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Abstract

It is proved in this paper that for any point on an elliptic curve,
the mean value of z-coordinates of its n-division points is the same as
its z-coordinate and the mean value of y-coordinates of its n-division
points is the n times of its y-coordinate.
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1 Introduction

Let K be a field with char(K) # 2,3 and let K be the algebraic closure of
K. Every elliptic curve E/ over K can be written as a classical Weierstrass

equation
E:y’=2>+ax+0b

with coefficients a, b € K. A point Q on F is said to be smooth (or non-
singular) if (%b, %|Q> # (0,0), where f(z,y) = y*—2® —az —b. The point
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multiplication is the operation of computing

nP=P+P+4---+P

n

for any point P € E and a positive integer n. The multiplication-by-n map

n]: E — FE
P — nP
is an isogeny of degree n?. For a point Q € E, any element of [n|™1(Q)
is called an n-division point of (). Assume that (char(K),n) = 1. In this

paper, the following result on the mean value of the x,y-coordinates of all
the n-division points of any smooth point on an elliptic curve is proved.

Theorem 1. Let E be an elliptic curve defined over K, and let Q = (xq,yq) €
E be a point with Q) # O. Set

A={P=(zp,yp) € E(K) |nP = Q}.

Then ]
PeA
and .
2 Z Yyp = NYq-
PeA
According to Theorem 1, let P, = (z4,v;),i = 1,2,--- ,n?, be all the

points such that nP = @ and let \; be the slope of the hne through P; and

Q, then yo = \i(xg—x;)+y;. Therefore, n*yg = Z A (Z ;) /n? —Z i+

Z y;, thus we have
i=1

TI,2 TL2 TL2
Z)\i ZIZ Z)\z% Zyi

=1 i=1 =1 N — __
Yq = : - + =N Ti— Nt + i
@ n2 n? n2 n? ’

where \;, T7, \iTi, 7; be the average value of the variables \;, x;, \;x; and v;.
Therefore, Q = (zg,yq) = (Ti, N\i - Ti — Nix; + 7).



2 Proof of Theorem 1

To prove this result, define division polynomials [3] ¢, € Z[z,y,a,b] on an
elliptic curve E : y?> = 2 + ax + b, inductively as follows:

wo = 07
wl = 17
7?2 = 23/,

3 = 3at + 6ax? + 12bx — a?,

vy = 4y(z® + bazt + 20bx® — Hax? — 4abx — 8b* — a?),
Vo1 = Ungoly — hnathly, forn > 2,
20than = Yn(Ynyath2_ — Yn_otp?,,), forn > 3.

It can be checked easily by induction that the 15,’s are polynomials. More-
over, ¥, € Z[z,y*, a,b] when n is odd, and (2y) ', € Z[z,y?, a,b] when n
is even. Define the polynomial

¢n = ﬂbi - 77Z}n—177zjn-i-1

for n > 1. Then ¢, € Z[x,y? a,b]. Since y* = 2° + az + b, replacing y* by
23+ ax +0b, one have that ¢,, € Z[z, a,b]. So we can denote it by ¢, (z). Note
that, V¥, € Z[x,a,b] if n and m have the same parity. Furthermore, the
division polynomials 1, have the following properties.

Lemma 2.

n27 2 - ]_ 2 6 n27
Y = nz 7T + n(n 6)0(n i )a:z: = + lower degree terms,

when n is odd, and

n?-4 2-1)(n?+6)—30 a2
Uy =ny (m T + (n )(%0+ ) ar" T + lower degree terms) ,

when n is even.

Proof. We prove the result by induction on n. It is true for n < 5. Assume
that it holds for all cases < n. We give the proof only for the case for odd n.



The case for even n can be proved similarly. Now let n = 2k + 1 be odd. If
k is even, then by induction,

Uy,
(o
Y1

wk-ﬁ-l

K4 (K2-1)(k2+6)—30 k=8

ky(z = +

(k+2)y 2 + (k2+4k+3)(k2+4k+10)_30am%
(h — 1)po52% 4 G222k | Kgis

(k + 1)xk2§2’“ + (k+1)(k2+261~c0)(k2+2k+7)

60 az -z +---),

(z 2 60

2+ 60

By substituting y* by (2° + ax + b)?, we have

U2ty = K (k+2) ($2k2+2k +

and

Yr1tpyy = (k=1)(k+1)

Therefore

7vZJQk-‘rl

Vo) —

(2k—|— 1)x2k2+2k + (2k+1)(

(2k + 1)z

axr

60

k2+2k—4
2

4(k + 1)(k* + k* + 10k + 3) k2

1/%—11/);?3“

60

4k2+4k) (42 +4k+T7 2 _
+HAR)(AREAARHT) 2k 42k-2

60

60

The case when £ is odd can be proved similarly.

The following corollary follows immediately from Lemma 2.

Corollary 3.

and

@k+1)2—1 2U41)((2k+1)2 -1 2 @k+1)2-5
DI R(R) ) (@h ) 46) 2

)

3$2k2+2k+4k(/§ — 1)k + 2k* + 11k + 7)(k + 1)?’mg,€2+2k,2



Proof of Theorem 1: Define w,, as

dyw, = ¢n+2¢721—1 - ¢n—2¢2+1~

Then for any P = (zp,yp) € E, we have ([3])

= (en i)

If nP = Q, then ¢,(zp) — zgY2(xp) = 0. Therefore, for any P € A, the z-
coordinate of P satisfies the equation ¢,(z) — zgy2(x) = 0. From Corollary
3, we have that

bn(T) — 202 (7) = - anQx”Ll + lower degree terms.
Since A = n?, every root of ¢,(z) — zg?2(x) is the z-coordinate of some

P € A. Therefore
Z Tp = n2xQ

PeA

by Vitae Theorem.

Now we prove the mean value formula for y-coordinates. Let K be the
complex number field C first and let w; and wy be complex numbers which
are linearly independent over R. Define the lattice

L = Zw; + Zwy = {nyw1 + naws | ny,ny € Z},
and the Weierstrass p-function by
1 1 1
o =sen =2+ ¥ (=)
weL,w#0

For integers k£ > 3, define the Eisenstein series Gy by

Gy = Gk(L) = Z wk,

weL,w#0

Set go = 60G4 and g3 = 140G¢, then



Let E be the elliptic curve given by y? = 423 — go2 — ¢g3. Then the map

C/L — E(C)

2 (p(2), 30 (2))
0 — oo,

is an isomorphism of groups C/L and E(C). Conversely, it is well known
[3] that for any elliptic curve E over C defined by y* = 2% + az + b, there
is a lattice L such that go(L) = a,g3(L) = b and there is an isomorphism
between groups C/L and E(C). Therefore, for any point (z,y) € E(C), we
have (z,y) = (p(2), 9 (2)) and n(z,y) = (p(nz), p (nz)) for some z € C.

Let Q = (p(zQ), p/(zQ)) for a zg € C. Then for any P, € A, 1 < i < n?
there exist integers j, k with 0 < j,k < n — 1, such that

z ] k iz ] k

Pi: (p(_Q‘i_lwl"‘_WQ),@ (—Q+lw1+—w2)).
n n n n n n
n—1

k
© ( + wl + CUQ) = nzp(zQ)
k=0

Thus

Js

n2

which come from Y~ x; = nzq. Differential for zg, we have
i=1

n—1 .
k
Z §© ( + w1 + Eu@) = ngp/(zQ).

7,k=0

That is )
Z Yi = nng-
i=1

Secondly, let K be a field of characteristic 0 and let E be the elliptic curve
over K given by the equation y? = 2% + ax + b. Then all of the equations
describing the group law are defined over Q(a,b). Since C is algebraically
closed and has infinite transcendence degree over Q, Q(a, b) can be considered
as a subfield of C. Therefore we can regard E as an elliptic curve defined
over C. Thus the result follows from above discussions.

At last assume that K is a field of characteristic p. Then the elliptic curve
can be viewed as one defined over some finite field IF;, where ¢ = p™ for some
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integer m. Without loss of generality, let K = I, for convenience. Let
K' = Q, be an unramified extension of the p-adic numbers Q, of degree m,
and let E be an elliptic curve over K’ which is a lift of E. Since (n,p) = 1, the
natural reduction map E[n] — E[n] is an isomorphism. Now for any point
Q € E with Q # O, we have a point Q € E such that the reduction point
is Q. For any point P; € E(K) with nP; = (@, its lifted point P; satisfies
nP;=(Q and P, # PJ whenever P; # P;. Thus

Z y(P) =n’y(Q)

n2

since K’ is a field of characteristic 0. Therefore the formula Y v; = ndyg
i=1

holds by the reduction from E to E. m

Remark:

(1) Theorem 1 holds also for the elliptic curve defined by the general Weier-
strass equation y? + a1zy + asy = 2% + a2 + asx + ag.

(2) The mean value formula for z-coordinates was given in the first ver-
sion of this paper [1] with a slightly complicated proof. The formula
for y-coordinates was conjectured by Dustin Moody based on [1] and
numerical examples in a personal email communication [2].

3 An application

Let E be an elliptic curve over K given by the Weierstrass equation y? =
2% 4+ ax + b. Then we have a non-zero invariant differential w = df. Let
¢ € End(F) be a nonzero endomorphism. Then ¢*w = w o ¢ = c4w for some
cy € K(E) since the space Qg of differential forms on E is a 1-dimensional

K (E)-vector space. Since ¢, # 0 and div(w) = 0, we have
div(ey) = div(¢*w) — div(w) = ¢*div(w) — div(w) = 0.

Hence ¢, has no zeros and poles and ¢, € K. Let ¢ and 1 be two nonzero
endomorphisms, then

Corpw = (P + ) w = P'w + VP w = cow + cyw = (¢ + ¢y )w.
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Therefore, ¢,y = ¢, + ¢y. For any nonzero endomorphism ¢, we can write
o(z,y) as (Ry(x),ySs(x)), where Ry and S, are rational functions. Thus

where R;S(a:) is the differential of Ry(z). Especially, for any positive integer
n, the map [n] on E is an endomorphism. Set [n](z,y) = (R.(x),yS.(z)).

From cjy) = 1 and [n] = [1] + [(n — 1)], we have
R,(z)
C[n} = Sn(x) =MN.

For any @) = (z¢,y¢) € E, and any

P = (zp,yp) € A ={P = (zp,yp) € E(K) | nP = Q}.

We have yp = ﬁ Therefore, Theorem 1 gives
yp
s
e pea Y@ YQ per
and then

1 1 1 1
2 Tar) A n Sular) nim Saar) "

x
PeA n(@p) PeA
Furthermore, we have

R QZR/ _”25”@:2“'

PeA PeA PeA
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