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Abstract. In this paper we present an algorithm for parallel exhaustive
search for short vectors in lattices. This algorithm can be applied to a
wide range of parallel computing systems. To illustrate the algorithm, it
was implemented on graphics cards using CUDA, a programming frame-
work for NVIDIA graphics cards. We gain large speedups compared to
previous serial CPU implementations. Our implementation is almost 5
times faster in high lattice dimensions.
Exhaustive search is one of the main building blocks for lattice basis
reduction in cryptanalysis. Our work results in an advance in practical
lattice reduction.
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1 Introduction

Lattice-based cryptosystems are assumed to be secure against quantum com-
puter attacks. Therefore these systems are promising alternatives to factoring or
discrete logarithm based systems. The security of lattice-based schemes is based
on the hardness of special lattice problems. Lattice basis reduction helps to de-
termine the actual hardness of those problems in practice. In the past few years
there has been increased attention to exhaustive search algorithms for lattices,
especially to implementation aspects. In this paper we consider parallelization
and special hardware for the exhaustive search.

Lattice reduction is the search for short and orthogonal vectors in a lattice.
The algorithm used for lattice reduction in practice today is the BKZ algorithm
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of Schnorr and Euchner [SE91]. It consists of two main parts, namely an exhaus-
tive search (’enumeration’) for shortest, non-zero vectors in lower dimensions
and the LLL algorithm [LLL82] for the search for short (not shortest) vectors
in high dimensions. The BKZ algorithm is parameterized by a blocksize param-
eter β, which determines the blocksize of the exhaustive search algorithm inside
BKZ.

Algorithms for exhaustive search were presented by Kannan [Kan83] and by
Fincke and Pohst [FP83]. Therefore, the enumeration is sometimes referred to
as KFP-algorithm. Kannan’s algorithm runs in 2O(n logn) time, where n denotes
the lattice dimension. Schnorr and Euchner presented a variant of the KFP
exhaustive search, which is called ENUM [SE91]. Roughly speaking, enumeration
algorithms perform a depth first search in a search tree that contains all lattice
vectors. The main challenge is to determine which branches of the tree can be
cut off to speed up the exhaustive search. Enumeration is always executed on
lattice bases that are LLL reduced in a preprocessing step, as this reduces the
runtime significantly compared to non-reduced bases.

The LLL algorithm runs in time polynomial in the lattice dimension and
therefore can be applied in high lattice dimensions (n > 1000). The runtime
of all known exhaustive search algorithms is exponential in the dimension, and
therefore can only be applied in blocks of smaller dimension (n / 70). With
this, the runtime of BKZ increases exponentially in the blocksize β. As in BKZ,
enumeration is executed very frequently, it is only practical to choose blocksizes
up to 50.

There are numerous works on parallelization of LLL [Vil92,HT98,RV92,Jou93]
[Wet98,BW09]. So far, there is no public available version of parallel lattice enu-
meration. Being able to parallelize ENUM would mean to parallelize the second
building block of BKZ, which reduces the runtime of the most promising lattice
reduction algorithm in total.

As a platform for our parallel implementation we have chosen graphical pro-
cessing units (GPUs). Because of their design to perform identical operations
on large amounts of graphical data, GPUs can run large numbers of threads
in parallel, provided the threads execute similar instructions. We can take ad-
vantage of this design and split up the ENUM algorithm over several identical
threads. The computation power of GPU rises faster than that of CPUs over the
last years, in concerns of floating point operations per second (GFlops). This
attitude is not supposed to stop, therefore using GPUs for computation will be
a useful model also in the near future.

Our Contribution. In this paper we present a parallel version of the enumeration
algorithm of [SE91] that finds a shortest, non-zero vector in a lattice. Since the
enumeration algorithm is tree-based, the main challenge is splitting the tree in
some way and executing subtree enumerations in a parallel. We use the CUDA
framework of NVIDIA for implementing the algorithm on graphics cards. Be-
cause of the choice for GPUs, parallallization and splitting are more difficult than
for a CPU parallellization. Firstly we explain the ideas of how to parallelize enu-
meration on GPU. Secondly we present some first experimental results. Using
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the GPU, we reduce the time required for enumeration of a random lattice in
dimensions higher than 50 by a factor of almost 5. We are using random lattices
in the sense of Goldstein and Mayer [GM03] for testing our implementation.

The first part of this paper, namely the idea of parallelizing enumeration,
can also be applied on multicore CPU. The idea of splitting the search tree into
parts and search different subtrees independently in parallel is also applicable
on CPU, or other parallel computing frameworks. As mentioned above, BKZ is
only practical using blocksizes up to 50. As our GPU version of the enumeration
performs best in dimensions n greater than 50, we would expect to speed up
BKZ with high blocksizes only.

Structure of the paper In section 2 we introduce the necessary preliminaries
on lattices and GPUs. We discuss previous lattice reduction algorithms and
the applications of lattices in cryptography. The GPU (CUDA) programming
model is shortly introduced, explaining in more detail the memory model and
data types which are important for our implementation. Section 3 explains our
parallel enumeration algorithm, starting from the ENUM algorithm of Schnorr
and Euchner and ending with the iterated GPU enumeration algorithm. Section
4 discusses the results obtained with our algorithm.

2 Preliminaries

A lattice is a discrete subgroup of Rd. It can be represented by a basis matrix
B = {b1, . . . ,bn} (n ≤ d). We call L(B) = {

∑n
i=1 xibi, xi ∈ Z} the lattice

spanned by the basis vectors bi ∈ Rd. The dimension n of a lattice is the
number of linear independent vectors in the lattice, i.e. the number of basis
vectors. When n = d the lattice is called full dimensional.

The basis of a lattice is not unique. Every unimodular transformation M,
i.e. integer transformation with det M = ±1, turns a basis matrix B into a
second basis MB of the same lattice.

The determinant of a lattice is defined as det(L(B)) =
√

det (BTB). For full
dimensional lattices we have det(L(B)) = |det(B)|. The determinant of a lattice
is invariant of the choice of the lattice basis, which follows from the multiplica-
tive property of the determinant and the fact that basis transformations have
determinant ±1.

The length of the shortest vector of a lattice L(B) is denoted λ1(L(B)) or in
short λ1 if the lattice is uniquely determined.

The Gram-Schmidt algorithm computes an orthogonalization of a basis. It is
an efficient algorithm that outputs B∗ = [b∗1, . . . ,b

∗
n] with b∗i orthogonal and µi,j

such that B = B∗ · [µi,j ], where [µi,j ] is an upper triangular matrix consisting of
the Gram-Schmidt coefficients µi,j for 1 ≤ j ≤ i ≤ n. The orthogonalized matrix
B∗ is not necessarily a basis of the lattice.
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2.1 Lattice Basis Reduction

Problems. Some lattice bases are more useful than others. The goal of lattice
basis reduction (or in short lattice reduction) is to find a basis consisting of short
and almost orthogonal lattice vectors. More exactly, we can define some (hard)
problems on lattices. The most important one is the shortest vector problem
(SVP), which consists of finding a vector v ∈ L \ {0} with ‖v‖ = λ1(L(B)).
In most cases, the Euclidean norm ‖·‖2 is considered. As the SVP is NP-hard
(at least under randomized reductions) people consider the approximate version
γ-SVP, that tries to find a vector v ∈ L \ {0} with ‖v‖ ≤ γ · λ1(L(B)).

Other important problems like the closest vector problem (CVP) that searches
for a nearest lattice vector to a given point in space, its approximation variant
γ-CVP, or the shortest basis problem (SBP) are listed and described in detail in
[MG02].

Algorithms. In 1982 Lenstra, Lenstra, and Lovász [LLL82] introduced the LLL
algorithm, which was the first polynomial time algorithm to solve the approx-
imate shortest vector problem in higher dimensions. Another algorithm is the
BKZ block algorithm of Schnorr and Euchner [SE91]. In practice, this is the
algorithm that gives the best solution to lattice reduction so far. Their paper
[SE91] also introduces the enumeration algorithm (ENUM), a variant of the
Fincke-Pohst [FP83] and Kannan [Kan83] algorithms. The ENUM algorithm is
the fastest algorithm in practice to solve the exact shortest vector problem using
complete enumeration of all lattice vectors. It is used as a black box in the BKZ
algorithm. The enumeration algorithm organizes linear combinations of the basis
vectors in a search tree and performs a depth first search above the tree.

In [PS08] Pujol and Stehlé analyze the stability of the enumeration when
using floating point arithmetic. In [HS07], improved complexity bounds for Kan-
nan’s algorithm are presented. This paper also suggests some better preprocess-
ing of lattice bases, i.e., the authors suggest to BKZ reduce a basis before running
enumeration. This approach lowers the runtime of enumeration. But, as in the
flow of the BKZ algorithm the bases are only LLL reduced, we only consider LLL
pre-reduced basis in this paper. [AKS01] show how to solve SVP using a random-
ized algorithm in time 2O(n), but their algorithm requires exponential space and
is therefore impractical. The papers [NV08] and [MV10] present improved siev-
ing variants, where the Gauss-sieving algorithm of [MV10] is shown to be really
competitive to enumeration algorithms in practically interesting dimensions.

Several LLL variants were presented by Schnorr [Sch03], Nguyen and Stehlé
[NS05], and Gama and Nguyen [GN08a]. The variant of [NS05] is implemented
in the fpLLL library of [CPS], which is also the fastest public implementation
of ENUM algorithms. Koy introduced the notion of a primal-dual reduction in
[Koy04]. Schnorr [Sch03] and Ludwig [BL06] deal with random sampling reduc-
tion. Both are slightly different concepts of lattice reduction, where primal-dual
reduction uses the dual of a lattice for reducing and random sampling combines
LLL-like algorithms with an exhaustive point search in a set of lattice vectors
that is likely to contain short vectors.
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The paper [SH95] presents a probabilistic improvement of ENUM, called
tree pruning. The idea is to prune subtrees that are unlikely to contain shorter
vectors. As it leads to a probabilistic variant of the enumeration algorithm, we
do not consider pruning techniques here.

In [GN08b] Gama and Nguyen compare the NTL implementation [Sho] of
floating point LLL, the deep insertion variant of LLL and the BKZ algorithm. It
is the first comprehensive comparison of lattice basis reduction algorithms and
helps understanding their practical behavior.

In [Vil92,HT93,RV92]the authors present parallel versions for n and n2 pro-
cessors, where n is the lattice dimension. In [Jou93] the parallel LLL of Villard
[Vil92] is combined with the floating point ideas of [SE91]. In [Wet98] the au-
thors present a blockwise generalization of Villards algorithm. Backes and Wetzel
worked out a parallel variant of the LLL algorithm for multi-core CPU architec-
tures [BW09]. All previous parallel algorithms handle the LLL algorithm. For
the parallelization of lattice reduction on GPU the authors are not aware of any
previous work.

Applications. Lattice reduction has applications in cryptography as well as in
cryptanalysis. The foundation of some cryptographic primitives is based on the
hardness of lattice problems. Lattice reduction helps determining the practical
hardness of those problems and is a basis for real world application of those
hash functions, signatures, and encryption schemes. Well known examples are the
SWIFFT hash functions of Lyubashevsky et al. [LMPR08], the signature scheme
of Gentry, Peikert and Vaikuntanathan [GPV08], or the encryption schemes of
[AD97,Pei09,SSTX09]. The NTRU [HPS98,otCC09] and GGH [GGH97] schemes
do not provide a security proof, but the best attacks are also lattice based ones.

There are also attacks on RSA and similar systems, using lattice reduction
to find small roots of polynomials [CNS99,DN00]. Low density knapsack cryp-
tosystems were successfully attacked with lattice reduction [LO85]. Other appli-
cations of lattice basis reduction are factoring numbers and computing discrete
logarithms using diophantine approximations [Sch91]. In Operations Research,
or generally speaking, discrete optimization, lattice reduction can be used to
solve linear integer programs [Len83].

2.2 Programming Graphics Cards

A Graphical Processing Units (GPUs) is a piece of hardware that is specifically
designed to perform a massive number of specific graphical operations in parallel.
The introduction of platforms like CUDA by NVIDIA [Nvi07a] or CTM by
ATI [AMD06] that make it easier to run custom programs instead of limited
graphical operations on a GPU, has been the major breakthrough for the GPU
as a general computing platform. The introduction of integer and bit arithmetic
also broadened the scope to cryptographic applications.

Applications. Many general mathematical packages are available for GPU, like
the BLAS library [NVI07b] that supports basic linear algebra operations.
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An obvious application in the area of cryptography is brute force searching
using multiple parallel threads on the GPU. There are also implementations
of AES [CIKL05] [Man07] [HW07] and RSA [MPS07] [SG08], [Fle07] available.
These implementations can also be used (partially) in cryptanalysis. In 2008,
Bernstein et al. use parallelization techniques on graphic cards to solve integer
factorization using elliptic curves [BCC+09]. Using NVIDIA’s CUDA paralleliza-
tion framework, they gained a speed-up of up to 6 compared to computation on a
four core CPU. However, to date, no applications based on lattices are available
for GPU.

Programming Model. For the work in this paper the CUDA platform will be
used. The GPUs from the Tesla range, which support CUDA, are composed
of several multiprocessors, each containing a small number of scalar processors.
For the programmer this underlying hardware model is hidden by the concept of
SIMT-programming: Single Instruction, Multiple Thread. The basic idea is that
the code for a single thread is written, which is then uploaded to the device and
executed in parallel by multiple threads.

The threads are organized in multidimensional arrays, called blocks. All
blocks are again put in a multidimensional array, called the grid. When exe-
cuting a program (a grid), threads are scheduled in groups of 32 threads, called
warps. Within a warp threads should not diverge, as otherwise the execution of
the warp is serialized.

Memory Model. The Tesla GPUs provide multiple levels of memory: registers,
shared memory, global memory, texture and constant memory. Registers and
shared memory are on chip and close to the multiprocessor and can be accessed
with low latency. The number of registers and shared memory is limited, since
the number available for one multiprocessor must be shared among all threads
in a single block.

Global memory is off-chip and is not cached. As such, access to global mem-
ory can slow down the computations drastically, so several strategies for speeding
up memory access should be considered (besides the general strategy of avoid-
ing global memory access). By coalescing memory access, e.g. loading the same
memory address or a consecutive block of memory from multiple threads, the
delay is reduced, since a coalesced memory access has the same cost as a sin-
gle random memory access. By launching a large number of blocks the latency
introduced by memory loading can also be hidden, since other blocks can be
scheduled in the meantime.

The constant and texture memory are cached and can be used for specific
types of data or special access patterns.

Instruction Set. Modern GPUs provide the full range of (32 and) 64 bit floating
point, integer and bit operations. Addition and multiplication are fast, other
operations can, depending on the type, be much slower. There is no point in
using other than 32 or 64 bit numbers, since smaller types are always cast to
larger types. Most GPUs have a specialized FMAD instruction, which performs
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a floating point multiplication followed by an addition at the cost of only a single
operation. This instruction can be used during the BKZ enumeration.

One problem that occurs on GPU’s is the fact that today GPU’s are not
able to deal with higher precision than 64 bit floating point numbers. For lattice
reduction, sometimes higher bit sizes are required to guarantee the correct ter-
mination of the algorithms. For an n-dimensional lattice, using the floating point
LLL algorithm of [LLL82], one requires a precision of O(n logB) bits, where B
is an upper bound for the length of the d-dimensional vectors [NS05]. For the
L2 algorithm of [NS05], the required bit size is O(n log2 3), which is independent
of the entry size. For more details on the floating point LLL analysis see [NS05]
and [NS06].

In [PS08] the authors state that for enumeration algorithms double precision
is suitable up to dimension 90, which is beyond the dimensions that are prac-
tical today. Therefore enumeration should be possible on actual graphics cards,
whereas the implementation of LLL-like algorithms will be more complicated
and require some multi-precision framework.

3 Parallel Enumeration on GPU

In this section we present our parallel algorithm for shortest vector enumeration
in lattices. In Subsection 3.1 we briefly explain the ENUM algorithm of Schnorr
and Euchner [SE91], which was used as a basis for our algorithm. Next, we
present the basic idea for multi-thread enumeration in Subsection 3.2. Finally,
in Subsection 3.3, we explain our parallel algorithm in detail.

The ENUM algorithm of Schnorr-Euchner is an improvement of the algo-
rithms from [Kan83] and [FP83]. The ENUM algorithm is the fastest one today
and also the one used in the NTL [Sho] and fpLLL [CPS] library. Therefore we
have chosen this algorithm as basis for our parallel algorithm.

3.1 Original ENUM Algorithm

The ENUM algorithm enumerates over all linear combinations [x1, . . . , xn] ∈ Zn
that generate a vector v =

∑n
i=1 xibi. Those linear combinations are organized

in a tree structure. Leafs of the tree contain full linear combinations, whereas
inner nodes contain partly filled vectors. The search for the tree leaf that deter-
mines the shortest lattice vector is performed in a depth first search order. The
most important part of the enumeration is cutting off parts of the tree, i.e. the
strategy which subtrees are explored and which ones cannot lead to a shorter
vector.

Let i be the current level in the tree, i = 1 being at the bottom and i = n
at the top of the tree (c.f. Figure 1). Each step in the enumeration algorithm
consists of computing an intermediate squared norm li, moving one level up or
down the tree (to level i′ ∈ {i − 1, i + 1}) and determining a new value for the
coordinate xi′ .
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Let ri = ‖b∗i ‖
2. We define li = li+1 + y2

i ri with yi = xi − ci and ci =
−

∑n
j=i+1 µj,ixj . So, for a certain choice of coordinates xi . . . xn it holds that lk ≥

li (with k < i) for all coordinate vectors x that end with the same coordinates
xi . . . xn. This implies that the intermediate norm li can be used to cut off
infeasible subtrees. If li > A, with A the squared norm of the shortest vector
that has been found so far, the algorithm will increase i and move up inside the
tree. Otherwise, the algorithm will lower i and move down in the tree. Usually,
as initial bound A for the length of the shortest vector, one uses the norm of the
first basis vector.

The next value for xi′ is selected in an interval of length
√

A−li′+1
ri′

centered
at ci′ . The interval is enumerated according to the zig-zag pattern described
in [SE91]. Starting from a central value bci′e, ENUM will generate a sequence
bci′e + 1, bci′e − 1, bci′e + 2, bci′e − 2, . . . for the coordinate xi′ . To be able to
generate such a pattern, helper vectors ∆x ∈ Zn are used. We do not require
to store ∆2x, as the computation of the zigzag pattern is done in a slightly
different way as in the original algorithm. For a more detailed description we
refer to [PS08].

3.2 Multi-Thread Enumeration

Roughly speaking, the parallel enumeration works as follows. The search tree of
combinations that is explored in the enumeration algorithm can be split at a high
level, distributing subtrees among several threads. Each thread then runs an enu-
meration algorithm, keeping the first coefficients fixed. These fixed coefficients
are called start vectors. The subtree enumerations can run independently, which
limits communication between threads. The top level enumeration is performed
on CPU and outputs start vectors for the GPU threads.

When the number of postponed subtrees is higher than the number of threads
that we can start in parallel, then we copy the start vectors to the GPU and
let it enumerate the subtrees. After all threads have finished enumerating their
subtrees we proceed in the same manner: caching start vectors on CPU and start-
ing a batch of subtree enumerations on GPU. Figure 1 illustrates this approach.
The variable α defines the region where the initial enumeration is performed.
The subtrees where GPU threads work are also depicted in Figure 1.

If a GPU subtree enumeration finds a new optimal vector, it writes back the
coordinates x and the squared norm A of this vector to the main memory. The
other GPU threads will directly receive the new value for A, which will allow
them to cut away more parts of the subtree.

Early Termination The computation power of the GPU is used best when as
many threads as possible are working at the same time. Recall that the GPU
uses warps as the basic execution units: all threads in a warp are running the
same instructions (or some of the threads in the warp are stalled in the case of
branching).

In general, more starting vectors than there are GPU threads are uploaded
in each run of the GPU kernel. This allows us to do some load balancing on the
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Fig. 1. Illustration of the algorithm flow. The top part is enumerated on CPU, the
lower subtrees are explored in parallel on GPU. The tiny numbers illustrate which
subtrees are enumerated in the same iteration.

GPU, to make sure all threads are busy. To avoid the GPU being stalled by a few
long running subtree enumerations, the GPU stops when just a few subtrees are
left. We call this process, by which the GPU stops some subtrees even though
they are not finished, early termination.

At the end of Section 3.3 details are included on the exact way early termi-
nation and our load balancing algorithm works. For now it suffices to know that,
because of early termination, some of the subtree enumerations are not finished
after a single launch of the GPU kernel. This is the main reason why the en-
tire algorithm is iterated several times. At each iteration the GPU launches a
mix of enumerations: new subtrees (start vectors) from the top enumeration and
subtrees that were not finished in one of the previous GPU launches.

3.3 The Iterated Parallel ENUM Algorithm

Algorithm 1: High-level Iterated Parallel ENUM Algorithm
Input: bi, A, α, n

Compute the Gram-Schmidt orthogonalization of bi1

while true do2

S = {(xk,∆xk, Lk = α, sk = 0)}k ← Top enum: generate at most3

numstartpoints−#T vectors
R = {(x̄k,∆xk, Lk, sk)}k ← GPU enumeration, starting from S ∪ T4

T ← {Rk : subtree k was not finished}5

if #T < cputhreshold then6

Enumerate the starting points in T on the CPU.7

Stop8

end9

end10

Output: (x1, . . . , xn) with
‚‚Pn

i=1 xibi
‚‚ = λ1(L)
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Algorithm 1 shows the high-level layout of the GPU enumeration algorithm.
Details concerning the updating of the bound A, as well as the write-back of
newly discovered optimal vectors have been omitted. The actual enumeration is
also not shown: it is part of several subroutines which are called from the main
algorithm.

The whole process of launching a grid of GPU threads is iterated several
times (line 2), until the whole search tree has been enumerated either on GPU
or CPU.

In line 3, the top of the search tree is enumerated, to generate a set S of
starting vectors xk for which enumeration should be started at level α. More
detailed, the top enumeration in the region between α and n outputs distinct
vectors

xk = [0, . . . , 0, xk,α, . . . , xk,n] for k = 1 . . .numstartpoints−#T .

The top enumeration will stop automatically if a sufficient number of vectors
from the top of the tree have been enumerated. The rest of the top of the tree
is enumerated in the following iterations of the algorithm.

Line 4 performs the actual GPU enumeration. In each iteration, a set of
starting vectors and starting levels {xk, Lk} is uploaded to the GPU. These
starting vectors can be either vectors generated by the top enumeration in the
region between α and n (in which case Lk = α) or the vectors (and levels)
written back by the GPU because of early termination, so that the enumeration
will continue. In total numstartpoints vectors (a mix of new and old vectors)
are uploaded at each iteration. For each starting vector xk (with associated
starting level Lk) the GPU outputs a vector

x̄k = [x̄k,1, . . . , x̄k,α−1, xk,α, . . . , xk,n] for k = 1 . . .numstartpoints

(which describes the current position in the search tree), the current level Lk,
the number of enumeration steps sk performed and also part of the internal
state of the enumeration. This state {x̄k,∆xk, Lk} can be used to continue the
enumeration later on. The vectors ∆xk are used in the enumeration to generate
the zig-zag pattern and are part of the internal state of the enumeration [SE91].
This state is added to the output to be able to efficiently restart the enumeration
at the point it was terminated.

Line 5 will select the resulting vectors from the GPU enumeration that were
terminated early. These will be added to the set T of leftover vectors, which
will be relaunched in the next iteration of the algorithm. If the set of leftover
vectors is too small to get an efficient GPU enumeration, the CPU takes over and
finishes off the last part of the enumeration. This final part only takes limited
time.

GPU Threads and load balancing. In Section 3.2 the need for a load balanc-
ing algorithm was introduced: all threads should remain active and to ensure
this, each thread in the same warp should run the same instruction. One of the
problems in achieving this, is the length difference of each subtree enumeration.
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Some very long subtree enumeration can cause all the other threads in the warp
to become idle after they finish their subtree enumeration.

Therefore the number of enumeration steps that each thread can perform
on a subtree is limited by M. When M is exceeded, a subtree enumeration is
forced to stop. After this, all threads in the same warp will reinitialise: they
will either continue the previous subtree enumeration (that was terminated by
reaching M) or they will pick a new starting vector of the list T delivered by
the top enumeration on CPU. Then the enumeration starts again, limited to M
enumeration steps.

In our experiments, numstartpoints was around 20-30 times higher than
numthreads, which means that on average every GPU thread enumerated 20-
30 subtrees in each iteration. M was chosen to be around 50-200.

4 Experimental Results

In this section we present some results of the CUDA implementation of our
algorithm. For comparison we used the highly optimized ENUM algorithm of
the fpLLL library in version 3.0.11 from [CPS]. Timings of the NTL version of
ENUM for lattices with input can be found in [GN08b]. The bit size of the lattice
bases used in [GN08b] is higher than what we used, therefore a comparison with
those timings is to be drawn carefully.

The CUDA program was compiled using nvcc, for the CPU programs we
used g++ with compiler flag -O2. The tests were run on a Intel Core2 Extreme
CPU X9650 (using one single core) running at 3 GHz, and an NVIDIA GTX
280 graphics card. We run up to 100000 threads in parallel on the GPU.

Our input lattices are LLL reduced with δ = 0.99. We chose random lattices
following the construction principle of [GM03] with bit size of the entries of 10·n.
This type of lattices was also used in [GN08b] and [NS06]. We start with the
basis in Hermite normal form.

Both algorithms, the enum of fpLLL (run with parameter -a svp) and our
CUDA version, always output the same coefficient vectors and therefore a lattice
vector with shortest possible length. We compare now the throughput of GPU
and CPU concerning enumerations steps. Section 3.1 gives the explanation what
is computed in each enumeration step. On the GPU, up to 200 million enumera-
tion steps per second can be computed, while similar experiments on CPU only
yielded 25 million steps per second. We choose α = n− 11 for our experiments,
this shapes up to be a good choice in practice. Table 1 and Figure 2 illustrate
the experimental results. The figure shows the runtimes of both algorithms when
applied to five different lattices of each dimension. One can notice that in di-
mension above 44, our CUDA implementation always outperforms the fpLLL
implementation.

Table 1 shows the average value over all five lattices in each dimension. Again
one notices that in dimension 45, the GPU algorithm needs quite the same
amount of time. It demonstrates its strength in dimensions above 44, where the
time goes down to 22% in dimensions 54 and 56 and down to 21% in dimension
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Fig. 2. Timings for enumeration. The graph shows the time needed for enumerating
five different random lattices in each dimension n. It compares the ENUM algorithm
of the fpLLL-library with our parallel CUDA version.

n 40 42 44 46 48 50 52 54 56

fpLLL - ENUM 0.96s 2.41s 17.7s 22.0s 136s 273s 2434s 6821s 137489s
CUDA - ENUM 2.75s 4.29s 11.7s 11.4s 37.0s 63.5s 520s 1504s 30752s

286% 178% 66% 52% 27% 23% 21% 22% 22%

Table 1. Average time needed for enumeration of lattices in each dimension n. The
table presents the percentage of time that the GPU version takes compared to the
fpLLL version.

52. Therefore we state that the GPU algorithm gains big speedups in dimensions
higher than 45, which are the interesting ones in practice.

It is hard to give an estimate of the achieved speedup compared to the number
of threads used: since GPUs have hardware-based scheduling, it’s not possible
to know the number of active threads exactly. Other properties, like memory
access and divergent warps, have a much greater influence on the performance
and can’t be measured in thread counts or similar figures.

To compare CPUs and GPUs, we can have a look at the cost of both plat-
forms in dollardays. We assume a price of 600 Dollar for a CPU machine and
a price of 700 Dollar for a computer equipped with a NVIDIA GPU suitable
for our computations. For an instance of enumeration that runs time t on CPU,
this corresponds to an amount of 600 · t dollardays for the CPU version and,
considering a speedup of 5, the cost using GPU is 140 · t dollardays. This shows
that even in this model of expense, the GPU implementation gains an advantage
of more than 4.

5 Conclusion and Further Work.

Further improvements are possible using multiple CPU cores. Our implementa-
tion only uses one CPU core for the top enumeration and the rest of the outer

12



loop of the enumeration. During the subtree enumerations on the GPU, the main
part of the algorithm, the CPU is not used. When the GPU starts a batch of
subtree enumerations it would be possible to start threads on the CPU cores as
well. We expect a speedup of two compared to our actual implementation using
this idea.

It is possible to start enumeration using a shorter starting value than the first
basis vectors norm. The Gaussian heuristic can be used to predict the norm of the
shortest basis vector λ1. This can lead to enormous speedups in the algorithm.
We did not include this improvement into our algorithm so far to get comparable
results to fpLLL.
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est lattice vector algorithm. In Advances in Cryptology — Crypto 2007,
volume 4622 of LNCS, pages 170–186. Springer-Verlag, 2007.

[HT93] Christian Heckler and Lothar Thiele. A parallel lattice basis reduction for
mesh-connected processor arrays and parallel complexity. In IEEE Sympo-
sium on Parallel and Distributed Processing — SPDP, pages 400–407. IEEE
Computer Society Press, 1993.

[HT98] Christian Heckler and Lothar Thiele. Complexity analysis of a parallel
lattice basis reduction algorithm. SIAM J. Comput., 27(5):1295–1302, 1998.

[HW07] Owen Harrison and John Waldron. AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units. In Cryptographic Hard-
ware and Embedded Systems — CHES 2007, volume 4727 of LNCS, pages
209–226. Springer-Verlag, 2007.

14



[Jou93] Antoine Joux. A fast parallel lattice reduction algorithm. In Proceedings of
the Second Gauss Symposium, pages 1–15, 1993.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In Proceedings of the Annual Symposium on the Theory
of Computing — STOC 1983, pages 193–206. ACM Press, 1983.

[Koy04] Henrik Koy. Primale-duale Segment-Reduktion.
http://www.mi.informatik.uni-frankfurt.de/research/papers.html, 2004.

[Len83] Hendrik W. Lenstra. Integer programming with a fixed number of variables.
Math. Oper. Res., 8:538–548, 1983.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials
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