
Efficient Client Puzzles based on Repeated-Squaring

Ghassan O. Karame
ETH Zürich, Switzerland

karameg@inf.ethz.ch

Srdjan Čapkun
ETH Zürich, Switzerland

capkuns@inf.ethz.ch

Abstract—In this paper, we propose a new, non-
parallelizable verification-efficient client puzzle. Our
puzzle is based on repeated-squaring and enables ef-
ficient verification of the puzzle solution that is re-
ported by the client (prover). Client puzzles based on
repeated-squaring were first proposed by Rivest et al.
in [1] and constitute one of the first examples of non-
parallelizable puzzles. The main drawback of these puz-
zles was their high verification overhead. In this work,
we show how this overhead can be significantly reduced
by transferring the puzzle verification burden to the
prover that executes the puzzle. Given a 1024-bit mod-
ulus, the improvement gain in the verification overhead
of our puzzle when compared to the original repeated-
squaring puzzle is almost 50 times. We achieve this by
embedding a secret – only known to the verifier – within
the Euler trapdoor function that is used in repeated-
squaring puzzles. We provide a security proof for this
construction. We further show how our puzzle can be
integrated in a number of protocols, including those
used for efficient protection against DoS attacks and for
the remote verification of the computing performance
of devices. We validate the performance of our puzzle
on a large number of PlanetLab nodes.

I. Introduction

In this work, we address the problem of the efficient
verification of computational client-puzzles that are based
on repeated squaring. Client puzzles found their applica-
tion in a number of domains, but their main applications
concern their use for the protection against Denial-of-
Service (DoS) attacks [2], [1], [3] and for the verification
of the computing performance [4], [5]. In the context
of DoS attacks, client puzzles are used by servers that
require their clients to solve a computational puzzle before
attending to a request. In the context of the verification of
computing performance, puzzles are used as “uncheatable”
benchmarks that verify the processing performance of a
device or of a set of devices to prevent false performance
claims; reports of false claims of processor benchmarks
have been recently reported [6], [7], [8].

A number of computational (CPU-bound) puzzles have
been proposed [3] but these proposals are either ef-
ficient and parallelizable [2], [9] or non-parallelizable
and inefficient (typically in result verification) [1]. Puz-
zles have equally been proposed as “uncheatable” bench-
marks [4], [5]; these benchmarks are, however, paralleliz-
able. Furthermore, existing computational puzzles are of-
ten considered impractical because the time it takes to

solve them can vary across computing platforms [10].
To be useful in practice, client puzzles have to satisfy

several criteria: namely, they need to be secure, inex-
pensive to construct and verify, and in many applica-
tions should be non-parallelizable. Non-parallelizability of
puzzles is an especially important property since clients
can involve other processors at their disposal to inflate
their problem-solving performance claim. This property
is equally important in scenarios where a verifier (server)
needs to verify the performance of a single processor and
in protocols for DoS protection since it can significantly
reduce the effectiveness of distributed DoS attacks. Fur-
thermore, the verifier has to ensure the fairness of the
entire process given the large disparity in the resources
of its clients; all clients – even those running on modest
machines – should spend comparable time and resources in
solving the puzzle. These challenges hinder the large-scale
deployment of computational puzzles in today’s online
applications.

In this paper, we consider this problem and we propose
an efficient, yet non-parallelizable, computational puzzle
that significantly improves the performance of existing
CPU-bound puzzles. Our puzzle is based on repeated-
squaring and uses the puzzle proposed in [1] as its basic
building block, but “outsources”most of verification of the
puzzle’s solution to the prover; this is achieved without
compromising the application goals (e.g., DoS resilience,
computing performance verification) by embedding a se-
cret – only known to the verifier – within the trapdoor
exhibited by the Euler function in modular squaring. We
provide a security proof for this construction. To verify
the client’s solution, the verifier only needs to execute a
marginal number of modular multiplications (O(log(v)),
where v is a typically small integer, e.g., a 20-bit integer).
For example, for a 1024-bit modulus N , the improvement
gain in the verification of our puzzle when compared to
the original repeated-squaring puzzle [1] is log(N)

log(v) ≃ 50
times. In the context of DoS protection and other real-
time applications, this improvement is considerable; given
our puzzle, an online server can verify the solution of
50 different squaring puzzles (or queries) using the same
resources/time that it would originally take the server to
verify the solution of a single execution of the original
repeated-squaring puzzle. We validate the performance
of our puzzle through experiments on a large number of
PlanetLab nodes [11].

Besides proposing a new client puzzle, in this work, we
make the following additional contributions. In relation to
the proposed puzzle, we show how it can be integrated in
protocols used for the DoS protection and for the remote
verification of computing performance. We further show
how puzzle-based secure verification of device computing
performance can be used to enhance fairness in puzzle-
based protection from DoS attacks; this scheme can be
used with all non-parallelizable puzzles. Owing to its
efficiency, our puzzle is equally well suited for scenarios in
which low-end devices (e.g., PDAs or sensor nodes) verify
the computational performance of high-end processors.

The rest of the paper is organized as follows. In Sec-
tion II, we overview the related work. In Section III, we
introduce our protocol and we analyze its resilience to a
multitude of security threats. Section IV outlines some
applications that can benefit from our proposed scheme.
In Section V, we discuss further insights related to our
proposals and we conclude the paper in Section VI.

II. Related Work

In what follows, we briefly overview related work in the
area.

Client Puzzles: Client puzzles found their application in
several application domains (e.g., prevention against DoS
attacks [12], [13], protection from connection depletion at-
tacks [14], etc.). Several computational puzzles have been
proposed in the recent years [2], [1], [3]. A comprehensive
survey of existing client puzzles can be found in [3]. In [1],
Rivest et al. proposed a non-parallelizable puzzle based
on repeated squaring to enable time-release cryptography.
The drawback of this scheme, if used for DoS protec-
tion, is that it requires expensive computations in the
puzzle verification stage, which renders it less efficient
in countering DoS attacks. Another approach to building
computational puzzles is HashCash [15], originally pro-
posed as a countermeasure to email spam. However, in
HashCash, an attacker can pre-compute all the solution
tokens and temporarily overload the system [16]. Dean et
al. show in [17] the applicability of CPU bound puzzles
in protecting SSL against denial of service attacks. Wang
et al. propose in [13] a scheme that enables the server to
adjust the puzzle difficulty in the presence of an adversary
whose computing power is unknown. Our puzzle, on the
other hand, allows the server to evaluate the computing
performance of its clients in order to adjust the puzzle
difficulty accordingly (Section IV-B).

Memory-bound puzzles were proposed in [18], [16] to
overcome the limitations of existing computational (CPU-
bound) puzzles. These puzzles leverage on the low dispar-
ity in memory access times and therefore converge faster
than the corresponding computational puzzles. However,
memory-bound puzzles cannot entirely substitute their
CPU-bound counterpart e.g., in applications where the

client’s memory is limited (e.g., PDA devices) or in the
evaluation of the computing performance of devices, etc..

Several other contributions address the problem of se-
cure outsourcing of computations to untrusted servers
(e.g., [19], [20]). In [21], Jakobsson et al. propose a scheme
that enables secure outsourcing of a batch of signatures
to a remote server. Clarke et al. present protocols for
speeding up exponentiation using untrusted servers in [22].
In [23], Hohenberger et al. describe a scheme to outsource
cryptographic computations (i.e., modular exponentia-
tion) where the verifier can use two untrusted exponenti-
ation programs to assist him in the computations. In this
work, we show that efficient outsourcing of exponentiation
programs can be achieved using a single untrusted remote
program.

Uncheatable Benchmarks: The notion of secure and
“uncheatable” benchmarks to evaluate a machine’s com-
putational performance was first introduced in [4] and
[5]. In [4], Cai et al. argue for the need of secure bench-
marks and briefly introduce a secure benchmark based on
repeated-squaring. The authors further propose in [5] a set
of benchmark candidates that are resistant to tampering
by untrusted hosts. Namely, they rely on complexity the-
ory to strengthen FFT, Gaussian Elimination and Matrix
Multiplication-based benchmarks. However, the underly-
ing algorithms that implement FFT, Gaussian Elimination
and Matrix Multiplication can be easily parallelized as
explained in [24], [25], [26], respectively. For instance,
by parallelizing a Gaussian Elimination-based benchmark
(e.g., Linpack [27]), the gain in computational performance
increases almost linearly with the number of processors
used.

Obfuscation of Executable Code: Another solution
to create secure puzzles would be for the verifier to send
an obfuscated executable code [28] whose solution is al-
ready pre-computed. Assuming perfect obfuscation, this
method might in theory prevent an untrusted prover from
disassembling and understanding the code, and therefore
might harden the parallelization and/or the tampering
with the code. However, existing code obfuscation tech-
niques can only result in modest, best-effort efficacy nowa-
days [28], [29]. Furthermore, these techniques come at
the expense of additional complexity and overhead at the
puzzle construction phase.

III. Efficient Repeated-Squaring Puzzle

In this section, we introduce our system and attacker
model and we present our puzzle.

A. System and Attacker Model

We consider the following model. A verifier (typically
equipped with a device that has limited computation
power) requests that a prover solves a computational
puzzle in a certain amount of time.

For that purpose, the verifier requires that the prover
runs a software on its machine (e.g., a CPU-bound puzzle
or a benchmark code) for a specific amount of time. In
some application scenarios, we will need to assume that
the verifier and the prover can exchange authenticated
messages over the communication channel (e.g., by signing
their messages using shared keys). We assume, however,
that the verifier does not have access to the prover’s
machine and thus cannot check the prover’s environment;
this includes the prover’s CPU usage, the number of
processors at the disposal of the prover, the connections
established from the prover’s machine, etc..

An untrusted prover constitutes the core of our attacker
model. We assume that a prover possesses considerable
technical skills by which it can efficiently analyze, decom-
pile and/or modify executable code as necessary. More
specifically, an untrusted prover has knowledge of both
of the algorithm used for the computation and of the
measures used by the verifier to prevent potential tam-
pering with the evaluation process. However, we assume
that untrusted provers are computationally bounded.

We further assume that untrusted provers are motivated
to inflate their puzzle solving performance (i.e., untrusted
provers have incentives to solve the puzzle in a faster time
than what they can genuinely perform) and we do not
address performance deflation attacks. In Section IV, we
show that this is a reasonable assumption in a number of
applications. Untrusted provers might attempt to inflate
their puzzle-solving performance as follows: (i) untrusted
provers might simply not run the puzzle sent by the verifier
and return incorrect results ahead of time, (ii) untrusted
provers might involve other machines at their disposal
to speed up the execution time of the puzzle and (iii)
untrusted provers might try to find a shortcut to compute
the correct solution of the puzzle ahead of time.

B. Efficient Repeated-Squaring Puzzle

Our puzzle is inspired by the pseudo-random generator
proposed by Blum et al. in [30] and its time-lock puzzle
variant proposed by Rivest et al. in [1]. The main intuition
behind [1] is that the prover is required to compute the
outcome of a repeated-squaring operation, Xat

mod N ,
given a generator X, a base exponent a, a large integer
t and an appropriate modulus N . It is known that this
computation can be verified through the shortcut offered
by Euler’s function:

Xat

mod N = Xat mod φ(N) mod N

However, this verification requires O(log(N)) modular
multiplications – which might be expensive for a verifier
with a modest computational capability [3] or for the
one serving a large number of clients. In what follows,
we describe our puzzle, which makes this verification
significantly more efficient; in our puzzle, the verification
of the puzzle’s solution only requires O(log(v)) modular

multiplications, where v is typically a small e.g., 20-bit
integer.

Our puzzle and the related protocol are shown on
Figure 1. Our puzzle is composed of three phases: a pre-
computation phase, performed only once by the verifier,
a puzzle construction phase and a solution verification
phase.

Prior to starting our protocol, we assume that the
verifier pre-computes N = p · q and φ(N) = (p− 1)(q− 1).
The verifier equally picks a generator X, a large integer
M and calculates m ≡ XM mod φ(N) mod N . M acts as a
secret that is only known to the verifier; we show later that
by leveraging on the secrecy of M , the secure verification
of repeated-squaring can be efficiently achieved. The pre-
computation of m is performed only once and requires
O(log(N)) modular multiplications.

The verifier picks two integers a, v and a large exponent
t (typically t > 1, 000, 000). We point that v is a small
integer (e.g., a 20-bit integer); within

√
2L (L refers to the

size of v in bits) different consecutive puzzles, the values
of v must be distinct (see Section III-D). The verifier then
asks the prover to compute Y1 ≡ Xat

mod N . We show
later that any choice of a does not deteriorate the security
of our scheme. Note that by requiring that the prover per-
forms repeated-squaring, the time required to generate the
optimal multiplication sequence using addition-chains [31]
is significantly reduced since the optimal sequence can be
directly obtained from the base exponent a (i.e., if a = 2
the optimal multiplication sequence is always 2, 4, 8, 16,
etc. in this case).

The verifier also computes k ≡ (at + v · M) mod φ(N).
Once the prover finishes computing Y1, it is requested to
compute Y2 ≡ Xk mod N and report the result back to
the verifier. It is known that:

Xk mod N = X(at+v·M) mod N = (Y1 · mv) mod N

As we show later, this property will be useful in effi-
ciently verifying the result of our proposed puzzle. The
verifier then compares Y2 to (Y1 · mv) mod N . If this
verification passes, the verifier accepts the puzzle solution
reported by the prover.

To ensure the security of our scheme, the value of v ·M
should be different for all the puzzles that are generated
using one set of values (e.g., a, t, N , M , for the reasoning
why, see Section III-D). This is achieved as follows; the
puzzles are generated in sets, where each set G contains
(2L − 2) distinct puzzles, where L is the size of v in
bits. For each set, a new M is chosen (we explain how
below) and is used for all the puzzles within a set, i.e.,
Mgi = Mgj ,∀i, j ∈ [1, 2L − 1], ∀g, where g is the index of
the puzzle set and i, j are puzzle indexes within this set.
For each puzzle set with index g, vg1 , ..., vg

2L
−1 are chosen

randomly such that vgi 6= vgj ,∀i, j ∈ [1, 2L − 1], i 6= j;
note that vgi ∈ [1, 2L − 1], meaning that vg1 , ..., vg

2L is a

Verifier Prover

Pre-computation Phase:

Pick a generator X and a large integer M
Given p, q, pre-compute φ(N) = (p− 1)(q − 1)

Pre-compute m ≡ XM mod φ(N) mod N
Start of Evaluation Phase

Pick a large integer t

Pick a small unique integer∗ v ∈ [1, 2L − 1]
mA ← {X‖t‖N}

Compute k ≡ (at + v ·M) mod φ(N)
mB ← {X‖k‖N}

mA‖mB
//

Compute Y1 ≡ Xat
mod N

Compute Y2 ≡ Xk mod N

Y1‖Y2
oo

Verify that Y2 = (Y1 ·mv) mod N

If the verification passes, the verifier accepts the puzzle solution.

End of Evaluation Phase

After a maximum of
√

2L different queries:
vmax ← 2L, where L is the size of v in bits,

M ← vmax ·M
m← mvmax mod N

Fig. 1. Verification-Efficient Puzzle based on Repeated-Squaring. ∗ v is chosen according to the procedure described in Section III-B.

random permutation of the set [1, 2L − 1]. Given this, in
each set g, vgiMgi 6= vgj Mgj if i 6= j.

To keep the values of v · M distinct between different
puzzle sets, M needs to be periodically refreshed for each
set such that vgiMgi 6= vlj M lj ,∀i, j, g, l, i 6= j, g 6= l. For
this, we propose that for each subsequent puzzle set that it
generates, the verifier chooses an M which is strictly larger
than the largest vgiMgi used so far i.e., Mg+1 > 2LMg,
where 2L − 1 is the largest v that can be used. For all
practical purposes, we can set Mg+1 = 2LMg. Given that
Mg is random to the attacker, so will be Mg+1.

The aforementioned process is summarized in Figure 2;
the same refreshed value of M will be used by the
verifier for a maximum of

√
2L different puzzles (refer

to Section III-D for further details). In the sequel, this
is denoted by the refresh cycle of M . Note that this
entire process incurs a negligible O(log(v)) (∼ 20 modular
multiplications) modular multiplications1 on the verifier.

C. Puzzle Construction and Verification Cost

As shown in Figure 1, our proposed puzzle pushes
the verification cost incurred in the standard repeated-
squaring puzzle [1] to the prover.

We do acknowledge that prime number generation (i.e.,
computing N) and the pre-computation of m might be
computationally expensive for the verifier; however, as
mentioned earlier, the verifier re-uses these values in
several protocol executions (in typical cases, the verifier

1Recall that this equally corresponds to the cost of the verification
of our puzzle.

Fig. 2. Periodic Refreshing of the secret M . Here, vmax denotes the
maximum value of v. That is, vmax = 2L, where L is the size of v in
bits.

pre-computes2 these values only once). Note that the
computational load incurred by prime number generation
equally applies to all protocols that make use of modular
exponentiation or repeated-squaring (e.g., [1], [2]).

Our solution, however, enables the verifier to perform
several rounds of our protocol “on the fly”; indeed, the
verifier only needs to perform one modulus operation and
one multiplication (to compute k) to construct the puzzle.
Furthermore, the verifier verifies the puzzle solution in a
marginal (O(log(v))) number of modular multiplications
(comparing Y1 and Y2). Given that we use modest values of
v (typically 20-bit numbers) in our scheme, the puzzle ver-
ification cost can be as low as 20 modular multiplications;
this considerably improves the puzzle verification load
compared to the standard repeated-squaring puzzle [1]: the

2Alternatively, the verifier can be preloaded with the aforemen-
tioned values.

Verifier Cost Prover Cost Parallelizable
Construction Verification

DH-Based [2] O(t) mod. mul. 1 comparison O(t) mod. mul. Yes
Trapdoor RSA [9] O(t) mod. mul. 1 comparison O(t) mod. mul. Yes

Gaussian Elimination [5] O(n) O(n) mul. O(n2) mul. Yes
FFT Benchmark [5] O(n) O(n) mul. O(n2) mul. Yes

Repeated-Squaring [1]
1 modulus

O(log(N)) mod. mul. O(t) mod. mul. No
1 mul.

Our Scheme
1 modulus O(log(v)) O(t) + O(log(N))

No
1 mul. mod. mul. (∗) mod. mul.

TABLE I
Comparison of Construction and Verification Costs of Computational Puzzles. “Mod. Mul.” denotes modular multiplication

and “Mul.” refers to multiplication. (∗) Note that v ≪ N ; given a 20-bit v, the verification cost of our puzzle can be as
low as 20 mod. mul. when compared to a verification cost of 1024 mod. mul. in the original puzzle in [1].

improvement gain is O(log(N)
log(v)) (e.g., for a 1024-bit N , the

average verification cost in the original scheme is approx-
imately 1.5 · log(N) = 1536 modular multiplications and
the expected improvement gain is almost 51 times).

Note that the verification overhead in our puzzle re-
mains constant even if the security parameters increase
over time (e.g., increasing N to 10,000 bits in the future
to prevent an attacker from factoring it into p and q).
Furthermore, although the verifier periodically refreshes
its secret M every

√
2L consecutive puzzles (L ≃ 20), this

only incurs a negligible overhead on the verifier, which
corresponds to the verification cost of a single puzzle in
our scheme (i.e., O(log(v)) modular multiplications). The
refreshing overhead of M also remains constant although
the size of M increases after each refresh cycle (in refresh
cycle j, |M j+1| = L + |M j |); to refresh M in our puzzle,

the verifier computes mj
2L

mod N (Figure 1), which is
independent of |M j |.

On the other hand, the prover is required to per-
form O(t) modular multiplications to compute Y1 and
O(log(N)) modular multiplications to calculate Y2. Table I
compares the puzzle construction and verification costs of
our scheme with existing benchmarks and computational
client puzzles. Although most of these benchmarks and
puzzles can be parallelized, and thus are not recommended
to be used in practice, we only include them in our analysis
for purposes of comparison.

In what follows, we show that, in spite of its low
verification cost, our protocol does not give an advantage
to untrusted provers in inflating their puzzle-solving per-
formance claims.

D. Security Analysis

The security of our scheme relies on the fact that it is
very hard to obtain v ·M from k and therefore to compute
XMv

mod N . This prevents an untrusted malicious prover
from tricking the verifier into accepting an incorrect puzzle
solution – computed without knowledge of Y1 and Y2.

Main Intuition: Given that the factorization of large
integers into its prime divisors is very hard, we can argue

intuitively that our proposed scheme is secure as follows:
M is a secret only known to the verifier, v is picked at
random by the verifier and therefore v · M cannot be
guessed by the prover. Furthermore, by refreshing the
value of the secret M every

√
2L consecutive puzzles, v ·M

always remain distinct and unpredictable across different
puzzles. Finally, the construction v · M ensures that the
solution space of the ratio Y2

Y1

is large (comparable to
the magnitude of N and therefore cannot be predicted
by an untrusted prover) while enabling a small puzzle
verification cost of O(log(v)) modular multiplications.

Since φ(N) is unknown to the provers, k ≡ (at + v ·M)
mod φ(N) further hides the value of v · M . Similar ap-
proaches are equally used in Zero-Knowledge Proofs [32]
(ZKP) to hide secrets [33]. Moreover, although the un-
trusted prover can compute Y2

Y1

= XMv

mod N , it cannot
acquire v · M since this discrete logarithm problem is
known to be computationally infeasible for large N and
M . Given this, we can argue that our protocol does not
leak any information that might allow an untrusted prover
to factorize φ(N). One important caveat is that the values
of v · M must be distinct for each puzzle to ensure the
security of our scheme; if v · M is not uniquely chosen,
an untrusted prover can obtain, after O(2L) queries, two
different puzzle solutions that were constructed using the
same value of v. By performing this attack twice, the
attacker can obtain two collisions for the same value
of v and subtract the values of k from the number of
squarings it performed to get two different multiples of
φ(N). By taking their Greatest Common Divisor (GCD),
the attacker might be able to acquire φ(N). We remedy
this attack by choosing distinct v and refreshing the secret
M , every

√
2L consecutive puzzles.

This aforementioned intuition is developed into a proof
below. The proof mainly shows that the security of our
proposal is based, to a large extent, on the security of the
key generation algorithm of RSA. We show later in this
section that the security of our puzzle is equally based on
the security of the original time-lock puzzle proposed by
Rivest et al. in [1].

Theorem 1: If it is computationally infeasible for an
attacker to break the key generation problem in RSA, then
the probability that an untrusted prover finds a shortcut
to solve our puzzle is satisfactorily negligible.

Proof: Let Π denote the puzzle construction in Fig-
ure 1. We show that if there exists a polynomial-time
adversary A that can find a shortcut to solve Π (i.e., solve
the puzzle without computing Y1 and/or Y2), then there
exists a polynomial-time algorithm that can find a shortcut
to break the key generation problem in RSA; that is, the
attacker would then be able to acquire the private key
in RSA given the knowledge of the public key e and the
modulus N [34].

Let A be a polynomial-time adversary (or malicious
prover), and define ǫ as:

ǫ = Pr[A(v · M) = 1]

ǫ denotes the success probability of A in obtaining v · M
from Π without computing Y1 ≡ Xat

mod N and Y2 ≡ Xk

mod N . Conforming with the construction of Π, M is a
large integer chosen at random and v is a small unique
integer chosen at random (typically v is a 20-bit integer).
We further assume that A also acquires Y2

Y1

= XMv

mod
N (e.g., from prior interactions with the verifier).

Before analyzing the behavior of A, we note that the
security of Π relies on the secrecy of v · M . Otherwise,
an untrusted prover might be able to factor3 N and
acquire φ(N). This would enable an untrusted prover to
send a random value for Y1 and compute Y2 accordingly
(Y1 · X(v·M) mod φ(N) mod N).

Next, we define Γ to be the experiment to break the
key generation problem of RSA in polynomial time. Recall
that in RSA the private key d is generated from the public
key e as follows: ed − 1 ≡ 0 mod φ(N), where N is the
product of two large primes p and q. In this case, the only
shortcut for the attacker to break the RSA key generation
problem is to compute φ(N) given the sole knowledge of
the public key e and the modulus N ; it is known that this
problem is as hard as the factoring problem [34]. Given
this, a polynomial-time adversary A can only succeed in
breaking the RSA key generation problem with a negligible
probability ǭ.

In analyzing the behavior of A, we show that the view of
A when running sub-routine by Π is distributed identically
to the view of A in experiment Γ. We first note the
following observations:

1) Due to the hardness of the discrete logarithm prob-
lem, A cannot obtain any meaningful information
about v · M from XMv

mod N .
2) The value of v · M is different for each puzzle

even if the values of v repeat in each refreshing
cycle. By randomly choosing the values of v from

3It is known that if k and (at + v · M) are known, then there
exists a probabilistic polynomial time algorithm that can compute
the factorization of N [34].

a subset (
√

2L) in [2, 2L − 1], the probability that
A guesses the chosen v for any given puzzle remains
satisfactorily negligible even if A guesses by means
of elimination all the possible previous values of v

(this probability is upper-bounded by 1

2L−

√

2L−2
)4.

One direct consequence of this fact is that k and
Y2

Y1

, respectively, will not be similar in different puz-
zles. This shows that an attacker cannot obtain any
meaningful information about v · M by observing
different values of k and/or Y2

Y1

(e.g., a birthday
paradox involving a collision on v · M is unlikely to
happen in this case).

Given this, the only information available to the adver-
sary about v and M in Π is solely contained5 in k.

In experiment Γ, given a chosen constant C1, a small
unknown unique integer v̄ and a large unknown M̄ , d could
be computed as d = v̄ · M̄ + C1. We define the constant C̄

by C̄ = e · C1 − 1. Therefore,

Experiment Γ

e · d − 1 ≡ 0 mod φ(N)
e · (v̄ · M̄ + C1) − 1 ≡ 0 mod φ(N)

e · v̄ · M̄ + C̄ ≡ 0 mod φ(N)

Since (v̄, M̄) and (v,M) have the same distribution (by
construction), it is easy to see in this case that if A can
obtain v · M from k in Π, it can also obtain v̄ · M̄ (and
therefore d) from Γ; i.e., Π is equivalent to e · v ·M + C ≡
mod φ(N), where the constant C is −e · (k − at).

This suggests that the probability that A acquires v ·M
from k in Π is equally ǭ. Furthermore, it is easy to see that
the only shortcuts for A to solve Π are either to obtain
v · M from k (and therefore factorize N) with probability
ǭ or to guess the correct ratio Z = Y2

Y1

with probability

Pr[Z = XMv

mod N]. The probability of success ǫ of A

in Π is given by:

ǫ = ǭ + Pr[Z = XMv

mod N] (1)

If ǭ is negligible (this is typically the case since breaking
the key generation problem in RSA is known to be hard),
then ǫ ≃ Pr[Z = XMv

mod N]. This probability is upper-
bounded by the probability that A guesses two “correct”
values of v (v1 and v2 used in two different puzzles during
the same refresh cycle; A then can ensure that the verifier

4The verifier can equally refresh its secret after a larger number
of consecutive puzzles e.g., v

2
. However, in this case, the probability

that A might succeed in guessing v equally increases.
5A might, however, guess some marginal properties about v and/or

M ; since 4 is a natural common divisor for both at and φ(N), A might
be able to identify from the last two bits of k whether M or v are
even/odd or whether they are dividable by 4. However, given large
N and M (≥ 1024 bit numbers), this does not give any considerable
advantage for an untrusted prover in guessing v or M (if the verifier
also varies t in every round, this further increases the randomness
of k); this property is equally shared in the original time-lock puzzle
of [1] (at mod φ(N) is always a multiple of 4) and in Γ ((e · d− 1) is
always a multiple of φ(N)).

accepts the puzzle solution by setting Y2 = Y1 · m
v2

v1 .
Therefore, Pr[Z = XMv

mod N] ≤ 1

(2L−

√

2L−2)2
. Given

this,

ǫ ≃ 1

(2L −
√

2L − 2)2
. (2)

Note that M remains secret even if A succeeds in
guessing one“correct”v and that the attacker has only one
chance to guess the value of v (it is uniquely chosen within
each refreshing cycle); for L = 20 bits, ǫ ≃ 9.11 · 10−13.

This implies that the probability to find a shortcut to
solving our proposed puzzle (i.e., without computing Y1)
is satisfactorily negligible, thus concluding our proof.

Corollary 1: The probability that an untrusted prover
finds a shortcut to solve the puzzle construction outlined
in Figure 1 is satisfactorily negligible if it is infeasible for
an attacker to find a shortcut to solve the original time-
lock puzzle in [1].

Proof: Let the construction Π and the polynomial-
time adversary A be as defined in Theorem 1. Here, we
define Γ to be the experiment to break the original time-
lock puzzle of [1] in polynomial time. Γ equally models
the variant construction of the pseudo-random generator
proposed Blum et al. in [30]. Recall that in experiment Γ
the prover computes Ȳ ≡ Xat

mod N while the verifier
computes Y ≡ Xat mod φ(N) mod N . If Ȳ = Y , the verifier
accepts the puzzle solution. In this case, the only way for
an untrusted prover to break Γ is to compute k̄ ≡ at mod
φ(N) and then Ȳ ≡ X k̄ mod N . We denote by ǭ the success
probability of a polynomial adversary A in breaking Γ.

Like the proof in Theorem 1, the view of A when running
sub-routine Π is distributed identically to the view of A

in experiment Γ (refer to Theorem 1 for more details).
To better illustrate this, it suffices to recall that k̄ can be
easily computed as the product of a small secret by a large
random secret (i.e., k̄ = v · X + C, for an integer X given
a constant C) and to compare the number of unknown
random operands and known operands on both sides of
each of the following equalities:

Subroutine Π Experiment Γ

k ≡ (at + v · M) mod φ(N) k̄ ≡ at mod φ(N)
v · X + C ≡ at mod φ(N)

v · M ≡ (k − at) mod φ(N) v · X ≡ (at − C) mod φ(N)

Therefore, the probability of acquiring v · M from k

in Π is equally the probability of obtaining v · X in Γ
(and therefore k̄) which is ǭ. Similar to Theorem 1, it
can be easily shown that the probability for A to find
a shortcut to solve our proposed puzzle is given by ǫ =
ǭ + Pr[Z = XMv

mod N], where Pr[Z = XMv

mod N] is

the probability that A guesses Z = Y2

Y1

. If ǭ is negligible,

then ǫ ≃ Pr[Z = XMv

mod N] ≃ 1

(2L−

√

2L−2)2
.

As mentioned earlier, this probability is satisfactorily
negligible for typical values of v (ǫ ≃ 10−12).

Claim 1: An untrusted prover cannot acquire the cor-
rect value of Y1 ≡ Xat

mod N without performing at least
O(t) sequential modular multiplications.

Proof Sketch: Repeated-squaring is an inherently sequen-
tial process. The fastest known algorithm for repeated-
squaring is the addition-chain algorithm [31]. It is ex-
pected to perform slightly better than the doubling al-
gorithm [35]. However, both algorithms have the same
asymptotic running time of O(log(at)) = O(t) modular
multiplications. Recall that in our protocol, the optimal
multiplication sequence using addition-chains can be effi-
ciently obtained (e.g., 2, 4, 8, 16, etc. if the base exponent
a = 2).

Although an untrusted prover might try to paral-
lelize repeated-squaring, the parallelization advantage is
expected to be very negligible [1], [4]. Since repeated-
squaring eventually reduces to a series of sequential mod-
ular multiplications, the untrusted prover might try to
parallelize the multiplication of large numbers by splitting
the multiplicands into smaller “words” and involving other
processors in the multiplication of these words. Further
details about this process can be found in [36]. However,
this attack incurs a significant communication overhead
that prevents an untrusted prover from gaining any sub-
stantial speedup; given a large number of squaring rounds,
the RTT between the cooperating processors needs to be
in the order of few nanoseconds to achieve even a modest
speedup.

Furthermore, the only known shortcut to compute Y1 ≡
Xat

mod N using less than O(t) modular multiplications
is by computing Y1 ≡ Xb mod N , where b ≡ at mod
φ(N). To do so, the prover has to be able to factorize N

into its large primes p and q, which is very difficult to
achieve even for randomly chosen p and q. Alternatively,
the prover might try to guess φ(N) from k (this probability
is given by O(1

N−

√

N
), since N is a composite number [37])

or to predict the outcome of Y2

Y1

. Given Theorem 1, the
probability that an untrusted prover succeeds in these
attacks is satisfactorily negligible.

An untrusted prover can equally try to compute Y1

through an intermediate known large number that it
previously computed. For instance, the prover might use
the result of Xa500,000

mod N that it previously computed
(e.g., offline or during a subsequent interaction with the
verifier) to compute Xa800,000

mod N and thus minimizing
the required number of modular exponentiations. Note
that this equally applies to the original time-lock puzzle
proposed in [1]; it can be simply remedied by changing the

Squaring Puzzle Runtime Y2 Computation v Verification Prob. Cheating
(Size of t in bits) Time

6500000 154067 ms 24.27 ms 105 17 mod. mul. 10−10

6500000 172174 ms 27.12 ms 107 24 mod. mul. 10−14

6500000 170611 ms 26.877 ms 109 30 mod. mul. 10−18

6500000 165034 ms 26 ms 1011 37 mod. mul. 10−22

TABLE II
Implementation Results on four different Intel Core 2.20 GHz processors. Here, N is 1024-bit composite integer, “Prob.

Cheating” refers to the probability that an untrusted prover randomly guesses the ratio Y2

Y1
. We conducted our

measurements over the LAN (max RTT = 100 ms). Our results are averaged over 10 distinct measurements. The average

improvement gain in puzzle verification when compared to original repeated-squaring puzzle in [1] is
log(N)
log v

≃ 50.

18 20 22 24 26 28 30 32 34 36

10
2

10
4

10
5

Size of v (in bits)

T
im

e
 (

m
s
)

Puzzle Solution (Client)

Verification in the Original Puzzle [1]

Verification in our Puzzle

Fig. 3. Puzzle Solution and Verification with respect to the size of v.
Our implementation was conducted on an Intel(R) Core(TM)2 Duo
CPU T7500 processor running at 2.20 GHz.

base exponent6 a after each interaction and/or by varying
the range of t among different puzzles. On average, the
prover still has to perform O(t) modular multiplications.
2

Following from Theorem 1 and Claim 1, we conclude
that an untrusted prover cannot trick the verifier into
accepting a puzzle solution without performing at least
O(t) modular multiplications.

E. Evaluation Results

To evaluate the security and performance of our puzzle,
we implemented our protocol (Figure 1) in JAVA on four
different workstations7 equipped with Intel(R) Core(TM)2
Duo CPU T7500 processor running at 2.20 GHz. We eval-
uate the performance of our proposed scheme on various
other processors in the following section. In our implemen-
tation, we used built-in JAVA functions for prime number
generation, repeated-squaring using addition chains, etc..
While a faster implementation of our scheme could be
achieved using lower-level programming and/or specialized
hardware or software, we aim to demonstrate in this work
the feasibility of our proposal using available standard
algorithms and programming tools.

Our findings are summarized in Table II. Our results
suggest that our scheme establishes a strong tradeoff be-

6Rivest et al. argued that even the choice of a fixed value for the
base exponent a does not deteriorate the security of puzzles based
on repeated-squaring [1].

7We point that our results do not depend on the computational
performance of a specific processor (refer to Section IV-A).

tween the security and the efficiency of puzzle verification.
By appropriately choosing the protocol parameters, the
verifier can achieve the desired tradeoff that best suits its
intended application. For example, by increasing the range
of v (e.g., to 1012), the verifier reduces the probability
that an untrusted prover randomly guesses the correct
v. However, this would equally incur an increase in the
computational load on the verifier (O(log(v))). Neverthe-
less, the choice of any modest value of v (e.g., v ≤ 1012)
does not give any considerable advantage to an untrusted
prover in breaking our protocol while incurring a negligible
verification overhead on the verifier (Figure 3).

IV. Applications

This section highlights some applications that would
benefit from our scheme.

A. Remote Verification of Computing Performance

To cope with the advances in processing power, the com-
puting community is heavily relying on the use of bench-
marks. Benchmarks (e.g., Whestone [38], Linpack [27])
refer to an artificial program/code that is run on a
computer system to evaluate its performance (processing
speed, access time, etc.). These benchmarks are typically
used to evaluate the performance of a single processor unit.
While several benchmarks [38], [27], [4], [5] were proposed
as a mean to evaluate a processor’s computing power, most
of these benchmarks are inherently parallelizable (refer to
Section II) and therefore not useful to securely evaluating
the computing performance of processors (provers can in-
volve other machines at their disposal in the computation
of the benchmark solution). Furthermore, current propos-
als require considerable computational load to verify the
benchmark results, which might hinder their prospective
large-scale deployment in existing online applications.

Based on our puzzle, we construct a secure benchmark
that enables any machine (even with modest computation
power) to remotely upper-bound the computing perfor-
mance of single-processors. Our benchmark and the re-
lated protocol are shown in Figure 4.

Our benchmark consists of two phases: the evaluation
phase and the verification phase. The verifier constructs
the puzzle (as explained in Section III) and measures the
time (t2 − t1) required by the prover to compute Y1 in

Verifier Prover

Start of Evaluation Phase

Pick a large t, a small unique v ∈ [1, 2L − 1]
mA ← {X‖t‖N}

Compute k ≡ (at + v ·M) mod φ(N)
mB ← {X, k}

t1:
mA‖mB

//

Compute Y1 ≡ Xat
mod N

t2:
Y1

oo

Compute the number of squarings per second: S = t
t2−t1

End of Evaluation Phase

Start of Verification Phase

Compute Y2 ≡ Xk mod N

t3:
Y2

oo

1) Verify that (t3 − t2) ≤ ǫ · (t2 − t1), for ǫ =
log(N)

t
2) Verify that Y2 = (Y1 ·mv) mod N

If both verifications pass, the verifier accepts the evaluation results.

End of Verification Phase

After a maximum of
√

2L different queries:
vmax ← 2L, where L is the size of v in bits,

M ← vmax ·M
m← mvmax mod N

Fig. 4. Efficient Verification of Computing Performance.

order to estimate its puzzle solving performance given by
the number of squarings per second: S = t

t2−t1
.

The verification stage then starts as soon as the latter
phase is completed. As described later, this is essential
to the security of our benchmark. During the evaluation
phase, the prover computes Y2 and reports its result
back to the verifier at time t3. The verifier checks if
Y2 = (Y1 · mv) mod N and that the time taken by
the prover to compute Y2 is smaller than the maximum
threshold ǫ = log(N)

t
(t2 − t1). If both these verifications

pass, the verifier accepts S as an authentic estimation of
the sequential computing performance of the prover.

Claim 2: Given the benchmark depicted in Figure 4, the
probability that an untrusted prover tricks the verifier into
accepting a computing performance claim inflated by more
than a small ǫ of its genuine value is very negligible.

Proof Sketch: Following from our previous analysis in
Theorem 1 and Claim 1, the probability that an untrusted
prover can trick the verifier into accepting an incorrect per-
formance claim without performing at least O(t) modular
multiplications is satisfactorily negligible.

Therefore, the only viable method for the prover to
inflate its performance claim is by sending an incorrect
value Ȳ1 ahead of time and distributing the computation
of the corresponding Ȳ2 (such that Ȳ2

Ȳ1

= mv mod N) to
other nodes at its disposal. This would enable the prover
to decrease the claimed time to perform O(t) modular

multiplications by ∆ = (t3 − t2) time units (∆ includes
the communication delay D between the verifier and the
prover).

The verifier can upper-bound (t3 − t2) to prevent the
attacker from gaining any advantage from the aforemen-
tioned attack; the verifier does not accept the prover’s
performance claim unless (t3−t2) ≤ ǫ ·(t2−t1)+D. In this
case, the maximum performance claim that an untrusted
prover can make is:

Smax =
t

(1 − ǫ) · (t2 − t1) − D

ǫ can be interpolated from the measured number of
squarings per second S; if it takes (t2 − t1) time units for
the prover to perform t modular multiplications, then the
computation of Y2 (requiring O(log(N)) modular multipli-

cations) can be upper-bounded by choosing ǫ = log(N)
t

. For
a 1024-bit modulus N and t > 100, 000, ǫ ≃ 0.01 squarings
per second.

In an experiment that we conducted using 1024-bit
N , t = 6, 500, 000, (t2 − t1) = 154067 ms, a maximum
allowable D= 1000 ms (e.g., communication over the
Internet), the maximum gain that a prover can claim8 in
our scheme is given by :Smax

S
= 1.0008. 2

8Note that the verifier cannot ensure that the puzzle is running on
the prover’s machine. The prover might, for example, rent the fastest
machine to perform the evaluation. This, nevertheless, still suggests
that the prover has access to a machine that can perform S squarings
per second.

CPU Description Idle CPU S

Intel(R) Pentium(R) 4 CPU 3.40GHz 2.70% 5.9
Intel(R) Pentium(R) D CPU 3.20GHz 6.40% 7.48
AMD Athlon(tm) 64 Processor 3200+ 2.60% 12.19
Intel(R) Pentium(R) D CPU 3.00GHz 26.20% 15.24
Intel(R) Pentium(R) 4 CPU 3.20GHz 30.70% 15.81
Intel(R) Pentium(R) D CPU 3.40GHz 14.10% 18.22
Intel(R) Xeon(R) CPU 3060 2.40GHz 46.60% 28.01
Intel(R) Pentium(R) D CPU 3.20GHz 20.00% 29.35
Intel(R) Xeon(R) CPU 3075 2.66GHz 19.70% 29.72

Intel(R) Core(TM)2 Duo CPU E6550 2.33GHz 58.70% 30.39
Intel(R) Core(TM)2 Duo CPU E6550 2.33GHz 60.00% 31.18
Intel(R) Pentium(R) Dual CPU E2180 2.00GHz 66.30% 31.7

Intel(R) Pentium(R) 4 CPU 3.06GHz 92.00% 31.72
Intel(R) Core(TM)2 Duo CPU E6550 2.33GHz 63.80% 36.05
Intel(R) Core(TM)2 Duo CPU T7500 2.20GHz 76.00% 38.11

Intel(R) Xeon(R) CPU X3220 2.40GHz 73.30% 41.67
Intel(R) Xeon(R) CPU E5420 2.50GHz 63.80% 45.59
Intel(R) Xeon(R) CPU E5420 2.50GHz 87.70% 50.97

Fig. 5. Implementation Results on 18 different PlanetLab Nodes. S refers to
the number of squarings per ms.

New Client ?

Secure Verification of Computing Performance (Figure 4)

 X Time Units to Complete ?

Assume a Reasonable

Computing Performance

Use Last Estimate of

Computing Performance

Yes. Store/Update Estimate of

Computing Performance.

No. Update Estimate of

Computing Performance

and re-iterate.

NoYes

Fig. 6. Efficient Resistance to DoS Attacks through
Verification of Computing Performance.

Note that our benchmark does not aim at preventing
performance deflation attacks. To the best of our knowl-
edge, it is hard if not impossible to prevent the provers
from claiming lower computational performance in the
absence of tamper-proof hardware/software.

Nevertheless, our protocol finds clear applicability in a
multitude of application domains. Our benchmark can be
used in online distributed computing applications (such
as [39], [40]) to e.g., enable a participant to verify that it
acquired the computing power that it actually asked for.
Similarly, our proposal can be used in the secure ranking
of supercomputers (e.g., [41]) to prevent possible frauds in
performance claims. For instance, Linpack [27] is currently
being used in evaluating and ranking the performance of
supercomputers [41]. Since Linpack is a benchmark based
on Gaussian Elimination, its underlying operation can be
easily parallelized [25]. A supercomputer, connected to a
hidden processor cluster, can inflate its performance claims
by involving these other processors in the construction
of the benchmark’s solution. The literature contains a
significant number of similar “anecdotes” where both indi-
viduals and manufacturers have tendencies to exaggerate9

their computing performance (e.g., [6], [7]). Our protocol
is equally well suited for scenarios in which low-end devices
(e.g., PDAs or sensor nodes) verify the computational
performance of high-end processors. Our protocol can thus
be used e.g., to secure performance-based cluster selection
in a heterogeneous wireless network.

We evaluated our benchmark on various processors10

9One example cited in [8] was a claim by a scientist that his
research was performed on a 65,536-processor computer. Under ques-
tioning, the author admitted he had used a system with only 8,192
processors, and then had multiplied his performance figures by a
factor of eight.

10For better comparison purposes, note that an Intel Xeon pro-
cessor performs faster than a Pentium D processor, which is in turn
faster than a Pentium 4 processor, provided that these processors
share comparable properties, such as: CPU architecture, clock fre-
quency, idle CPU %, cache size, etc..

running on 18 different PlanetLab nodes [11] (refer to Sec-
tion III-E for implementation details). Our findings (Ta-
ble 5) suggest that our proposed benchmark reflects well
the performance of various processors. We acknowledge,
nevertheless, that several other factors need to be taken
into account when evaluating the overall performance of
processors. In Section V, we briefly discuss the limitations
and challenges that arise in the estimation of computing
performance.

B. Efficient Resilience to DoS Attacks Using Puzzles

Another natural application for our proposed protocol
lies in the area of protection against DoS attacks. As
mentioned earlier, in existing client-puzzles, it is extremely
difficult to precisely specify the time and/or resources
required to solve a puzzle, mostly due to the heterogeneity
of computing devices available today [10].

Given our puzzle outlined in Section 1, we propose to
improve the efficiency of DoS protection schemes based
on client puzzles by additionally evaluating/verifying the
clients’ puzzle solving performance.

Consider the protocol shown in Figure 6; to prevent DoS
attacks, an online server requires that its clients spend X

time units in solving a puzzle before attending each of
their requests. Whenever a new client issues a request,
the server uses our performance verification protocol in
Figure 4 and sets the protocol parameter t such that the
puzzle can be solved in X time units assuming a reasonable
computing power. If the client solves the puzzle in Y < X

time units, the server re-estimates the client’s computing
performance (using the protocol in Figure 4) and adjusts
the parameter t such that the new computing puzzle can
be solved in (X−Y) time units. This process repeats until
the client commits X time units to solve the puzzles. On
the other hand, if the client solves the puzzle in Y ≥ X

time units, the process terminates and the server re-adjusts
its estimate of the client’s computing performance accord-

ingly. The server only needs to evaluate the computing
performance of its clients once; in subsequent requests
from the same client11, it re-uses the last estimate of
the client’s performance (obtained from the last puzzle it
solved) to appropriately adjust the protocol parameter.

This approach enables the server to efficiently ensure
that all clients – whether running on slow or fast machines
– spend enough time and resources before attending to
their requests. That is, the server can enforce fairness
between its clients, e.g., both fast and slow clients can
back-off for the same amount of time before their requests
are processed by the server.

Given Claim 2, the only viable option for a malicious at-
tacker is to intentionally delay its response to the server in
an attempt to prevent the latter from correctly estimating
its performance. However, this attack can only penalize
the attacker, itself; that is, the attacker will loose more
time before its request is being served, thus achieving the
intended goal of our scheme12.

V. Discussion

In the previous sections, we presented and analyzed
an efficient puzzle based on repeated-squaring and we
demonstrated its usefulness in several security-critical ap-
plications. While we acknowledge that our puzzle, based
on repeated-squaring, might not be ideal to compare the
problem-solving performance of processors, we argue in
this section that our proposal presents one of the very few
alternatives to securely and efficiently assess the comput-
ing performance of devices.

Nowadays, the literature features increasing efforts to
define appropriate metrics to measure performance. Re-
searchers have long argued that “FLOPS” and “MIPS” do
not accurately reflect the problem solving performance of
a processor [43]; current trends in the literature suggest
that the only accurate way to measure the performance
of a processor is to test it with respect to those software
applications that it is intended to frequently run [44].
This suggests that benchmarks need to be created for
each individual application (e.g., Gaussian Elimination
benchmark, FFT benchmark, database benchmark, etc.)
since several factors need to be considered when assessing
the performance of a processor in a given application
(e.g., CPU architecture, cache size, existence of a specific
hardware, etc.).

When the applications in question can be parallelized
(e.g., Gaussian Elimination), little can be done to securely
estimate their sequential performance through a puzzle

11It is out of the scope of this paper to discuss algorithms and
techniques that enable a remote server to identify its clients. Further
details on this topic can be found in [42]. For simplicity, we assume
that the server identifies remote nodes using their IP addresses.
Owing to its low verification overhead, the server can efficiently
re-evaluate a node’s computing power in case it changes its public
credentials (e.g., IP renewal).

12It can be shown that our scheme can equally be used to counter
connection depletion attacks.

that truthfully mimics the operation of these applications.
Such parallelizable puzzles do not even constitute ideal
candidates to verify the performance of parallel compu-
tations; it is generally preferable in these settings to
make use of“embarrassingly-parallel”problems (e.g., hash-
reversal puzzles [3]) whose parallelization across processors
is inherent. Furthermore, memory-bound puzzles cannot
be used to assess the computing performance of a device;
they can be used however to evaluate the device’s memory
access speeds.

Moreover, puzzles should be designed such that they
contain a shortcut – only known to the verifier – that
would enable efficient puzzle verification. This is not the
case in most sequential problems. For example, consider
the problem of searching for the Great Internet Mersenne
Prime [45]. Although this problem is inherently sequential,
the only means for the verifier to check whether the puzzle
solution is correct is to either run it itself or to sample
check intermediate computations (the verifier can also try
to parallelize a subset of these computations). Even if the
verifier checks a sample of the prover’s computations, the
puzzle verification overhead would still be considerably
large (O(n)) to ensure a satisfying detection rate of possi-
ble malicious behavior.

Our proposal offers on the other hand several advantages
over other benchmarks/puzzles:

- Since our protocol is based on repeated squaring, it is in-
herently sequential and, therefore, cannot be parallelized.
Furthermore, the fastest optimized algorithms imple-
menting repeated-squaring (e.g., addition chains [31])
are known in the literature and available as open-source
software in several programming languages. Asymptotic
runtime bounds for repeated-squaring are equally es-
tablished. This gives negligible benefit for a prover in
further optimizing the protocol to enhance its puzzle-
solving performance.

- Our puzzle offers a shortcut based on number theory
(Euler’s function) – only known to the verifier – to
efficiently verify the puzzle solution using low compu-
tational overhead.

- The puzzle parameters can be easily tuned to adjust the
difficulty/runtime of the puzzle and the verification load
on the verifier. This would facilitate its use in practical
real-time applications; our protocol enables the verifier to
ensure that the provers spend enough time and resources,
in spite of the heterogeneity of their machines.

- Although our puzzle might not faithfully emulate the
performance of a processor in all existing applications
(e.g., solving linear equations, sorting lists), it can be
used to evaluate the computing performance in several
applications that rely on modular exponentiation (e.g.,
cracking asymmetric decryptions, SETI@home [39], etc.)

- Our scheme can also be used to securely outsource
exponential computations (e.g., public key encryptions)
to untrusted servers.

VI. Conclusion

In this work, we proposed a new verification-efficient
client puzzle based on repeated squaring. Our puzzle
extends the time-lock puzzle proposed by Rivest et al.
and enables a considerably more efficient verification of the
puzzle solution that is reported by provers. More specifi-
cally, our scheme transfers the puzzle verification burden
to the prover that executes the puzzle; we achieve this by
embedding a secret – only known to the verifier – within
the Euler trapdoor function that is used in repeated-
squaring puzzles. Given this, the improvement gain in the
verification overhead of our puzzle when compared to the
original repeated-squaring puzzle is almost 50 times for a
1024-bit modulus. We further showed how our puzzle can
be integrated in a number of protocols, including those
used for protection against DoS attacks and for the remote
verification of the computing performance of devices. We
provided a security proof for our scheme and we validated
the performance of our puzzle through experiments on a
large number of PlanetLab nodes.

References

[1] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles
and timed-release crypto,” in MIT Technical Report, 1996.

[2] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten,
“New client puzzle outsourcing techniques for dos resistance,”
in Proceedings of the ACM conference on Computer and Com-
munications Security, 2004.

[3] S. Tritilanunt, C. Boyd, J. M. G. Nieto, and E. Foo, “Toward
non-parallelizable client puzzles,” in Proceedings of CANS, 2007.

[4] R. Sedgewick and A. C.-C. Yao, “Towards uncheatable bench-
marks,” in Proceedings of The Structure in Complexity Theory
Conference, 1993.

[5] J. Cai, A. Nerurkar, and M. Wu, “The design of uncheat-
able benchmarks using complexity theory,” available from
ftp://ftp.cs.buffalo.edu/pub/tech-reports/./97-10.ps.Z.

[6] Conroe Performance Claim being Busted,
http://sharikou.blogspot.com/2006/04/conroe-performance-
claim-being-busted.html.

[7] Computer Software Manufacturer agrees to settle Charges,
http://www.ftc.gov/opa/1996/07/softram.shtm.

[8] Heidelberg Talk Tells How toFool the Masses,
http://www.lbl.gov/cs/Archive/news062904.html.

[9] Y. Gao, “Efficient trapdoor-based client puzzle system against
dos attacks,” 2005.

[10] P. Tsang and S. Smith, “Combating spam and denial-of-service
attacks with trusted puzzle solvers,” in Proceedings of the Infor-
mation Security Practice and Experience Conference, 2008.

[11] PlanetLab, An open platform for developing, deploying, and
accessing planetary-scale services, http://www.planet-lab.org/.

[12] X. Wang and M. K. Reiter, “A multi-layer framework for puzzle-
based denial-of-service defense,” in International Journal of
Information Security, 2007.

[13] X. Wang and M. Reiter, “Defending against denial-of-service
attacks with puzzle auctions,” in Proceedings of the IEEE Sym-
posium on Security and Privacy, 2003.

[14] A. Juels and J. Brainard,“Client puzzles: A cryptographic coun-
termeasure against connection depletion attacks,”in Proceedings
of NDSS, 1999.

[15] A. Back, “Hash cash - a denial of service counter-
measure,” in Technical report, 2002. [Online]. Available:
http://www.hashcash.org/

[16] S. Doshi, F. Monrose, and A. Rubin, “Efficient memory bound
puzzles using pattern databases,” in Proceedings of the In-
ternational Conference on Applied Cryptography and Network
Security (ACNS), 2006.

[17] D. Dean and A. Stubblefield, “Using client puzzles to protect
tls,” in Proceedings of the USENIX Security Symposium, 2001.

[18] A. Martin, M. Burrows, M. Manasse, and T. Wobber, “Moder-
ately hard, memory-bound functions,” in ACM Transcations on
Internet Technologies, 2005.

[19] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H.
Spafford, “Secure outsourcing of scientific computations,” in
Advances in Computers, 2001.

[20] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable
grid computing,” in Proceedings of the International Conference
on Distributed Computing Systems (ICDCS), 2004.

[21] M. Jakobsson and S. Wetzel, “Secure server-aided signature
generation,” in Proceedings of the 4th International Workshop
on Public Key Cryptography (PKC), LNCS, Springer, 2001, pp.
383–401.

[22] M. van Dijk, D. Clarke, B. Gassend, G. E. Suh, and S. Devadas,
“Speeding up exponentiation using an untrusted computational
resource,” in Designs, Codes and Cryptography, vol. 39, 2006,
pp. 253–273.

[23] S. Hohenberger and A. Lysyanskaya,“How to securely outsource
cryptographic computations,” in Theory of Cryptography Con-
ference, LNCS, Springer, vol. 3378, 2005, pp. 264–282.

[24] L. Keqin,“Scalable parallel matrix multiplication on distributed
memory-parallel computers,” in Proceedings of IPDPS, 2000.

[25] S. McGinn and R. Shaw, “Parallel gaussian elimination using
openmp and mpi,” in Proceedings of the International Sympo-
sium on High Performance Computing Systems and Applica-
tions, 2002.

[26] Z. Cui-xiang, H. Guo-qiang, and H. Ming-he,“Some new parallel
fast fourier transform algorithms,” in Proceedings of Parallel and
Distributed Computing, Applications and Technologies, 2005.

[27] Linpack, http://www.netlib.org/linpack/.
[28] C. Linn and S. Debray, “Obfuscation of executable code to

improve resistance to static disassembly,”in Proceedings of ACM
CCS, 2003.

[29] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static dis-
assembly of obfuscated binaries,” in Proceedings of the USENIX
Security Symposium, 2006.

[30] L. Blum, M. Blum, and M. Shub, “A simple unpredictable
pseudo-random number generator,” in SIAM J. Computing,
1986.

[31] N. Koblitz, “A course in number theory,” 1987.
[32] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-

plexity of interactive proof systems,” in Proceedings of the 17th
Symposium on the Theory of Computation, 1985.

[33] C. Schnorr, “Efficient identification and signatures for smart
cards,” in Advances in Cryptology, 1989.

[34] J. Katz and Y. Lindell, “Introduction to modern cryptography,”
in Chapman and Hall/CRC Press, August 2007, pp. 273–274.

[35] D. Knuth, “The art of computer programming,” vol. 2, 1969.
[36] C. K. Koc, T. Acar, and B. Kaliski, “Analyzing and comparing

montgomery multiplication algorithms,” 1996.
[37] W. Sierpinski, “Elementary theory of numbers,” 1964.
[38] H. Curnow and B. Wichman, “A synthetic benchmark,” in

Computer Journal, 1976.
[39] SETI@home, http://setiathome.ssl.berkeley.edu/.
[40] Distributed.Net, http://distributed.net/.
[41] TOP500 Supercomputing Sites, http://www.top500.org/.
[42] T. Kohno, A. Broido, and K. Claffy, “Remote physical device

fingerprinting,”in IEEE Transactions on Dependable and Secure
Computing, 2005.

[43] J. R. Rice, “Measuring the performance of parallel computa-
tions,” in Proceedigns of the International Workshop on Parallel
Processing, 1996.

[44] Benchmark Limitations, http://www.intel.com/performance/
resources/benchmark limitations.htm.

[45] The Great Internet Mersenne Prime Search,
http://www.mersenne.org/prime.htm.

