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Abstract

It is proved in this paper that for any point on an elliptic curve,
the mean value of x-coordinates of its n-division points is the same as
its x-coordinate and the mean value of y-coordinates of its n-division
points is the n times of its y-coordinate.
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1 Introduction

Let K be a field with char(K) 6= 2, 3 and let K̄ be the algebraic closure of
K. Every elliptic curve E over K can be written as a classical Weierstrass
equation

E : y2 = x3 + ax+ b

with coefficients a, b ∈ K. A point Q on E is said to be smooth (or non-

singular) if
(
∂f
∂x
|Q, ∂f∂y |Q

)
6= (0, 0), where f(x, y) = y2−x3−ax−b. The point
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multiplication is the operation of computing

nP = P + P + · · ·+ P︸ ︷︷ ︸
n

for any point P ∈ E and a positive integer n. The multiplication-by-n map

[n] : E → E
P 7→ nP

is an isogeny of degree n2. For a point Q ∈ E, any element of [n]−1(Q)
is called an n-division point of Q. Assume that (char(K), n) = 1. In this
paper, the following result on the mean value of the x, y-coordinates of all
the n-division points of any smooth point on an elliptic curve is proved.

Theorem 1. Let E be an elliptic curve defined over K, and let Q = (xQ, yQ) ∈
E be a point with Q 6= O. Set

Λ = {P = (xP , yP ) ∈ E(K̄) | nP = Q}.

Then
1

n2

∑
P∈Λ

xP = xQ

and
1

n2

∑
P∈Λ

yP = nyQ.

According to Theorem 1, let Pi = (xi, yi), i = 1, 2, · · · , n2, be all the
points such that nP = Q and let λi be the slope of the line through Pi and

Q, then yQ = λi(xQ−xi)+yi. Therefore, n2yQ =
n2∑
i=1

λi ·(
n2∑
i=1

xi)/n
2−

n2∑
i=1

λixi+

n2∑
i=1

yi, thus we have

yQ =

n2∑
i=1

λi

n2
·

n2∑
i=1

xi

n2
−

n2∑
i=1

λixi

n2
+

n2∑
i=1

yi

n2
= λi · xi − λixi + yi,

where λi, xi, λixi, yi be the average value of the variables λi, xi, λixi and yi.
Therefore, Q = (xQ, yQ) = (xi, λi · xi − λixi + yi).
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2 Proof of Theorem 1

To prove this result, define division polynomials [3] ψn ∈ Z[x, y, a, b] on an
elliptic curve E : y2 = x3 + ax+ b, inductively as follows:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1, for n ≥ 2,

2yψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), for n ≥ 3.

It can be checked easily by induction that the ψ2n’s are polynomials. More-
over, ψn ∈ Z[x, y2, a, b] when n is odd, and (2y)−1ψn ∈ Z[x, y2, a, b] when n
is even. Define the polynomial

φn = xψ2
n − ψn−1ψn+1

for n ≥ 1. Then φn ∈ Z[x, y2, a, b]. Since y2 = x3 + ax + b, replacing y2 by
x3 +ax+ b, one have that φn ∈ Z[x, a, b]. So we can denote it by φn(x). Note
that, ψnψm ∈ Z[x, a, b] if n and m have the same parity. Furthermore, the
division polynomials ψn have the following properties.

Lemma 2.

ψn = nx
n2−1

2 +
n(n2 − 1)(n2 + 6)

60
ax

n2−5
2 + lower degree terms,

when n is odd, and

ψn = ny

(
x

n2−4
2 +

(n2 − 1)(n2 + 6)− 30

60
ax

n2−8
2 + lower degree terms

)
,

when n is even.

Proof. We prove the result by induction on n. It is true for n < 5. Assume
that it holds for all cases < n. We give the proof only for the case for odd n.
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The case for even n can be proved similarly. Now let n = 2k + 1 be odd. If
k is even, then by induction,

ψk = ky(x
k2−4

2 + (k2−1)(k2+6)−30
60

ax
k2−8

2 + · · · ),

ψk+2 = (k + 2)y(x
k2+4k

2 + (k2+4k+3)(k2+4k+10)−30
60

ax
k2+4k−4

2 + · · · ),

ψk−1 = (k − 1)x
k2−2k

2 + (k−1)(k2−2k)(k2−2k+7)
60

ax
k2−2k−4

2 + · · · ,

ψk+1 = (k + 1)x
k2+2k

2 + (k+1)(k2+2k)(k2+2k+7)
60

ax
k2+2k−4

2 + · · · ,

By substituting y4 by (x3 + ax+ b)2, we have

ψk+2ψ
3
k = k3(k+2)

(
x2k2+2k +

4(k + 1)(k3 + k2 + 10k + 3)

60
ax2k2+2k−2 + · · ·

)
,

and

ψk−1ψ
3
k+1 = (k−1)(k+1)3x2k2+2k+

4k(k − 1)(k3 + 2k2 + 11k + 7)(k + 1)3

60
ax2k2+2k−2+· · · .

Therefore

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1

= (2k + 1)x2k2+2k + (2k+1)(4k2+4k)(4k2+4k+7)
60

ax2k2+2k−2 + · · ·

= (2k + 1)x
(2k+1)2−1

2 + (2k+1)((2k+1)2−1)((2k+1)2+6)
60

ax
(2k+1)2−5

2 + · · ·

The case when k is odd can be proved similarly.

The following corollary follows immediately from Lemma 2.

Corollary 3.

φn = xn
2 − n2(n2 − 1)

6
axn

2−2 + · · · ,

and

ψ2
n = n2xn

2−1 − n2(n2 − 1)(n2 + 6)

30
axn

2−3 + · · · .
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Proof of Theorem 1: Define ωn as

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1.

Then for any P = (xP , yP ) ∈ E, we have ([3])

nP =

(
φn(xP )

ψ2
n(xP )

,
ωn(xP , yP )

ψn(xP , yP )3

)
.

If nP = Q, then φn(xP ) − xQψ2
n(xP ) = 0. Therefore, for any P ∈ Λ, the x-

coordinate of P satisfies the equation φn(x)− xQψ2
n(x) = 0. From Corollary

3, we have that

φn(x)− xQψ2
n(x) = xn

2 − n2xQx
n2−1 + lower degree terms.

Since ]Λ = n2, every root of φn(x) − xQψ
2
n(x) is the x-coordinate of some

P ∈ Λ. Therefore ∑
P∈Λ

xP = n2xQ

by Vitae Theorem.
Now we prove the mean value formula for y-coordinates. Let K be the

complex number field C first and let ω1 and ω2 be complex numbers which
are linearly independent over R. Define the lattice

L = Zω1 + Zω2 = {n1ω1 + n2ω2 | n1, n2 ∈ Z},

and the Weierstrass ℘-function by

℘(z) = ℘(z, L) =
1

z
+

∑
ω∈L,ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

For integers k ≥ 3, define the Eisenstein series Gk by

Gk = Gk(L) =
∑

ω∈L,ω 6=0

ω−k.

Set g2 = 60G4 and g3 = 140G6, then

℘
′
(z)2 = 4℘(z)3 − g2℘(z)− g3.
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Let E be the elliptic curve given by y2 = 4x3 − g2x− g3. Then the map

C/L → E(C)
z 7→

(
℘(z), 1

2
℘
′
(z)
)
,

0 7→ ∞,

is an isomorphism of groups C/L and E(C). Conversely, it is well known
[3] that for any elliptic curve E over C defined by y2 = x3 + ax + b, there
is a lattice L such that g2(L) = a, g3(L) = b and there is an isomorphism
between groups C/L and E(C). Therefore, for any point (x, y) ∈ E(C), we
have (x, y) =

(
℘(z), ℘

′
(z)
)

and n(x, y) =
(
℘(nz), ℘

′
(nz)

)
for some z ∈ C.

Let Q =
(
℘(zQ), ℘

′
(zQ)

)
for a zQ ∈ C. Then for any Pi ∈ Λ, 1 ≤ i ≤ n2,

there exist integers j, k with 0 ≤ j, k ≤ n− 1, such that

Pi =

(
℘

(
zQ
n

+
j

n
ω1 +

k

n
ω2

)
, ℘
′
(
zQ
n

+
j

n
ω1 +

k

n
ω2

))
.

Thus
n−1∑
j,k=0

℘

(
zQ
n

+
j

n
ω1 +

k

n
ω2

)
= n2℘(zQ)

which come from
n2∑
i=1

xi = n2xQ. Differential for zQ, we have

n−1∑
j,k=0

℘
′
(
zQ
n

+
j

n
ω1 +

k

n
ω2

)
= n3℘′(zQ).

That is
n2∑
i=1

yi = n3yQ.

Secondly, let K be a field of characteristic 0 and let E be the elliptic curve
over K given by the equation y2 = x3 + ax + b. Then all of the equations
describing the group law are defined over Q(a, b). Since C is algebraically
closed and has infinite transcendence degree over Q, Q(a, b) can be considered
as a subfield of C. Therefore we can regard E as an elliptic curve defined
over C. Thus the result follows from above discussions.

At last assume that K is a field of characteristic p. Then the elliptic curve
can be viewed as one defined over some finite field Fq, where q = pm for some
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integer m. Without loss of generality, let K = Fq for convenience. Let
K ′ = Qq be an unramified extension of the p-adic numbers Qp of degree m,
and let Ē be an elliptic curve over K ′ which is a lift of E. Since (n, p) = 1, the
natural reduction map Ē[n] → E[n] is an isomorphism. Now for any point
Q ∈ E with Q 6= O, we have a point Q̄ ∈ Ē such that the reduction point
is Q. For any point Pi ∈ E(K̄) with nPi = Q, its lifted point P̄i satisfies
nP̄i = Q̄ and P̄i 6= P̄j whenever Pi 6= Pj. Thus

n2∑
i=1

y(P̄i) = n3y(Q̄)

since K ′ is a field of characteristic 0. Therefore the formula
n2∑
i=1

yi = n3yQ

holds by the reduction from Ē to E.
Remark:

(1) Theorem 1 holds also for the elliptic curve defined by the general Weier-
strass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.

(2) The mean value formula for x-coordinates was given in the first ver-
sion of this paper [1] with a slightly complicated proof. The formula
for y-coordinates was conjectured by Dustin Moody based on [1] and
numerical examples in a personal email communication [2].

3 An application

Let E be an elliptic curve over K given by the Weierstrass equation y2 =
x3 + ax + b. Then we have a non-zero invariant differential ω = dx

y
. Let

φ ∈ End(E) be a nonzero endomorphism. Then φ∗ω = ω ◦ φ = cφω for some
cφ ∈ K̄(E) since the space ΩE of differential forms on E is a 1-dimensional
K̄(E)-vector space. Since cφ 6= 0 and div(ω) = 0, we have

div(cφ) = div(φ∗ω)− div(ω) = φ∗div(ω)− div(ω) = 0.

Hence cφ has no zeros and poles and cφ ∈ K̄. Let ϕ and ψ be two nonzero
endomorphisms, then

cϕ+ψω = (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω = cϕω + cψω = (cϕ + cψ)ω.
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Therefore, cϕ+ψ = cϕ + cψ. For any nonzero endomorphism φ, we can write
φ(x, y) as (Rφ(x), ySφ(x)), where Rφ and Sφ are rational functions. Thus

cφ =
R
′

φ(x)

Sφ(x)
,

where R
′

φ(x) is the differential of Rφ(x). Especially, for any positive integer
n, the map [n] on E is an endomorphism. Set [n](x, y) = (Rn(x), ySn(x)).
From c[1] = 1 and [n] = [1] + [(n− 1)], we have

c[n] =
R
′
n(x)

Sn(x)
= n.

For any Q = (xQ, yQ) ∈ E, and any

P = (xP , yP ) ∈ Λ = {P = (xP , yP ) ∈ E(K̄) | nP = Q}.

We have yP =
yQ

Sn(xP )
. Therefore, Theorem 1 gives∑

P∈Λ

1

Sn(xP )
=
∑
P∈Λ

yP
yQ

=
1

yQ

∑
P∈Λ

yP = n3,

and then ∑
P∈Λ

1

R′n(xP )
=
∑
P∈Λ

1

n · Sn(xP )
=

1

n

∑
P∈Λ

1

Sn(xP )
= n2.

Furthermore, we have∑
P∈Λ

xQ
R′n(xP )

= xQ
∑
P∈Λ

1

R′n(xP )
= n2xQ =

∑
P∈Λ

xP .
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