwise, they do not help much).

The starting point over which boosting functions are constructed in [41] is the observation that for a
given vector z, the sets Ea = {y|a(S` · z + y) = a(y)} and Eb = {x|b(z + x) = b(x)} are in corre-
spondence via S`: Ea = S`(Eb). This equality between sets can be collapsed to a single vector equality by
summing over all the elements:

S` ·

∑
y∈Eb

y

 =
∑
x∈Ea

x

.
This would naturally lead to the definition of a boosting function:

Fa(z) =
∑

a(y+z)=a(y)

y Fb(z) =
∑

b(x+z)=b(x)

x

Unfortunately, as the authors of [41] pointed out, over fields of characteristic two, we have that if x ∈
Eb, then so does x+z, and the elements of Eb would always sum to a vector collinear to z (a similar result
applies to Ea). In any case, no new information on S` can be obtained this way. To overcome this issue,
they suggested to sum over the elements of Eb, but excluding x + z if x enters the sum. More precisely,
they defined:

Fa(z) =
∑

a(y+z)=a(y)
one only∈{y,y+z}

y Fb(z) =
∑

b(x+z)=b(x)
one only∈{x,x+z}

x

In other terms, they suggested using the algorithm shown in figure 2 to compute the sum. In other terms,
Fa(z) = PartialSum(Ea, z) and Fb(z) = PartialSum(Eb, z). Unfortunately again, this way of doing
things does not solve the problem, as we now establish. For this purpose, we first prove a general result on
PartialSum.

Lemma 10. Let V be a vector space such that z ∈ V , and c be a vector in (Fq)n. We denote by c+ V the
affine space formed by the vectors c+ x, for all x ∈ V .

i) If q > 2 or dimV > 1, then PartialSum(c+ V, z) ∈ Span(z).
ii) If q = 2 and dimV ≤ 1, then PartialSum(c+ V, z) returns either c or c+ z



Fig. 2 : PartialSum(V, z)
1: Ban← ∅
2: sum← 0
3: while V −Ban 6= ∅ do
4: let x be a random element of (V −Ban)
5: Ban← Ban ∪ {x,x + z}
6: sum← sum + x
7: end while
8: return sum

Proof. Let us denote by k the dimension of V . As a consequence, we have
∣∣V ∣∣ = qk. The vectors that are

added to sum on line 6 are of the form : c+ v, with v ∈ V , and the “while” loop on line 3 is iterated qk/2
times.

If q = 2 and k = 1, the loop is iterated only once, and since V = {0, z}, either c or c + z will be
selected, which proves the second part of our statement.

The number of iterations of the loop is even as soon as q > 2 or dimV > 1. If either one of these
conditions is true, then c being added an even number of times to sum cancels out, and we have that:

PartialSum(c+ V, z) = PartialSum(V, z)

Next, it is known that z 6= 0 belongs to V . Therefore, we can extend z to a basis of V . More precisely, let
us denote byU = Span (b1, b2, . . . , bk−1) a (k−1)-dimensional vector space such that V = Span(z)

⊕
U .

Let us denote by ρ the projection from V to U (i.e.,, the mapping that keeps only the last k−1 coordinates).
To establish the first part of our statement, we need to show that ρ(sum) = 0 at the end of the loop.

Now, there are exactly q vectors in V that are sent to the same element α of U by ρ. During the loop,
q/2 of these vectors will be selected (the other half being discarded).

– If q = 2, exactly one vector the projection of which is α will be selected, for all α ∈ U . Therefore,

ρ(sum) =
∑
α∈U

α = 0

– If q > 2, because k > 1, then an even number of vectors with the same projection will be selected in
the loop, and therefore their projetions sum up to zero. ut

Corollary 1. Unless q = 2 and the rank of ∂b∂z is n− 1, Fa(z) is collinear to z.

Proof. The setEb is in fact an affine space: it is easy to see that x ∈ Eb is equivalent to b(z)+Dzb ·x = 0.
This equation yields u affine relations, the solution of which can be written:

Eb = c+ ker Dzb

where c denotes a particular solution. It must be noted that z 6= 0 belongs to ker Dzb. Then, lemma 10
concludes the proof. ut

We have shown that as soon as q > 2, this particular boosting function cannot, by any means, provide
additional knowledge on S`, and when using it, the while algorithm is bound to fail. On the other hand,
it was also bound to fail when a and b are injective mappings (since in this case, Ea = Eb = ∅). Note
that the same reasoning about the size of the field can be extended to any boosting function making use of
PartialSum.

Systematic Failure of a Boosting Function. An other boosting function is defined in [41], with the aim of
overcoming this last problem:

Ga(z) =
∑

a(y+z)=a(y)+a(z)
one only∈{y,y+z}

y Gb(z) =
∑

b(x+z)=b(x)+b(z)
one only∈{x,x+z}

x



Or, using our terminology:

Ga(z) = PartialSum
(

ker
∂a
∂z
, z
)

Gb(z) = PartialSum
(

ker
∂b
∂z
, z
)

Unfortunately, G cannot be used as a boosting function at all, even if q = 2.

Lemma 11. Gb(z) is collinear to z.

Proof. Here, we have Eb = ker Dzb. By lemma 10 (and in either of the considered cases), we obtain the
result. ut

Success Probability of the Boosting Function. So far, we have shown that the algorithm proposed in [41]
does not work at all over Fq with q = 2k > 2. Therefore, it cannot be used to break some of the challenges
proposed by Patarin. On the positive side, it was shown that boosting functions do exist. It is even possible
to study them rigorously.

Lemma 12. When q = 2, and assuming that b is chosen randomly amongst all quadratic maps, and that z
is randomly chosen, the success probability of the boosting function is about 0.144 (and not always 1/2 as
incorrectly stated in [41]).

Proof. If q = 2, the probability that dim ker ∂b∂z = 1, for a random z, is 2λ(n) according to lemma 6.
If q = 2 and dim ker ∂b∂z = 1, then Eb will be empty if the affine equation b(z) + ∂b

∂z · x = 0 has no
solutions. It has solutions if and only if b(z) belongs to the range of ∂b

∂z . Because ∂b
∂z is of rank n − 1, a

random vector belongs to its range with probability 1/2. Now, ∂b∂z and b(z) are not statistically independent,
but they are nevertheless empirically sufficiently independent for the observed probability to be 1/2.

If it is not empty, then Eb = {c, c+ z}, and sum will be chosen randomly amongst these two vectors.
Since a random choice also takes place in Fa, the probability that the boosting function provides a right
relation for S is 1/2, under these hypotheses.

So all in all, the success probability is exactly λ(n)/2. This quantity is a decreasing function of n that
quickly converges to its limit (0.144). This is confirmed by experiments. ut

It is not very hard to improve on those presented in [41]. More specifically, it is possible, based on the
same ideas, to build a boosting function that succeeds 3 times more often that Fa (by simply returning a
random vector from ker ∂a∂z − {z}).

Complexity of Ω
(
n4 · qn/2

)
. Evaluating the boosting function Fa takes O

(
n3
)

operations, as it re-
quires solving a system of n linear equations in n unknowns. It is clear from the (vague) description of the
algorithm in [41] that the boosting function Ha is evaluated at least n · qn/2 times.
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