
Embedded SFE: Offloading Server and Network
using Hardware Tokens

(Full Version)?

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi??

2 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de? ? ?

Abstract. We consider Secure Function Evaluation (SFE) in the client-
server setting where the server issues a secure token to the client. The
token is not trusted by the client and is not a trusted third party.
We show how to take advantage of the token to drastically reduce the
communication complexity of SFE and computation load of the server.
Our main contribution is the detailed consideration of design decisions,
optimizations, and trade-offs, associated with the setting and its strict
hardware requirements for practical deployment. In particular, we model
the token as a computationally weak device with small constant-size
memory and limit communication between client and server.
We consider semi-honest, covert, and malicious adversaries. We show the
feasibility of our protocols based on a FPGA implementation.

1 Introduction

Secure and efficient evaluation of arbitrary functions on private inputs has been
subject of cryptographic research for decades. In particular, the following sce-
nario appears in a variety of practical applications: a service provider (server
S) and user (client C) wish to compute a function f on their respective private
data, without incurring the expense of a trusted third party. This can be solved
interactively using Secure Function Evaluation (SFE) protocols, for example us-
ing the very efficient garbled circuit (GC) approach [Yao86,LP09]. However, GC
protocols potentially require a large amount of data to be transferred between
S and C. This is because f needs to be encrypted (garbled) as f̃ and transferred
from S to C. In fact, the communication complexity of GC-based SFE protocols
is dominated by the size of the GC, which can reach Megabytes or Gigabytes

? This paper will appear at FC 2010 [JKSS10].
?? Supported by EU FP7 project CACE.

? ? ? Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.

2 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

even for relatively small and simple functions (e.g., the GC for AES has size
0.5 MBytes [PSSW09]). Further, if security against more powerful adversaries
is required, the use of the standard cut-and-choose technique implies transfer of
multiple GCs. (For covert adversaries, the transfer of only one GC is sufficient
[GMS08].)

While transmission of this large amount of data is possible for exceptional
occurrences, in most cases, the network will not be able to sustain the resulting
traffic. This holds especially for larger-scale deployment of secure computations,
e.g., by banks or service providers, with a large number of customers. Additional
obstacles include energy consumption required to transmit/receive the data, and
the resulting reduced battery life in mobile clients, such as smartphones.4

Further, computational load on S (computing f̃) is also a significant problem,
especially in the case of large-scale deployment of SFE.

Our setting, goals and approach. Motivated by the possibility of large-scale
and decentralized SFE deployment we aim to remove the expensive communica-
tion requirement, and to shift some of S’s computation to C. To this end, we note
that in SFE protocols, and, in particular, in GC, the role of the server can be
split between two entities, with the introduction of a new entity – secure token
T , which is placed in client C’s possession, but executes S’s code thus offload-
ing S. Further, it is possible to eliminate most of the communication between C
and S and replace this with local communication between C and T . A number
of technical issues arises in this setting, which we address in this work.

More specifically, we discuss and analyze hardware-supported SFE, where
the service provider S issues a secure (see below) hardware token T to C. C
communicates locally with T , and remotely with S. There is no direct channel
between T and S, but of course C can pass (and potentially interfere with)
messages between T and S. T is created by S, so S trusts T ; however, as C does
not trust S, she also does not trust the token T to behave honestly.5

Attack model. We consider all three standard types of adversaries: semi-
honest (follows protocol but analyzes the transcript), malicious (arbitrary be-
havior, cheating is always caught), and covert (cheating is caught with a certain
deterrence probability, e.g., 1/2).

Hardware assumption. We assume T is tamper-proof or tamper-resistant. We
argue that this assumption is reasonable. Indeed, while every token can likely
be broken into, given sufficient resources, we are motivated by the scenarios
where the payoff of the break is far below the cost of the break. This holds
for relatively low-value transactions such as cell phone or TV service, where
the potential benefit of the attack (e.g., free TV for one user) is not worth the

4 In some cases, the impact can be mitigated by creating and transferring GCs in the
precomputation phase. However, this is not fully satisfactory. Firstly, even more data
needs to be transferred since demand cannot be perfectly predicted. Further, this
creates other problems, such as requiring large long-term storage on client devices.

5 Note, if C in fact trusts T to behave honestly, then there exists a trivial solution,
where C would let T compute the function on her inputs [IS05].

Embedded SFE: Offloading Server and Network using Hardware Tokens 3

investment of thousands or tens of thousands of dollars to break into the card.
For higher-value applications one could raise the cost of the attack by using a
high-end token T , e.g., a smart card certified at FIPS 140-2, level 3 or 4.

Hardware restrictions. As we assume the token to be produced in large quan-
tities, we try to minimize its costs (e.g., chip surface) and make the assumptions
on it as weak as possible. In particular our token requires only restricted compu-
tational capabilities (no public-key operations) and small constant secure RAM.
We consider T with and without small constant secure non-volatile storage.

Further, we envision smart phones playing the role of the client (and a SIM
card the role of the token). Therefore we aim to limit client’s computational
power and storage ability.

Envisioned Applications. As mentioned above, we aim to bring SFE closer
to a large-scale deployment. The need to minimize communication forces us
to rely on tokens, the issuance of which requires certain logistical capabilities.
Therefore, we believe client-server applications are most likely to be the early
adopters of SFE. Further, the natural trust model (semi-honest or covert server
and malicious client) allow for efficient GC protocols. Finally, many client-server
application scenarios naturally include financial and other transactions which
involve sensitive, in particular privacy-sensitive, information.

Today, many service providers already distribute trusted tokens to their users.
Examples include SIM cards in users’ cell phones, and smart cards in users’
TV set-top boxes. Bank- and credit cards often contain embedded secure chips.
Special purpose (e.g., diagnostic) medical devices, which need to be monitored
and controlled, are often issued to users at home. In these settings, it is natural
to use the existing infrastructure to enhance the security and privacy guarantees
of the offered products, and to offer new products previously impossible due to
privacy violation concerns. We consider the following examples in more detail.

Privacy protection in targeted advertisement and content delivery. Cable TV
(phone, Internet) providers gain a large part of their revenue from advertise-
ments, so it is desired to increase their effectiveness by considering individual
user preferences, purchase history, and other collected personal information. On
the other hand, privacy guidelines and laws severely limit the kinds of infor-
mation that can be collected and how it can be used. Further, even legal use of
personal information by the service provider may be viewed as privacy violation,
and cause negative perception of the company. At the same time, using SFE to
select advertisements guarantees customers’ privacy, and, moreover, ensures that
the company cannot breach their privacy policies even by accident.

Of course, other content (songs, movies, TV shows) can be target-delivered
as rewards or incentives, while preserving complete privacy of the user. Discount
coupons and certificates, powerful spending incentives well-liked by users, bring
much more value to both issuer and the user, if their delivery is based on sensitive
personal and location information.

Privacy preserving remote medical diagnostics. Healthcare is moving faster
than ever toward technologies that offer personalized online self-service, medical

4 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

error reduction, consumer data mining and more (e.g., [Goo09]). Such tech-
nologies have the potential of revolutionizing the way medical data is stored,
processed, delivered, and made available in an ubiquitous and seamless way
to millions of users all over the world. Here service provider S usually owns
the diagnostic software and/or hardware that operates on C’s data and outputs
classification/diagnostic results. A concrete example in this context is the classifi-
cation of Electrocardiogram (ECG) data. A privacy-enhanced version for remote
ECG diagnostics requires to transfer GCs of size ≈ 63 MBytes [BFK+09]. With
our token-based protocol this can be reduced substantially to approximately 100
kBytes as no garbled circuits need to be transferred.

Other applications concern financial transactions such as monetary transfers,
bidding, or betting, as well as biometric authentication.

1.1 Our Contributions and Outline

Our main contribution is architecture design, implementation, a number of op-
timizations, and detailed analysis of two-party SFE aided by a server-issued
low-cost tamper-proof token. The communication complexity of our protocols is
linear in the size of the input, and is independent of the size of the evaluated
functionality. Further, most of the work of S can be offloaded to T .

We use GC techniques of [KS08] and offer no-cost XOR gates. We rely on
cheap hardware – the token T only executes symmetric-key operations (e.g.,
SHA and AES). T has small constant-size RAM (much smaller than the size
of the circuit), but we do not resort to implementing expensive secure external
RAM. In appendix §A we also show how to optimize for low-power, low-memory
C.

We provide two solutions; in one, T keeps state in secure non-volatile storage
(a monotonic counter), while in the other, T maintains no long-term state.

We consider semi-honest, covert [GMS08], and malicious [LP07] adversaries;
our corresponding communication improvements are shown in Table 1.

Outline. We start with outlining our model and architecture in §3. We describe
the protocols for both stateful and stateless T , and state the security claim in
§4. In §5, we discuss technical details of our FPGA prototype implementation,
present timings and measurements, and show practicality of our solution.

Table 1. Communication between server S and client C for secure evaluation of func-
tion f with n inputs, statistical security parameter s, and deterrence probability 1−1/r.

Security Previous Work This Work

semi-honest [Yao86] O(|f |+ n) O(n)

covert [GMS08] O(|f |+ sn+ r) O(sn+ r)

malicious [LP07] O(s|f |+ s2n) O(s2n)

Embedded SFE: Offloading Server and Network using Hardware Tokens 5

1.2 Related Work

Related work on using tokens for secure computations falls in the following three
categories, summarized in Table 2.

Table 2. Secure Protocols using Hardware Tokens. Columns denote the number of
tokens, who trusts the token(s), if token(s) are stateful or stateless, and perform public-
key operations. Properties more desired for practical applications in bold font.

Type Reference Functionality # Tokens Trusted by Stateful PK ops

A) [HMU05] UC commitment 2 both yes yes
[Kat07,DNW09] UC commitment 2 issuer yes yes

[CGS08] UC commitment 2 issuer no yes
[MS08] UC commitment 1 issuer yes no

B) [HL08] Set Intersection, ODBS 1 both yes no
[GT08] Non-Interact. OT 1 both yes yes
[TV09] Verif. Enc., Fair Exch. 1 both yes yes

C) [FFP+06] SFE 2 both yes yes
[IS05] SFE 1 both yes yes

This Work SFE 1 issuer yes / no no

A) Setup assumptions for the universal composability (UC) framework. As
shown in [CLOS02], UC SFE protocols can be constructed from UC commit-
ments. In turn, UC commitments can be constructed from signature cards trusted
by both parties [HMU05], or from tamper-proof tokens created and trusted
only by the issuing party [Kat07,MS08,CGS08,DNW09]. Here, [CGS08] consider
stateless tokens, and [MS08] require only one party to issue a token. This line of
research mainly addresses the feasibility of UC computation based on tamper-
proof hardware and relies on expensive primitives such as generic zero-knowledge
proofs. Our protocols are far more practical.

B) Efficiency Improvements for Specific Functionalities. Efficient protocols
with a tamper-proof token trusted by both players have been proposed for
specific functionalities such as set intersection and oblivious database search
(ODBS) [HL08], non-interactive oblivious transfer (OT) [GT08], and verifiable
encryption and fair exchange [TV09]. In contrast, we solve the general SFE
problem.

C) Efficiency Improvements for Arbitrary Functionalities. Clearly, SFE is
efficient if aided by a trusted third party (TTP), who simply computes the
function. SFE aided by hardware TTP was considered, e.g., in [FFP+06,IS05].
In contrast, we do not use TTP; our token is only trusted by its issuer.

6 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

2 Preliminaries

Notation. We denote symmetric security parameter by t (e.g., t = 128), and
pseudo-random function (PRF) keyed with k and evaluated on x by PRFk(x).
PRF can be instantiated with a block cipher, e.g., AES, or a cryptographic hash
function H, e.g., SHA-256, which we model as a Random Oracle (RO). AES is
preferable if PRF is run repeatedly with same k as AES’s key schedule amortizes.
Message authentication code (MAC) keyed with k and evaluated on message m
is denoted by MACk(m). We use a MAC that does not need to store the entire
message, but can operate “online” on small blocks, e.g., AES-CMAC [SPLI06]
or HMAC [KBC97].

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [Yao86], excellently presented in [LP09], is the
most efficient method for secure evaluation of a boolean circuit C. We summarize
its ideas in the following. The circuit constructor (server S) creates a garbled

circuit C̃: for each wire wi of the circuit, he randomly chooses two garblings
w̃0

i , w̃
1
i , where w̃j

i is the garbled value of wi’s value j. (Note: w̃j
i does not reveal j.)

Further, for each gate Gi, S creates a garbled table T̃i with the following property:
given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value
of the corresponding Gi’s output, but nothing else. S sends these garbled tables,
called garbled circuit C̃ to the evaluator (client C). Additionally, C obliviously
obtains the garbled inputs w̃i corresponding to inputs of both parties: the garbled
inputs ỹ corresponding to the inputs y of S are sent directly and x̃ are obtained
with a parallel 1-out-of-2 oblivious transfer (OT) protocol [NP01,AIR01]. Now,

C can evaluate the garbled circuit C̃ on the garbled inputs to obtain the garbled
outputs by evaluating C̃ gate by gate, using the garbled tables T̃i. Finally, C
determines the plain values corresponding to the obtained garbled output values
using an output translation table received by S. Correctness of GC follows from
the way garbled tables T̃i are constructed.
Improved Garbled Circuit with free XOR [KS08]. An efficient method
for creating garbled circuits which allows “free” evaluation of XOR gates was
presented in [KS08]. More specifically, a garbled XOR gate has no garbled table
(no communication) and its evaluation consists of XORing the its garbled input
values (negligible computation) – details below. The other gates, called non-
XOR gates, are evaluated as in Yao’s GC construction [Yao86] with a point-and-
permute technique (as used in [MNPS04]): The garbled values w̃i = 〈ki, πi〉 ∈
{0, 1}t′ consist of a symmetric key ki ∈ {0, 1}t and a random permutation bit
πi ∈ {0, 1} (recall, t is the symmetric security parameter). The entries of the
garbled table are permuted such that the permutation bits πi of a gate’s garbled
input wires can be used as index into the garbled table to directly point to
the entry to be decrypted. After decrypting this entry using the garbled input
wires’ t-bit keys ki, evaluator obtains the garbled output value of the gate.
The encryption is done with the symmetric encryption function Encsk1,...,kd

(m),

Embedded SFE: Offloading Server and Network using Hardware Tokens 7

where d is the number of inputs of the gate and s is a unique identifier used
once. Enc can be instantiated with m ⊕ H(k1|| . . . ||kd||s), where H is a RO.
This requires 2d invocations of H for creating and 1 invocation for evaluating a
garbled non-XOR gate. To avoid random oracles, Enc can be instantiated with
m⊕H(k1||s)⊕..⊕H(kd||s) instead, where H is a correlation robust hash function
(cf. [PSSW09] for details). This needs d · 2d invocations of H for creating and d
invocations for evaluating a non-XOR gate. In practice,H can be chosen from the
SHA-2 family. The main observation of [KS08] is, that the constructor S chooses
a global key difference ∆ ∈R {0, 1}t which remains unknown to evaluator C and
relates the garbled values as k0i = k1i⊕∆. Clearly, the usage of such garbled values
allows for free evaluation of XOR gates with input wires w1, w2 and output wire
w3 by computing w̃3 = w̃1⊕w̃2 (no communication and negligible computation).

3 Architecture, System and Trust Model

We present in detail our setting, players, and hardware and trust assumptions.
As shown in Fig. 1, there are three parties – client C, server S and tamper-

resistant token T , issued and trusted by S. Our goal is to let C and S securely
evaluate a public function f on their respective private inputs x and y.

T C S

k

f

k

x y

z = f(x, y)

Fig. 1. Model Overview

Communication. C ↔ S: We view this as an expensive channel. Communica-
tion C ↔ S flows over the Internet, and may include a wireless or cellular link.
This implies small link bandwidth and power consumption concerns of mobile
devices. We wish to minimize the utilization of this channel.
T ↔ C: As T is held locally by C, this is a cheap channel (both in terms of

bandwidth and power consumption), suitable for transmission of data linear in
the size of f , or even greater.
T ↔ S: There is no direct channel between T and S, but, of course, C can

pass (and potentially interfere with) messages between T and S.
Trust. C ↔ S: As in the standard SFE scenario, C and S don’t trust each other.
We address semi-honest, covert, and malicious C and S.
S ↔ T : T is fully trusted by S, since T is tamper-resistant. S and T share a

secret key k, used to establish a secure channel and to derive joint randomness.
T ↔ C: C does not trust T , as T is the agent of S, and may communicate

with S through covert channels.

8 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

Storage, computation and execution. C and S are computationally strong
devices which can perform both symmetric- and asymmetric-key operations.6

Both have sufficient memory, linear in the size of f . We also address the setting
where C is a weak mobile device with restricted memory in appendix §A.1 C has
control over T , and can reset it, e.g., by interrupting its power supply. As justified
in §1, T is a cheap special purpose hardware with minimum chip surface: T has
circuitry only for evaluating symmetric-key primitives in hardware (no public-
key or true random number generator) and has a small secure RAM. It may
(§4.3) or may not (§4.4) have small non-volatile secure storage7, unaffected by
the resets by C.

4 Token-Assisted Garbled Circuit Protocols

In our presentation, we assume reader’s familiarity with the GC technique, in-
cluding free XORs of [KS08] (cf. §2.1), and concentrate on the aspects specific to
the token setting. We start with a high-level description of our protocol. Then, in
§4.2 - §4.4, we present the technical details of our construction – efficient circuit
representation, and GC generation by stateful and stateless tokens.

4.1 Protocols Overview, Security Intuition and Claim

Our constructions are a natural (but technically involved) modification of stan-
dard GC protocols, so as to split the actions of the server into two parts – now
executed by S and T – while maintaining provable security. We offload most of
the work (notably, GC generation and output) to T , thus achieving important
communication savings, and partially offloading S’s computation to T .

We start our discussion with the solution in the semi-honest model. However,
our modification of the basic GC is secure against malicious actions, and our
protocols are easily and efficiently extendible to covert and malicious settings.

At the high level, our protocols work as shown in Fig. 2: C obtains the garbled
inputs x̃, ỹ from S, and the garbled circuit f̃ corresponding to the function f
from T . Then, C evaluates f̃ on x̃, ỹ and obtains the result z = f(x, y).

It is easy to see that the introduction of T and offloading to it some of the
computation does not strengthen S, and thus does not bring security concerns
for C (as compared to standard two-party GC). On the other hand, separating
the states of S and T , placing C in control of their communication, and C’s
ability to reset T introduces attack opportunities for C. We show how to address
these issues with the proper synchronization and checks performed by S and T .

Our main tool is the use of a unique session id sid for each GC evaluation.
From sid and the shared secret key k, S and T securely derive a session key K,
which is then used to derive the randomness used in GC generation. Jumping
ahead (details in §4.3), we note that sid uniqueness is easily achieved if T is

6 If needed, C’s capabilities may be enhanced by using a trusted hardware accelerator.
7 T ’s key k is a fixed part of its circuit, and is kept even without non-volatile storage.

Embedded SFE: Offloading Server and Network using Hardware Tokens 9

sid,mac, ỹ

x

z = f(x, y)

C

decrypt

eval
z̃ = f̃(x̃, ỹ)

k
sid, f

f̃

mac

d

T

mac′

check

S

k

f
y

OT: x̃

Fig. 2. Protocols Overview.

stateful simply by setting sid equal to the value of the strictly monotonic session
counter ctr maintained by T . However, if T is stateless, C can always replay S’s
messages. In §4.4 we show how to ensure that replays do not help C.

Since S and T derive the same randomness for each session, the (same)

garbled circuit f̃ can be generated by T . Unfortunately, the weak T cannot store
the entire f . Instead, C provides the circuit corresponding to function f gate-
by-gate to T , and obtains the corresponding garbled gate of f̃ . The garbled gate
can immediately be evaluated by C and needs not to be stored. C is prevented
from providing a wrong f to T , as follows. First, S issues a MAC of f , e.g.,
mac = MACk(sid, f), where f is the agreed circuit representation of the evaluated
function (cf. §4.2). Further, T computes its version of the above MAC, mac′, as it

answers C’s queries in computing f̃ . Finally, T reveals the decryption information
d that allows C to decrypt the output wires only if C provides the matching mac.

Garbled Inputs. The garbled input ỹ of S can be computed by S and sent
to C, requiring |y| · t bits communication, where t is the security parameter.
Alternatively, if T is stateful, S can establish a secure channel with T , e.g.,
based on session key K, send y over the channel, and have T output ỹ to C. This
achieves the optimal communication between S and C of |y| bits.

The garbling x̃ of C’s input can be transferred from S to C with a parallel
OT protocol which requires O(|x|t) bits of communication. Alternatively, the
efficient OT extension of [IKNP03] which reduces many OTs to a small number
of OTs (depending on security parameter t) can be adopted to our token-based
scenario as described in appendix §C. This reduces the communication between
S and C to O(t2) which is independent of the size of the input x.

Extension to Covert and Malicious Parties. Standard GC protocols for
covert [GMS08] or malicious [LP07] adversaries rely on the following cut-and-

choose technique. S creates multiple GCs C̃i, deterministically derived from
random seeds si, and commits to each, e.g., by sending C̃i or H(C̃i) to C. In

10 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

covert case, C asks S to open all but one garbled circuit I by revealing the
corresponding si 6=I . For all opened circuits, C computes C̃i and checks that they
match the commitments. The malicious case is similar, but C asks S to open half
of the circuits, evaluates the remaining ones and chooses the majority of their
results.

These protocols similarly benefit from our token-based separation of the
server into S and T . As in the semi-honest protocol, the GC generation can
be naturally offloaded to T , achieving corresponding computation and commu-
nication relief on the server and network resources. GC correctness verification
is achieved by requesting S to reveal the generator seeds si 6=I . (Of course, these
”opened” circuits are not evaluated.) Note that requirements on T are the same
as in the semi-honest setting. Further, in both covert and malicious cases, the
communication between C and S is independent of the size of f . The resulting
communication complexity of these protocols is summarized in Table 1.

Security Claim. For the lack of space, in this work we present our protocols
implicitly, by describing the modifications to the base protocols of [KS08]. We
informally argue the security of the modifications as they are described. Formal
proofs can be naturally built from proofs of [KS08] and our security arguments.
At the very high level, security against S/T follows from the underlying GC
protocols, since S is not stronger here than in the two-party SFE setting. The
additional power of C to control the channel between S and stateful T is negated
by establishing a secure channel (§4.3). C’s power to reset stateless T is addressed
by ensuring that by replaying old messages C gets either what he already knows,
or completely unrelated data (§4.4).

Theorem 1. Assuming T is tamper-proof, protocols described throughout this
section are secure in the semi-honest, covert, and malicious models respectively.

4.2 Circuit Representation

We now describe our circuit representation format. Our criteria are compactness,
the ability to accommodate free XOR gates of [KS08], and ability of T to process
the encoding “online”, i.e., with small constant memory. Recall, our T operates
in request-response fashion. C incrementally, gate-by-gate, “feeds” the circuit
description to T which responds with the corresponding garbled tables.

We consider circuits with two-input boolean gates. We note that our tech-
niques can be naturally generalized to general circuits. A circuit can efficiently
be transformed into our format as described in appendix §B.

Our format is derived from standard representations, such as that of Fairplay
[MNPS04], with the necessary changes to support our requirements. For read-
ability, we describe the format using a simple example circuit shown in Fig. 3.
This circuit computes z1 = x1 ∧ (y1 ⊕ y2), where x1 is the input bit of C and
y1, y2 are two input bits of S. The corresponding circuit representation shown
on the right is composed from the description of the inputs, gates, and outputs
as follows.

Embedded SFE: Offloading Server and Network using Hardware Tokens 11

Circuit Representation:
1 2

3 [0] [1 2] [0001]

3

w0

w1

w2

x1

y1

y2

�
z1

w3

Fig. 3. Example for Circuit Representation

Inputs and wires: The wires wi of the circuit are labeled with their index
i = {0, 1, ...} (wires with a larger fan-out are viewed as a single wire). The first X
wires are associated with the input of C, the following Y wires are associated with
the input of S, and the internal wires are labeled in topological order starting
from index X + Y (output wires of XOR gates are not labeled, as XOR gates
are incorporated into their successor gates as described in the next paragraph).
The first line of the circuit description specifies X and Y (Fig. 3: X = 1, Y = 2).

Gates are labeled with the index of their outgoing wire; each gate description
specifies its input wires. XOR gates do not have gate tables and are omitted from
the description. Rather, non-XOR gates, instead of pointing to two input wires,
include two input wire lists. If the input list contains more than one wire, these
wire values are to be XORed to obtain the corresponding gate input. Gate’s
description concludes with its truth table. In Fig. 3, the second line describes
the AND gate, which has index 3, and inputs w0 and w1 ⊕ w2.

Outputs: The circuit description concludes with Z lines which contain the
indices of the Z output wires (Fig. 3: the only (Z = 1) output wire is w3).

Large XOR sub-circuits. In this representation, XOR gates with fan-out > 1
occur multiple times in the description of their successor gates. In the worst case,
this results in a quadratic increase of the circuit description. To avoid this cost,
we insert an identity gate after each XOR gate with a large fan-out.

4.3 GC Creation with Stateful Token Using Secure Counter

The main idea of our small-RAM-footprint GC generation is having T generate
garbled tables “on the fly”. This is possible, since each garbled table can be
generated only given the garblings of input and output wires. In our implemen-
tation, we pseudorandomly derive the wire garbling from the session key and
wire index. The rest of this section contains relevant details.

Session Initialization. SFE proceeds in sessions, where one session is used to
securely evaluate a function once. T has a secure monotonic session counter ctr
which is (irreversibly) incremented at the beginning of each session. The session
id sid is set to the incremented state of ctr. (We omit the discussion of synchro-
nization of ctr between T and S which may happen due to communication and
other errors.) Then, the session key is computed by S and T as K = PRFk(sid)
and subsequently used to provide fresh randomness to create the GC.

12 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

As required by the construction of [KS08] (cf. §2.1), the two garbled values
of the same wire differ by a global difference offset ∆. This offset is derived from
K at session initialization and kept in RAM throughout the session.

Subsequently, garbled wire values wi are derived on-the-fly from K as

w̃0
i = PRFK(i), w̃1

i = w̃0
i ⊕∆. (1)

Garbled Gates. T receives the description of the circuit, line by line, in the
format described in §4.2, and generates and outputs to C corresponding garbled
gates, using only small constant memory. T first verifies that the gate with the
same label had not been processed before. (Otherwise, by submitting multiple
gate tables for the same gate, C may learn the real wire values). This is achieved
by keeping the monotonically increasing processed gate counter gctr, verifying
that gate’s label glabel > gctr, and setting gctr = glabel. T then derives and
stores garblings of the gate’s input and output wires according to (1). (For input
lists, the wire’s garbling w̃0 is computed as the XOR of garblings of the listed
wires, and w̃1 is set to w̃0 ⊕∆. Note that this requires constant RAM.) Finally,
based on these garblings, gate’s garbled table is computed and output to C.

Garbled Outputs. Recall, T must verify circuit correctness by checking mac
generated by S. Thus, T does not release the output decryption tables to C until
after the successful check. At the same time, the check is not complete until the
entire circuit had been fed to T . To avoid having T store the output decryption
tables or involving S at this stage, T simply encrypts the output tables using a
fresh key K ′, and outputs the key only upon a successful MAC verification.

4.4 GC Creation with Stateless Token (no Counter)

As discussed above, while non-volatile secure storage (the counter ctr) is essential
in our protocol of §4.3, in some cases, it may be desired to avoid its cost. We
now discuss the protocol amendments required to maintain security of SFE with
the support of a token whose state can be reset by, e.g., a power interruption.

First, we observe that S is still able to maintain state, and choose unique
counters. However, T can no longer be assured that sid claimed by C is indeed
fresh. Further, T does not have a source of independent randomness, and thus
cannot establish a secure channel with S, e.g., by running a key exchange.

We begin with briefly describing a replay vulnerability of our protocol of §4.3,
when T is executed with same sid. First, C properly executes SFE. Second time
he runs T with the same sid, but feeds T an incorrect circuit, receiving valid
garbled tables for each of the gates, generated for the same wire garblings. Now,
even though T will not accept mac and will not decrypt the output wires, C had
already received them in the first execution. It is easy to see that C “wins”.

Our solution is to ensure that C does not benefit from replaying T with the
same sid. To achieve this, we require that each wire garblings are derived from
the (hash of the) entire gate description (i.e., id, truth table, and list of inputs),
as described below. If C replays and gives a different gate description, she will
not be able to relate the produced garbled table with a previous output of T .

Embedded SFE: Offloading Server and Network using Hardware Tokens 13

We associate with each wire wi a (revealed to C) hash value hi. For input
wires, hi is the empty string. For each other wire i, hi is derived (e.g., via Random
Oracle) from the description of the gate i (which includes index, truth table, and
list of inputs; cf. §4.2) that emits that wire: hi = H(〈gate description〉). The
garbled value of wire wi now depends on its hash value hi: w̃

0
i = PRFK(hi)

and w̃1
i = w̃0

i ⊕ ∆. Finally, to enable the computation of the garbled tables, C
must feed back to T the hashes hi of the input wires, and receive from T and
keep for future use the hash of the output wire. As noted above, C’s attempts to
feed incorrect values result in the output of garbled tables that are unrelated to
previous outputs of T , and thus do not help C.

5 Proof-of-concept Implementation

We have designed a proof-of-concept implementation to show the practicabil-
ity of our token-assisted GC protocols of §4. In the following we describe our
architecture for the stateful token case of §4.3. Extension to the stateless case
is straightforward. We instantiate PRF with AES-128, H and H with SHA-256,
and MAC with AES-CMAC.

5.1 Architecture

Fig. 4 depicts the high level architecture of our design consisting of a two-stage
pipeline and a MAC core. Stage 1 of the pipeline creates the garbled input and
output values of a gate using an AES core and stage 2 computes the garbled table
with a SHA core. The two-stage pipeline increases performance as two gates can
be processed concurrently. The MAC core computes the authentication message
mac′ of the circuit provided by C (cf. §4.1).

Design Principle. To achieve maximum speed with minimum hardware re-
sources, we followed a general guideline exploiting parallelism as long as it can
be done without using several instances of the same algorithm. For example, we
opted to compute the four entries of a garbled table with a single SHA core in-
stead of using four parallel SHA cores which would have increased performance,
but only with a significant increase in area. As the only exception, we included
a separate MAC core rather than reusing the AES core of stage 1, because it
would have severely complicated the control of the pipeline.

Description of Operation. In the session initialization (cf. §4.4), the SHA core
in stage 2 derives session key K and output encryption key K ′ from key k and
current counter value ctr = sid which is used as key for the AES core. Then,
the key difference ∆ is derived with the AES core and stored in a register. The
circuit is provided gate-by-gate into the input buffer in the format described in
§4.2 (gate table denoted by Ti in Fig. 4). Stage 1 starts to process a gate by
deriving the garbled output value w̃0

i . Then, the two garbled inputs of the gate

(L̃0
i , R̃

1
i in Fig. 4) are derived by XORing the garblings listed in the input wire

lists one-by-one (see §4.3). When all garblings are derived they are forwarded to
stage 2 and stage 1 processes the next gate. Stage 2 computes the garbled table

14 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

I/O buffer

I/O buffer

FIFOAES-128

SHA-256

AES-CMAC

Control

Control

Stage 1

Stage 2

MAC

i, Ti

i, Ti

L̃0
i

L̃0
i

R̃0
i

R̃0
i

w̃0
i

w̃0
i

eL0
i

eR0
i ew0

i
eL1
i

eR1
i ew1

i

∆, 1 k

k

K ′

k1
k2

ctr

K

0 0

f

f̃

Fig. 4. Simplified architectural diagram of our proof-of-concept implementation. Selec-
tors of multiplexers and write enables of registers are set by additional control logics.

and the encrypted output decryption tables and writes them into the output
buffer. The MAC core operates independently from the two-stage pipeline.

5.2 Prototype Implementation

We implemented our architecture in VHDL.
Implementation Details. For the AES core we chose an iterative design of

AES-128 with a latency of 10 clock cycles per encryption. The core includes an
online key scheduling unit. The S-boxes are implemented as suggested in [Can05];
otherwise, the core is a straightforward implementation of the standard [NIS01].
The SHA core implements SHA-256 with a latency of 67 clock cycles per 512-bit
block. The core is a straightforward iterative design of the standard [NIS02].
The MAC core includes an AES core implemented as above; otherwise the core
is a straightforward implementation of AES-CMAC [SPLI06]. As the subkeys,
k1 and k2, depend only on the key k they were precomputed and hardwired in
the design.

Embedded SFE: Offloading Server and Network using Hardware Tokens 15

FPGAs. We compiled the VHDL code for a low-end FPGA, the Altera Cy-
clone II EP2C20F484C7 FPGA, with Quartus II, version 8.1 (2008). We em-
phasize that this FPGA is for prototyping only, as it lacks secure embedded
non-volatile memory for storing ctr (e.g., the Xilinx Spartan-3AN FPGAs has
integrated Flash memory for this). The resulting area and memory requirements
are listed in Table 3. The design occupies 60 % of logic cells and 21 % of memory
blocks available on the device and runs at 66 MHz (the critical path for clock
frequency is in the AES core). These results show that the design is, indeed, fea-
sible for a low-cost implementation, for example, with low-cost FPGAs which,
in turn, is mandatory for the practicability of the token-based scheme.

Table 3. Results on an Altera Cyclone II FPGA (the hierarchy is as shown in Fig. 4).

Entity Stage 1 Stage 2 MAC IO Total

Area (Logic cells) 3317 (30 %) 4539 (40 %) 3059 (27 %) 263 (3 %) 11231 (60 %)

Memory (M4K) 0 (0 %) 8 (73 %) 1 (9 %) 2 (18 %) 11 (21 %)

Smart Cards. In particular, we note that the requirements are sufficiently low
also for contemporary smart card technologies, because AES-128 and SHA-256
require only about 3,400 and 11,000 gates, respectively [FW07]. As our protocol
requires no public-key operations on the token, small smart cards are sufficient.

Performance. We determined the latency of our implementation with Mod-
elSim, version 6.3g (2008). Overall, the latency is given as #clock cycles =
158G1 + 312G2 + 154O + 150, where G1, G2 is the number of 1-input gates
respectively 2-input gates and O is the number of outputs, assuming that each
gate has at most 21 inputs in its input lists (if more, stage 2 needs to wait for
stage 1) and that data I/O does not introduce additional delays. If we use a cor-
relation robust hash function instead of RO, the coefficient for G2 would roughly
double for up to 42 inputs (cf. §2.1).

Example 1. Our implementation generates a GC for 16-bit comparison (G1 =
0, G2 = 16, O = 1) in 5,296 clock cycles (≈80µs with 66 MHz clock). In Software,
this takes roughly 0.5 s on an Intel Core 2 6420 at 2.13 GHz [LPS08].

Example 2. Generating a GC for AES-128 encryption (G1 = 12614, G2 = 11334,
O = 128) takes 5,549,082 clock cycles (≈84 ms with 66 MHz clock). In Software,
this takes approximately 1 s on an Intel Core 2 Duo at 3.0 GHz [PSSW09].

We note that the optimization for large XOR sub-circuits described in §4.2
dramatically reduces the amount of communication between C and T : When us-
ing this optimization, the size of the AES circuit of Example 2 is |C| = 1.1 MB

and the garbled AES circuit has size |C̃| = 1.1 MB. Without this optimization,
the circuit has no more 1-input gates (G1 = 0) which results in a faster cre-

ation (3, 556, 070 clock cycles), evaluation, and size of the garbled circuit (|C̃| ≈

16 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

0.7 MB). However, the size of the circuit is drastically larger (|C| = 94.5 MB)
which might be a bottleneck if the communication between C and T is slow.

Acknowledgements. We would like to thank Wilko Henecka for preparing test
circuits, and Ivan Damg̊ard and reviewers of FC’10 for their helpful comments.

References

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT’01, volume 2045 of LNCS, pages 119–135.
Springer, 2001.

[Ber91] C. L. Berman. Circuit width, register allocation, and ordered binary deci-
sion diagrams. IEEE Trans. on CAD of Integrated Circuits and Systems,
10(8):1059–1066, 1991.

[BFK+09] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and
T. Schneider. Secure evaluation of private linear branching programs with
medical applications. In ESORICS’09, volume 5789 of LNCS, pages 424–
439. Springer, 2009.

[CAC+81] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein. Register allocation via coloring. Comput. Lang.,
6(1):47–57, 1981.

[Can05] D. Canright. A very compact S-box for AES. In Cryptographic Hardware and
Emb. Systems (CHES’05), volume 3659 of LNCS, pages 441–456. Springer,
2005.

[CGS08] N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure
computation using tamper-proof hardware. In EUROCRYPT’08, volume
4965 of LNCS, pages 545–562. Springer, 2008.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable
two-party and multi-party secure computation. In STOC’02, pages 494–503,
2002.

[DNW09] I. Damg̊ard, J. B. Nielsen, and D. Wichs. Universally composable multi-
party computation with partially isolated parties. In Theory of Cryptography
(TCC’09), volume 5444 of LNCS, pages 315–331. Springer, 2009.

[FFP+06] M. Fort, F. C. Freiling, L. D. Penso, Z. Benenson, and D. Kesdogan. Trust-
edpals: Secure multiparty computation implemented with smart cards. In
ESORICS’06, volume 4189 of LNCS, pages 34–48. Springer, 2006.

[FW07] M. Feldhofer and J. Wolkerstorfer. Strong crypto for RFID tags — a com-
parison of low-power hardware implementations. In IEEE Symp. Circuits
and Systems (ISCAS’07), pages 1839–1842, 2007.

[GMS08] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT’08, volume 4965
of LNCS, pages 289–306. Springer, 2008.

[Goo09] Google Health, 2009. https://www.google.com/health.
[GT08] V. Gunupudi and S. Tate. Generalized non-interactive oblivious transfer

using count-limited objects with applications to secure mobile agents. In
Financial Crypto (FC’08), volume 5143 of LNCS, pages 98–112. Springer,
2008.

[HL08] C. Hazay and Y. Lindell. Constructions of truly practical secure protocols
using standard smartcards. In Proc. ACM CCS, pages 491–500. ACM, 2008.

Embedded SFE: Offloading Server and Network using Hardware Tokens 17

[HMU05] D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally composable zero-
knowledge arguments and commitments from signature cards. In Central
European Conference on Cryptology (MoraviaCrypt’05), 2005.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In Adv. in Cryp. – CRYPTO’03, volume 2729 of LNCS. Springer,
2003.

[IS05] A. Iliev and S. Smith. More efficient secure function evaluation using tiny
trusted third parties. Technical Report TR2005-551, Dartmouth College,
Computer Science, Hanover, NH, July 2005.

[JKSS10] Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas
Schneider. Embedded SFE: Offloading server and network using hardware
tokens. In 14th International Conference on Financial Cryptography and
Data Security (FC’10), LNCS. Springer, January 25-28, 2010.

[Kat07] J. Katz. Universally composable multi-party computation using tamper-
proof hardware. In EUROCRYPT’07, pages 115–128. Springer, 2007.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for mes-
sage authentication. RFC 2104 (Informational), February 1997. http:

//tools.ietf.org/html/rfc2104.
[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates

and applications. In ICALP’08, volume 5126 of LNCS, pages 486–498.
Springer, 2008.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In EUROCRYPT’07, volume
4515 of LNCS, pages 52–78. Springer, 2007.

[LP09] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party
computation. Journal of Cryptology, 22(2):161–188, 2009. Cryptology ePrint
Archive: Report 2004/175.

[LPS08] Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computa-
tion efficiently with security against malicious adversaries. In Security and
Cryptography for Networks (SCN’08), volume 5229 of LNCS, pages 2–20.
Springer, 2008.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system. In USENIX, 2004.

[MS08] T. Moran and G. Segev. David and goliath commitments: UC computation
for asymmetric parties using tamper-proof hardware. In EUROCRYPT’08,
volume 4965 of LNCS, pages 527–544. Springer, 2008.

[NIS01] NIST, U.S. National Institute of Standards and Technology. Federal in-
formation processing standards (FIPS 197). Advanced Encryption Stan-
dard (AES), November 2001. http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[NIS02] NIST, U.S. National Institute of Standards and Technology. Federal
information processing standards (FIPS 180-2). Announcing the Secure
Hash Standard, August 2002. http://csrc.nist.gov/publications/fips/
fips180-2/fips-180-2.pdf.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-SIAM
Symposium On Discrete Algorithms (SODA’01), pages 448–457. SIAM,
2001.

[PSSW09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party
computation is practical. In ASIACRYPT’09, LNCS. Springer, 2009.

[Sha49] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Sys-
tems Technical Journal, 28(1):59–98, 1949.

18 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

[SPLI06] JH. Song, R. Poovendran, J. Lee, and T. Iwata. The AES-CMAC Algo-
rithm. RFC 4493 (Informational), June 2006. http://tools.ietf.org/

html/rfc4493.
[SS02] Y. N. Srikant and P. Shankar, editors. The Compiler Design Handbook:

Optimizations and Machine Code Generation. CRC Press, 2002.
[Tur96] B. C. H. Turton. Extending quine-mccluskey for exclusive-or logic synthesis.

IEEE Transactions on Education, 39:81–85, 1996.
[TV09] S. Tate and R. Vishwanathan. Improving cut-and-choose in verifiable en-

cryption and fair exchange protocols using trusted computing technology. In
Data and Applicat. Sec. (DBSec’09), volume 5645 of LNCS, pages 252–267.
Springer, 2009.

[Yao86] A. C. Yao. How to generate and exchange secrets. In IEEE Symposium on
Foundations of Computer Science (FOCS’86), pages 162–167. IEEE, 1986.

A Further Optimizations

In order to allow C to evaluate the garbled circuit on-the-fly without caching
the garbled gates, the gates of the circuit must be given in topologic order, i.e.,
all gates on which a gate depends have to occur before. As for most circuits
many topologic orders exist, one can choose a specific topologic order according
to further optimizations. We give two examples in the following – optimize C’s
memory requirements for GC evaluation (appendix §A.1) or reduce T ’s runtime
by caching intermediate values (appendix §A.2).

A.1 Optimizing Memory of Client

For evaluating the garbled circuit, C starts with the garbled values of the inputs.
Then, C obtains the garbled gates one-by-one from the token and evaluates them.
The obtained garbled output for the gate needs to be stored in C’s memory until
it is used the last time as input into a garbled gate.

This allows to find a good topologic order of the circuit which requires less
memory for storing the intermediate results.

As pointed out in [Ber91], the problem of finding a topologic order of a circuit
that minimizes the needed amount of memory to store intermediate values is
equivalent to the register allocation problem which is well-studied in the context
of compilers. In fact, algorithms for register allocation [CAC+81,SS02] can be
used to find an optimal respectively good topologic order of the circuit which
reduces the amount of memory needed for its evaluation.

In the worst case, the memory needed to evaluate a circuit C is linear in the
circuit size as one might need to keep garbled values of many wires. Fig. 5 shows
an (artificially constructed) example circuit with k gates which requires Θ(k)
memory for evaluation.

A.2 Optimizing Runtime of Token by Caching

During creation of the garbled circuit, the token T derives the garbled values
corresponding to the gates’ inputs and outputs with a PRF. If the garbled value

Embedded SFE: Offloading Server and Network using Hardware Tokens 19

...

...

...

Fig. 5. Circuit with k gates which requires Θ(k) memory for evaluation.

has already been derived before and stored in a cache, the garbled value does
not need to be derived again. When the garbled values are stored into or loaded
from the cache can be encoded in the description of the circuit provided by C.

Performance Improvements by Caching. At a first glance it seems that the cache
provides the possibility for a time-memory-tradeoff. This is clearly the case if
T allows sequential execution of instructions only (e.g., in a single-threaded
software implementation on a smart card) as each cache hit results in reduced
computation time. However, if T allows parallel execution (e.g., on FPGAs,
ASICs or CPUs with multiple cores), the garbled values can be derived in par-
allel to creating the garbled tables. As demonstrated in our FPGA prototype
implementation in §5, the derivation of the garbled values using AES (10 cycles
in our implementation) is substantially faster than creating the garbled tables
using SHA (70 cycles in our implementation). In this setting, only gates with
many inputs would benefit from caching.

Cache Sizes. If each garbled value should be derived only once and taken from
the cache every time it is used afterwards, the cache needs to have size O(|f |).
In practice, the size of the cache is however bounded to a constant number of
cache entries.

Cache with constant size. To determine a good ordering of the gates which max-
imizes the number of cache hits one can use standard algorithms for instruction
scheduling and register allocation (instructions correspond to gates and registers
to cache entries) [SS02].

Cache with size 1. In many cases, a cache with only one cache entry is sufficient
already. This is due to the fact that many commonly used functionalities (e.g.,
addition or comparison) are composed from a line of gates in which the output
of a gate directly serves as the input into the next gate.

The following efficient algorithm (time and space complexity in O(|f |)) de-
termines a topological order with many hits for the one entry cache: Insert –
starting from the output gates – an edge to each of the gates whose outputs are
input into the current gate. Afterwards run a depth-first search on the outputs

20 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

which marks a gate as visited and visits all successor gates which have not been
visited yet. After having visited all successor gates, the gate is output as next in
the topologic order. This algorithm eliminates “dead” gates and results in many
cache hits for the one entry cache.

B Transformation of Circuit into Token Format

In order to convert a given circuit with n-input gates into the token format
described in §4.2 the gates are first decomposed into 2-input gates and afterwards
the XOR gates are grouped together:

Decomposition into 2-input gates. Decomposing the n-input gates of a circuit
into multiple 2-input gates can be done in a straight-forward way using Shan-
non’s expansion theorem [Sha49] or the QuineMcCluskey algorithm which re-
sults in smaller circuits [Tur96]. For small n (e.g., for the very common case of
n = 3), the optimal replacement can be found via brute-force enumeration of all
possibilities [PSSW09].

Grouping of XOR gates. The XOR gates can be grouped together as follows: To
each input wire and each output wire of a non-XOR gate i we assign the set {i}.
Afterwards we transfer the gates of the circuit in topological order and annotate
to the output wire of each XOR gate the following set which is computed from
the sets of its input wires S1, S2 as S = S1 ⊕ S2 := (S1 ∪ S2) \ (S1 ∩ S2).
Finally, the remaining non-XOR gates are output in the token format using the
sets associated to the input wires which contain those wires which need to be
XORed together for the specific input. As merging two sets of size at most |C|
entries each can be done in O(|C|) operations, the overall complexity of this
algorithm is in O(|C|2).

C Extending OT Efficiently with Token

As described in §4.1, C needs to obtain the garbled values x̃ corresponding to
her input with a parallel OT protocol.

The efficient OT extension of [IKNP03] for semi-honest receiver C can be
used to replace the possibly huge number of |x| parallel OTs with a substantially
smaller number of t OTs only, where t is a security parameter. As the token T
is computationally weak and can not perform public-key operations, the t real
OTs in the protocol of [IKNP03] are performed between the computationally
strong devices C and S. Afterwards, S sends its state, i.e., the values obtained
in the parallel OT protocol to T over a secure channel. This requires O(t2)
communication from S to T (forwarded by C). Finally, T completes the protocol
with C which requires several invocations of a correlation robust hash function
(e.g., SHA-256) only, but no more public-key operations.

Embedded SFE: Offloading Server and Network using Hardware Tokens 21

The fully secure OT extension protocol of [IKNP03] which is secure against
malicious receiver C requires additional cut-and-choose which results in corre-
spondingly increased communication between C and S. Nevertheless, the com-
munication between C and S remains independent of the number of inputs |x|.

