A mean value formula for elliptic curves *

Rongquan Feng ${ }^{1}$, Hongfeng $\mathrm{Wu}^{2} \dagger$
${ }^{1}$ LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
${ }^{2}$ Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China
fengrq@math.pku.edu.cn, whfmath@gmail.com

Abstract

It is proved in this paper that for any point on an elliptic curve, the mean value of x-coordinates of its n-division points is the same as its x-coordinate and the mean value of y-coordinates of its n-division points is the n times of its y-coordinate.

Keywords: elliptic curves, point multiplication, division polynomial

1 Introduction

Let K be a field with $\operatorname{char}(K) \neq 2,3$ and let \bar{K} be the algebraic closure of K. Every elliptic curve E over K can be written as a classical Weierstrass equation

$$
E: y^{2}=x^{3}+a x+b
$$

with coefficients $a, b \in K$. A point Q on E is said to be smooth (or nonsingular) if $\left(\left.\frac{\partial f}{\partial x}\right|_{Q},\left.\frac{\partial f}{\partial y}\right|_{Q}\right) \neq(0,0)$, where $f(x, y)=y^{2}-x^{3}-a x-b$. The point

[^0]multiplication is the operation of computing
$$
n P=\underbrace{P+P+\cdots+P}_{n}
$$
for any point $P \in E$ and a positive integer n. The multiplication-by- n map
\[

$$
\begin{array}{llll}
{[n]:} & E & \rightarrow & E \\
& P & \mapsto & n P
\end{array}
$$
\]

is an isogeny of degree n^{2}. For a point $Q \in E$, any element of $[n]^{-1}(Q)$ is called an n-division point of Q. Assume that $(\operatorname{char}(K), n)=1$. In this paper, the following result on the mean value of the x, y-coordinates of all the n-division points of any smooth point on an elliptic curve is proved.
Theorem 1. Let E be an elliptic curve defined over K, and let $Q=\left(x_{Q}, y_{Q}\right) \in$ E be a point with $Q \neq \mathcal{O}$. Set

$$
\Lambda=\left\{P=\left(x_{P}, y_{P}\right) \in E(\bar{K}) \mid n P=Q\right\} .
$$

Then

$$
\frac{1}{n^{2}} \sum_{P \in \Lambda} x_{P}=x_{Q}
$$

and

$$
\frac{1}{n^{2}} \sum_{P \in \Lambda} y_{P}=n y_{Q}
$$

According to Theorem 1, let $P_{i}=\left(x_{i}, y_{i}\right), i=1,2, \cdots, n^{2}$, be all the points such that $n P=Q$ and let λ_{i} be the slope of the line through P_{i} and Q, then $y_{Q}=\lambda_{i}\left(x_{Q}-x_{i}\right)+y_{i}$. Therefore, $n^{2} y_{Q}=\sum_{i=1}^{n^{2}} \lambda_{i} \cdot\left(\sum_{i=1}^{n^{2}} x_{i}\right) / n^{2}-\sum_{i=1}^{n^{2}} \lambda_{i} x_{i}+$ $\sum_{i=1}^{n^{2}} y_{i}$, thus we have

$$
y_{Q}=\frac{\sum_{i=1}^{n^{2}} \lambda_{i}}{n^{2}} \cdot \frac{\sum_{i=1}^{n^{2}} x_{i}}{n^{2}}-\frac{\sum_{i=1}^{n^{2}} \lambda_{i} x_{i}}{n^{2}}+\frac{\sum_{i=1}^{n^{2}} y_{i}}{n^{2}}=\overline{\lambda_{i}} \cdot \overline{x_{i}}-\overline{\lambda_{i} x_{i}}+\overline{y_{i}},
$$

where $\overline{\lambda_{i}}, \overline{x_{i}}, \overline{\lambda_{i} x_{i}}, \overline{y_{i}}$ be the average value of the variables $\lambda_{i}, x_{i}, \lambda_{i} x_{i}$ and y_{i}. Therefore, $Q=\left(x_{Q}, y_{Q}\right)=\left(\overline{x_{i}}, \overline{\lambda_{i}} \cdot \overline{x_{i}}-\overline{\lambda_{i} x_{i}}+\overline{y_{i}}\right)$.

2 Proof of Theorem 1

To prove this result, define division polynomials [3] $\psi_{n} \in \mathbb{Z}[x, y, a, b]$ on an elliptic curve $E: y^{2}=x^{3}+a x+b$, inductively as follows:

$$
\begin{aligned}
\psi_{0} & =0, \\
\psi_{1} & =1, \\
\psi_{2} & =2 y, \\
\psi_{3} & =3 x^{4}+6 a x^{2}+12 b x-a^{2}, \\
\psi_{4} & =4 y\left(x^{6}+5 a x^{4}+20 b x^{3}-5 a^{2} x^{2}-4 a b x-8 b^{2}-a^{3}\right), \\
\psi_{2 n+1} & =\psi_{n+2} \psi_{n}^{3}-\psi_{n-1} \psi_{n+1}^{3}, \text { for } n \geq 2, \\
2 y \psi_{2 n} & =\psi_{n}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right), \text { for } n \geq 3 .
\end{aligned}
$$

It can be checked easily by induction that the $\psi_{2 n}$'s are polynomials. Moreover, $\psi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$ when n is odd, and $(2 y)^{-1} \psi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$ when n is even. Define the polynomial

$$
\phi_{n}=x \psi_{n}^{2}-\psi_{n-1} \psi_{n+1}
$$

for $n \geq 1$. Then $\phi_{n} \in \mathbb{Z}\left[x, y^{2}, a, b\right]$. Since $y^{2}=x^{3}+a x+b$, replacing y^{2} by $x^{3}+a x+b$, one have that $\phi_{n} \in \mathbb{Z}[x, a, b]$. So we can denote it by $\phi_{n}(x)$. Note that, $\psi_{n} \psi_{m} \in \mathbb{Z}[x, a, b]$ if n and m have the same parity. Furthermore, the division polynomials ψ_{n} have the following properties.

Lemma 2.

$$
\psi_{n}=n x^{\frac{n^{2}-1}{2}}+\frac{n\left(n^{2}-1\right)\left(n^{2}+6\right)}{60} a x^{\frac{n^{2}-5}{2}}+\text { lower degree terms },
$$

when n is odd, and

$$
\psi_{n}=n y\left(x^{\frac{n^{2}-4}{2}}+\frac{\left(n^{2}-1\right)\left(n^{2}+6\right)-30}{60} a x^{\frac{n^{2}-8}{2}}+\text { lower degree terms }\right),
$$

when n is even.
Proof. We prove the result by induction on n. It is true for $n<5$. Assume that it holds for all cases $<n$. We give the proof only for the case for odd n.

The case for even n can be proved similarly. Now let $n=2 k+1$ be odd. If k is even, then by induction,

$$
\begin{aligned}
\psi_{k} & =k y\left(x^{\frac{k^{2}-4}{2}}+\frac{\left(k^{2}-1\right)\left(k^{2}+6\right)-30}{60} a x^{\frac{k^{2}-8}{2}}+\cdots\right), \\
\psi_{k+2} & =(k+2) y\left(x^{\frac{k^{2}+4 k}{2}}+\frac{\left(k^{2}+4 k+3\right)\left(k^{2}+4 k+10\right)-30}{60} a x^{\frac{k^{2}+4 k-4}{2}}+\cdots\right), \\
\psi_{k-1} & =(k-1) x^{\frac{k^{2}-2 k}{2}}+\frac{(k-1)\left(k^{2}-2 k\right)\left(k^{2}-2 k+7\right)}{60} a x^{\frac{k^{2}-2 k-4}{2}}+\cdots, \\
\psi_{k+1} & =(k+1) x^{\frac{k^{2}+2 k}{2}}+\frac{(k+1)\left(k^{2}+2 k\right)\left(k^{2}+2 k+7\right)}{60} a x^{\frac{k^{2}+2 k-4}{2}}+\cdots,
\end{aligned}
$$

By substituting y^{4} by $\left(x^{3}+a x+b\right)^{2}$, we have
$\psi_{k+2} \psi_{k}^{3}=k^{3}(k+2)\left(x^{2 k^{2}+2 k}+\frac{4(k+1)\left(k^{3}+k^{2}+10 k+3\right)}{60} a x^{2 k^{2}+2 k-2}+\cdots\right)$,
and
$\psi_{k-1} \psi_{k+1}^{3}=(k-1)(k+1)^{3} x^{2 k^{2}+2 k}+\frac{4 k(k-1)\left(k^{3}+2 k^{2}+11 k+7\right)(k+1)^{3}}{60} a x^{2 k^{2}+2 k-2}+\cdots$.
Therefore

$$
\begin{aligned}
\psi_{2 k+1} & =\psi_{k+2} \psi_{k}^{3}-\psi_{k-1} \psi_{k+1}^{3} \\
& =(2 k+1) x^{2 k^{2}+2 k}+\frac{(2 k+1)\left(4 k^{2}+4 k\right)\left(4 k^{2}+4 k+7\right)}{60} a x^{2 k^{2}+2 k-2}+\cdots \\
& =(2 k+1) x^{\frac{(2 k+1)^{2}-1}{2}}+\frac{(2 k+1)\left((2 k+1)^{2}-1\right)\left((2 k+1)^{2}+6\right)}{60} a x^{\frac{(2 k+1)^{2}-5}{2}}+\cdots
\end{aligned}
$$

The case when k is odd can be proved similarly.
The following corollary follows immediately from Lemma 2.

Corollary 3.

$$
\phi_{n}=x^{n^{2}}-\frac{n^{2}\left(n^{2}-1\right)}{6} a x^{n^{2}-2}+\cdots
$$

and

$$
\psi_{n}^{2}=n^{2} x^{n^{2}-1}-\frac{n^{2}\left(n^{2}-1\right)\left(n^{2}+6\right)}{30} a x^{n^{2}-3}+\cdots
$$

Proof of Theorem 1: Define ω_{n} as

$$
4 y \omega_{n}=\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}
$$

Then for any $P=\left(x_{P}, y_{P}\right) \in E$, we have $([3])$

$$
n P=\left(\frac{\phi_{n}\left(x_{P}\right)}{\psi_{n}^{2}\left(x_{P}\right)}, \frac{\omega_{n}\left(x_{P}, y_{P}\right)}{\psi_{n}\left(x_{P}, y_{P}\right)^{3}}\right) .
$$

If $n P=Q$, then $\phi_{n}\left(x_{P}\right)-x_{Q} \psi_{n}^{2}\left(x_{P}\right)=0$. Therefore, for any $P \in \Lambda$, the x coordinate of P satisfies the equation $\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)=0$. From Corollary 3, we have that

$$
\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)=x^{n^{2}}-n^{2} x_{Q} x^{n^{2}-1}+\text { lower degree terms } .
$$

Since $\sharp \Lambda=n^{2}$, every root of $\phi_{n}(x)-x_{Q} \psi_{n}^{2}(x)$ is the x-coordinate of some $P \in \Lambda$. Therefore

$$
\sum_{P \in \Lambda} x_{P}=n^{2} x_{Q}
$$

by Vitae Theorem.
Now we prove the mean value formula for y-coordinates. Let K be the complex number field \mathbb{C} first and let ω_{1} and ω_{2} be complex numbers which are linearly independent over \mathbb{R}. Define the lattice

$$
L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

and the Weierstrass \wp-function by

$$
\wp(z)=\wp(z, L)=\frac{1}{z}+\sum_{\omega \in L, \omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

For integers $k \geq 3$, define the Eisenstein series G_{k} by

$$
G_{k}=G_{k}(L)=\sum_{\omega \in L, \omega \neq 0} \omega^{-k} .
$$

Set $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$, then

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3} .
$$

Let E be the elliptic curve given by $y^{2}=4 x^{3}-g_{2} x-g_{3}$. Then the map

$$
\begin{aligned}
\mathbb{C} / L & \rightarrow E(\mathbb{C}) \\
z & \mapsto\left(\wp(z), \frac{1}{2} \wp^{\prime}(z)\right), \\
0 & \mapsto \infty,
\end{aligned}
$$

is an isomorphism of groups \mathbb{C} / L and $E(\mathbb{C})$. Conversely, it is well known [3] that for any elliptic curve E over \mathbb{C} defined by $y^{2}=x^{3}+a x+b$, there is a lattice L such that $g_{2}(L)=a, g_{3}(L)=b$ and there is an isomorphism between groups \mathbb{C} / L and $E(\mathbb{C})$. Therefore, for any point $(x, y) \in E(\mathbb{C})$, we have $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$ and $n(x, y)=\left(\wp(n z), \wp^{\prime}(n z)\right)$ for some $z \in \mathbb{C}$.

Let $Q=\left(\wp\left(z_{Q}\right), \wp^{\prime}\left(z_{Q}\right)\right)$ for a $z_{Q} \in \mathbb{C}$. Then for any $P_{i} \in \Lambda, 1 \leq i \leq n^{2}$, there exist integers j, k with $0 \leq j, k \leq n-1$, such that

$$
P_{i}=\left(\wp\left(\frac{z_{Q}}{n}+\frac{j}{n} \omega_{1}+\frac{k}{n} \omega_{2}\right), \wp^{\prime}\left(\frac{z_{Q}}{n}+\frac{j}{n} \omega_{1}+\frac{k}{n} \omega_{2}\right)\right) .
$$

Thus

$$
\sum_{j, k=0}^{n-1} \wp\left(\frac{z_{Q}}{n}+\frac{j}{n} \omega_{1}+\frac{k}{n} \omega_{2}\right)=n^{2} \wp\left(z_{Q}\right)
$$

which come from $\sum_{i=1}^{n^{2}} x_{i}=n^{2} x_{Q}$. Differential for z_{Q}, we have

$$
\sum_{j, k=0}^{n-1} \wp^{\prime}\left(\frac{z_{Q}}{n}+\frac{j}{n} \omega_{1}+\frac{k}{n} \omega_{2}\right)=n^{3} \wp^{\prime}\left(z_{Q}\right)
$$

That is

$$
\sum_{i=1}^{n^{2}} y_{i}=n^{3} y_{Q}
$$

Secondly, let K be a field of characteristic 0 and let E be the elliptic curve over K given by the equation $y^{2}=x^{3}+a x+b$. Then all of the equations describing the group law are defined over $\mathbb{Q}(a, b)$. Since \mathbb{C} is algebraically closed and has infinite transcendence degree over $\mathbb{Q}, \mathbb{Q}(a, b)$ can be considered as a subfield of \mathbb{C}. Therefore we can regard E as an elliptic curve defined over \mathbb{C}. Thus the result follows from above discussions.

At last assume that K is a field of characteristic p. Then the elliptic curve can be viewed as one defined over some finite field \mathbb{F}_{q}, where $q=p^{m}$ for some
integer m. Without loss of generality, let $K=\mathbb{F}_{q}$ for convenience. Let $K^{\prime}=\mathbb{Q}_{q}$ be an unramified extension of the p-adic numbers \mathbb{Q}_{p} of degree m, and let E be an elliptic curve over K^{\prime} which is a lift of E. Since $(n, p)=1$, the natural reduction map $\bar{E}[n] \rightarrow E[n]$ is an isomorphism. Now for any point $Q \in E$ with $Q \neq \mathcal{O}$, we have a point $\bar{Q} \in \bar{E}$ such that the reduction point is Q. For any point $P_{i} \in E(\bar{K})$ with $n P_{i}=Q$, its lifted point \bar{P}_{i} satisfies $n \bar{P}_{i}=\bar{Q}$ and $\bar{P}_{i} \neq \bar{P}_{j}$ whenever $P_{i} \neq P_{j}$. Thus

$$
\sum_{i=1}^{n^{2}} y\left(\bar{P}_{i}\right)=n^{3} y(\bar{Q})
$$

since K^{\prime} is a field of characteristic 0 . Therefore the formula $\sum_{i=1}^{n^{2}} y_{i}=n^{3} y_{Q}$ holds by the reduction from \bar{E} to E.

Remark:

(1) Theorem 1 holds also for the elliptic curve defined by the general Weierstrass equation $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
(2) The mean value formula for x-coordinates was given in the first version of this paper [1] with a slightly complicated proof. The formula for y-coordinates was conjectured by Dustin Moody based on [1] and numerical examples in a personal email communication [2].

3 An application

Let E be an elliptic curve over K given by the Weierstrass equation $y^{2}=$ $x^{3}+a x+b$. Then we have a non-zero invariant differential $\omega=\frac{d x}{y}$. Let $\phi \in \operatorname{End}(E)$ be a nonzero endomorphism. Then $\phi^{*} \omega=\omega \circ \phi=c_{\phi} \omega$ for some $c_{\phi} \in \bar{K}(E)$ since the space Ω_{E} of differential forms on E is a 1-dimensional $\bar{K}(E)$-vector space. Since $c_{\phi} \neq 0$ and $\operatorname{div}(\omega)=0$, we have

$$
\operatorname{div}\left(c_{\phi}\right)=\operatorname{div}\left(\phi^{*} \omega\right)-\operatorname{div}(\omega)=\phi^{*} \operatorname{div}(\omega)-\operatorname{div}(\omega)=0 .
$$

Hence c_{ϕ} has no zeros and poles and $c_{\phi} \in \bar{K}$. Let φ and ψ be two nonzero endomorphisms, then

$$
c_{\varphi+\psi} \omega=(\varphi+\psi)^{*} \omega=\varphi^{*} \omega+\psi^{*} \omega=c_{\varphi} \omega+c_{\psi} \omega=\left(c_{\varphi}+c_{\psi}\right) \omega .
$$

Therefore, $c_{\varphi+\psi}=c_{\varphi}+c_{\psi}$. For any nonzero endomorphism ϕ, we can write $\phi(x, y)$ as $\left(R_{\phi}(x), y S_{\phi}(x)\right)$, where R_{ϕ} and S_{ϕ} are rational functions. Thus

$$
c_{\phi}=\frac{R_{\phi}^{\prime}(x)}{S_{\phi}(x)}
$$

where $R_{\phi}^{\prime}(x)$ is the differential of $R_{\phi}(x)$. Especially, for any positive integer n, the map $[n]$ on E is an endomorphism. Set $[n](x, y)=\left(R_{n}(x), y S_{n}(x)\right)$. From $c_{[1]}=1$ and $[n]=[1]+[(n-1)]$, we have

$$
c_{[n]}=\frac{R_{n}^{\prime}(x)}{S_{n}(x)}=n .
$$

For any $Q=\left(x_{Q}, y_{Q}\right) \in E$, and any

$$
P=\left(x_{P}, y_{P}\right) \in \Lambda=\left\{P=\left(x_{P}, y_{P}\right) \in E(\bar{K}) \mid n P=Q\right\}
$$

We have $y_{P}=\frac{y_{Q}}{S_{n}\left(x_{P}\right)}$. Therefore, Theorem 1 gives

$$
\sum_{P \in \Lambda} \frac{1}{S_{n}\left(x_{P}\right)}=\sum_{P \in \Lambda} \frac{y_{P}}{y_{Q}}=\frac{1}{y_{Q}} \sum_{P \in \Lambda} y_{P}=n^{3}
$$

and then

$$
\sum_{P \in \Lambda} \frac{1}{R_{n}^{\prime}\left(x_{P}\right)}=\sum_{P \in \Lambda} \frac{1}{n \cdot S_{n}\left(x_{P}\right)}=\frac{1}{n} \sum_{P \in \Lambda} \frac{1}{S_{n}\left(x_{P}\right)}=n^{2}
$$

Furthermore, we have

$$
\sum_{P \in \Lambda} \frac{x_{Q}}{R_{n}^{\prime}\left(x_{P}\right)}=x_{Q} \sum_{P \in \Lambda} \frac{1}{R_{n}^{\prime}\left(x_{P}\right)}=n^{2} x_{Q}=\sum_{P \in \Lambda} x_{P}
$$

References

[1] R. Feng and H. Wu, A mean value formula for elliptic curves, Cryptology ePrint Archive, Report 2009/586, 2009. Http://eprint.iacr.org/.
[2] Dustin Moody, Private communication, 2010.
[3] J.H. Silverman. The Arithmetic of Elliptic Curves, GTM 106, SpringerVerlag, Berlin, 1986.

[^0]: *Supported by NSF of China (No. 10990011)
 ${ }^{\dagger}$ China Postdoctoral Science Foundation funded project.

