
Constructing Certificateless Encryption and
ID-Based Encryption from ID-Based Key

Agreement

D. Fiore1, R. Gennaro2, and N.P. Smart3

1 Dipartimento di Matematica e Informatica,
Universita’ di Catania,
Viale A. Doria no 6,

95125 Catania,
Italy. fiore@dmi.unict.it

2 IBM T.J.Watson Research Center,
Hawthorne, New York,

U.S.A.
rosario@us.ibm.com

3 Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

nigel@cs.bris.ac.uk

Abstract. We discuss the relationship between ID-based key agree-
ment protocols, certificateless encryption and ID-based key encapsula-
tion mechanisms. In particular we show how in some sense ID-based key
agreement is a primitive from which all others can be derived. In doing
so we focus on distinctions between what we term pure ID-based schemes
and non-pure schemes, in various security models. We present security
models for ID-based key agreement which do not “look natural” when
considered as analogues of normal key agreement schemes, but which
look more natural when considered in terms of the models used in cer-
tificateless encryption. We illustrate our models and constructions with
two running examples, one pairing based and one non-pairing based. Our
work highlights distinctions between the two approaches to certificateless
encryption, and adds to the debate about what is the “correct” security
model for certificateless encryption.

1 Introduction

In this paper we discuss the relationship between ID-based key agreement pro-
tocols (ID-KA), certificateless encryption (CL) and ID-based key encapsulation
mechanisms (ID-KEMs) In particular we show how in some sense ID-based key
agreement is a primitive from which all others can be derived. In doing so we
focus on the distinctions between what we term pure ID-based schemes and

non-pure schemes, in various security models. Informally, a pure ID-based key
agreement (resp. certificateless) scheme is one in which the parties compute
their messages without using their long-term secret keys (which is used only
in the derivation of the shared session key). Such pure schemes allow various
functionalities such as encryption into-the-future etc, yet interestingly there are
no-known non-pairing based pure schemes, either in the ID-based key agreement
or certificateless settings.

We present a variety of generic constructions and relationships between se-
curity models, for the various scheme types we consider. In particular we present
security models for ID-based key agreement which do not “look natural” when
considered in analogy to normal key agreement schemes, but which look more
natural when considered in terms of the models used in certificateless encryp-
tion. For example, we augment the standard ID-based key agreement security
models by giving the adversary extra powers akin to those used in certificate-
less schemes. These extra oracles are relatively mild, but may result in some
previously considered secure schemes becoming insecure.

Our work aims to shed light on the distinction between pure and non-pure
schemes, and also aids the examination of what is the “correct” security model
for certificateless encryption. Indeed if one was going to take the natural ana-
logues from the ID-based key agreement setting, one would not have the strong
security notions for CL. However, in the other direction our work can be seen as
highlighting that perhaps the security models for ID-based key agreement (and
maybe ordinary key agreement) are not strong enough.

Our main generic constructions can be summarized by reference to Figure
1, the definitions used in the arrows will become clear as we define them in the
following pages.

ID-KA
-

ka Reveal∗ =⇒ Strong Type-I*
ka Rewind =⇒ Weak Type-Ib*

mk-fs Reveal∗

=⇒ Strong Type-II
mk-fs Rewind

=⇒ Weak Type-II

CL
-

Pure Only

Strong Type-I*
=⇒ ID-IND-CCA

ID-KEM

Fig. 1. Relationships Between Schemes

We illustrate our models and constructions with two running examples, one
that uses pairing (the ID-based key agreement scheme SCK-2 [12]), and one that
does not (the Fiore–Gennaro [16] ID-based key agreement scheme, referred as
the FG protocol in what follows). The former scheme is pure (and pairing based),
whilst the latter is non-pure (and non-pairing based). From these examples one
can see that the distinction into pure and non-pure schemes is important, since
from a pure ID-based key agreement scheme we are able to derive tighter security
results for certificateless schemes, and we can also construct ID-based KEMs.
Indeed, by following our generic constructions through we obtain for the SCK-2

key agreement scheme the ID-KEM of Lynn [17]. Indeed we recover the security
result of [8] on the Lynn ID-KEM, namely that it is secure in the Random
Oracle Model under the Gap-BDH problem. The Lynn ID-KEM is itself the
natural KEM analogue of the Boneh–Franklin scheme [10].

We observe that the CL scheme obtained from the FG protocol gives us
almost the same scheme of Baek et al. [5] with two main advantages. First,
the proof of security of the Baek et al.’s scheme was found incorrect, while our
transformation provides security for free from that of the FG protocol. Second,
the resulting CL scheme is extremely efficient.

We consider weakened notions of Type-I security for certificateless schemes
(which we denote by Type-I* etc). This is because we have discovered an over-
lap in the standard security definitions for Strong Type-I and Strong Type-II
security. By weakening the definition of Type-I security slightly, we remove this
overlap and at the same time simplify a number of our security proofs.

2 Identity-Based Key Agreement

We will only consider two pass ID-based key agreement protocols in this paper.
This simplifies the algorithm descriptions somewhat.

2.1 ID-Based Key Agreement Definition

A two-pass ID-based key agreement protocol is specified by six polynomial time
algorithms. The two passes are illustrated in Figure 2. We let ID denote the set
of possible user identities and K KA(mpkKA) be the set of valid session keys for the
public parameter mpkKA.

– KASetup(1t) is a PPT algorithm that takes as input the security parameter
1t and returns the master public key mpkKA and the master secret key mskKA.

– KeyDer(mskKA, ID) is the private key extraction algorithm. It takes as input
mskKA and ID ∈ ID and it returns the associated private key dID. This
algorithm may be deterministic or probabilistic.

– Initiate(mpkKA, dI). This is a PPT algorithm run by the initiator, with iden-
tity I, of the key agreement protocol which produces the ephemeral public
key epkI for transmission to another party. The algorithm stores eskI , the
corresponding ephemeral private key, for use later1

– Respond(mpkKA, dR). This is a PPT algorithm run by the responder, with
identity R, of the key agreement protocol which produces the ephemeral
public/private key (epkR, eskR).

– DeriveI(mpkKA, dI , eskI , epkR, R). This is a (possibly probabilistic) algorithm
run by the initiator to derive the session key KI ∈ K KA(mpkKA) with party
R.

1 Notice that we refer to the messages exchanged by the parties as public keys, and
their secret states after the computation of the message as secret keys. Jumping
ahead, this is because that’s the role these values play in our transformation from
KA to CL scheme.

– DeriveR(mpkKA, dR, eskR, epkI , I). This is a (possibly probabilistic) algorithm
run by the responder to derive the session key KR ∈ K KA(mpkKA) with party
I.

Initiator Responder

dI , mpkKA dR , mpkKA

(epkI , eskI)←Initiate(mpkKA, dI)
epkI−→

epkR←− (epkR, eskR)←Respond(mpkKA, dR)

KI←DeriveI(mpkKA, dI , eskI , epkR, R) KR←DeriveR(mpkKA, dR, eskR, epkI , I)

Fig. 2. Diagrammatic view of two-pass ID-KA protocols

For correctness we require that in a valid run of the protocol we have that
KI = KR. Notice, that the creation of the ephemeral public/private key pairs
does not depend on the intended recipient. Most ID-KA protocols are of this
form. For example in [12] ID-based key agreement protocols based on pairings
are divided into four Categories. Only in Categories 2 and 4 does the emphemeral
key pair depend on the intended recipient, these being protocols in the Scott [19]
and McCullagh–Barreto [18] families. The majority of pairing-based ID-based
key agreement protocols lie in the Smart [20] family (denoted Category 1 in
[12]), with Category 3 (the Chen–Kudla family [13]) also sharing this property.
The non-pairing based protocol of Fiore and Gennaro [16] also has this property.

If the algorithms Initiate and Respond do not require access to dI and dR
respectively, then we call the protocol a pure identity based key agreement pro-
tocol. This is because the ephemeral public keys can be created before the sender
knows his long term secret key. This therefore allows forms of sending-into-the-
future which are common in many IBE style schemes. We shall return to this
distinction below when discussing the conversion of ID-KA protocols into cer-
tificateless schemes. Indeed identifying differences between these two forms of
ID-KA protocols and certificateless schemes, forms a significant portion of the
current paper. In the categorization of [12] Categories 1, 3 and 4 are all pure
ID-based key agreement protocols, whilst Category 2 and the non-pairing based
FG protocol are non-pure.

A key agreement protocol is said to be role symmetric if algorithm Initiate is
identical to algorithm Respond and algorithm DeriveI is identical to algorithm
DeriveR. The FG protocol is role symmetric, but role symmetry is a more complex
property to determine for pairing-based protocols. For example whether a scheme
is role symmetric can depend on whether one instantiates the protocol with
symmetric or asymmetric pairings. For the schemes in [12] (and focusing solely
on the more practical scenario of asymmetric pairings) all those in Categories
2 and 4 are role symmetric, those in Category 3 are not, whereas half of those

in Category 1 are. Of particular importance in Category 1 is the SCK protocols
(which are a combined version of the Smart and Chen–Kudla protocol), these
are highly efficient and role symmetric.

We will be using a modified version of the Bellare-Rogaway key exchange
model, as extended to an ID-based setting. It presented in Appendix A.

2.2 Two Example Protocols

In what follows we will focus, as our motivating examples, on the pairing based
SCK protocol [12] and the non-pairing based FG protocol [16]. Both have em-
phemeral keys which do not depend on the intended recipient, and both are
role symmetric. However, the SCK protocol is a pure ID-based key agreement
protocol, whereas the FG protocol is non-pure.

We use the additive notation for group operations when describing SCK-2
(since this protocol is pairing-based and therefore must be implemented over
elliptic curves), and the multiplicative notation when describing FG (which can
be implemented over any cyclic group). Also with ← we denote the assigment
operator, i.e., x←y means that the variable x is assigned the value y. With x←S
where S is a finite set, we denote the process to assign to x a randomly and
uniformly chosen value in S.

SCK-2 Protocol: This is described in the setting of an asymmetric bilinear
pairing ĥ : G1 × G2 −→ GT , where G1 = 〈P1〉 and G2 = 〈P2〉 are groups
of prime order q. We require two hash functions, H1 : {0, 1}∗ −→ G2 and
H2 : G1 ×GT −→ {0, 1}t, where t is the size of the agreed key.

The master public and private keys are generated by

mskKA←Zq and mpkKA←[mskKA]P1.

The private key extraction is performed by setting

dID = [mskKA]H1(ID).

The Initiate and Respond message flows are identical to a standard Diffie–
Hellman key exchange in the group G1, i.e. the parties set eskI , eskR←Zq and
then compute (and transmit) epkI = [eskI]P1 and epkR = [eskR]P1. The DeriveI
algorithm is then given by

H2

(
[eskI]epkR , ĥ([eskI]mpkKA, H1(R)) · ĥ(epkR, dI)

)
,

with DeriveR being given by

H2

(
[eskR]epkI , ĥ([eskR]mpkKA, H1(I)) · ĥ(epkI , dR)

)
.

We note that this protocol is pure and role symmetric, and that the output key
is equal to

H2

(
[eskI · eskR]P1 , ĥ(mpkKA, [eskR]H1(I) + [eskI]H1(R))

)
.

Security of the SCK-2 Protocol: We first define the following problems in
our pairing based group, all problems we assume are given relative to an “oracle”
which computes a homomorphism φ : G2 −→ G1 such that φ(P2) = P1. See [12]
for a discussion of this “oracle” in the context of Type 3 pairings.

Definition 1 (Pairing Problems) We define four problems in the above pair-
ing situation:

– BDH Problem: For a, b, c ∈ Z∗q , given ([a]P2, [b]P2, [c]P1) compute the pair-
ing value ĥ(P1, P2)abc.

– XDH Problem: For a, b ∈ Z∗q , given ([a]P2, [b]P2) compute [ab]P1.
– DBDH Problem: For a, b, c, r ∈ Z∗q differentiate the tuple

([a]P2, [b]P2, [c]P1, ĥ(P1, P2)r)

from the tuple
([a]P2, [b]P2, [c]P1, ĥ(P1, P2)abc).

– Gap-BDH Problem: Solve the BDH problem with access to an oracle which
solves the DBDH problem.

Given these definitions we have the following security results for the SCK-2
protocol:

Theorem 1. The following statements are all in the random oracle model.

1. If the BDH problem is hard then the SCK-2 protocol is a secure ID-KA
protocol in the Rewind-model.

2. If the Gap-BDH problem is hard then the SCK-2 protocol is a secure ID-KA
protocol in the Reveal∗-model.

3. If the XDH problem is hard then the SCK-2 protocol is master-key forward
secure in the Rewind-model.

Proof. The first part follows from the proof of Theorem 1 in [12], which is only
given for the normal non-Rewind model, but it is seen to easily generalise to our
situation.

The second part again follows from the proof of Theorem 1 in [12]. To answer
the Reveal∗ queries we need to add extra entries into the H2-list within the proof
in [12]. However, to ensure consistency of the entries we add we then need a
DBDH oracle.

The third part follows from Theorem 2 of [12].

FG Protocol: The construction makes use of a group G = 〈g〉 of prime order
q, and two hash functions: H1 : {0, 1}∗ → Zq and H2 : G×G→ {0, 1}l, where l
is the bit length of the derived keys.

KASetup(1t)
– x←Zq
– y←gx
– Define mskKA←x, mpkKA←y.

KeyDer(mskKA, U)
– k←Zq
– rU←gk
– sU←k +H1(U‖rU) · x.
– We set dU←(rU , sU).

Initiate(mpkKA, dI)
– eskI←Zq
– uI←geskI

– Set epkI←(rI , uI).

Respond(mpkKA, dI)
– eskR←Zq
– uR = geskR

– Set epkR←(rR, uR).

DeriveI(mpkKA, dI , eskI , epkR, R)
– z1←(uR · rR · yH1(R‖rR))sI+eskI

– z2←ueskI

R

– sU←H2(z1, z2).

DeriveR(mpkKA, dR, eskR, epkI , I)
– z1←(uI · rI · yH1(I‖rI))sR+eskR

– z2←ueskR

I

– sU←H2(z1, z2).

Note, that the protocol is non-pure as the Initiate and Respond protocols require
access to the parties private key.

Security of the FG Protocol: We first define the assumptions that are needed
to prove the security of the protocol. In the following assume G to be a cyclic
multiplicative group of order q where q is a `-bit long prime. We assume that
there are efficient algorithms to perform multiplication and membership test in
G. Finally we denote with g a generator of G.

Definition 2 (Diffie–Hellman Problems) We define four problems in the
above situation of a cyclic group G.

– CDH Problem: For a, b ∈ Z∗q , given (ga, gb) compute gab.
– DDH Problem: For a, b, c ∈ Z∗q , differentiate the tuple (U, V,W) = (ga, gb, gc)

from the tuple (U, V,W) = (ga, gb, gab).
– Gap-DDH Problem: Solve the CDH problem with access to an oracle

which solves the DDH problem. The oracle is denoted by DH(U, V,W).
– SDH Problem: The Strong Diffie–Hellman problem2 is a weaker version of

the Gap-DDH problem in that the input to the CDH problem are two elements
U and V but the oracle is restricted to queries of the form DH(U, ·, ·), i.e.
the first entry is fixed to U .

Given these definitions we have the following security results for the FG protocol:

Theorem 2. The following statements are all in the random oracle model.

1. If the Strong-DH problem is hard then the FG protocol is a secure ID-KA
protocol in the Rewind-model.

2 We remark that in recent papers the name strong Diffie-Hellman assumption was
used to denote a different conjecture defined over bilinear groups [9]. In this paper,
we refer to the original terminology from [1]

2. If the Gap-DH problem is hard then the FG protocol is a secure ID-KA
protocol in the Reveal∗-model.

3. If the CDH problem is hard then the FG protocol is master-key forward secure
in the Rewind-model.

4. If the Gap-DH problem is hard then the FG protocol is master-key forward
secure in the Reveal∗-model.

Proof. Theorem 3 in [16] proves the first part in a non-Rewind model. But it is
easy to see that the proof can be generalised to support rewinding as the same
technique used to answer one reveal query can be extended to answer to any
reveal query when the message coming from the simulator is fixed.

If Theorem 3 of [16] assumes the Gap-DH assumption instead of Strong-DH
then the DH oracle can be used to simulate the Reveal∗ oracle and gives a proof
for the second part.

The third part follows directly from the fact that the FG protocol satisfies
master-key forward secrecy. The proof given in [16] can be easily extended to
the Rewind -model for the same reason of point 1.

Finally, in order to prove the last point, we observe that in the presence of the
Gap-DH oracle it is possible to extend the proof of master-key forward secrecy
given in [16] to support Reveal∗ queries.

3 From Mutual to One-Way Authentication

In many key agreement protocols one is only interested in one-way authentica-
tion. SSL/TLS is a classic example of this, where the server is always authen-
ticated but the user seldom is. We overview the modifications to the previous
section which are needed for only one-way authentication and show how to con-
vert a mutually authenticated identity-based key agreement protocol into one
which is only one-way authenticated. The reason for introducing only one-way
authentication is that this enables us to make the jump to certificateless en-
cryption conceptually easier, and can also result in simpler schemes. We assume
the responder in a protocol is the one who is not authenticated, this is to sim-
plify notation in what follows. The scheme definitions are then rather simple to
extend.

We note that any protocol proved to be secure for mutual authentication, can
be simplified and remain secure in the context of one-way authentication. The
transformation from mutual to one-way authentication is performed as follows.
An identity is selected, let us call it R0, which acts as a “dummy” responder
identity. A “dummy” secret key is then created for this user and this is pub-
lished along with the master public key. Notice, that by carefully selecting the
dummy secret key one can often obtain efficiency improvements. The protocol
is then defined as before except that R0 is always used as the responding party,
and we drop any reference to dR0 . Thus we call Respond(mpkKA) rather than
Respond(mpkKA, dR0). Similarly we call

DeriveR(mpkKA, eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
)

rather than

DeriveR(mpkKA, dR0 , eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
, R0).

In the security model all oracles either have R0 as an intended partner, or
the oracle belongs to R0. If the oracle belongs to R0 then it is corrupted, since
R0’s secret key is public. This means that only oracles belonging to R0 may be
used in the Test queries.

We argue that if the original protocol is secure then its one-way version
(obtained as described above) is also one-way secure. To see this observe that
an adversary A that breaks the security of the one-way protocol can be turned
into an adversary B against the original protocol. Assume A breaks the security
choosing a test session that involves a user ID (and the dummy identity R0).
Then B can trivially choose a test oracle Πs

R0,ID
and forward the obtained key

to A.

3.1 Two Example Protocols

We carry on with our two running examples:

SCK-2 Protocol: To convert the SCK-2 protocol to one which is only one-way
authenticated, we set R0 to be an “identity” such that H1(R0) = O, i.e. the
point at infinity on the curve. It does not matter that we cannot find such an
R0 since we will never actually use the precise value of R0.

The private key extraction for legitimate users is performed as before, as are
the Initiate and Respond algorithms. The only difference is now in the DeriveI
and DeriveR methods, which are defined by:

H2

(
[eskI]epkR , ĥ(epkR, dI)

)
and

H2

(
[eskR]epkI , ĥ([eskR]mpkKA, H1(I))

)
,

respectively. Note that the output key is now equal to

H2

(
[eskI · eskR]P1 , ĥ(mpkKA, [eskR]H1(I))

)
.

FG Protocol: To convert the FG protocol to one which is only mutually
authenticated, we can obtain a highly efficient scheme by selecting sR0 = 0,
and hence setting rR0 = 1, and “fixing” the random oracle to be such that
H1(R0‖rR0) = 0. So the Respond algorithm simply selects eskR0←Zq, and then
computes epkR0

= geskR0 . The Derive algorithms become:

DeriveR(mpkKA, eskR0 , epkID, ID).
– z1←(uID · rID · yH1(ID‖rID))eskR0

– z2←u
eskR0
ID

– sU←H2(z1, z2).

DeriveI(mpkKA, dID, eskID, epkR0
).

– z1←epksID+eskID

R0

– z2←epkeskID

R0

– sU←H2(z1, z2).

Thus we see that DeriveR becomes considerably simpler when considered in the
one-way-authenticated protocol case.

4 Certificateless Key Encapsulation Mechanisms

In this section we discuss various aspects of certificateless KEMs. The reader is
referred to [8] and [15] for further details.

4.1 CL-KEM Definition

A CL-KEM scheme is specified by seven polynomial time algorithms:

– CLSetup(1t) is a PPT algorithm that takes as input 1t and returns the master
public keys mpkCL and the master secret key mskCL.

– Extract-Partial-Private-Key(mskCL, ID). If ID ∈ ID is an identifier string for
party ID this (possibly probabilistic) algorithm returns a partial private key
dID.

– Set-Secret-Value is a PPT algorithm that takes no input (bar the system
parameters) and outputs a secret value sID.

– Set-Public-Key is a deterministic algorithm that takes as input sID and
outputs a public key pkID.

– Set-Private-Key(dID, sID) is a deterministic algorithm that returns skID the
(full) private key.

– Enc(mpkCL, pkID, ID) is the PPT encapsulation algorithm. On input of pkID,
ID and mpkCL this outputs a pair (C,K) where K ∈ K CL−KEM(mpkCL) is a
key for the associated DEM and C ∈ C CL−KEM(mpkCL) is the encapsulation
of that key.

– Dec(mpkCL, skID, C) is the deterministic decapsulation algorithm. On input
of C and skID this outputs the corresponding K or a failure symbol ⊥.

Baek et al. gave in [5] a different formulation where the Set-Public-Key algo-
rithm takes the partial private key dID as an additional input. In this case it
is possible to combine the Set-Secret-Value, Set-Public-Key and Set-Private-Key
algorithms into a single Set-User-Keys algorithm that given as input the partial
private key dID of ID outputs pkID and skID. While the Baek et al. formu-
lation may seem at first glance to be a simplification, it stops various possible
applications of certificateless encryption, such as encrypting into the future. Ex-
tending our definition of pure and non-pure ID-based key agreement protocols
to this situation, we shall call certificateless schemes which follow the original
formulation as pure, and those which follow the formulation of Baek et al. as
non-pure.

4.2 CL-KEM Security Model

To define the security model for CL-KEMs we simply adapt the security model
of Al-Riyami and Paterson [3] into the KEM framework, as explained in [8].
The main issue with certificateless encryption is that, since public keys lack au-
thenticating information, an adversary may be able to replace users’ public keys
with public keys of its choice. This appears to give adversaries enormous power.
However, the crucial part of the certificateless framework is that to compute the
full private key of a user, knowledge of the partial private key is necessary.

To capture the scenario above, Al-Riyami and Paterson [2–4] consider a se-
curity model in which an adversary is able to adaptively replace users’ public
keys with (valid) public keys of its choice. Such an adversary is called a Type-I
adversary below.

Since the KGC is able to produce partial private keys, we must of course
assume that the KGC does not replace users public keys itself. By assuming that
a KGC does not replace users public keys itself, a user is placing a similar level of
trust in a KGC that it would in a PKI certificate authority: it is always assumed
that a CA does not issue certificates for individuals on public keys which it has
maliciously generated itself! We do however treat other adversarial behaviour of a
KGC: eavesdropping on ciphertexts and making decryption queries for example.
Such an adversarial KGC is referred to as a Type-II adversary below.

Below we present a game to formally define what an adversary must do to
break a certificateless KEM [8]. Note that X can be instantiated with I or II in
the description below and that the master secret mskCL is only passed to the
adversary in the case of Type-II adversaries.

Type-X Adversarial Game
1. (mpkCL,mskCL)←CLSetup(1t).
2. (ID∗, s)←AO1 (mpkCL,mskCL).
3. (K0, C

∗)←Enc(mpkCL, pk∗, ID∗).
4. K1←K CL−KEM(mpkCL).
5. b←{0, 1}.
6. b′←AO2 (C∗, s, ID∗,Kb).

When performing the encapsulation, in line three of both games, the challenger
uses the current public key pk∗ of the entity with identifier ID∗. The adversary’s
advantage in such a game is defined to be

AdvType−X
CL−KEM(A) = |2 Pr[b′ = b]− 1|

where X is either I or II. A CL-KEM is considered to be secure, in the sense of
IND-CCA2, if for all PPT adversaries A, the advantage in both the games is a
negligible function of t.

The crucial point of the definition above is to specify which oracles the ad-
versary is given access and which are the restrictions of the game. According
to such specifications one can obtain different levels of security. A detailed dis-
cussion about all possible security definitions is given by Dent in [15]. In the

following we describe the various oracles O available to the adversaries, we then
describe which oracles are available in which game and any restrictions on these
oracles.

– Request Public Key: Given an ID this returns to the adversary a value
for pkID.

– Replace Public Key: This allows the adversary to replace user ID’s public
key with any (valid) public key of the adversaries choosing.

– Extract Partial Private Key: Given an ID this returns the partial private
key dID.

– Extract Full Private Key: Given an ID this returns the full private key
skID.

– Strong Decap: Given an encapsulation C and an identity ID, this returns
the encapsulated key. If the adversary has replaced the public key of ID,
then this is performed using the secret key corresponding to the new public
key. Note, this secret key may not be known to either the challenger or the
adversary, hence this is a very strong oracle.

– Weak SV Decap: This takes as input an encapsulation C, an identity ID
and a secret value sID. The challenger uses sID to produce the corresponding
full secret key of ID that is used to decapsulate C. Note, that sID may not
correspond to the actual current public key of entity ID. Also note that
one can obtain this functionality using the Strong Decap oracle when the
certificateless scheme is pure.

– Decap: On input of an encapsulation C and an identity ID it outputs the
session key obtained decapsulating C with the original secret key created
by ID. One can obtain this functionality using a Strong Decap oracle if the
scheme is pure.

Using these oracles we can now define the following security models for certifi-
cateless KEMs, see [15] for a full discussion.

Strong Type-I Security: This adversary has the following restrictions to its
access to the various oracles.

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless ID∗’s

public key was replaced after the creation of C∗.
– A may not query the Weak SV Decap or the Decap oracles (although for

pure schemes, one can always simulate these using the Strong Decap oracle).

We note that this security notion is often considered to be incredibly strong,
hence often one finds it is weakened.

Weak Type-Ia Security: Dent describes in [15] a weaker security definition
called Weak Type-Ia that was also used in [8]. Weak Type-Ia security does not
allow the adversary to make decapsulation queries against identities whose public
keys have been replaced. In this case the restrictions on the adversaries oracle
access is as follows:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A may not query the Strong Decap oracle at any time.
– A2 cannot query the Weak SV Decap oracle on the pair (C∗, ID∗) if the

attacker replaced the public key of ID∗ before the challenge was issued.
– A2 cannot query the Decap oracle on the pair (C∗, ID∗) unless the attacker

replaced the public key before the challenge was issued.

Though this notion is clearly weaker than Strong Type-I, it still looks reason-
able for practical purposes. In fact Strong Type-I gives to the adversary as much
power as possible, but it is unclear whether a real adversary can obtain decap-
sulations in practice from users whose public keys have been replaced by the
adversary itself.

We pause to note that there are weaker forms of Type-I security called Weak
Type-Ib and Weak Type-Ic security. In Weak Type-Ib security access to the
Weak SV Decap oracle is denied to the adversary, whereas in Weak Type-Ic
security denies the ability to both replace public keys entirely.

In addition, for each definition of Type-I security we can define a slightly
weaker variant denoted by ∗ (e.g. Strong Type-I*) in which the adversary cannot
query the partial private key of the target identity ID∗ at any point. This weaker
variant will simplify somewhat our security theorems. But, it still allows us to
obtain a final non-weakened result due to the combination with security theorems
for Type-II security, which we now define.

Strong Type-II Security: In the Type-II game the adversary has access to
the master secret key mskCL and so can create partial private keys itself. The
strong version of this security model enables the adversary to query the various
oracles with the following restrictions:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A1 cannot output an identity ID∗ for which it has replaced the public key.
– A cannot query the partial private key oracle at all.
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless the

public key used to create C∗ has been replaced.

– A may not query the Weak SV Decap or the Decap oracles (although for
pure schemes, one can always simulate these using the Strong Decap oracle).

Note, because we assume in this case that the adversary is the KGC, the adver-
sary does not have access to the partial private key oracle since all partial private
keys are ones which he can compute given mskCL. This applies even in the case
where generation of the partial private key from mskCL and ID is randomised.

Weak Type-II Security: As for the case of Type-I security one can consider a
weaker variant of Type-II security In this notion the adversary is not allowed to
replace public keys at any point and thus it cannot make decapsulation queries
on identities whose public keys have been replaced. This is the traditional form of
Type-II security, and is aimed at protecting the user against honest-but-curious
key generation centres.

There are other strengthenings of the Type-II model which try to model
completely malicious key generation centres, see [15] for a discussion of these
models. But we will not consider these in this paper.

Full Type-I security from Type-I* security and Strong Type-II secu-
rity: In this section we briefly discuss Type-I* security and show that proving a
scheme Type-I* secure is sufficient to get “full” Type-I security if such a scheme
satisfies the strongest notion of Type-II security. In some sense this says that
the definitions Type-I and Strong Type-II overlap in a specific case.

For ease of presentation we prove the theorem for the case of Strong Type-I
security, but it is easy to see that it holds even if the scheme is Weak-Type-Ia*
or Weak Type-Ib*. In this case one obtains the corresponding level of security
(e.g. Weak Type-Ia or Weak Type-Ib). To complete the picture we recall that
Dent noted in [15] that Weak Type-II security implies Weak Type-Ic security.

Theorem 3. If a CL-KEM is Strong-Type-I* and Strong Type-II secure then it
is Strong Type-I secure

Proof. The proof can be found in the appendices.

5 Generic Construction of CL-KEM from ID-KA

Suppose we are given algorithms for a one-way authenticated ID-KA protocol
(KASetup,KeyDer, Initiate,Respond, DeriveI ,DeriveR). Given a one-way identity-
based key agreement protocol KA, we let CL(KA) denote the derived certificate-
less KEM obtained from the following algorithms.

– CLSetup(1t). We run (mpkKA,mskKA)←KASetup(1t) and then set:mpkCL←mpkKA
and mskCL←mskKA.

– Extract-Partial-Private-Key(mskCL, ID). This is defined to be dID← KeyDer(mskKA, ID).

– The pair Set-Secret-Value and Set-Public-Key are defined by running

(epkID, eskID)←Initiate(mpkKA, [dID]).

The output of Set-Secret-Value is defined to be sID = eskID and the output
of Set-Public-Key is defined to be pkID = epkID.

– Set-Private-Key(dID, sID) creates skID by setting skID = (dID, sID).
– Enc(mpkCL, pkID, ID). This runs as follows:
• (epk0, esk0)←Respond(mpkKA).
• K←DeriveR(mpkKA, esk0, pkID, ID).
• C←epk0.

– Dec(mpkCL, skID, C). Decapsulation is obtained by executing

K←DeriveI(mpkKA, dID, skID, C).

In the above construction if the underlying ID-based key agreement protocol is
pure (resp. non-pure), then we will obtain a pure (resp. non-pure) certificate-
less KEM, i.e. it will follow the original formulation of Al-Riyami and Paterson
(resp. Baek et al.). To see this, notice that the Set-Public-Key function calls the
Initiate(mpkKA, [dI]) operation, which itself may require dI .

5.1 Two Example Protocols

Using the two previous identity-based key agreement protocols we are able to
present the following certificateless key encapsulation schemes. The first one is
a pure scheme, while the second is a non-pure scheme, this follows from the
properties of the underlying key agreement protocols.

SCK-2 Protocol: We assume the same set-up for the SCK-2 key agreement
scheme in terms of G1, G2, GT , H1 and H2. The derived CL-KEM is then defined
by:

– CLSetup(1t). We set x←Zq, compute Y←[x]P1, and define mskCL←x and
mpkCL←Y .

– Extract-Partial-Private-Key(mskCL, ID). The issuer computes dID = [x]H1(ID).
– Set-Secret-Value, Set-Public-Key and Set-Private-Key are defined by set-

ting tID←Zq and then computing pkID←[tID]P1. Finally we set skID =
(dID, tID).

– The algorithms Enc(mpkCL, pkID, ID) and Dec(mpkCL, skID, C) are given by:

Enc(mpkCL, pkID, ID)
• t←Zq.
• C←[t]P1.
• Z1←[t]pkID.
• Z2←ĥ([t]mpkCL, H1(ID))
• k←H2(Z1, Z2).

Dec(mpkCL, skID, C).
• Z ′1←[tID]C
• Z ′2←ĥ(C, dID)
• k←H2(Z ′1, Z

′
2).

FG Protocol: We assume the same set-up for the FG protocol in terms of G,
H1 and H2. The derived CL-KEM is then defined by:

– CLSetup(1t). We set x←Zq, compute y←gx. We then define mskCL←x and
mpkCL←y.

– Extract-Partial-Private-Key(mskCL, ID). The issuer sets k←Zq and computes
rID←gk and sID←k +H1(ID‖rID) · x. We set dID←(rID, sID).

– Set-Secret-Value, Set-Public-Key and Set-Private-Key are defined by setting
tID←Zq and then computing pkID←(rID, uID) = (rID, gtID). Finally we set
skID = (dID, tID).

– Enc(mpkCL, pkID, ID) and Dec(mpkCL, skID, c) are then given by:

Enc(mpkCL, pkID, ID)
• t←Zq.
• c←gt.
• z1←(uID · rID · yH1(ID‖rID))t

• z2←utID
• k←H2(z1, z2).

Enc(mpkCL, pkID, ID)
• z′1←ctID+sID .
• z′2←ctID

• k←H2(z′1, z
′
2).

5.2 Security Results on the ID-KA to CL-KEM transforms

Theorem 4 (Type-I Security). Consider the certificateless KEM CL(KA)
derived from the one-way ID-based key agreement protocol KA as above:

– If KA is secure in the Reveal∗-model then CL(KA) is Strong Type-I* secure
as a certificateless KEM.

– If KA is secure in the Rewind model then CL(KA) is Weak Type-Ib* secure
as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) such that for pure schemes we have

AdvType−I
CL−KEM(A) = AdvID−KA(B)

and for non-pure schemes we have

AdvType−I
CL−KEM(A) ≤ e · (qpk + 1) ·AdvID−KA(B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

Proof. The proof of this theorem can be found in the appendices.

We notice that the proof technique does not allow the simulator to provide
the partial private key of the challenge identity ID∗. Which is why our theorem
is stated for the case of Strong Type-I* (resp. Weak Type-Ib*). If we then apply

the result of Theorem 3, along with the following theorems, we obtain Strong
Type-I security (resp. Weak Type-Ib).

In looking at Type-II security we present two security theorems. The first one
(Theorem 5) is conceptually simpler but requires our underlying identity based
key agreement scheme to have a strong security property. The second theorem
(Theorem 6) is more involved and does not provide such a tight reduction. On
the other hand the second theorem requires less of a security guarantee on the
underlying key agreement scheme. The proofs of both theorems can be found in
the appendices.

Theorem 5 (Type-II Security – Mk I). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the (StateReveal ,Reveal∗)-
model then CL(KA) is Strong Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the (StateReveal ,Rewind)-
model then CL(KA) is Weak Type-II secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the sense
described above) then there is an adversary B against the master-key forward
secrecy of the KA scheme (also in the above sense) such that

AdvType−II
CL−KEM (A) = Advmk−fsID−KA (B).

We now turn to showing that one does not need the StateReveal query to
prove security, although the complication in the proof results in a less tight
reduction.

Theorem 6 (Type-II Security – Mk II). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the Reveal∗-model then CL(KA)
is Strong Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the Rewind model then CL(KA)
is Weak Type-II secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) then we have

AdvType−II
CL−KEM (A) ≤ e · (qpk + 1) ·Advmk−fsID−KA (B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

By combining Theorems 1, 2, 3, 4 and 6 we obtain the following corollary.

Corollary 1. The following security results follow, in the random oracle model,
for our two example CL-KEMs:

– The SCK-2 based CL-KEM is Strong Type-I* secure assuming the Gap-BDH
problem is hard.

– The SCK-2 based CL-KEM is Strong Type-II secure assuming the XDH prob-
lem is hard.

– The SCK-2 based CL-KEM is Strong Type-I secure assuming the Gap-BDH
and XDH problems are hard.

– The FG based CL-KEM is Strong Type-I* and Strong-Type-II secure assum-
ing the Gap-DH problem is hard.

– The FG based CL-KEM is Strong Type-I secure assuming the Gap-DH prob-
lem is hard.

– The FG based CL-KEM is Weak Type-Ib secure assuming the Strong-DH
problem is hard.

– The FG based CL-KEM is Weak Type-II secure assuming the CDH problem
is hard.

6 Identity-Based Key Encapsulation Mechanisms

For lack of space the last result of the paper on the construction of ID-based
public key encryption schemes can be found in Appendix F.

The main result of this section is that we can construct ID-based KEMs from
pure CL-KEMs with a very tight security reduction.

References

1. M. Abdalla, M. Bellare and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In Topics in Cryptology – CT-RSA 2001, Springer-
Verlag LNCS 2020, 143–158, 2001.

2. S.S. Al-Riyami. Cryptographic schemes based on elliptic curve pairings. Ph.D.
Thesis, University of London, 2004.

3. S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. In
Advances in Cryptology – Asiacrypt 2003, Springer-Verlag LNCS 2894, 452–473,
2003.

4. S.S. Al-Riyami and K.G. Paterson. CBE from CL-PKE: A generic construction
and efficient schemes. In Public Key Cryptography – PKC 2005, Springer-Verlag
LNCS 3386, 398–415, 2005.

5. J. Baek, R. Safavi-Naini and W. Susilo. Certificateless public key encryption with-
out pairing. In Information Security – ISC 2005, Springer-Verlag LNCS 3650,
134–148, 2005.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology – Crypto ’93, Springer-Verlag LNCS 773, 232–249, 1993.

7. S. Blake-Wilson, D. Johnson and A. Menezes. Key agreement protocols and their
security analysis. In Cryptography and Coding, Springer-Verlag LNCS 1355, 30–45,
1997.

8. K. Bentahar, P. Farshim, J. Malone-Lee and N.P. Smart. Generic constructions
of identity-based and certificateless KEMs. J. Cryptology, 21, 178–199, 2008. Full
version at IACR e-print 2005/058.

9. D. Boneh and X. Boyen. Short Signatures without Random Oracles. Advances in
Cryptology – Eurocrypt 2004, Springer-Verlag LNCS 3027, 56–73, 2004.

10. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing.
Advances in Cryptology – Crypto 2001, Springer-Verlag LNCS 2139, 213–229, 2001.

11. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. Advances in Cryptology – Eurocrypt 2001, Springer-
Verlag LNCS 2045, 453–474, 2001.

12. L. Chen, Z. Cheng and N.P. Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Security, 6, 213–241, 2007.

13. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
In IEEE Computer Security Foundations Workshop, 219–233, 2003. The modified
version of this paper is available at Cryptology ePrint Archive, Report 2002/184.

14. K.-K.R. Choo, C. Boyd and Y. Hitchcock. Examining indistinguishabilit-based
proof models for key establishment protocols. Advances in Cryptology – Asiacrypt
2005, Springer-Verlag LNCS 3788, 585–604, 2005.

15. A. Dent. A Survey of Certificateless Encryption Schemes and Security Models. in
International Journal of Information Security, 7, 347–377, 2008.

16. D. Fiore and R. Gennaro. Making the Diffie–Hellman protocol identity-based.
IACR e-print 2009/174, 2009.

17. B. Lynn. Authenticated identity-based encryption. IACR e-print 2002/072, 2002.

18. N. McCullagh and P.S.L.M. Barreto. A new two-party identity-based authenticated
key agreement. In Topics in Cryptology – CT-RSA 2005, Springer-Verlag LNCS
3376, 262–274, 2005.

19. M. Scott. Authenticated ID-based key exchange and remote log-in with insecure
token and PIN number. Cryptology ePrint Archive, Report 2002/164.

20. N.P. Smart. An identity based authenticated key agreement protocol based on the
Weil pairing. Electronics Letters, 38, 630–632, 2002.

A Defining Security for ID-Based Key Agreement

We will be using a modified version of the Bellare–Rogaway key exchange model,
as extended to an identity based setting. Our model is an extension of the model
contained in Chen et al. [12], but we extend it in various ways which we will
describe later. So as to be precise we describe the model in more formal detail
than that used in [12], however we shall (as stated above) be focusing solely on
two-pass protocols, which explains some of our specifications in what follows.

Security of a protocol is defined by a game between an adversary A and a
challenger E. At the start of the game the adversaryA is passed the master public
key mpkKA of the key generation centre. During the game the adversary is given
access to various oracles O which maintain various meta-variables, including

– roleO ∈ {initiator , responder ,⊥}. This records the type of session to which
the oracle responds.

– pidO ∈ U . This keeps track of the intended partner of the session maintained
by O.

– δO ∈ {⊥, accepted , error}. This determines whether the session is in a fin-
ished state or not.

– γO ∈ {⊥, corrupted , revealed}. This signals whether the oracle has been cor-
rupted or not.

– sO. This denotes the session key of the protocol if the protocol has completed.

The adversary can execute a number of oracle queries which we now describe.

– NewSession(U, V) This creates a new oracle, to represent the new session,
which we shall denote by O = Πi

U,V , where i denotes this is the ith session
for the user with identity U , and that the indented partner is V . After calling
this oracle we have

pidO = V and sO = roleO = δO = γO =⊥ .

However, if any other oracle with identity U has been corrupted then we set
γO = corrupted .

– Send(O, role,msg). Recall we are only modelling two-pass protocols, hence
the functionality of this oracle can be described as follows:
• If δO 6=⊥ then do nothing.
• If role = initiator then
∗ If msg =⊥, δO =⊥ and roleO =⊥ then set roleO = initiator and

output a message (i.e. send the first message flow in the protocol);
∗ If msg 6=⊥ and roleO = initiator (i.e. msg is the second message flow

in the protocol) then compute sO and set δO = accepted ;
∗ Else set δO = error and return ⊥

• If role = responder then
∗ If msg 6=⊥ and roleO =⊥ then compute sO, set δO = accepted ,

roleO = responder and respond with a message (i.e. send the second
message flow in the protocol).

∗ Else set δO = error and return ⊥.
– Reveal(O). If δO 6= accepted or γO = corrupted then this returns ⊥, other-

wise it returns sO and we set γO = revealed .
– Corrupt(U). This returns dU and sets all oracles O in the game (both now

and in the future) belonging to party U to have γO = corrupted . Notice,
that this is equivalent to the extract secret key query in security games for
other types of identity based primitives. Note, that we do not assume that
the rest of the internal state of the oracles belonging to U are turned over
to the adversary.

– Test(O∗). This oracle may only be called once by the adversary during the
game. It takes as input a fresh oracle (see below for the definition of fresh-
ness). The challenger E then selects a bit b ∈ {0, 1}. If b = 0 then the
challenger responds with the value of sO∗ , otherwise it responds with a ran-
dom key chosen from the space of session keys. We call the oracle on which
Test is called the Test-oracle.

At the end of the game the adversary will output its guess b′ as to the bit b used
by the challenger in the Test query. We define the advantage of the adversary
by

AdvID−KA(A) = |2 Pr[b′ = b]− 1| .

We now explain the Test(O∗) query in more detail. An oracle O∗ = Πi
U∗,V ∗ is

said to be fresh if

1. δO∗ = accepted .
2. γ∗O 6= revealed .
3. Party V ∗ is not corrupted.
4. There is no oracle O′ with γO′ = revealed with which O∗ has had a matching

conversation.

After the Test(O∗) query has been made the adversary can continue making
queries as before, except that it cannot:

– corrupt party V ∗,
– call a reveal query on O∗’s partner oracle if it exists,
– call reveal on O∗.

Definition 3 A protocol Π is said to be a secure ID-KA protocol (or more
simply ka secure) if

1. In the presence of a benign adversary, which faithfully conveys messages, on
Πs
i,j and Πt

j,i, both oracles always accept holding the same session key, and
this key is distributed uniformly on {0,1}k;

2. For any polynomial time adversary A, AdvID−KA(A) is negligible.

We also define a notion of master-key forward secrecy, (or mk-fs secure)
following [12]. In this model the adversary is also given the master secret key
mskKA. Thus the adversary can compute the private key dID of any party. The
security game is the same as above, except that instead of a fresh oracle for the
test session it chooses an oracle O∗ which satisfies:

1. δO∗ = accepted
2. γO∗ 6= revealed
3. There is an oracle O′ with which O∗ has had a matching conversation and
δO′ = accepted and γO′ 6= revealed .

Weaker notions of forward-secrecy are implied by the above, for example perfect
forward secrecy gives the adversary access to a Corrupt oracle for any ID ∈ ID
but does not give the adversary access to mskKA. A weaker form of simply forward
secrecy is then implied where the adversary can only call the Corrupt oracle on
one party in the test session, i.e. we must have either γO∗ =⊥ or γO′ =⊥.

The advantage for forward secrecy of an adversary is defined in the same way
as above and is denoted by one of

Advmk−fsID−KA (A), Advp−fsID−KA(A) or AdvfsID−KA(A),

as appropriate.
For non-pure ID-based key agreement protocols we can consider an additional

notion of forward secrecy, which we call active perfect forward secrecy (resp.
active forward secrecy). In this model we drop the third condition above that

there exists another oracle O′ with which O∗ has had a matching conversation.
This means that the adversary could have been active before corrupting the
parties, i.e. he sent one of the two message flows.

It is interesting to observe that such notion cannot be achieved by any pure
ID-based KA protocol because of the following attack. Assume the adversary
acts as initiator and computes epkI ← Initiate(mpkKA) (he can do that without
dI as the protocol is pure). He can initiate a new session oracle setting epkI as
first message, then ask for the second message and later make a test query on
this oracle. When the adversary corrupts I then he will have all the informations
needed to compute the correct session key and so he will be able to distinguish
wether he received the real session key or a random one. It is easy to see that
such attack does not apply to the case of non-pure protocols as the private key
is needed to produce protocol’s messages.

In our analysis of converting ID-based key agreement protocols into certifi-
cateless schemes we will require stronger security notions in which the adversary
will have access to additional oracles. We define three such oracles, the first
one is relatively standard, whilst the second two are new. The second can be
motivated by similar arguments one uses to motivate resettable zero-knowledge,
whilst the third oracle is a natural analogue in the key agreement setting of the
strong adversarial powers one gives an adversary for certificateless schemes. One
may therefore consider the extreme nature of the third oracle as an additional
argument as to why the certificateless security model is excessive.

– StateReveal(O). If roleO =⊥ then do nothing. Otherwise return the value of
the ephemeral secret key held within the oracle.

– Rewind(O). If roleO = initiator and δO = accepted then this returns O to
the state it was in before it received its last message, i.e. it sets δO = sO =⊥.
If we have γO = revealed then we also reset γO to ⊥.

– Reveal∗(I,R, epkI , epkR). This is a stronger version of the Reveal query in
that it is not associated to an oracle, but simply takes the two message flows
and returns the associated agreed shared secret assuming these messages
had been transmitted between party I and party R. There is an obvious
restriction in that the adversary is not allowed to call this oracle on the
message flows used in the Test query, nor (for role-symmetric protocols)
with the message flows used in the Test query but with the roles of initiator
and responder swapped.

The StateReveal(O) query corresponds to an adversarial power which can par-
tially corrupt a party, but which does not allow the adversary to obtain the long
term secret. This power has been used in numerous works starting with [11], and
is often considered to be the main distinction between the CK model and the
BR model for key exchange [14].

The presence of the Rewind(O) oracle enables the adversary to extract more
information for a particular set of ephemeral and static public key pairs. To
intuitively see what the Rewind(O) oracle provides us, imagine a standard key

agreement protocol based on standard Diffie–Hellman, for example the Station-
to-Station protocol. Usually one reduces the security of this protocol to the
decisional Diffie–Hellman problem (DDH). But with the presence of a Rewind(O)
oracle the adversary can take a test oracle (which has output the ephemeral
public key gx) and obtain, using a combination of the Rewind(O) and Reveal(O)
oracles, values of the form hx for values of h of the adversaries choosing. This
means the simulator is essentially solving the DDH problem with access to a
static-Diffie–Hellman oracle.

The Reveal∗(I,R, epkI , epkR) is a very strong oracle. If a protocol is secure
even when an adversary is given such an oracle we are able to transform the
protocol into a certificateless encryption scheme which also satisfies a strong
security notion.

We say a protocol is a secure ID-KA protocol in the Rewind -model (resp.
Reveal∗-model) if it is secure as ID-based key agreement protocol where we give
the adversary access to a Rewind (resp. Reveal∗) oracle. If we require access to
two of these oracles we will call the model, for instance, the (StateReveal ,Rewind)-
model, We call these extra models, augmented models, since they augment the
standard security model with extra functionality. Similarly we can define aug-
mented notions for master-key forward secrecy.

B Proof of Theorem 3

In order to prove this theorem we show that a Strong Type-I adversary A can be
turned into another adversary against either Strong Type-I* or Strong Type-II
security. We distinguish two types of Strong Type-I adversaries:

– A1 that replace the public key of the challenge identity ID∗ before asking
the challenge ciphertext;

– A2 that do not replace ID∗’s public key before asking the challenge cipher-
text.

Let E be the event that the adversary asks ID∗’s partial private key during its
attack. According to the definition of Strong Type-I security E can never occur
in a run of A1. This means that the game played by an adversary A1 is exactly
the same of a Strong Type-I* adversary.

On the other hand it is easy to see that an adversary A2 can be turned
into an adversary B that breaks Strong Type-II security as follows. B receives
in input the master secret key of the KGC so being able to provide A2 with
the partial private key of any identity. Moreover B can answer all oracle queries
made by A2 simply by forwarding such queries to its corresponding oracles. Since
by definition A2 will not replace ID∗’s public key before asking the challenge
ciphertext, then the simulations is perfect.

C Proof of Theorem 4

Assume there exists an efficient adversary A that is able to break the Strong
Type-I* (resp. Weak Type-Ib*) security of CL(KA) with non-negligible advan-

tage ε. Then we show how to build a simulator B that exploits A to break the
relevant security of the one-way authenticated KA protocol. We shall deal with
the two parts of the Theorem together, so we shall deal with the different types
of Type-I security in the one argument.

Setup B receives in input from its challenger the master public key mpkKA of
the KGC and hands such key to A. The simulator also maintains a table
KeyList where it stores the keys of identities involved in the simulation and
other extra informations related to them. The table contains tuples of the
form 〈ID, epkID, eskID, dID, cID〉 where each element is explained below.

Phase 1 Let us show how to deal with each oracle. But before hand we present
a generic subroutine, which will be used by almost all oracles. If algorithm
A adversary makes an oracle call for an identity ID which has not been seen
before then algorithm B before proceeding as in our examples below, first
processes the new identity as follows:
Pure case: In the case of a pure underlying key-agreement scheme the simu-
lator executes NewSession(ID,R) and then (epkID, eskID)← Initiate(mpkKA)
and stores 〈ID, epkID, eskID,⊥, 2〉 into KeyList.
Non-pure case: It flips a binary coin cID ∈ {0, 1} such that Pr[cID = 0] = δ
for some δ specified later. Algorithm B creates a new session by running
NewSession(ID,R) and then;
– If cID = 0 the simulator obtains the value dID by calling Corrupt(ID).

It then executes (epkID, eskID) ← Initiate(mpkKA, dID) and stores the
tuple 〈ID, epkID, eskID, dID, 0〉 into KeyList.

– If cID = 1 then B queries the oracle Send(ΠID,R, initiator ,⊥). It gets
back a message epkID which is then stored in KeyList as the tuple
〈ID, epkID,⊥,⊥, 1〉.

Flipping the coin cID is equivalent to make a guess on the challenge identity
ID∗ that should remain uncorrupted. We now turn to describing how each
oracle query made by A is answered by B.
1. Request public key of ID. By the above we are gauranteed that
KeyList contains an entry of the form 〈ID, epkID, ∗, ∗, ∗〉, and so algo-
rithm B simply returns epkID.

2. Extract partial private key of ID. First the simulator searches in
KeyList for a tuple 〈ID, ∗, ∗, ∗, cID〉 and then proceeds as follows:
– If cID = 0 then B outputs the corresponding partial private key dID.
– If cID = 1 then B terminates the simulation and outputs Abort.
– If cID = 2 then B obtains dID via corruption and updates the entry

on KeyList with the obtained value, and sets cID = 0. The value of
dID is returned to A.

3. Extract full private key of ID. Algorithm B proceeds as in the pre-
vious step, note this means that if cID = 1 then the algorithm aborts.
The entry on the KeyList is then of the form 〈ID, epkID, eskID, dID, 0〉
and so the pair skID = (dID, eskID) is returned to A.

4. Replace the public key of ID with pk′ID. Algorithm B looks for
a tuple containing ID in KeyList and replaces the current public key

with pk′ID. Notice, these queries only occur in the case of Strong Type-I*
adversaries in our theorem.

5. Strong Decap query (C, ID). Recall, these queries can occur only if
A is a Strong Type-I* adversary. In this case B constructs a query to the
Reveal∗ oracle for the pair two parties ID and R, with the respective
message flows epkID and C. Notice, that the response from this oracle
will even deal with the case where the public key has been replaced.

6. Decap query (C, ID) Recall, these queries can only occur if A is a
Weak Type-Ib* adversary.
– If cID = 0 we use its secret key to compute the decapsulated key.
– If cID = 1 and δΠID,I

= ⊥ then the simulator invokes Send(ΠID,R,
initiator , C) and then K ← Reveal(ΠID,R). The output K is the
decapsulated key returned to the adversary.

– If cID = 1 and δΠID,R
= “accepted′′, then algorithm B first asks

Rewind(ΠID,R) and then proceeds as in the step before.
– If cID = 2 then we proceed as if cID = 1.

Challenge At some point A outputs a target identity ID∗. If ID∗ /∈ KeyList
then algorithm B first generates a public key for it as above, using the case
cID∗ = 1 in the case of non-pure schemes.
If ID∗ ∈ KeyList and cID∗ = 0 then algorithm B terminates the simulation
and aborts.
Otherwise, since we then know that ID∗ is not corrupted, the simulator
performs the following actions:
1. ask to initiate a session NewSession(R, ID∗)
2. C∗ ← Send(ΠR,ID∗ , responder , epkID∗)
3. K ← Test(ΠI,ID∗)

Finally B hands (C∗,K) to A.
Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a

reveal query onΠR,ID∗ (and its matching oracleΠID∗,R). However according
to Type-I game’s rules A will not ask a Strong Decap or Decap query for
(C∗, ID∗).

Guess At the end the adversary outputs a decision bit b′ and B returns the
same bit.

The simulation is perfect if B does not abort during the entire simulation. And
algorithm B will only abort in the case of non-pure schemes, in this case the
probability that B wins is bounded by

Pr[B wins] = Pr[B wins|B¬Abort] · Pr[B¬Abort]
+ Pr[B wins|B Abort] · Pr[B Abort]

≤ Pr[A wins|B¬Abort] · Pr[B¬Abort] +
1
2
− 1

2
· Pr[B¬Abort]

=
1
2

+ ε · Pr[B¬Abort]

The probability that B does not abort during the simulation is (1−δ)δqpk where
qpk is the number of public key queries issued by the adversary during the sim-
ulation. Since A is polynomially-bounded the value of qpk is also bounded by a
polynomial. Moreover the value (1− δ)δqpk is maximised at δ = 1− 1/(qpk + 1).
This means that the probability that B does not abort is at least 1

e(qpk+1) . In
conclusion we have that B’s advantage for non-pure schemes is at least ε

e(qpk+1) ,
which is non-negligible if we assume that A’s advantage ε is also non-negligible.

D Proof of Theorem 5

Assume there exists an efficient adversary A that is able to break the relevant
Type-II security of CL(KA) with non-negligible advantage ε. Then we show how
to build a simulator B that exploits A to break the relevant master-key forward
secrecy property of the one-way authenticated KA protocol. We shall deal with
the two parts of the Theorem together, so we shall deal with the different types
of Type-II security in the one argument.

Setup Algorithm B receives in input from its challenger the master public key
mpkKA and the master secret key mskKA and hands such keys to A. The
simulator also maintains a tableKeyList where it stores the keys of identities
involved in the simulation and other extra informations related to them. The
table contains tuples of the form 〈ID, epkID, eskID, dID〉 where each element
is explained below.
When an identity ID is asked by A for the first time, algorithm B creates
a new session NewSession(ID,R) and then queries the oracle Send(ΠID,R,
initiator ,⊥) obtaining epkID. It then queries Corrupt(ID) so as to obtain
dID. Algorithm B then inserts 〈ID, epkID,⊥, dID〉 into KeyList.
Note that A can now construct dID values on its own, as can B. However, if
the algorithm to produce dID given ID and mskKA (resp. mskCL) is proba-
bilistic then the value produced by B might not correspond to that produced
by A. This explains our need to use the Corrupt oracle provided to B above.

Phase 1 We show how to deal with each oracle query made by A.
1. Request public key of ID. By the above we know KeyList contains

a tuple of the form 〈ID, epkID, ∗, dID〉 so B simply outputs epkID.
2. Extract full private key of ID. If 〈ID, epkID, eskID, dID〉 does not

appear in KeyList then B asks eskID ← StateReveal(ΠID,R) to its
challenger, and eskID is placed in this entry of the KeyList. In either
case the pair skID = (dID, eskID) is returned to A.

3. Replace the public key of ID with pk′ID. Notice, these queries only
occur in the case of Strong Type-II adversaries in our theorem. Algorithm
B looks for a tuple containing ID in KeyList and replaces the second
component with the value pk′ID.

4. Strong Decap query (C, ID). Recall, these queries can occur only if
A is a Strong Type-II adversary. In this case B constructs a query to the
Reveal∗ oracle for the pair two parties ID and R, with the respective

message flows epkID (obtained from the KeyList) and C. Notice, that
the response from this oracle will even deal with the case where the
public key has been replaced.

5. Decap query (C, ID) Recall, these queries can only occur if A is a
Weak Type-II adversary.
– If δΠID,R

= ⊥ then the simulator invokes Send(ΠID,R, initiator , C)
and then K ← Reveal(ΠID,R). The output K is the decapsulated
key returned to the adversary.

– If δΠID,R
= “accepted′′, then algorithm B first asks Rewind(ΠID,R)

and then proceeds as in the step before.
Challenge At some point A outputs a target identity ID∗. The simulator then

performs the following actions, using the value of epkID∗ from the entry in
KeyList;
1. ask to initiate a session NewSession(R, ID∗),
2. C∗ ← Send(ΠR,ID∗ , responder , epkID∗),
3. K ← Test(ΠI,ID∗)

Finally B hands (C∗,K) to A.
Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a

reveal query onΠR,ID∗ (and its matching oracleΠID∗,R). However according
to Type-II game’s rules A will not ask a Strong Decap or Decap query for
(C∗, ID∗).

Guess At the end the adversary outputs a decision bit b′ and B returns the
same bit.

Note that the simulation is perfect and B wins with the same advantage of A.

E Proof of Theorem 6

Assume there exists an efficient adversary A that is able to break Type-II se-
curity of CL(KA) with non-negligible advantage ε. Then we show how to build
a simulator B that exploits A to break the master-key forward-secrecy of the
one-way authenticated KA protocol. Again we deal with the different types of
Type-II security in the one argument.

Setup Algorithm B receives in input from its challenger the master public key
mpkKA and the master secret key mskKA of the KGC and hands such key to
A. The simulator also maintains a table KeyList where it stores the keys
of identities involved in the simulation and other extra informations related
to them. The table contains tuples of the form 〈ID, pkID, epkID, dID, cID〉
where each element is explained below.
As before everytime A mentions an identity ID for the first time algorithm B
creates an entry inKeyList before proceedings. For proving this theorem this
initial entry is constructed as follows: It first queires Corrupt(ID) to obtain
dID and then flips a binary coin cID ∈ {0, 1} such that Pr[cID = 0] = δ for
some δ specified later.

– If cID = 0 the simulator runs (epkID, eskID) ← Initiate([dID],mpkKA),
and stores 〈ID, epkID, eskID, dID, cID〉 into KeyList.

– If cID = 1 B creates a new session NewSession(ID,R) and queries the
oracle Send(ΠID,R, initiator ,⊥). It then stores the tuple 〈ID, epkID,
·, dID, cID〉 into KeyList.

Flipping the coin cID is equivalent to make a guess on whether the challenge
identity ID∗ is the subject of a extract full private key query at some point.

Phase 1 Let us now show how to deal with each oracle
1. Request public key of ID. By above Keyist contains an entry of the

form 〈ID, epkID, ∗, dID, cID〉, so the value of epkID is returned to A.
2. Extract full private key of ID. First the simulator searches inKeyList

for the tuple 〈ID, epkID, eskID, dID, cID〉. If cID = 1 then B terminates
the simulation and outputs Abort. Otherwise, if cID = 0, B outputs the
corresponding secret key skID = (dID, eskID).

3. Replace the public key of ID with pk′ID. Algorithm B looks for
a tuple containing ID in KeyList and replaces the current public key
with pk′ID. Notice, these queries only occur in the case of Strong Type-II
adversaries in our theorem.

4. Strong Decap query (C, ID). Recall, these queries can occur only if
A is a Strong Type-II adversary. In this case B constructs a query to the
Reveal∗ oracle for the pair two parties ID and R, with the respective
message flows epkID and C. Notice, that the response from this oracle
will even deal with the case where the public key has been replaced.

5. Decap query (C, ID) Recall, these queries can only occur if A is a
Weak Type-II adversary.
– If cID = 0, we use its secret key to compute the decapsulated key.
– If cID = 1 and δΠID,R

= ⊥ then the simulator invokes Send(ΠID,R,
initiator , C) and then K ← Reveal(ΠID,R). The output K is the
decapsulated key returned to the adversary.

– If cID = 1 and δΠID,R
= “accepted′′, then algorithm B first asks

Rewind(ΠID,R) and then proceeds as in the step before.
Challenge At some point A outputs a target identity ID∗. If ID∗ /∈ KeyList

then algorithm B first generates an entry for it as above, using the case
cID∗ = 1. If ID∗ ∈ KeyList and cID∗ = 0 then algorithm B terminates
the simulation and aborts. Otherwise the simulator performs the following
actions:
1. ask to initiate a session NewSession(R, ID∗)
2. C∗ ← Send(ΠR,ID∗ , responder , pkID∗)
3. K ← Test(ΠR,ID∗)

Finally B hands (C∗,K) to A.
Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a

reveal query onΠR,ID∗ (and its matching oracleΠID∗,R). However according
to Type-II game’s rules A will not ask a Strong Decap or Decap query for
(C∗, ID∗).

Guess At the end the adversary outputs a decision bit b′ and B returns the
same bit.

The simulation is perfect if B does not abort during the entire simulation, hence
the probability that B wins is bounded by

Pr[B wins] = Pr[B wins|B¬Abort] · Pr[B¬Abort]
+ Pr[B wins|B Abort] · Pr[B Abort]

≤ Pr[A wins|B¬Abort] · Pr[B¬Abort] +
1
2
− 1

2
· Pr[B¬Abort]

=
1
2

+ ε · Pr[B¬Abort]

The probability that B does not abort during the simulation is (1−δ)δqpk where
qpk is the number of public key queries issued by the adversary during the sim-
ulation. Since A is polynomially-bounded the value of qpk is also bounded by a
polynomial. Moreover the value (1− δ)δqpk is maximised at δ = 1− 1/(qpk + 1).
This means that the probability that B does not abort is at least 1

e(qpk+1) .
In conclusion we have that B’s advantage is at least ε

e(qpk+1) which is non-
negligible if we assume that A’s advantage ε is also non-negligible.

F Identity-Based Key Encapsulation Mechanisms

We recap here on identity-based KEMs, the reader is referred to [8] for further
details.

F.1 ID-KEM Definition

A ID-KEM scheme is specified by four polynomial time algorithms:

– IDSetup(1t) is a PPT algorithm that takes as input 1t and returns the master
public keys mpkID and the master secret key mskID.

– Extract(mskID, ID). If ID ∈ ID is an identifier string for party ID this
(possibly probabilistic) algorithm returns a partial private key dID.

– Enc(mpkID, ID) is the PPT encapsulation algorithm. On input of ID and
mpkID this outputs a pair (C,K) where K ∈ K ID−KEM(mpkID) is a key for
the associated DEM and C ∈ C ID−KEM(mpkID) is the encapsulation of that
key.

– Dec(mpkID, dID, C) is the deterministic decapsulation algorithm. On input
of C and dID this outputs the corresponding K or a failure symbol ⊥.

F.2 ID-KEM Security Model

The security model for ID-KEMs is as follows. The adversary A plays a game
with a challenger, at any point the adversary may request Extract queries for
identities of his choice, and he may obtain decapsulations for pairs (ID,C) of
his choice. At some point the adversary outputs a challenge identity ID∗. The
challenger then calls (C∗,K0)←Enc(mpkID, ID∗), flips a bit b and samples a

random key K1 from the space K ID−KEM(mpkID). The challenger then returns
(C∗,Kb) to the adversary. The adversary then continues and finally outputs a
guess b′ for the hidden bit b.

The two oracles provided to the adversary, i.e. the Extract and Dec oracles,
come with the following restrictions:

– Extract may at no point be called on the challenge identity ID∗.
– Dec may at no point be called on the pair (ID∗, C∗).

The above adversary is called an ID-IND-CCA adversary, if we disallow Dec
queries then the adversary is an ID-IND-CPA adversary. The advantage of such
a CCA adversary is defined to be

AdvID−IND−CCAID−KEM (A) = |2 Pr[b = b′]− 1| ,

with a similar definition for a CPA adversary. A scheme is deemed to be secure
if for all adversaries A the advantage is a negligible function of the security
parameter.

F.3 Generic Construction of ID-KEM from pure CL-KEM

To construct an ID-KEM from a CL-KEM the obvious solution is to set the
user public/private keys to be trivial and known to all parties. This however can
only be done for pure CL-KEMs since in non-pure schemes one does not have
complete control over the public/private keys, since they depend on the partial
private key dID. We call the resulting scheme the ID(CL) scheme, as it is an
ID-KEM built from a CL-KEM.

Example: The SCK-2 Protocol: Only one of our CL-KEM examples given
before is a pure scheme, namely the one derived from the SCK-2 ID-based key
agreement protocol. Thus we continue the discussion using this protocol as a
motivating example. Again we assume the same set-up for the SCK-2 key agree-
ment scheme in terms of G1, G2, GT , and H1. But now we defined H2 as a hash
function from GT to {0, 1}t. The derived ID-KEM is then defined by, by setting
tID to be equal to zero in the underlying CL-KEM;

– IDSetup(1t). We set x←Zq, compute Y←[x]P1, and define mskID←x and
mpkID←Y .

– Extract(mskID, ID). The issuer computes dID = [x]H1(ID).
– Enc(mpkID, ID). This runs as follows:
• t←Zq.
• C←[t]P1.
• Z←ĥ([t]mpkID, H1(ID))
• k←H2(Z).

– Dec(mpkID, dID, C). To decapsulate the receiver computes
• Z ′←ĥ(C, dID)

• k←H2(Z ′).

We note that this has resulted in the Boneh–Franklin based ID-KEM first pro-
posed by Lynn in [17]. This scheme is was proved to be secure in the random
oracle model in the full version of [8] under the hardness of the Gap-BDH prob-
lem. In this latter paper the ID-KEM is referred to by the name “Construction
1”.

F.4 Security results on the CL-KEM to ID-KEM transform

Theorem 7. Consider the pure ID-KEM ID(CA) derived from the pure CL-
KEM scheme CL as above. Then if CL is Strong Type-I* secure then ID(CA)
is ID-IND-CCA secure. In particular if A is an adversary against the ID(CA)
scheme then there is an adversary B against the CL-KEM scheme such that

AdvID−IND−CCAID−KEM (A) = AdvStrong−Type−I∗
CL−KEM (B).

Proof. Assume there is an efficient adversary A that is able to break the security
of ID(CL) with non-negligible advantage ε. We build a simulator B which breaks
the security of the underlying CL scheme.

The algorithm B is relatively trivial. The input master public key mpkCL for
algorithm B is first passed to algorithm A. When A makes a Extract query for
identity ID, algorithm B makes a request for the partial private key of party
ID. It also replaces the public key of ID with the trivial key required for the
ID(KA) construction. Any Dec queries made by A are passed onto the Strong
Decap oracle provided to algorithm B. When A outputs the challenge identity
ID∗ this is passed on by algorithm B to its challenger, who then responds with
a C∗ which is passed directly back to algorithm A.

It is clear that all restrictions on oracles queries by B do not affect the
responses to oracle queries made by A. In addition the advantage of A is equal
to the advantage of B.

We now apply this theorem to the SCK-2 scheme. Combining with the first
bullet point in Corollary 1 we obtain that the ID-KEM derived from the SCK-2
scheme is ID-IND-CCA secure assuming the Gap-BDH problem is hard. Thus
we have recovered, albeit in a round about way, the result of [8] on the ID-KEM
of Lynn [17].

