# A mean value formula for elliptic curves * 

Rongquan Feng ${ }^{1}$, Hongfeng $\mathrm{Wu}^{2} \dagger$<br>${ }^{1}$ LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China<br>${ }^{2}$ Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China<br>fengrq@math.pku.edu.cn, whfmath@gmail.com


#### Abstract

It is proved in this paper that for any point on an elliptic curve, the mean value of $x$-coordinates of its $n$-division points is the same as its $x$-coordinate.


Keywords: elliptic curves, point multiplication, division polynomial

Let $K$ be a field with $\operatorname{char}(K)>3$. Every elliptic curve $E / K$ can be written as a classical Weierstrass equation

$$
E: y^{2}=x^{3}+a x+b
$$

with coefficients $a, b \in K$. A point $Q$ on $E$ is said to be smooth (or nonsingular) if $\left(\left.\frac{\partial f}{\partial x}\right|_{Q},\left.\frac{\partial f}{\partial y}\right|_{Q}\right) \neq(0,0)$, where $f(x, y)=y^{2}-x^{3}-a x-b$. The point multiplication is the operation of computing

$$
n P=\underbrace{P+P+\cdots+P}_{n}
$$

[^0]for any point $P \in E$ and a positive integer $n$. The multiplication-by- $n$ map
\[

$$
\begin{array}{rlll}
{[n]:} & E & \rightarrow & E \\
& P & \mapsto & n P
\end{array}
$$
\]

is an isogeny of degree $n^{2}$. For a point $Q \in E$, any element of $[n]^{-1}(Q)$ is called an $n$-division point of $Q$. Assume $(\operatorname{char}(K), n)=1$. In this paper, the following result on the mean value of the $x$-coordinates of all the $n$-division points of any smooth point on an elliptic curve is proved.

Theorem 1. Let $E$ be an elliptic curve defined over $K$, and let $Q=\left(x_{Q}, y_{Q}\right) \in$ $E$ be a point with $Q \neq \mathcal{O}$. Set

$$
\Lambda=\left\{P=\left(x_{P}, y_{P}\right) \in E(\bar{K}) \mid n P=Q\right\} .
$$

Then

$$
\frac{1}{n^{2}} \sum_{P \in \Lambda} x_{P}=x_{Q}
$$

Remark that, if $(\operatorname{char}(K), n) \neq 1$ then we have $\sum_{P \in \Lambda} x_{P}=n^{2} x_{Q}$. According to the theorem, let $P_{i}=\left(x_{i}, y_{i}\right), i=1,2, \cdots, n^{2}$ be all the points such that $n P=Q$. Let $\lambda_{i}$ be the slope of the line through $P_{i}$ and $Q$, then $y_{Q}=$ $\lambda_{i}\left(x_{Q}-x_{i}\right)+y_{i}$. Therefore, $n^{2} y_{Q}=\sum_{i=1}^{n^{2}} \lambda_{i} \cdot\left(\sum_{i=1}^{n^{2}} x_{i}\right) / n^{2}-\sum_{i=1}^{n^{2}} \lambda_{i} x_{i}+\sum_{i=1}^{n^{2}} y_{i}$, thus we have

$$
y_{Q}=\frac{\sum_{i=1}^{n^{2}} \lambda_{i}}{n^{2}} \cdot \frac{\sum_{i=1}^{n^{2}} x_{i}}{n^{2}}-\frac{\sum_{i=1}^{n^{2}} \lambda_{i} x_{i}}{n^{2}}+\frac{\sum_{i=1}^{n^{2}} y_{i}}{n^{2}}=\overline{\lambda_{i}} \cdot \overline{x_{i}}-\overline{\lambda_{i} x_{i}}+\overline{y_{i}},
$$

where $\overline{\lambda_{i}}, \overline{x_{i}}, \overline{\lambda_{i} x_{i}}, \overline{y_{i}}$ be the average value of the variables $\lambda_{i}, x_{i}, \lambda_{i} x_{i}$ and $y_{i}$. Therefore, $Q=\left(x_{Q}, y_{Q}\right)=\left(\overline{x_{i}}, \overline{\lambda_{i}} \cdot \overline{x_{i}}-\overline{\lambda_{i} x_{i}}+\overline{y_{i}}\right)$.

To prove this result, define division polynomials [1] $\psi_{n} \in \mathbb{Z}[x, y, a, b]$ on an
elliptic curve $E: y^{2}=x^{3}+a x+b$, inductively as follows:

$$
\begin{aligned}
\psi_{0} & =0 \\
\psi_{1} & =1, \\
\psi_{2} & =2 y, \\
\psi_{3} & =3 x^{4}+6 a x^{2}+12 b x-a^{2}, \\
\psi_{4} & =4 y\left(x^{6}+5 a x^{4}+20 b x^{3}-5 a^{2} x^{2}-4 a b x-8 b^{2}-a^{3}\right), \\
\psi_{2 n+1} & =\psi_{n+2} \psi_{n}^{3}-\psi_{n-1} \psi_{n+1}^{3}, \text { for } n \geq 2, \\
2 y \psi_{2 n} & =\psi_{n}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right), \text { for } n \geq 3 .
\end{aligned}
$$

It can be checked easily by induction that the $\psi_{2 n}$ 's are polynomials. Moreover, $\psi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$ when $n$ is odd, and $(2 y)^{-1} \psi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$ when $n$ is even. Define the polynomial

$$
\phi_{n}=x \psi_{n}^{2}-\psi_{n-1} \psi_{n+1}
$$

for $n \geq 1$. Then $\phi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$. Since $y^{2}=x^{3}+a x+b$, replacing $y^{2}$ by $x^{3}+a x+b$, one have that $\phi_{n} \in \mathbb{Z}[x, a, b]$. So we can denote it by $\phi_{n}(x)$. Note that, $\psi_{n} \psi_{m} \in \mathbb{Z}[x, a, b]$ if $n$ and $m$ have the same parity.
Lemma 2. The leading term of $\psi_{n}$ is $n x^{\left(n^{2}-1\right) / 2}$ when $n$ is odd and is $n x^{\left(n^{2}-4\right) / 2} y$ when is even.
Proof. We give only the proof for the case where $n$ is odd. The even case can be proved similarly. It is true for $n<5$. Assume that it holds for all $n<2 k+1$. Now let $n=2 k+1$. If $k$ is even, then by induction, the leading term of $\psi_{k+2} \psi_{k}^{3}$ is $(k+2) k^{3} y^{4} x^{\frac{(k+2)^{2}-4}{2}+\frac{3 k^{2}-12}{2}}$, which is also $(k+2) k^{3} \frac{(2 k+1)^{2}-1}{2}$ by substituting $y^{4}$ by $\left(x^{3}+a x+b\right)^{2}$, and the leading term of $\psi_{k-1} \psi_{k+1}^{3}$ is $(k-1)(k+1)^{3} x^{\frac{(2 k+1)^{2}-1}{2}}$. Thus, the leading term of $\psi_{2 k+1}$ is $(2 k+1) \frac{\frac{(2 k+1)^{2}-1}{2}}{}$ when $k$ is even. Similarly, if $k$ is odd, then the leading term $\psi_{k+2} \psi_{k}^{3}$ is $(k+2) k^{3} x^{\frac{(2 k+1)^{2}-1}{2}}$, and the leading term of $\psi_{k-1} \psi_{k+1}^{3}$ is $(k-1)(k+1)^{3} x \frac{(2 k+1)^{2}-1}{2}$. We have again the leading term of $\psi_{2 k+1}$ is $(2 k+1) x \frac{(2 k+1)^{2}-1}{2}$ when $k$ is odd.

From Lemma 2, we have

$$
\psi_{n}^{2}(x)=n^{2} x^{n^{2}-1}+\cdots,
$$

and

$$
\phi_{n}(x)=x^{n^{2}}+\cdots .
$$

Lemma 3. The coefficient of the $x^{n^{2}-2}$ term of $\psi_{n}^{2}$ is 0 , and the coefficient of the $x^{n^{2}-1}$ term of $\psi_{n+1} \psi_{n-1}$ is 0 .
Proof. In order to prove the result, let us define the function $F$ by
$F(g)=($ the degree of $g$, the degree of the second leading term of $g)$
for a polynomial $g \in \mathbb{Z}[x, a, b]$. In the following, set $F(g)=(m, \leq \ell)$, if the degree of $g$ is $m$ and the degree of the second leading term of $g$ is less than or equal to $\ell$.

Now we prove this lemma by induction. For $n \leq 4$, the statements are true from the definition of $\psi_{n}$. Now assume that the statements hold for all $n<2 k(k>2)$, i.e., the coefficient of the $x^{n^{2}-2}$ term of $\psi_{n}^{2}$ and that of the $x^{n^{2}-1}$ term of $\psi_{n+1} \psi_{n-1}$ are 0 's for $n<2 k$. Suppose that $n=2 k+1$. Then

$$
\psi_{2 k+1}^{2}=\left(\psi_{k+2} \psi_{k}^{3}-\psi_{k-1} \psi_{k+1}^{3}\right)^{2}=\psi_{k+2}^{2} \psi_{k}^{6}+\psi_{k-1}^{2} \psi_{k+1}^{6}-2 \psi_{k-1} \psi_{k+2} \psi_{k}^{3} \psi_{k+1}^{3}
$$

It is clear that $F\left(\psi_{k} \psi_{k+2}\right)=\left(k^{2}+2 k+1, \leq k^{2}+2 k-1\right)$ since $k+2<2 k$ and the coefficient of the $x^{(k+1)^{2}-1}=x^{k^{2}+2 k}$ term of $\psi_{k} \psi_{k+2}$ is 0 from the assumption. So $F\left(\left(\psi_{k} \psi_{k+2}\right)^{2}\right)=\left(2 k^{2}+4 k+2, \leq 2 k^{2}+4 k\right)$. Furthermore, $F\left(\psi_{k}^{4}\right)=F\left(\left(\psi_{k}^{2}\right)^{2}\right)=\left(2 k^{2}-2, \leq 2 k^{2}-4\right)$ since $F\left(\psi_{k}^{2}\right)=\left(k^{2}-1, \leq k^{2}-3\right)$ from the induction assumption. Thus

$$
F\left(\psi_{k+2}^{2} \psi_{k}^{6}\right)=F\left(\left(\psi_{k} \psi_{k+2}\right)^{2} \psi_{k}^{4}\right)=\left(4 k^{2}+4 k, \leq 4 k^{2}+4 k-2\right) .
$$

Similarly,

$$
F\left(\psi_{k-1}^{2} \psi_{k+1}^{6}\right)=F\left(\left(\psi_{k-1} \psi_{k+1}\right)^{2} \psi_{k+1}^{4}\right)=\left(4 k^{2}+4 k, \leq 4 k^{2}+4 k-2\right),
$$

and

$$
F\left(2 \psi_{k-1} \psi_{k+2} \psi_{k+1} \psi_{k}^{3}\right)=F\left(\psi_{k-1} \psi_{k+1} \psi_{k} \psi_{k+2} \psi_{k}^{2} \psi_{k+1}^{2}\right)=\left(4 k^{2}+4 k, \leq 4 k^{2}+4 k-2\right) .
$$

Therefore,

$$
F\left(\psi_{2 k+1}^{2}\right)=\left(4 k^{2}+4 k, \leq 4 k^{2}+4 k-2\right) .
$$

Similarly, when $n=2 k$, we have that $F\left(\psi_{2 k}^{2}\right)=\left(4 k^{2}-1, \leq 4 k^{2}+4 k-3\right)$.
For the polynomial $\psi_{n-1} \psi_{n+1}$, when $n=2 k$, from

$$
\begin{aligned}
\psi_{2 k-1} \psi_{2 k+1}= & \psi_{2(k-1)+1} \psi_{2 k+1}=\left(\psi_{k+1} \psi_{k-1}^{3}-\psi_{k-2} \psi_{k}^{3}\right)\left(\psi_{k+2} \psi_{k}^{3}-\psi_{k-1} \psi_{k+1}^{3}\right) \\
= & \psi_{k+1} \psi_{k-1} \psi_{k+2} \psi_{k} \psi_{k-1}^{2} \psi_{k}^{2}-\psi_{k-1}^{4} \psi_{k+1}^{4}-\psi_{k-2} \psi_{k} \psi_{k} \psi_{k+2} \psi_{k}^{4} \\
& +\psi_{k-2} \psi_{k} \psi_{k-1} \psi_{k+1} \psi_{k}^{2} \psi_{k+1}^{2},
\end{aligned}
$$

we have that $F\left(\psi_{2 k-1} \psi_{2 k+1}\right)=\left(4 k^{2}, \leq 4 k^{2}-2\right)$ from the assumption. The case for the polynomial $\psi_{n-1} \psi_{n+1}$, where $n=2 k+1$ can be treated similarly. This completes the proof.

The following corollary follows immediately from Lemma 3.
Corollary 4. The coefficient of the $x^{n^{2}-1}$ term of $\phi_{n}(x)$ is 0 .
Proof of Theorem 1: Define $\omega_{n}$ as

$$
4 y \omega_{n}=\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2} .
$$

Let $P=\left(x_{P}, y_{P}\right) \in E$. Then ([1])

$$
n P=\left(\frac{\phi_{n}\left(x_{P}\right)}{\psi_{n}^{2}\left(x_{P}\right)}, \frac{\omega_{n}\left(x_{P}, y_{P}\right)}{\psi_{n}\left(x_{P}, y_{P}\right)^{3}}\right) .
$$

If $n P=Q$, then $\phi_{n}\left(x_{P}\right)-x_{Q} \psi_{n}^{2}\left(x_{P}\right)=0$. Therefore, for any $P \in \Lambda$, the $x$ coordinate of $P$ satisfies the equation $\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)=0$. From Corollary 4 , we have that

$$
\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)=x^{n^{2}}-n^{2} x_{Q} x^{n^{2}-1}+\text { lower degree terms } .
$$

Since $\sharp \Lambda=n^{2}$, every root of $\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)$ is the $x$-coordinate of some $P \in \Lambda$. Therefore $\sum_{P \in \Lambda} x_{P}=n^{2} x_{Q}$ by Vitae Theorem.

## References

[1] J.H. Silverman. The Arithmetic of Elliptic Curves, GTM 106, SpringerVerlag, Berlin, 1986.


[^0]:    *Supported by NSF of China (No. 10990011)
    ${ }^{\dagger}$ China Postdoctoral Science Foundation funded project.

