
Information-set decoding for linear codes over Fq

Christiane Peters

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

c.p.peters@tue.nl

Abstract. A code-based cryptosystem is considered secure if the best known attack against it
is information-set decoding. Stern’s algorithm and its improvements are well optimized and the
complexity is reasonably well understood. However, these algorithms only handle codes over F2.
This paper presents a generalization of Stern’s information-set-decoding algorithm for decoding
linear codes over arbitrary finite fields Fq and analyzes the complexity. This result makes it
possible to compute the security of recently proposed code-based systems over non-binary fields.
As an illustration, ranges of parameters for generalized McEliece cryptosystems using classical
Goppa codes over F31 are suggested for which the new information-set-decoding algorithm needs
2128 bit operations.
Keywords: Generalized McEliece cryptosystem, security analysis, Stern attack, linear codes
over Fq, information-set decoding.

1 Introduction

Quantum computers will break the most popular public-key cryptosystems. The McEliece
cryptosystem — introduced by McEliece in 1978 [10]— is one of the public-key systems with-
out known vulnerabilities to attacks by quantum computers. Grover’s algorithm can be coun-
tered by doubling the key size (see [6], [12]). Its public key is a random-looking algebraic code
over a finite field. Encryption in McEliece’s system is remarkably fast. The sender simply
encodes a plaintext and adds some errors. The receiver, having generated the code by secretly
transforming a Goppa code, can use standard Goppa-code decoders to correct the errors and
recover the plaintext.

The security of the McEliece cryptosystem relies on the fact that the published code does
not come with any known structure. An attacker is faced with the classical decoding problem:
Find the closest codeword in a linear code C to a given vector in the ambient space of C,
assuming that there is a unique closest codeword. This is a well known-problem. Berlekamp,
McEliece, and van Tilborg [1] showed that the general decoding problem for linear binary
codes is NP-complete. Moreover, the classical decoding problem is assumed to be hard on
average, i.e., there are no weak instances.

Information-set decoding. An attacker does not know the secret code and thus has to de-
code a random-looking code without any obvious structure. The best known algorithms which
do not exploit any code structure rely on information-set decoding, an approach introduced
by Prange in [13]. The idea is to find a set of coordinates of a garbled vector which are error-
free and which correspond to an invertible submatrix of the code’s generator matrix. Then,
the original message can be computed by multiplying the encrypted vector by the inverse of
the submatrix. Improvements of this simplest form of information-set decoding were devised
by Lee and Brickell [8], Leon [9], and Stern [14]— all for binary linear codes.

* Date of this document: 2009.12.01. This work has been supported in part by the European Commission
through the ICT Programme under Contract ICT–2007–216676 ECRYPT II.

2 Christiane Peters

Best known attacks against binary McEliece. At PQCrypto 2009 Bernstein, Lange and
Peters [2] presented several improvements to Stern’s attack and gave a precise analysis of the
complexity. Finiasz and Sendrier [5] presented a further improvement which can be combined
with the improvements in [2] but did not analyze the combined attack. [2] suggests the use of
binary Goppa codes of length 2960 and dimension 2288 with a degree-56 Goppa polynomial
and 57 added errors for 128-bit security.

Decreasing public-key sizes by using larger fields. Recently, base fields other than
F2 were suggested, e.g., [11]. This idea is interesting as it has the potential to reduce the
public-key size. One could hope that using a code over Fq saves a factor of log2 q: row and
column dimension of the generator matrix both shrink by a factor of log2 q at the cost of the
matrix entries having size log2 q. However, information-set-decoding algorithms do not scale
as brute force attacks. It is important to understand the implications of changing from F2

to Fq for arbitrary prime powers q on the attacks. Note that some papers claim structural
attacks against [11] but they are using that the codes are dyadic and do not attack the general
principle of using larger base fields.

Contributions of this paper. This paper generalizes Lee–Brickell’s algorithm and Stern’s
algorithm to decoding algorithms for codes over arbitrary fields and extends the improvements
from [2] and [5]. The most important contribution is a precise analysis of these improved
and generalized algorithms. For q = 31, code parameters (length n, dimension k and error-
correction capacity t of the non-subfield Goppa code) are presented that require 2128 bit
operations to compute the closest codeword.

Acknowledgments. The author would like to thank Dan Bernstein and Tanja Lange for
fruitful discussions and in particular Tanja for helpful suggestions and detailed comments in
the writing of this paper.

2 The McEliece cryptosystem

This section gives the background on the McEliece cryptosystem and introduces notation for
linear codes which is used throughout this paper.

Linear codes. Let Fq be a finite field with q elements. An [n, k] code over Fq is a linear code
of length n and dimension k, i.e., a k-dimensional subspace of Fn

q .
An [n, k] code C is given by a generator matrix which is a k × n matrix G such that

C =
{

mG : m ∈ Fk
q

}

. The parity-check matrix of an [n, k] code C is an (n − k) × n matrix

H such that C =
{

c ∈ Fn
q : H cT = 0

}

.

The matrix G corresponds to a map Fk
q → Fn

q sending a message m of length k to a

vector in Fn
q . By definition GHT = 0. Given the generator matrix G of a linear code C

one can easily determine a matching parity check matrix H by linear transformations. In
particular, if G is given in systematic form, i.e., G = (Ik|Q) where Q is a k × (n − k) matrix
then H = (−QT |In−k) is a parity check matrix for the code Fk

qG.
The Hamming distance between two words in Fn

q is the number of coordinates where they
differ. The Hamming weight of a word is the number of non-zero coordinates. The minimum

distance of a linear code C is the smallest Hamming weight of a nonzero codeword in C.

Classical Goppa codes. Fix a finite field Fq. Fix a positive integer m > 1 and consider
Fqm. Fix elements a1, . . . , an in Fqm and a polynomial g(z) in Fqm [z] of degree t such that
mt < n and such that g(ai) 6= 0 for all i. The polynomial g(z) is called Goppa polynomial.

Information-set decoding for linear codes over Fq 3

The words c = (c1, . . . , cn) in Fn
qm with

n
∑

i=1

ci
z − ai

≡ 0 mod g(z) (1)

form an [n, n − t] code C in Fn
qm. The Goppa code Γ (a1, . . . , an, g) is the restriction of C to

the field Fq, i.e., the set of elements (c1, . . . , cn) in Fn
q which satisfy (1). As a subfield subcode

of C the code Γ (a1, . . . , an, g) has dimension k ≥ n −mt. Its minimum distance is at least
t + 1 for general fields Fq and at least 2t + 1 if q = 2. See [7] for larger lower bounds for
non-binary fields.

Let Γ (a1, . . . , an, g) be a Goppa code of length n where a1, . . . , an are elements in a degree-
m extension Fqm of Fq and g is a Goppa polynomial of degree t. Assume that Γ (a1, . . . , an, g)
has dimension exactly n − mt. Fix a basis of Fqm over Fq and write each element of Fqm

with respect to that basis. Then, a parity check matrix for Γ (a1, . . . , an, g) is given by the
following mt× n matrix over Fq

H =

1/g(α1) · · · 1/g(αn)
α1/g(α1) · · · αn/g(αn)

...
. . .

...

αt−1

1
/g(α1) · · · α

t−1
n /g(αn)

,

where each entry is a vector written in the chosen Fq-basis of Fqm .

The code Γ (a1, . . . , an, g) is often referred to as a “classical” Goppa code since it is the
basic construction of a genus-0 geometric Goppa code which Goppa later generalized for
higher-genus varieties.

Set-up of the McEliece cryptosystem. The secret key of the McEliece cryptosystem
consists of a classical Goppa code Γ = Γ (a1, . . . , an, g) over a finite field of Fq of length n and
dimension k with an error-correction capacity of w errors. A generator matrix G for the code
Γ as well as an n× n permutation matrix P , and an invertible k × k matrix S are randomly
generated and kept secret as part of the secret key.

The parameters n, k, and w are public system parameters. The McEliece public key is the
k × n matrix Ĝ = SGP .

McEliece encryption of a message m ∈ Fk
q : Compute mĜ. Then hide the message by

adding a random error vector e of length n and weight w. Send y = mĜ+ e.
McEliece decryption: Compute yP−1 = mSG+eP−1. Use the decoding algorithm to find

mS and thereby m.

The decryption algorithm works since mSG is a codeword in Γ and the vector eP−1 has
weight w.

An attacker who got hold of an encrypted message y has two possibilities in order to
retrieve the original message m.

• Find out the secret code; i.e., find G given Ĝ.

• Or decode y without knowing an efficient decoding algorithm for the public code given
by Ĝ.

Attacks of the first type are called structural attacks. If G or an equivalently efficiently
decodable representation of the underlying code can be retrieved in subexponential time, this

4 Christiane Peters

code should not be used in the McEliece cryptosystem. Suitable codes are such that the best
known attacks are decoding random codes. In the next section we will describe how to correct
errors in a random-looking code with no obvious structure.

3 Generalizations of information-set-decoding algorithms

This section generalizes two information-set-decoding algorithms. Lee–Brickell’s algorithm
and Stern’s algorithm — both originally designed for binary codes — are stated for arbitrary
finite fields Fq. Stern’s algorithm is more efficient and supersedes Lee–Brickell’s algorithm
but the latter is easier to understand and the generalization of it can be used as a stepping
stone to the generalization of Stern’s.

The preliminaries are the following: Let C be an [n, k] code over a finite field Fq. Let
G be a generator matrix for C. Let I be a non-empty subset of {1, . . . , n}. Denote by GI

the restriction of G to the columns indexed by I. For any vector y in Fn
q denote by yI the

restriction of y to the coordinates indexed by I.

Let m be a vector in Fk
q and c = mG. Let y be a vector in Fn

q at distance w from c. The

goal of this section is to determine a vector e ∈ y + Fk
qG of weight w given G, y and w.

We start with the definition of an information set.

Information-set decoding. Let Gsys be a generator matrix for C in systematic form and
c = mGsys for some vector m in Fk

q . Since the first k columns of Gsys form the identity
matrix the first k positions of c equal m. The first k symbols of mGsys are therefore called
information symbols.

The notion of information symbols leads to the concept of information sets as follows. Let
G be an arbitrary generator matrix of C. Let I be a size-k subset of {1, . . . , n}. The columns
indexed by I form a k × k submatrix of G which is denoted by GI . If GI is invertible the
I-indexed entries of any codeword mG−1

I G are information symbols and the set I is called an
information set. Note that G−1

I G and G generate the same code.

Information-set decoding in its simplest form takes as input a vector y in Fn
q which is

known to have distance w from a codeword c in C. Let I be an information set. Assume that
y and c coincide on the positions indexed by I, i.e., no errors occurred at these positions.
Then, yIG

−1

I is the preimage of c under the linear map induced by G and we obtain c as
(yIG

−1

I)G.

The following subsection presents Lee–Brickell’s algorithm which is a classical information-
set-decoding algorithm and serves as a basis for all further improvements.

Notation: for any a in an information set I let ga denote the unique row of G−1

I G where
column a has a 1.

Lee–Brickell’s algorithm. Let p be an integer with 0 ≤ p ≤ w.

1. Choose an information set I.

2. Replace y by y − yIG
−1

I G.

3. For each size-p subset A = (a1, . . . , ap) ⊂ I: For each m = (m1, . . . ,mp) in F
p
q: Compute

e = y −
∑p

i=1
migai

. If e has weight w print e. Else go back to Step 1.

Step 1 can be performed by choosing k indices in {1, . . . , n} uniformly at random and
then performing Gaussian elimination on G in order to see if its I-indexed columns form an
invertible submatrix GI . A better way of determining an information set I is to choose k

Information-set decoding for linear codes over Fq 5

columns one by one: check for each newly selected column if it does not linearly depend on
the already selected columns.

If p = 0 Step 3 consists only of checking whether y − yIG
−1

I G has weight w. If p > 0
Step 3 requires going through all possible weighted sums of p rows of G which need to be
subtracted from y − yIG

−1

I G in order to make up for the p errors permitted in I.

Steps 1–3 form one iteration of the generalized Lee–Brickell algorithm. If the set I chosen
in Step 1 does not lead to a weight-w word in Step 3 another iteration has to be performed.

The parameter p is chosen to be a small number to keep the number of size-p subsets
small in Step 3. In the binary case p = 2 is optimal; see e.g., [3].

Lee–Brickell, Leon, Stern. Stern’s algorithm was originally stated to be a minimum-weight-
word-finding algorithm for binary linear codes. Following [3] Stern’s algorithm is stated as
a fixed-distance-decoding algorithm. Given y in Fn

q , G and w: find e such that e lies in

y + Fk
qG. This algorithm is still a minimum-weight-word-finding algorithm: just choose y to

be the zero-codeword in Fn
q and the algorithm yields a desired codeword of given length w.

The basic Stern algorithm uses two parameters p and ℓ whose size are determined later on.

In each round an information set I is chosen. Stern’s algorithm uses the idea of Lee and
Brickell to allow a fixed number of errors in the information set. The algorithm also uses
the idea of Leon’s minimum-weight-word-finding algorithm [9] to look for the error vector e:
since e is a low-weight vector one restricts the number of possible candidates to those vectors
having ℓ zeros outside the I-indexed columns.

Stern’s algorithm divides the information set into two equal-size subsets X and Y and
looks for words having exactly weight p among the columns indexed by X, exactly weight p
among the columns indexed by Y and exactly weight 0 on ℓ positions outside the I-indexed
columns.

Stern’s algorithm. Let p be an integer with 0 ≤ p ≤ w. Let ℓ be an integer with 0 ≤ ℓ ≤ n−k.
For simplicity assume that k is even.

1. Choose an information set I.

2. Replace y by y − yIG
−1

I G.

3. Choose a uniform random subset X ⊂ I of size k/2.

4. Set Y = I \X.

5. Select a uniform random size-ℓ subset Z in {1, . . . , n} \ I.

6. For any size-p subset A = {a1, . . . , ap} ⊂ X: Consider the set
VA =

{

y −
∑p

i=1
migai

: m = (m1, . . . ,mp) ∈ (F∗

q)
p
}

. For each φ ∈ VA compute the vector

φ(Z) ∈ Fℓ
q: the Z-indexed entries of φ.

7. For any size-p subset B = {b1, . . . , bp} ⊂ Y : Consider the set

VB =
{

∑p
j=1

m′

jgbj
: m′ = (m′

1
, . . . ,m′

p) ∈ (F∗

q)
p
}

. For each ψ ∈ VB compute the vector

ψ(Z) ∈ Fℓ
q: the Z-indexed entries of ψ.

8. For each pair (A,B) where there is a pair of vectors φ and ψ such that φ(Z) = ψ(Z):
Compute e = y−

∑

imigai
−

∑

j m
′

jgbj
. If e has weight w print e. Else go back to Step 1.

This algorithm finds a weight-w vector e in y+Fk
qG if an information set I together with

sets X, Y , and Z can be found such that e has weight p, p, 0 on the positions indexed by X,
Y , and Z. Steps 1–8 form one iteration of the generalized Stern algorithm. If the set I chosen
in Step 1 does not lead to a weight-w word in Step 8 another iteration has to be performed.

6 Christiane Peters

4 Analysis of an improved version of Stern’s algorithm for prime fields

This section analyzes the cost for the generalization of Stern’s algorithm as presented in
Section 3. In this section the field Fq is restricted to prime fields. The general case is handled
in the next section.

Note that the Stern algorithm stated in Section 3 is the basic algorithm. The following
analysis takes several speedups into account that were introduced in [2] for the binary case.

Success probability of the first iteration. Note that in the basic Stern algorithm the
information set I is chosen uniformly at random. I.e., k columns are chosen and then Gaussian
elimination is performed. Stern proposed to choose the columns one by one and to perform
Gaussian elimination after each selection in order to check whether the linearly independence
is still given after taking a new column.

The success probability of a randomly chosen information set I to have p errors among the
columns indexed by a size-(k/2) subset X ⊂ I, p errors among the size-(k/2) subset Y ⊂ I

and ℓ zeros among the columns indexed by the size-ℓ subset Z is given by
(k/2

p

)2(n−k−ℓ
w−2p

)

/

(n
w

)

;

see e.g., [3].

Reusing parts of information sets and precomputations. Canteaut and Chabaud in
[4] proposed to use a column-swapping technique for Stern’s algorithm in order to cut down
on Gaussian elimination costs. If an information set I does not lead to a weight-w vector e

then instead of abandoning the whole set I reuse k− 1 columns and select a new column out
of the remaining n− k non-selected columns of G. The submatrix GI′ has to be updated for
this new information set I ′. Bernstein, Lange, and Peters pointed out in [2] that selecting
only a single new column increases the number of iterations of Stern’s algorithm significantly
and proposed to swap more than one column in each round: Reuse k − c columns from the
previous iteration and select c new linearly independent columns out of the non-selected n−k
columns. The value c has to be chosen with respect to the code length n, its dimension k and
the error weight w.

At the beginning of each new iteration there are k columns from the previous iteration in
row echelon form. Exchanging c columns means that Gaussian elimination has to be performed
on those c columns.

Updating the matrix and looking for pivots in c columns with respect to the chosen
columns is done using precomputations. Since sums of certain rows are used multiple times
those sums are precomputed. Following [2, Section 4] pick e.g., the first r rows and compute
all possible sums of those rows. The parameter r needs to be tuned with respect to the field
size q and the code dimension k. In particular, r ≤ c. Starting with r columns one has to
precompute only qr − r − 1 sums of r rows. Each of the remaining k − r rows requires on
average 1 − 1/qr vector additions.

Compute sums of p rows. In Step 6 one has to compute
(k/2

p

)

(q−1)p vectors y−
∑p

i=1
migai

on ℓ positions. Computing those vectors naively one by one would require pℓ multiplications
and pℓ additions in Fq per vector. A better way to do this is to first compute k

2
−p+1 vectors

y − gi with i ∈ X and then to build up all needed sums of p rows by using intermediate
sums. This saves a factor of p. Computing all possible vectors induced by subsets A on the
Z-indexed columns boils down to one row addition for each vector, i.e., ℓ additions in Fq per
vector. In Step 7 the same trick is applied to compute all vectors in induced by size-p subsets
of Y on the Z-indexed columns.

Information-set decoding for linear codes over Fq 7

Collisions. The expected number of colliding vectors φ(Z), ψ(Z) is about
(

(k/2

p

)

(q − 1)p
)2

/

qℓ.

For each collision one computes y minus the sum of 2p weighted rows on all positions outside
X, Y , and Z. Naive computation of one such a vector would take 2p multiplications and 2p
additions on n− k − ℓ positions. First of all one can discard multiplications by 1, leaving 2p
additions and (2p)(q − 2)/(q − 1) multiplications. Looking more carefully one observes that
each entry has a chance of (q − 1)/q to be a non-zero entry. In order to save operations,
one computes the result in a column-by-column fashion and uses an early abort: After about
(q/(q − 1))(w − 2p) columns were handled it is very likely that the resulting row vector has
more than the allowed w− 2p non-zero entries and can be discarded. This means that partial
collisions that do not lead to full collision consume only (q/(q − 1))(w − 2p) operations.

To estimate the costs per iteration we need to express the costs in one measure, namely in
additions in Fq. We described Steps 6–8 using multiplications. Since we consider only quite
small fields Fq multiplications can be implemented as table lookups and thus cost the same
as one addition

Cost for one iteration of Stern’s algorithm. Stern’s algorithm in the version presented
here uses parameters p, ℓ and additional parameters c and r.

The cost of one iteration of Stern’s algorithm is as follows:

(n− 1)

(

(k − 1)

(

1 −
1

qr

)

+ (qr − r)

)

c

r

+

((

k

2
− p+ 1

)

+ 2

(

k/2

p

)

(q − 1)p
)

ℓ

+
q

q − 1
(w − 2p)2p

(

1 +
q − 2

q − 1

)

(k/2

p

)2

(q − 1)2p

qℓ
.

Choice of parameters for Stern’s algorithm. The parameter p is chosen quite small in
order to minimize the cost of going though all subsets A, B of X and Y . The parameter ℓ
is classically chosen to balance the number of all possible length-ℓ vectors φ(Z) and ψ(Z),

2
(k/2

p

)

(q − 1)p with the number of expected collisions on ℓ positions,
(k/2

p

)2

(q − 1)2p
/

qℓ. A

reasonable choice is

ℓ = logq

(

k/2

p

)

+ p logq(q − 1).

5 Analysis of an improved version of Stern’s algorithm for extension fields

We presented a generalization for information-set decoding over arbitrary finite fields Fq.
However, the cost analysis in the previous section was restricted to prime values of q. Here
we point out the differences in handling arbitrary finite fields.

The main difference in handling arbitrary finite fields is in Steps 6 and 7 of the generalized
Stern algorithm when computing sums of p rows coming from subsets A of X, and sums of
p rows coming from subsets B of Y . In prime fields all elements are reached by repeated
addition since 1 generates the additive group. If q is a prime power 1 does not generate the
additive group.

Let Fq be represented over its prime field via an irreducible polynomial h(x). To reach
all elements we also need to compute x times a field element, which is essentially the cost

8 Christiane Peters

of reducing modulo h. In turn this means several additions of the prime field elements. Even
though these operations technically are not additions in Fq, the costs are essentially the same.
This means that the costs of these steps are the same as before.

In the analysis of Step 8 we need to account for multiplications with the coefficient vectors
(m1, . . . ,mp) and (m′

1
, . . . ,m′

p). This is the same problem that we faced in the previous section
and thus we use the same assumption, namely that one multiplication in Fq has about the
same cost as one addition in Fq.

This means that a good choice of ℓ again is given by

ℓ = logq

(

k/2

p

)

+ p logq(q − 1).

6 Increasing the collision probability in Stern’s algorithm

In [5] Finiasz and Sendrier proposed a speedup of Stern’s algorithm. This section generalizes
this approach to codes over arbitrary finite fields.

Stern splits an information set I into two disjoint sets X and Y , each of size
(

k/2

p

)

and
searches for collisions among size-p subsets taken from X and Y .

Finiasz and Sendrier propose not to split the information set I into two disjoint sets but
to look more generally for collisions. The split of I into two disjoint size-(k/2) sets is omitted
at the benefit of creating more possible words having weight 2p among the information set.

This version of Stern’s algorithm uses parameters p, ℓ, N , and N ′ whose size is determined
in Section 7.

Stern’s algorithm with overlapping sets. Let p be an integer with 0 ≤ p ≤ w. Let ℓ be
an integer with 0 ≤ ℓ ≤ n− k. Let N,N ′ be integers with 0 ≤ N,N ′ ≤

(k
p

)

.

1. Choose an information set I.

2. Replace y by y − yIG
−1

I G.

3. Select a uniform random size-ℓ subset Z in {1, . . . , n} \ I.

4. Repeat N times: Choose a size-p subset A = {a1, . . . , ap} ⊂ I uniformly at random and
consider the set VA =

{

y −
∑p

i=1
migai

: m = (m1, . . . ,mp) ∈ (F∗

q)
p
}

. For each φ ∈ VA

compute the vector φ(Z) ∈ Fℓ
q: the Z-indexed entries of φ.

5. Repeat N ′ times: Choose a size-p subset B = {b1, . . . , bp} ⊂ I uniformly at random

and consider the set VB =
{

∑p
j=1

m′

jgbj
: m′ = (m′

1
, . . . ,m′

p) ∈ (F∗

q)
p
}

. For each ψ ∈ VB

compute the vector ψ(Z) ∈ Fℓ
q: the Z-indexed entries of ψ.

6. For each pair (A,B) where there is a pair of vectors φ and ψ such that φ(Z) = ψ(Z):
Compute e = y−

∑

imigai
−

∑

j m
′

jgbj
. If e has weight w print e. Else go back to Step 1.

This algorithm finds a weight-w vector e in y + Fk
qG if there is a vector e having weight

2p on positions indexed by the information set and weight 0 on the positions indexed by Z.
Steps 1–6 form one iteration. If the set I chosen in Step 1 does not lead to a weight-w word
in Step 6 another iteration has to be performed.

It is possible that a subset chosen in Step 4 is also chosen in Step 5. This case is allowed
in order to benefit from a larger set of possible sums of p rows. The choice of N and N ′ is
adjusted so that the number of overlapping sets is minimal.

Information-set decoding for linear codes over Fq 9

7 Cost of Stern’s algorithm with Finiasz–Sendrier’s improvement

The analysis of the costs for the algorithm presented in Section 6 is done analogously to the
analysis in Section 4 and Section 5.

In Step 4 one has to compute N(q − 1)p vectors y −
∑p

i=1
migai

and in Step 5 one has
to compute N ′(q − 1)p vectors — each vector on ℓ positions. First compute k − p+ 1 vectors
y − gi with i ∈ I and use intermediate sums so that each sum of p rows is computed using
only one row addition, i.e., only ℓ additions in Fq. The expected number of collisions in Step 6
is about NN ′(q − 1)2p/qℓ.

The total cost for one iteration of the algorithm is

(n− 1)

(

(k − 1)

(

1 −
1

qr

)

+ (qr − r)

)

c

r

+
(

(k − p+ 1) + (N +N ′)(q − 1)p
)

ℓ

+
q

q − 1
(w − 2p)2p

(

1 +
q − 2

q − 1

)

NN ′(q − 1)2p

qℓ
.

Choice of parameters. As in Stern’s algorithm the parameter p is chosen to be a small
number. The parameter ℓ is classically chosen to balance the number of all computed length-
ℓ vectors φ(Z) and ψ(Z), (N + N ′)(q − 1)p, with the number of expected collisions on ℓ
positions NN ′(q − 1)2p/qℓ. Assuming N and N ′ are about the same a reasonable choice is
ℓ = logq N + p logq(q − 1).

Determining N and N ′. This algorithm works for any numbers N , N ′ less or equal to
(k
p

)

,
the number of all possible size-p subsets taken from an information set I. There is no point in
choosing N larger than this number since otherwise all possible combinations of p elements
out of I could be deterministically tested.

There are
(

2p
p

)

different possibilities of splitting 2p errors into two disjoint subsets of
cardinality p each. The probability of not finding an error vector e, which has 2p errors in

I, by a fixed set A and a fixed set B is 1 −
(

2p
p

)

/
(k
p

)2

. If one chooses N sets A and N ′

sets B uniformly at random the probability of e not being found by any pair (A,B) equals
(

1 −
(

2p
p

)

/
(k
p

)2
)NN ′

.

The probability of e not being found by sets A,B coming from random splits of 2p errors
as p, p is

1 −

(

2p
p

)

(

k
p

)2

NN ′

≈ exp

−
NN ′

(

2p
p

)

(

k
p

)2

 .

Thus, a sensible choice for N and N ′ is N = N ′ =
(

k
p

)

/ √

(

2p
p

)

since it minimizes the

probability of e not being found by the algorithm.

The average number of ways to find e with N = N ′ =
(k
p

)

/ √

(

2p
p

)

is
(k
2p

)(n−k−ℓ
w−2p

)

/

(n
w

)

.

8 Parameters

The iterations of Stern’s algorithm for Fq with the speedups described in Section 4 are not
independent. The number of iterations has to be estimated with a Markov chain computa-
tion as in [2, Section 5]. We adapted the Markov chain implementation from [2] to look for
parameter ranges for McEliece-cryptosystem setups using codes over F31.

10 Christiane Peters

Our experiments show that an [n, k]-code with n = 961, k = 771, and w = 48 introduced
errors over F31 achieves 128-bit security against the generalized Stern attack as presented in
Section 3. Any Goppa code being the subfield subcode of a code in F312 with a degree-95
Goppa polynomial can be used. A successful attack needs about 296.815 iterations with about
232.165 bit operations per iteration and uses parameters p = 2, ℓ = 7, c = 12, and r = 1. A
public key for a [961, 771] code over F31 would consist of k(n − k) log2 31 = 725740 bits.

For comparison: a [2960, 2288] binary Goppa code where w = 57 errors are added by the
sender has a public key of size 1537536 bits.

We are still working on obtaining similar results for F3 and F4 which will be included in
future versions of this paper.

9 Outlook

We covered most of the improvements suggested in [2] but we omitted choosing multiple sets
Z of size ℓ. This step amortizes the cost of the Gaussian elimination over more computations
in the second part. For larger q the Gaussian elimination is even less of a bottleneck than in
binary fields and we thus omitted this part here. A direction of future work is to review the
exact cutoff between 2 and general q where this step is useful. We also plan to generalize further
improvements due to Finiasz and Sendrier [5]— such as diagonalizing a smaller submatrix of
the generator matrix— and investigate the extent to which they speed up the generalized
algorithm.

References

1. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory, 24:384–386.

2. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the McEliece cryptosys-
tem. In Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryptography – Second International
Workshop, PQCrypto 2008, volume 5299 of Lecture Notes in Computer Science, pages 31–46. Springer,
Berlin, 2008.

3. Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Henk C. A. van Tilborg. Explicit bounds for
generic decoding algorithms for code-based cryptography. In Pre-proceedings of WCC 2009, pages 168–180.
2009.

4. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight words in a linear code:
application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions
on Information Theory, 44(1):367–378, 1998.

5. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryptosystems. In
Proceedings of AsiaCrypt 2009 (to appear). Springer.

6. Sean Hallgren and Ulrich Vollmer. Quantum computing. In Daniel J. Bernstein, Johannes Buchmann,
and Erik Dahmen, editors, Post-Quantum Cryptography, pages 15–34. Springer, Berlin, 2008.

7. Gregory L. Katsman and Michael A. Tsfasman. A remark on algebraic geometric codes. In M. Isaacs,
A. Lichtman, D. Passman, S. Sehgal, N. J. A. Sloane, and H. Zassenhaus, editors, Representation theory,
group rings, and coding theory, volume 93, pages 197–199. American Mathematical Society, 1989.

8. Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s public-key cryptosystem.
In Christoph G. Günther, editor, Advances in cryptology—EUROCRYPT ’88, volume 330 of Lecture Notes
in Computer Science, pages 275–280. Springer, Berlin, 1988.

9. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting codes.
IEEE Transactions on Information Theory, 34(5):1354–1359, 1988.

10. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory, 1978. Jet Propul-
sion Laboratory DSN Progress Report 42–44. URL: http://ipnpr.jpl.nasa.gov/progress report2/

42-44/44N.PDF.

Information-set decoding for linear codes over Fq 11

11. Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa codes. In Michael
J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography,
volume 5867 of Lecture Notes in Computer Science, pages 376–392, 2009.

12. Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J. Bernstein, Johannes
Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography, pages 95–145. Springer, Berlin, 2008.

13. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information
Theory, 8(5):5–9, September 1962.

14. Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen and Jacques
Wolfmann, editors, Coding theory and applications, volume 388 of Lecture Notes in Computer Science,
pages 106–113. Springer, New York, 1989.

