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Abstract

We propose new and improved instantiations of lossy trapdoor functions (Peikert and Wa-
ters, STOC ’08), and correlation-secure trapdoor functions (Rosen and Segev, TCC ’09). Our
constructions widen the set of number-theoretic assumptions upon which these primitives can
be based, and are summarized as follows:

• Lossy trapdoor functions based on the quadratic residuosity assumption. Our construc-
tion relies on modular squaring, and whereas previous such constructions were based on
seemingly stronger assumptions, we present the first construction that is based solely on
quadratic residuosity.

• Lossy trapdoor functions based on the composite residuosity assumption. Our construc-
tion guarantees essentially any required amount of lossiness, where at the same time the
functions are more efficient than the matrix-based approach of Peikert and Waters.

• Lossy trapdoor functions based on the d-Linear assumption. Our construction both sim-
plifies the DDH-based construction of Peikert and Waters, and admits a generalization to
the whole family of d-Linear assumptions without any loss of efficiency.

• Correlation-secure trapdoor functions related to the hardness of syndrome decoding.

Keywords: Public-key encryption, lossy trapdoor functions, correlation-secure trapdoor functions.

∗CWI and Universiteit Leiden, Netherlands. Email: freeman@cwi.nl. Research supported by a National Science
Foundation International Research Fellowship, with additional support from the Office of Multidisciplinary Activities
in the NSF Directorate for Mathematical and Physical Sciences.
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel. Email: oded.goldreich@weizmann.ac.il. This research was partially supported by the Israel Science Foun-
dation (grant No. 1041/08).
‡CWI, Netherlands. Email: kiltz@cwi.nl.
§Efi Arazi School of Computer Science, Herzliya Interdisciplinary Center (IDC), Herzliya 46150, Israel. Email:

alon.rosen@idc.ac.il.
¶Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel. Email: gil.segev@weizmann.ac.il. Research supported by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

freeman@cwi.nl
oded.goldreich@weizmann.ac.il
kiltz@cwi.nl
alon.rosen@idc.ac.il
gil.segev@weizmann.ac.il


1 Introduction

In this paper, we describe new constructions of lossy trapdoor functions and correlation-secure
trapdoor functions. These primitives are strengthened variants of the classical notion of trapdoor
functions, and were introduced with the main goal of enabling simple and black-box constructions
of public-key encryption schemes that are secure against chosen-ciphertext attacks. At a high level,
they are defined as follows:

Lossy trapdoor functions [22]: A collection of lossy trapdoor functions consists of two families
of functions. Functions in one family are injective and can be efficiently inverted using a
trapdoor. Functions in the other family are “lossy,” which means that the size of their image
is significantly smaller than the size of their domain. The only computational requirement
is that a description of a randomly chosen function from the family of injective functions is
computationally indistinguishable from a description of a randomly chosen function from the
family of lossy functions.

Correlation-secure trapdoor functions [23]: The classical notion of a one-way function asks
for a function that is efficiently computable but is hard to invert given the image of a uniformly
chosen input. Correlation security extends the one-wayness requirement by considering k-
wise products of functions and any specified input distribution, not necessarily the uniform
distribution. Given a collection of functions F and a distribution C over k-tuples of inputs, we
say that F is secure under C-correlated inputs if the function (f1(x1), . . . , fk(xk)) is one-way,
where f1, . . . , fk are independently chosen from F and (x1, . . . , xk) are sampled from C.

Lossy trapdoor functions were introduced by Peikert and Waters [22], who showed that they imply
fundamental cryptographic primitives, such as trapdoor functions, collision-resistant hash functions,
oblivious transfer, and CCA-secure public-key encryption. In addition, lossy trapdoor functions
have already found various other applications, including deterministic public-key encryption [3],
OAEP-based public-key encryption [14], “hedged” public-key encryption for protecting against bad
randomness [1], security against selective opening attacks [2], and efficient non-interactive string
commitments [19].

The notion of correlation security was introduced by Rosen and Segev [23], who showed that any
collection of injective trapdoor functions that is one-way under a natural input distribution can be
used to construct a CCA-secure public-key encryption scheme.1 They showed that any collection of
lossy trapdoor functions that are sufficiently lossy is in fact also correlation-secure. This result was
recently refined by Mol and Yilek [16] who showed that even lossiness of any polynomial fraction
of a single bit suffices.

These applications motivate us to investigate new constructions of lossy and correlation-secure
functions. Such constructions would enable us to widen the basis upon which one can achieve the
above cryptographic tasks in a simple and modular way.

1.1 Our Contributions

We propose new and improved constructions of lossy and correlation-secure trapdoor functions
based on well-established number-theoretic assumptions (some of which were previously not known

1Any distribution where (x1, . . . , xk) are (1 − ε)k-wise independent, for a constant ε < 1, can be used in their
framework. In particular, this includes the case where x1 is uniformly distributed and x1 = · · · = xk.
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to imply either of the primitives). By directly applying the results of [22, 23, 16], we obtain new
CCA-secure public-key encryption schemes based on these assumptions. Concretely, we present the
following constructions:

1. Lossy trapdoor permutations based on the quadratic residuosity assumption. Our construction
relies on Rabin’s modular squaring function and is based solely on the quadratic residuosity
assumption. More precisely, the function is defined as f(x) = x2 · δr,s(x) mod N , where δr,s(·)
is a function indexed by two public elements r, s ∈ ZN serving two independent purposes.
First, it extends the modular squaring function to a permutation over ZN . Second, f(x) loses
the information about the sign of x if and only if s is a quadratic residue. Therefore, under
the quadratic residuosity assumption f has one bit of lossiness.

2. Lossy trapdoor functions based on the composite residuosity assumption. Our construction
is based on the Damg̊ard-Jurik encryption scheme [7] with additional insights by Damg̊ard
and Nielsen [8, 9]. The Damg̊ard-Jurik scheme is based on computations in the group ZNs+1 ,
where N = PQ is an RSA modulus and s ≥ 1 is an integer (it contains Paillier’s encryption
scheme [20] as a special case by setting s = 1). At a high level, each function is described by a
pair (pk, c), where pk is a public key for the encryption scheme, and c is either an encryption of
1 (injective mode) or an encryption of 0 (lossy mode). By using the homomorphic properties
of the encryption scheme, given such a ciphertext c and an element x, it is possible to compute
either an encryption of x in the injective mode, or an encryption of 0 in the lossy mode. We
note that this construction was concurrently and independently proposed by Boldyreva et al.
[3]. We also give an “all-but-one” version of the construction.

3. Lossy trapdoor functions based on the d-Linear assumption. Our construction both simplifies
and generalizes the DDH-based construction of Peikert and Waters [22, Section 5]. (Recall
that DDH is the 1-Linear assumption.) Let G be a finite group of order p and choose an
n × n matrix M over Fp that has either rank d (lossy mode) or rank n (injective mode).
We “encrypt” M = (aij) as the matrix gM = (gaij ) ∈ Gn×n, where g is a generator of G.
If ~x is a binary vector of length n, then given gM we can efficiently evaluate the function
fM (~x) = gM~x ∈ Gn. If M has rank n, then given M we can efficiently invert fM on the image
of {0, 1}n. On the other hand, if M has rank d and p < 2n/d, then f is lossy. The d-Linear
assumption implies that the lossy and injective modes cannot be efficiently distinguished. We
also give an “all-but-one” version of the function fM based on the DDH assumption.

4. Correlation-secure trapdoor functions based on the hardness of syndrome decoding. Our con-
struction is based on Niederreiter’s coding-based encryption system [18] which itself is the
dual of the McEliece encryption system [15]. Our trapdoor function is defined as f(x) = Hx,
where H is a binary (n − k) × n matrix (of a certain distribution that allows for embed-
ding a trapdoor) and x is bit string of small Hamming weight. We show that the function’s
correlation security is directly implied by a result of Fischer and Stern [11] about the pseudo-
randomness of the function f . Interestingly, the related McEliece trapdoor function (which
can be viewed as the dual of the Niederreiter function) is not correlation-secure.2 It is however
possible to extend the framework of correlation security in a natural way to obtain a direct

2The McEliece trapdoor function is defined as f ′H(x, e) := Hx ⊕ e, where H is a binary k × n matrix, x is a
k-bit string and e is a error vector of small Hamming weight. Given H1, H2 and two evaluations y1 = H1x⊕ e and
y2 = H2x⊕ e one can reconstruct the unique x by solving (H1 ⊕H2)x = y1 ⊕ y2 for x.
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construction of a CCA-secure encryption scheme from the McEliece trapdoor function. This
was recently demonstrated by Dowsley et al [10] and, for the related lattice case, indepen-
dently by Peikert [21] and Goldwasser and Vaikuntanathan [12]. Our contribution is to show
that the Niederreiter function admits a simple construction of correlation-secure trapdoor
functions based on the same security assumptions as [10].3

1.2 Related Work

Most of the known constructions and applications of lossy and correlation-secure trapdoor functions
are already mentioned above; here we include a few more. Besides their construction based on DDH,
Peikert and Waters [22] also present a construction of lossy trapdoor functions based on the worst-
case hardness of lattice problems. The construction does not enjoy the same amount of lossiness
as their DDH-based one, but it still suffices for their construction of a CCA-secure public-key
encryption scheme. The worst-case hardness of lattice problems is also used by Peikert [21] and by
Goldwasser and Vaikuntanathan [12] to construct a CCA-secure encryption scheme using a natural
generalization of correlation-secure trapdoor functions.

Kiltz et al. [14] show that the RSA trapdoor function is lossy (by a factor 1/e, where e is the
public RSA exponent) under the Φ-Hiding assumption of Cachin et al. [6]. Furthermore, they
propose multi-prime hardness assumptions under which RSA has greater lossiness.

In concurrent and independent work, Mol and Yilek [16] propose a lossy trapdoor function
based on the modular squaring function. Though this construction is related to ours, its security
is based on the stronger assumption that a random two-prime RSA modulus is indistinguishable
from a random three-prime RSA modulus.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review the definitions of lossy
and correlation-secure trapdoor functions. In Sections 3, 4, 5, and 6 we present our constructions
that are based on the quadratic residuosity assumption, the composite residuosity assumption, the
d-Linear assumption, and the hardness of syndrome decoding, respectively.

2 Preliminaries

2.1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions. Functions in one family
are injective and can be efficiently inverted using a trapdoor. Functions in the other family are
“lossy,” which means that the size of their image is significantly smaller than the size of their
domain. The only computational requirement is that a description of a randomly chosen function
from the family of injective functions is computationally indistinguishable from a description of a
randomly chosen function from the family of lossy functions.

Definition 2.1 (Lossy trapdoor functions). A collection of (n, `)-lossy trapdoor functions is a
4-tuple of probabilistic polynomial-time algorithms (G0,G1,F,F

−1) such that:
3We remark that our construction of a correlation-secure trapdoor function from coding theory does not carry

over to the lattice case since the “dual” of the one-way function used in [21, 12] is not injective.
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1. Sampling a lossy function: G0(1n) outputs a function index σ ∈ {0, 1}∗.

2. Sampling an injective function: G1(1n) outputs a pair (σ, τ) ∈ {0, 1}∗ × {0, 1}∗. (Here σ
is a function index and τ is a trapdoor.)

3. Evaluation of lossy functions: For every function index σ produced by G0, the algorithm
F(σ, ·) computes a function fσ : {0, 1}n 7→ {0, 1}∗, whose image is of size at most 2n−`.

4. Evaluation of injective functions: For every pair (σ, τ) produced by G1, the algorithm
F(σ, ·) computes an injective function fσ : {0, 1}n 7→ {0, 1}∗. and F−1(τ, ·) computes its
inverse.

5. Inversion of injective functions: For every pair (σ, τ) produced by G1 and every x ∈
{0, 1}n, we have F−1(τ,F(σ, x)) = x.

6. Security: The ensembles {σ : σ ← G0(1n)}n∈N and {σ : (σ, τ) ← G1(1n)}n∈N are computa-
tionally indistinguishable.

Note that ` can be a function of n. Note also that we do not specify the output of F−1 on inputs
not in the image of fσ.

A collection of all-but-one lossy trapdoor functions is a more general primitive. Such a collection
is associated with a set B, whose members are referred to as branches. (If B = {0, 1} then we obtain
the previous notion of lossy trapdoor functions.) The sampling algorithm of the collection receives
an additional parameter b∗ ∈ B, and outputs a description of a function f(·, ·) together with a
trapdoor τ and a set of lossy branches β. The function f has the property that for any branch
b 6∈ β the function f(b, ·) is injective (and can be inverted using τ), and the function f(b∗, ·) is lossy.
Moreover, the description of f hides (in a computational sense) the set of lossy branches β.

Our definition is slightly more general than that of Peikert and Waters [22, Section 3.2], which
allows only one lossy branch (i.e., β = {b∗}). We allow possibly many lossy branches (other than
b∗), and require that given a description of a function and b∗ it is computationally infeasible to
find another lossy branch. The proof of security of the Peikert-Waters CCA-secure public-key
encryption scheme [22, Section 4.3] can easily be adapted to our more general context. (We are
currently not aware of other applications of all-but-one lossy trapdoor functions).

Definition 2.2 (All-but-one lossy trapdoor functions). A collection of (n, `)-all-but-one lossy trap-
door functions is a 4-tuple of probabilistic polynomial-time algorithms (B,G,F,F−1) such that:

1. Sampling a branch: B(1n) outputs a value b ∈ {0, 1}∗.

2. Sampling a function: For every value b produced by B(1n), the algorithm G(1n, b) outputs
a triple (σ, τ, β) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ consisting of a function index σ, a trapdoor τ ,
and a set of lossy branches β with b∗ ∈ β.

3. Evaluation of lossy functions: For every value b∗ produced by B(1n) and for every (σ, τ, β)
produced by G(1n, b∗), the algorithm F(σ, b∗, ·) computes a function fσ,b∗ : {0, 1}n 7→ {0, 1}∗,
whose image is of size at most 2n−`.

4. Evaluation of injective functions: For any b∗ and b produced by B(1n) and for every
(σ, τ, β) produced by G(1n, b∗), if b 6∈ β, then the algorithm F(σ, b, ·) computes an injective
function fσ,b : {0, 1}n → {0, 1}∗.
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5. Inversion of injective functions: For any b∗ and b produced by B(1n) and for every (σ, τ, β)
produced by G(1n, b∗), if b 6∈ β then we have F−1(τ, b,F(σ, b, x)) = x.

6. Security: For any two sequences {(b∗n, bn)}n∈N such that b∗n and bn are distinct values
in the image of B(1n), the ensembles {σ : (σ, τ, β) ← G(1n, b∗n)}n∈N and {σ : (σ, τ, β) ←
G(1n, bn)}n∈N are computationally indistinguishable.

7. Hiding lossy branches: Any probabilistic polynomial-time algorithm A that receives as
input (σ, b∗), where b∗ ← B(1n) and (σ, τ, β)← G(1n, b∗), has only a negligible probability of
outputting an element b ∈ β \ {b∗} (where the probability is taken over the randomness of B,
G, and A).

2.2 Correlation-Secure Trapdoor Functions

A collection of efficiently computable functions is a pair of algorithms F = (G,F), where G is a
key-generation algorithm used for sampling a description of a function, and F is an evaluation
algorithm used for evaluating a function on a given input. The following definition formalizes the
notion of a k-wise product, which is a collection Fk consisting of all k-tuples of functions from F .

Definition 2.3 (k-wise product). Let F = (G,F) be a collection of efficiently computable functions.
For any integer k, we define the k-wise product Fk = (Gk,Fk) as follows:

• The key-generation algorithm Gk on input 1n invokes k independent instances of G(1n) and
outputs (σ1, . . . , σk). That is, a function is sampled from Fk by independently sampling k
functions from F .

• The evaluation algorithm Fk on input (σ1, . . . , σk, x1, . . . , xk) invokes F to evaluate each func-
tion σi on xi. That is, Fk(σ1, . . . , σk, x1, . . . , xk) = (F(σ1, x1), . . . ,F(σk, xk)).

A one-way function is a function that is efficiently computable but is hard to invert given
the image of a uniformly chosen input. This notion extends naturally to one-wayness under any
specified input distribution, not necessarily the uniform distribution. Specifically, we say that a
function is one-way with respect to an input distribution I if it is efficiently computable but hard
to invert given the image of a random input sampled according to I.

In the context of k-wise products, a straightforward argument shows that for any collection
F which is one-way with respect to some input distribution I, the k-wise product Fk is one-way
with respect to the input distribution that samples k independent inputs from I. The following
definition formalizes the notion of one-wayness under correlated inputs, where the inputs for Fk
may be correlated.

Definition 2.4 (One-wayness under correlated inputs). Let F = (G,F) be a collection of efficiently
computable functions with domain {Dn}n∈N, and let C be a distribution where C(1n) is distributed
over Dk

n = Dn × · · · ×Dn for some integer k = k(n). We say that F is one-way under C-correlated
inputs if Fk is one-way with respect to the input distribution C.

For the special case that distribution C is the uniform k-repetition distribution (i.e., C samples
a uniformly random input x ∈ Dn and outputs k copies of x), we say that F is one-way under k-
correlated inputs. Rosen and Segev [23, Theorem 3.3] show that a collection of (n, `)-lossy trapdoor
functions can be used to construct a collection F that is one-way under k-correlated inputs for any
k < n−ω(logn)

n−` .
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3 A Construction based on the Quadratic Residuosity Assumption

Our construction is based on the modular squaring function x 7→ x2 mod N , where N = PQ for
prime numbers P ≡ Q ≡ 3 mod 4 (i.e., Blum integers). This is a 4-to-1 mapping on Z∗N , and
the construction is obtained by embedding additional information in the output that reduces the
number of preimages to either 2 (these are the lossy functions) or 1 (these are the injective functions)
in a computationally indistinguishable manner. Although this results in one bit of lossiness when
the functions are defined over Z∗N , all lossy trapdoor functions in a collection are required to share
the same domain (i.e., the domain should depend only on the security parameter). We overcome
this difficulty with a simple domain extension, which results in lossiness of log2(4/3) bits.

For any odd positive integer N , we denote by JSN : Z→ {−1, 0, 1} the Jacobi symbol mod N .
We define functions h, j : Z→ {0, 1} as follows:

h(x) =
{

1, if x > N/2
0, if x ≤ N/2

j(x) =
{

1, if JSN (x) = −1
0, if JSN (x) = 0 or 1

We define h and j on ZN by representing elements of ZN as integers between 0 and N − 1.

Fact 3.1. Let N = PQ where P ≡ Q ≡ 3 mod 4, and let y ∈ Z∗N be a quadratic residue. Denote by
{±x0,±x1} the distinct solutions of the equation x2 = y mod N . Then, JSP (−1) = JSQ(−1) = −1
and therefore

1. JSN (x0) = JSN (−x0) and JSN (x1) = JSN (−x1).

2. JSN (x0) = −JSN (x1).

The construction. We define a 4-tuple F = (G0,G1,F,F
−1) (recall Definition 2.1) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an n-bit modulus
N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime numbers. Then it chooses r ∈ Z∗N such
that JSN (r) = −1, and a random s ∈ Z∗N such that JSN (s) = 1 and s is a quadratic residue.
The function index is σ = (N, r, s).

2. Sampling an injective function: On input 1n the algorithm G1 chooses an n-bit modulus
N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime numbers. Then it chooses r ∈ Z∗N
such that JSN (r) = −1, and a random s ∈ Z∗N such that JSN (s) = 1 and s is a quadratic
non-residue. The function index is σ = (N, r, s), and the trapdoor is τ = (P,Q).

3. Evaluation: Given a function index σ = (N, r, s) and x ∈ {0, 1}n, the algorithm F interprets
x as an integer in the set {1, . . . , 2n} and outputs

fN,r,s(x) =
{
x2 · rj(x) · sh(x) mod N, if 1 ≤ x < N
x, if N ≤ x ≤ 2n

4. Inversion: Given a description of an injective function σ = (N, r, s) together with its trap-
door τ = (P,Q) and y = fN,r,s(x), the algorithm F−1 retrieves x as follows. If N ≤ y ≤ 2n,
then the algorithm outputs y. Otherwise,
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(a) Find j(x) by computing JSN (fN,r,s(x)) (note that JSN (fN,r,s(x)) = JSN (x)). Let y′ =
yr−j(x).

(b) Find h(x) by checking whether y′ is a quadratic residue mod N (note that h(x) = 1 if
and only if y′ is not a quadratic residue). Let y′′ = y′s−h(x).

(c) Find all square roots of y′′ in ZN , and output the one that agrees with both j(x) and
h(x). (We use Fact 3.1 if y′′ ∈ Z∗N , and note that if 1 < gcd(y′′, N) < N , then y′′ has
two square roots that are negatives of each other.)

Theorem 3.2. Under the quadratic residuosity assumption, F is a collection of (n, log2(4/3))-lossy
trapdoor functions.

Proof. It is straightforward to verify that: (1) G0 outputs functions that are 2-to-1 on the set
{1, . . . , N − 1} and 1-to-1 on the set {N, . . . , 2n}, and (2) G1 outputs permutations on the set
{1, . . . , 2n}. Since N is an n-bit modulus (i.e., 2n−1 < N < 2n), the lossy functions are 2-to-
1 on at least half of their domain, which implies that their image is of size at most 3/4 · 2n =
2n−log2(4/3). In addition, descriptions of lossy functions and injective functions differ only in the
element s, which is a random element of the subgroup of Z∗N with Jacobi symbol 1 that is a
quadratic residue in the lossy case and a quadratic non-residue in the injective case. Therefore, the
quadratic residuosity assumption implies that lossy functions are computationally indistinguishable
from injective functions.

4 A Construction based on the Composite Residuosity Assumption

Our construction is based on the Damg̊ard-Jurik encryption scheme [7] with additional insights by
Damg̊ard and Nielsen [8, 9]. We begin with a brief description of the Damg̊ard-Jurik scheme, and
then present our constructions of lossy trapdoor functions and all-but-one lossy trapdoor functions.

4.1 The Damg̊ard-Jurik Encryption Scheme

Damg̊ard and Jurik [7] proposed an encryption scheme based on computations in the group ZNs+1 ,
where N = PQ is an RSA modulus and s ≥ 1 is an integer (it contains Paillier’s encryption scheme
[20] as a special case by setting s = 1). Consider a modulus N = PQ where P and Q are odd
primes and gcd(N,φ(N)) = 1 (when P and Q are sufficiently large and randomly chosen, this
will be satisfied except with negligible probability). We call such a modulus N admissible in the
following discussion. For such an N , the group Z∗Ns+1 as a multiplicative group is a direct product
G×H, where G is cyclic of order N s and H is isomorphic to Z∗N .

Theorem 4.1 ([7]). For any admissible N and s < min{P,Q}, the map ψs : ZNs × Z∗N → Z∗Ns+1

defined by ψs(x, r) = (1 +N)xrN
s

mod N s+1 is an isomorphism, where

ψs(x1 + x2 mod N s, r1r2 mod N) = ψs(x1, r1) · ψs(x2, r2) mod N s+1 .

Moreover, it can be inverted in polynomial time given λ(N) = lcm(P − 1, Q− 1).

The following describes the Damg̊ard-Jurik encryption scheme:

• Key generation: On input 1n choose an admissible n-bit modulus N = PQ. The public-key
is (N, s) and the secret-key is λ = lcm(P − 1, Q− 1).
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• Encryption: Given a message m ∈ ZNs and the public-key (N, s), choose a random r ∈ Z∗N ,
and output E(m) = (1 +N)mrN

s
mod N s+1.

• Decryption: Given a ciphertext c ∈ ZNs+1 and the secret-key λ, apply the inversion algo-
rithm provided by Theorem 4.1 to compute ψ−1

s (c) = (m, r) and output m.

The semantic security of the scheme (for any s ≥ 1) is based on the decisional composite
residuosity assumption: any probabilistic polynomial-time algorithm that receives as input an n-
bit RSA modulus N cannot distinguish between a random element in Z∗N2 and a random N -th
power in Z∗N2 with probability noticeable in n. We refer the reader to [7] for the proof of security.

4.2 Our Constructions

Each function in our construction is described by a pair (N, c), where N is an n-bit modulus
as above, and c ∈ ZNs+1 . For the injective functions c is a random encryption of 1, and for
the lossy functions c is a random Damg̊ard-Jurik encryption of 0. The semantic security of the
encryption scheme guarantees that the two collections of functions are computationally indistin-
guishable. In order to evaluate a function f(N,c) on an input (x, y) ∈ ZNs × Z∗N we compute
f(N,c)(x) = cxyN

s
mod ZNs+1 . For an injective function f(N,c) it holds that f(N,c)(x, y) = E(x)

(where the randomness of this ciphertext depends on x and y), and using the secret key it is pos-
sible to retrieve both x and y. For a lossy function f(N,c) it holds that f(N,c)(x, y) = E(0) and in
this case most of the information on the input lost.

In order to guarantee that all the functions in the collection share the same domain, we define
the functions over the domain {0, 1}(n−1)s×{0, 1}n/2−1. First, note that since N is an n-bit modulus
then any x ∈ {0, 1}(n−1)s can be interpreted as an element of ZNs since 2(n−1)s < N . Second, note
that since P and Q are n/2-bit prime numbers then any y ∈ {0, 1}n/2−1 can be interpreted as an
element of Z∗N since 2n/2−1 < min{P,Q} and thus gcd(N, y) = 1.

Given any polynomial s = s(n) we define a 4-tuple Fs = (G0,G1,F,F
−1) (recall Definition 2.1)

as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an admissible n-bit
modulus N = PQ. Then, it chooses a random r ∈ Z∗N and lets c = rN

s
mod N s+1. The

description of the function is σ = (N, c).

2. Sampling an injective function: On input 1n the algorithm G1 chooses an admissible n-bit
modulus N = PQ. Then, it chooses a random r ∈ Z∗N and lets c = (1 + N)rN

s
mod N s+1.

The description of the function is σ = (N, c) and the trapdoor is τ = (λ, r), where λ =
lcm(P − 1, Q− 1).

3. Evaluation: Given a description of a function (N, c) and an input (x, y) ∈ {0, 1}(n−1)s ×
{0, 1}n/2−1, the algorithm F interprets the input as an element of ZNs × Z∗N , and outputs
cxyN

s
mod N s+1.

4. Inversion: Given a description of an injective function (N, c) together with its trapdoor (λ, r)
and z ∈ ZNs+1 , the algorithm F−1 invokes the inversion algorithm provided by Theorem 4.1
to compute ψ−1

s (z) = (x, rxy), and then recovers x and y.

Theorem 4.2. Under the composite residuosity assumption, for any polynomial s = s(n) it holds
that Fs is a collection of ((n− 1)s+ n/2− 1, (n− 1)s− n/2− 1)-lossy trapdoor functions.
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Proof. Theorem 4.1 guarantees that the injective functions can be efficiently inverted using their
trapdoor information. The semantic security of the Damg̊ard-Jurik encryption scheme guarantees
that the descriptions of injective and lossy functions are computationally indistinguishable. Thus,
it only remains to upper bound the image size of the lossy functions.

Let (N, c) be a description of a lossy function, where c = rN
s

mod N s+1 for some r ∈ Z∗N .
Using the isomorphism ψs described in Theorem 4.1 we can express the image of the function as
follows:

|Image(N, c)| ≤
∣∣{cx · yNs

mod N s+1 : x ∈ ZNs , y ∈ Z∗N
}∣∣

=
∣∣{(rx · y)N

s
mod N s+1 : x ∈ ZNs , y ∈ Z∗N

}∣∣
= |{ψs(0, rx · y mod N) : x ∈ ZNs , y ∈ Z∗N}|
≤ N

≤ 2n .

Therefore the amount of lossiness is at least `(n) = ((n−1)s+n/2−1)−n = (n−1)s−n/2−1.

The above construction can easily be extended to a collection of all-but-one lossy trapdoor
functions. We describe the extension here; the proof of security is essentially identical to the proof
of Theorem 4.2 and is therefore omitted.

Given an integer s ≥ 1 we define a 4-tuple FABO
s = (B,G,F,F−1) (recall Definition 2.2, and

here we consider only one lossy branch as defined in [22]) as follows:

• Sampling a branch: On input 1n the algorithm B outputs a uniformly distributed b ∈
{0, . . . , 2n/2−1}.

• Sampling a function: On input 1n and a lossy branch b∗ the algorithm G chooses an
admissible n-bit modulus N = PQ. Then, it chooses a random r ∈ Z∗N and lets c = (1 +
N)−b

∗
rN

s
mod N s+1. The description of the function is (N, c) and the trapdoor consists of

λ = lcm(P − 1, Q− 1), b∗, and r.

• Evaluation: Given a description of a function (N, c), a branch b, and an input (x, y) ∈
{0, 1}(n−1)s × {0, 1}n/2−1, the algorithm F interprets (x, y) as an element of ZNs × Z∗N , and
outputs

(
(1 +N)bc

)x · yNs
mod N s+1.

• Inversion: Given a description (N, c) of a function, its trapdoor (λ, b∗, r), a branch b 6= b∗

and z ∈ ZNs+1 , the algorithm F−1 applies the inversion algorithm provided by Theorem 4.1
to compute ψ−1

s (z) = ((b − b∗)x, rx · y). Note that the restriction b, b∗ ∈ {0, . . . , 2n/2 − 1}
implies that b − b∗ is relatively prime to N (since 2n/2−1 < min{P,Q}), and therefore the
algorithm F−1 can recover x by computing (b− b∗)x · (b− b∗)−1 mod N s, and then recover y.

Theorem 4.3. Under the composite residuosity assumption, for any polynomial s = s(n) it holds
that FABO

s is a collection of ((n − 1)s + n/2 − 1, (n − 1)s − n/2 − 1)-all-but-one lossy trapdoor
functions.

5 A Construction based on the d-Linear Assumption

The d-Linear assumption [13, 24] is a generalization of the decision Diffie-Hellman assumption that
may hold even in groups with an efficiently computable d-linear map. The 1-Linear assumption
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is DDH, while the 2-Linear assumption is also known as the Decision Linear assumption [4]. The
assumption is as follows:

Definition 5.1. Let d ≥ 1 be an integer, and let G be a finite cyclic group of order q. We say the
d-Linear assumption holds in G if the distributions{

(g1, . . . , gd, gr11 , . . . , g
rd
d , h, h

r1+···+rd) : g1, . . . , gd, h
R← G, r1, . . . , rd

R← Zq} ,{
(g1, . . . , gd, gr11 , . . . , g

rd
d , h, h

s) : g1, . . . , gd, h
R← G, r1, . . . , rd, s

R← Zq}

are computationally indistinguishable.

For any d ≥ 1, the d-linear assumption implies the (d+ 1)-linear assumption [13, Lemma 3].
Peikert and Waters [22, Section 5] give lossy and all-but-one lossy trapdoor functions based

on the DDH assumption. In the Peikert-Waters construction, the function index is an ElGamal
encryption of an n × n matrix M which is either the zero matrix (lossy mode) or the identity
matrix (injective mode) using a finite cyclic group G of order p. The DDH assumption in G
implies that these two encryptions cannot be distinguished. The construction can be generalized
to d-linear assumptions using generalized ElGamal encryption, but such schemes are less efficient
since ElGamal based on the d-Linear assumption produces d+1 group elements per ciphertext (see
e.g. [24]).

Our construction is based on the following basic observation from linear algebra: if M is an
n× n matrix over a finite field Fp and ~x is a length-n column vector, then the map fM : ~x 7→M~x
has image of size pRk(M). If we restrict the domain to only binary vectors (i.e., those with entries
in {0, 1}), then the function fM is injective when Rk(M) = n, and its inverse can be computed by
f−1
M : ~y 7→M−1~y. If on the other hand we have Rk(M) < n/ log2(p), then fM is not injective even

when the domain is restricted to binary vectors, since the image is contained in a subgroup of size
less than 2n.

By performing the above linear algebra “in the exponent” of a group of order p, we can create
lossy trapdoor functions based on DDH and the related d-Linear assumptions. In particular, for
any n the size of the function index is the same for all d.

We will use the following notation: we let Fp denote a field of p elements and Rkd(Fn×np ) the
set of n × n matrices over Fp of rank d. If we have a group G of order p, an element g ∈ G, and
a vector ~x = (x1, . . . , xn) ∈ Fnp , then we define g~x to be the column vector (gx1 , . . . , gxn) ∈ Gn. If
M = (aij) is an n × n matrix over Fp, we denote by gM the n × n matrix over G given by (gaij ).
Given a matrix M = (aij) ∈ Fn×np and a column vector g = (g1, . . . , gn) ∈ Gn, we define gM by

gM =
(∏n

j=1 g
a1j

j , . . . ,
∏n
j=1 g

anj

j

)
.

Similarly, given a matrix S = (gij) ∈ Gn×n and a column vector ~x = (x1, . . . , xn) ∈ Fnp , we define
S~x by

S~x =
(∏n

j=1 g
xj

1j , . . . ,
∏n
j=1 g

xj

nj

)
.

With these definitions, we have (gM )~x = (g~x)M = g(M~x).

The construction. For any positive integer d and any real number ε ∈ (0, 1), we define a 4-tuple
F = (G0,G1,F,F

−1) (recall Definition 2.1) as follows:
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1. Sampling a lossy function: On input 1n, the algorithm G0 chooses at random a dεn/de-bit
prime p, a group G of order p, and a generator g of G. Then it chooses a matrix M

R←
Rkd(Fn×np ) and computes S = gM ∈ Gn×n. The function index is σ = S.

2. Sampling an injective function: On input 1n, the algorithm G1 chooses at random a
dεn/de-bit prime p, a group G of order p, and a generator g of G. Then it chooses a matrix
M

R← Rkn(Fn×np ) and computes S = gM ∈ Gn×n. The function index is σ = S, and the
trapdoor is τ = (g,M).

3. Evaluation: Given a function index S and x ∈ {0, 1}n, we interpret x as a binary column
vector ~x = (x1, . . . , xn). The algorithm F computes the function fS(x) = S~x.

4. Inversion: Given a function index S, a trapdoor τ = (g,M), and a vector g ∈ Gn, we define
F−1(τ,g) as follows:

(a) Compute h = (h1, . . . , hn)← gM
−1

.

(b) Let xi = logg(hi) for i = 1, . . . , n.

(c) Output ~x = (x1, . . . , xn).

Theorem 5.2. Suppose εn > d. If the d-Linear assumption holds for G, then the above family is
a collection of (n, (1− ε)n)-lossy trapdoor functions.

Proof. We first note that in the lossy case, when M is of rank d, the image of fS is contained in
a subgroup of Gn of size pd < 2εn. The condition εn > d guarantees p ≥ 3, so when M is of rank
n the function fS is in fact injective. It is straightforward to verify that the inversion algorithm
performs correctly for injective functions. Finally, by [17, Lemma A.1], the d-Linear assumption
implies that the matrix S when M is of rank n is computationally indistinguishable from the matrix
S when M is of rank d.

Note that the system’s security scales with the bit size of p, i.e., as εn/d. In addition, note
that the discrete logarithms in the inversion step can be performed efficiently when ~x is a binary
vector. (Here we take advantage of the fact that the output of F−1 is unspecified on inputs not in
the image of F .)

We now describe the extension of the system to all-but-one lossy trapdoor functions, where the
parameter d in the above construction is equal to 1. Let In denote the n× n identity matrix. For
any real number ε ∈ (0, 1), we define a 4-tuple F = (G0,G1,F,F

−1) (recall Definition 2.2) as follows:

1. Sampling a branch: On input 1n, the algorithm B outputs a uniformly distributed b ∈
{1, . . . , 2bεnc}.

2. Sampling a function: On input 1n and a lossy branch b∗, the algorithm G chooses at
random a dεne-bit prime p, a group G of order p, and a generator g of G. Then it chooses a
matrix A R← Rk1(Fn×np ) Let M = A− b∗In ∈ Fn×np and S = gM ∈ Gn×n. The function index
is σ = S, the trapdoor is τ = (g,M), and the set of lossy branches is β = {b∗, b∗ − Tr(A)}.

3. Evaluation: Given a function index S, a branch b, and an input x ∈ {0, 1}n, we interpret
x as a binary column vector ~x = (x1, . . . , xn). The algorithm F computes the function
fS,b(~x) = S~x ∗ gb~x, where ∗ indicates the componentwise product of elements of Gn.
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4. Inversion: Given a function index S, a trapdoor τ = (g,M), a branch b, and a vector
g ∈ Gn, we define F−1(τ, b,g) as follows:

(a) If M + bIn is not invertible, output ⊥.

(b) Compute h = (h1, . . . , hn)← g(M+bIn)−1
.

(c) Let xi = logg(hi) for i = 1, . . . , n.

(d) Output ~x = (x1, . . . , xn).

Theorem 5.3. Suppose εn > 1. If the DDH assumption holds for G, then the above family is a
collection of (n, (1− ε)n)-all-but-one lossy trapdoor functions.

Proof. We first observe that if A is the rank 1 matrix computed by G(1n, b∗), then

fS,b(~x) = g(A−(b∗−b)In)~x. (5.1)

We now verify each property of Definition 2.2. Properties (1) and (2) are immediate. To verify
property (3), note that (5.1) implies that fS,b∗(~x) = gA~x. Since A has rank 1, the image of fS,b∗ is
contained in a subgroup of Gn of size p < 2εn.

To check property (4), we observe that the condition εn > 1 guarantees p ≥ 3, so when
A − (b∗ − b)In is invertible the function fS,b is injective. The condition A − (b∗ − b)In being not
invertible is equivalent to (b∗ − b) being an eigenvalue of A. Since A has rank 1, its eigenvalues
are 0 and Tr(A). Thus (b∗ − b) is an eigenvalue of A if and only if b ∈ β, and fS,b is injective for
all b 6∈ β. It is straightforward to verify that the inversion algorithm performs correctly whenever
b 6∈ β, so property (5) holds.

Properties (6) and (7) follow from the DDH assumption for G. We show property (6) by
constructing a sequence of games:

Game0: This is the real security game. The adversary is given b0, b1, and gA−bωIn for ω R← {0, 1}
and A

R← Rk1(Fn×np ), and outputs a bit ω′. The adversary wins if ω′ = ω.

Game1: The same as Game0, except the challenge is gA
′−bωIn for some full rank matrix A′

R←
Rkn(Fn×np ).

Game2: The same as Game1, except the challenge is gU−bωIn for some uniform matrix U R← Fn×np .

Game3: The same as Game2, except the challenge is gU .

Since the Game3 challenge is independent of ω, the advantage of any adversary playing Game3 is
zero. We now show that if the DDH assumption holds for G, then for i = 0, 1, 2, no polynomial-time
adversary A can distinguish Gamei from Gamei+1 with non-negligible advantage.

i = 0: Any algorithm that distinguishes Game0 from Game1 can be used to distinguish the distribu-
tions {gA : A R← Rk1(Fn×np )} and {gA′ : A′ R← Rkn(Fn×np )}. By [5, Lemma 1], any algorithm
that distinguishes these distributions can solve the DDH problem in G.

i = 1: Since the proportion of full-rank matrices to all matrices in Fn×np is (p − 1)/p, even an
unbounded adversary can distinguish Game1 from Game2 with probability at most 1/p.
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i = 2: Since the matrix U is uniform in Fn×np , the matrix U − bωIn is also uniform in Fn×np , so
Game2 and Game3 are identical.

We conclude that for any b0, b1, no polynomial-time adversary can win Game0 with non-negligible
advantage.

Finally, to demonstrate property (7) we show that any adversary A that produces an element
of β given S and b∗ can be used to compute discrete logarithms in G, contradicting the DDH
assumption. Choose a matrix A R← Rk1(Fn×np ), and let A′(X) be the n× n matrix over Fp[X] that
is the matrix A with the first row multiplied by X. For any value X = t 6= 0, the matrix A′(t) is
uniformly distributed in Rk1(Fn×np ).

Let (g, gt) be a discrete logarithm challenge for G. For any b∗ we compute the matrix S =
gA
′(t)−b∗In and give (S, b∗) to the adversary A. If the adversary outputs b ∈ β with b 6= b∗, then we

can compute Tr(A′(t)) since this is the only nonzero eigenvalue of A′(t). If aii is the ith diagonal
entry of A, this gives us an equation

a11t+ a22 + · · ·+ ann = λ. (5.2)

Since a11 = 0 with probability 1/p, we can solve for t with all but negligible probability.

If we choose any integer d ≥ 1 and repeat the above construction with p a dεn/de-bit prime
and A a rank d matrix, then we expect to obtain an all-but-one lossy trapdoor function under the
d-Linear assumption. Indeed, the proofs of properties (1)–(6) carry through in a straightforward
way. However, the above proof of property (7) does not seem to generalize. In particular, the
generalization of (5.2) is the equation det(A′(t)− λIn) = 0, which can be written as ut+ v = 0 for
some (known) u, v ∈ Fp. When d = 1 the element u = a11 is independent of λ, so we can conclude
that it is nonzero with high probability; however when d ≥ 2 this is not the case. We thus leave as
an open problem the completion of the proof for d ≥ 2.

6 Correlated Input Security from Syndrome Decoding

Our construction is based on Niederreiter’s coding-based encryption system [18] which itself is the
dual of the McEliece encryption system [15].

Let 0 < ρ = ρ(n) < 1 and 0 < δ = δ(n) < 1/2 be two functions in the security parameter n.
We set the domain Dn,δ to be the set of all n-bit strings with Hamming weight δn. Note that Dn is
efficiently samplable (see e.g. [11]). The Niederreiter trapdoor function F = (G,F,F−1) is defined
as follows.

• Key generation: On input 1n the algorithm G chooses at random a non-singular binary
ρn× ρn matrix S, a (n, n− ρn, δn)-linear binary Goppa code capable of correcting up to δn
errors (given by its ρn × n binary parity check matrix G), and a n × n permutation matrix
P . It sets H := SGP , which is a binary ρn × n matrix. The description of the function is
σ = H, the trapdoor is τ = (S,G, P ).

• Evaluation: Given a description H of a function and x ∈ {0, 1}n with Hamming weight δn,
the algorithm F computes the function fH(x) = Hx ∈ {0, 1}ρn.

• Inversion: Given the trapdoor (S,G, P ) and y = Hx, the algorithm F−1 computes S−1y =
GPx, applies a syndrome decoding algorithm for G to recover ŷ = Px, and computes x =
P−1ŷ.
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The Niederreiter trapdoor function can be proved one-way under the indistinguishability and syn-
drome decoding assumptions which are indexed by the parameters 0 < ρ < 1 and 0 < δ < 1/2.

Indistinguishability assumption. The binary ρn × n matrix H output by G(1n) is computa-
tionally indistinguishable from a uniform matrix of the same dimensions.

Syndrome decoding assumption. The collection of functions defined as fU (x) := Ux for a
uniform ρn× n binary matrix U is one-way on domain Dn,δ.

Choosing the weight δ to be close to the Gilbert-Warshamov bound is commonly believed to
give hard instances for the syndrome decoding problem. The Gilbert-Warshamov bound for a
(n, k, δn) linear code with δ < 1/2 is given by the equation k/n ≤ 1 − H2(δ), where H2(δ) :=
−δ log2 δ − (1 − δ) log2(1 − δ). It is therefore assumed that the syndrome decoding assumption
holds for all 0 < δ < 1/2 satisfying H2(δ) < ρ [11]. Note that one-wayness also implies that the
cardinality of Dn,δ is super-polynomial in n.

The following theorem was proved in [11].

Theorem 6.1 ([11]). If the syndrome decoding assumption holds for ρ̃ and δ then the ensembles
{(M,Mx) : M R← {0, 1}ρ̃n×n; x R← Dn,δ)}n∈N and {(M,y) : M R← {0, 1}ρ̃n×n; y R← {0, 1}ρ̃n}n∈N are
computationally indistinguishable.

This theorem implies that the Niederreiter trapdoor function is one-way under k-correlated
inputs.

Theorem 6.2. Suppose ρ, δ, and k are chosen such that ρ̃ := ρk < 1, and the indistinguishability
and the syndrome decoding assumptions hold for parameters ρ̃ and δ. Then the Niederreiter trapdoor
function is one-way under k-correlated inputs.

Proof. Fix a probabilistic polynomial-time adversary A that plays the security game for one-
wayness under k-correlated inputs. Define

ε = Pr[A(H1, . . . ,Hk, H1(x), . . . ,Hk(x)) = x],

where Hi
R← G(1n) and x R← Dn,δ. We now exchange all the matrices Hi for uniform matrices Ui of

the same dimension. By the indistinguishability assumption and a hybrid argument, we have that∣∣∣Pr[A(H1, . . . ,Hk, H1(x), . . . ,Hk(x)) = x]− Pr[A(U1, . . . , Uk, U1(x), . . . , Uk(x)) = x]
∣∣∣ ∈ negl(n).

For ρ̃ := ρk, define the ρ̃n × n matrix U by concatenating the columns of the matrices Ui. Then
the distributions (U1, . . . , Uk, U1(x), . . . , Uk(x)) and (U,Ux) are identical. Since H2(δ) ≤ ρ/k = ρ̃
we can apply Theorem 6.1 to obtain

|Pr[A(U,Ux) = x]− Pr[A(M,uρ̃n) = x]| ∈ negl(n),

where uρ̃n is a uniform bit-string in {0, 1}ρ̃n. Observing that Pr[A(U, uρ̃n) = x] = 1/|Dn,δ| ∈ negl(n)
(since the Niederreiter function is assumed to be one-way) implies that ε is negligible.

We remark that the above proof implies that the Niederreiter trapdoor function has linearly many
hard-core bits which greatly improves efficiency of the CCA-secure encryption scheme obtained by
using the construction from [23].

14



Acknowledgements

We thank Ivan Damg̊ard and Chris Peikert for useful discussions.

References

[1] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged
public-key encryption: How to protect against bad randomness. To appear in Advances in
Cryptology — ASIACRYPT 2009, 2009.

[2] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In Advances in Cryptology — EUROCRYPT
2009, volume 5479 of Springer LNCS, pages 1–35, 2009.

[3] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption,
and efficient constructions without random oracles. In Advances in Cryptology — CRYPTO
2008, volume 5157 of Springer LNCS, pages 335–359, 2008.

[4] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology —
CRYPTO 2004, volume 3152 of Springer LNCS, pages 41–55, 2004.

[5] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision
Diffie-Hellman. In Advances in Cryptology — CRYPTO 2008, volume 5157 of Springer LNCS,
pages 108–125, 2008.

[6] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In Advances in Cryptology — EUROCRYPT 1999, volume
1592 of Springer LNCS, pages 402–414, 1999.

[7] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In Public Key Cryptography — PKC 2001, volume 1992 of
Springer LNCS, pages 119–136, 2001. Full version (with additional co-author J. B. Nielsen)
available at www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps.

[8] I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In Advances in Cryptology — CRYPTO
2002, volume 2442 of Springer LNCS, pages 581–596, 2002.

[9] I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Advances in Cryptology — CRYPTO 2003, volume
2729 of Springer LNCS, pages 247–264, 2003.

[10] R. Dowsley, J. Müller-Quade, and A. C. A. Nascimento. A CCA2 secure public key encryption
scheme based on the McEliece assumptions in the standard model. In Topics in Cryptology —
CT-RSA 2009, volume 5473 of Springer LNCS, pages 240–251, 2009.

[11] J.-B. Fischer and J. Stern. An efficient pseudo-random generator provably as secure as syn-
drome decoding. In Advances in Cryptology — EUROCRYPT 1996, volume 1070 of Springer
LNCS, pages 245–255, 1996.

15

www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps


[12] S. Goldwasser and V. Vaikuntanathan. New constructions of correlation-secure trapdoor func-
tions and CCA-secure encryption schemes. Manuscript, 2008.

[13] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In
Advances in Cryptology — CRYPTO 2007, volume 4622 of Springer LNCS, pages 553–571,
2007.

[14] E. Kiltz, A. O’Neill, and A. Smith. Lossiness of RSA and the chosen-plaintext security of
OAEP without random oracles. Manuscript, 2009.

[15] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep.,
Jet Prop. Lab., pages 114–116, Jan 1978.

[16] P. Mol and S. Yilek. Chosen-ciphertext security from slightly lossy trapdoor functions. Cryp-
tology ePrint Archive, Report 2009/524, 2009.

[17] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In Advances in
Cryptology — CRYPTO 2009, volume 5677 of Springer LNCS, pages 18–35, 2009. Full version
available at http://eprint.iacr.org/2009/105.

[18] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Con-
trol and Information Theory. [Problemy Upravlenija i Teorii Informacii], 15:159–166, 1986.

[19] R. Nishimaki, E. Fujisaki, and K. Tanaka. Efficient non-interactive universally composable
string-commitment schemes. In ProvSec, pages 3–18, 2009.

[20] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-
vances in Cryptology — EUROCRYPT 1999, volume 1592 of Springer LNCS, pages 223–238,
1999.

[21] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In 41st
ACM Symposium on Theory of Computing, pages 333–342, 2009.

[22] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In 40th ACM
Symposium on Theory of Computing, pages 187–196, 2008. Full version available at http:
//eprint.iacr.org/2007/279.

[23] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In Theory of
Cryptography Conference — TCC 2009, volume 5444 of Springer LNCS, pages 419–436, 2009.

[24] H. Shacham. A Cramer-Shoup encryption scheme from the Linear assumption and from pro-
gressively weaker Linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.

16

http://eprint.iacr.org/2009/105
http://eprint.iacr.org/2007/279
http://eprint.iacr.org/2007/279

	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Lossy Trapdoor Functions
	Correlation-Secure Trapdoor Functions

	A Construction based on the Quadratic Residuosity Assumption
	A Construction based on the Composite Residuosity Assumption
	The Damgård-Jurik Encryption Scheme
	Our Constructions

	A Construction based on the d-Linear Assumption
	Correlated Input Security from Syndrome Decoding

