
On the Impossibility of Batch Update

for Cryptographic Accumulators

Philippe Camacho
Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile.

pcamacho@dcc.uchile.cl

December 10, 2009

Abstract

A cryptographic accumulator is a scheme where a set of elements is represented by a
single short value. This value, along with another value called witness allows to prove in a
secure way (non)membership into the set. In their survey on accumulators [FN02], Fazzio
and Nicolisi noted that in the Camenisch and Lysyanskaya’s construction[CL02], the time to
update a witness after m changes to the accumulated value is proportional to m.

A natural problem arises: Is it possible to build an accumulator where the update of all
the witnesses could be made through a constant size (relative to m) piece of information?
Such accumulators would have the batch update property.

An accumulator for batch update was proposed by Wang et. al in [WWP07] and its
improvement [WWP08]. In this work we show that the construction is not secure and
indeed cannot be fixed as we obtain the following lower bound: if the accumulated value has
been updated m times, then the time to update a witness must be at least Ω(m) in the worst
case.

1 Introduction

An accumulator is a scheme that hashes elements of a set X into a single, constant size value
called the accumulated value. Then it is possible to prove (non)membership into X of an
element x using a verification algorithm with the accumulated value, x and another value called
witness. The first construction of such scheme is due to Benaloh and De Mare [BdM94]. Several
improvements have followed especially with the work of Camenisch and Lysanskaya [CL02] who
showed that accumulators can be made dynamic (the set can evolve), and that they can be
used as a tool to solve efficiently complex security protocols related to anonymous credentials.
In their survey on accumulators [FN02], Fazio and Nicolisi pointed that in the Camenisch and
Lysyanskaya’s construction, the time to recompute the witnesses was proportional to m, the
number of changes of the accumulated value, and then raised the natural question: Is it possible
to build an accumulator where the update of all the witnesses could be made through a constant
size (relative to m) piece of information?

1

In this work we answer by the negative: the time required to update the witness after m
updates of the set is Ω(m). More precisely, the information required to update the witnesses is
at least Ω(m) in the worst case.

Related Work. The problem of batch update has been addressed in a paper of Wang et al.
[WWP07]. In this work the authors proposed a construction that allows batch update at unit
cost. However we show that this construction and its improvement [WWP08] are not secure.
Indeed we prove in this work that there is no way to fix Wang’s et al. accumulator, as the lower
bound to update witnesses after m updates1 on the accumulated value is Ω(m).

2 Dynamic Accumulators

In this section we recall the main definitions related to dynamic accumulators. We do not
review in details the concrete construction described in [CL02], but only the abstract operations
of accumulators, and their security.

In accumulator schemes there are two kinds of participants: the manager who initializes the
parameters, computes the accumulated value, and the witnesses, and the user which role is to
verify the membership of elements in the set and possibly ask for elements insertion/deletion.

Definition 1. (Adapted from [FN02]) Let k be the security parameter. An accumulator scheme
Acc consists in the following algorithms:

• Setup(1k) is a probabilistic algorithm that takes 1k as argument and returns a pair of
private/public key (PK,SK) and the initial accumulated value for the empty set Acc∅.

• Eval(X,Acc∅, PK, [SK]): given a set of elements X, the public key or (the private key),
and the initial accumulated value Acc∅, this algorithm returns the accumulated value AccX ,
for the set X. Note that in some settings, it could be necessary to know the private key
SK in order to get better performance.

• Check(x,w,Acc, PK): given an element x, a witness w, the accumulated value Acc and
PK the public key, this deterministic algorithm returns OK if the verification is successful,
meaning that x ∈ X or ⊥ otherwise.

• Witness(x,Acc, PK, [SK]): this algorithm returns a witness w associated to the element x
of the set represented by Acc. Note that in some settings, it could be necessary to know
the private key SK in order to get better performance.

• Insert(x,AccX , PK, [SK]): this algorithm computes the new accumulated AccX∪{x} value
obtained after the insertion of x into X. Note that in some settings, it could be necessary
to know the private key SK in order to get better performance.

• Delete(x,AccX , PK, [SK]): the analogue algorithm for Insert that is used to delete elements
from X. Note that in some settings, it could be necessary to know the private key SK in
order to get better performance.

1Delete operations

2

• UpdWit(x,w,AccX , UpdX,X′ , PK): this algorithm is used to update the witnesses for each
element x that are still in the set. It takes as parameters, the element for which the new
witness must be computed, the old witness w that corresponds the set X represented by the
accumulated value AccX , the update information, that allows to compute the new witness
for the current set X ′ and the public key PK. This algorithm is run by the user.

This definition is not exactly similar to the one of [CL02]: it is a bit more abstract as
it does not depend on how these algorithms are implemented and we added explicitly the
algorithm UpdWit in the syntax definition. However the meaning for each algorithm is the
same as in Camenisch and Lysyanskaya’s work. Note also that the fact that the algorithms
Check,Witness,Eval, Insert,Delete,UpdWit are deterministic or probabilitic has no consequence
on our result.

The correctness property of an accumulator scheme is quite straightforward: it states that
if an element x belongs to the accumulated set X and if its witness w has been computed using
Witness then the verification process should pass.

Definition 2. (Correctness) Let X be a set, AccX its associated accumulated value and x ∈ X.
An accumulator scheme is correct if:

Check(x,w,AccX , PK) = OK

where AccX is the accumulated value of the set X, x ∈ X , PK is the public key and w is
the witness obtained by running Witness on AccX , x and PK/SK.

The following definition describes the security property for dynamic accumulators. The idea
behind this definition is to consider the following experiment where the adversary takes the place
of a user who tries to forge a witness (i.e. finds a witness for an element that does not belong
to the set) and where an oracle implements the operations of the accumulator manager.

Definition 3. (Security of a dynamic accumulator, adapted from[CL02]) Let Acc be an accumu-
lator scheme. We consider the notion of security denoted UF −ACC described by the following
experiment: there is an oracle O that takes the place of the accumulator manager. The adver-
sary can insert and delete a polynomial number of elements2 of its own election. The oracle
replies with the new accumulated value. The adversary can also asks for witness computations
or updates.

Finally the adversary outputs a pair (x,w). The advantage of the adversary A is defined by:

AdvUF−ACCAcc (A) = Pr [Check(x,w,Acc, PK) = 1 ∧ x /∈ X]

= Pr
[
ExpUF−ACCAcc (A) = 1

]
where PK is the public key generated by Setup.

In the following section we show why Wang et al.’s construction is not secure.

2With respect to the security parameter, that is n = p(k) for some polynomial p.

3

3 An attack on the Accumulator For Batch Update of Wang et.
al [WWP07, WWP08]

3.1 Why the proof does not work

There are two main problems in the security proof3.
First the adversary B as to run the algorithm KeyGen requires the factorization or at least

the knowledge of Φ(n2) and λ = lcm(p − 1, q − 1) where n is a safe integer of the form n = pq
with p, q primes because β = σλmod(n2). Without β computed in such a way, the correctness of
the construction cannot hold anymore, and σ is also required. The first flaw is that the knowlege
of the factorization of n or Φ(n2) implies that the es-RSA assumption cannot be broken because
this assumption requires the factorization of n to be kept secret.

The proof contains another inconsistency: B needs to find a non trivial pair (y, s) such that
ys = x mod n2 where x is given to B. This value x is not mentionned.

3.2 Description of the attack

As to show that the construction is not secure, i.e., the proof of security cannot be fixed, we
present an attack. This attack considers the changes made in [WWP08].

The idea is simply to delete an element from the set, and then update the witness of this
element with the update information obtained by the execution of the algorithm DelEle. We
can then check easily that this new witness is a valid one for the deleted element, which of course
should not happen.

So we start with the set X = {c1}. We have x1 = F (cλ1 mod n
2) mod n. Then a random

element c∗ is choosen and x∗ = F (cλ∗ mod n
2) mod n is computed. The accumulated value

is set to v = σ(x1 + x∗) mod n. The witness value W1 = (w1, t1) for c1 is defined by w1 =

acc
−t1β−1

1 mod n2 where ac = y∗y1 mod n
2, y1 = cλσβ

−1

1 mod n2, y∗ = cλσβ
−1

∗ mod n2, and t1 is
random.

Then the adversary asks to delete the element c1. This means that the new accumulated
value is v′ = v − σx1 + σ(x∗∗) mod n = σ(x∗ + x∗∗) mod n where x∗∗ = F (cλ∗∗ mod n

2) mod n
and c∗∗ is random. The value au that allows to update the witnesses is au = y∗∗y

−1
1 mod n2

where y∗∗ = cλσβ
−1

∗∗ mod n2.

So updating the witness w1 with au we obtain w′1 = auw1 mod n
2 = y∗∗y

−1
1 y∗y1c

−t1β−1

1 mod n2 =

y∗∗y∗c
−t1β−1

1 mod n2. Then w′β1 c
t1
1 ≡ (y∗∗y∗c

−t1β−1

1)βct11 mod n2 = (y∗∗y∗)
β mod n2 = (c∗∗c∗)

λσ.
It follows that

F (w′β1 c
t1
1 mod n2) ≡ F ((c∗∗c∗)

λσ mod n2) mod n
≡ σ(F (cλ∗∗ mod n

2) + F (cλ∗ mod n
2)) mod n

≡ σ(x∗ + x∗∗) mod n
≡ v′ mod n

3The paper [WWP08] that fixes the correctness flaw does not mention another security proof, so we are
considering the only proof avaible of the first work: [WWP07]. However the attack we consider works for the
improved version [WWP08].

4

This shows that (w′1, t1) is a valid witness for the deleted element x1. So the scheme is
not secure. Indeed the problem is simply that the information au allows to update all the old
witnesses including w1 for which such an update must not be possible.

4 A lower bound for updating the witnesses

The attack of the last section gives us the idea to obtain a lower bound for the size of the
information needed to update the witnesses after m changes, that are chosen to be deletions.

Theorem 1. For an update involving m delete operations in a set of n elements, the size of
the information Upd required by the algorithm UpdWit while keeping the dynamic accumulator
secure is Ω(m log n

m). In particular if m = n
2 with n even, we have |UpdWit| = Ω(m).

Proof. We consider the following scenario. The set accumulated in some point of the time is
X = {x1, x2, ..., xn}, and the corresponding accumulated value is AccX . We suppose the user
possesses all the witnesses for each element in X and knows the accumulated value. Then m
Delete operations are performed, that is the new set obtained is X ′ = X − Xd where Xd =
{xi1 , xi2 , ..., xim}. The manager computes the new accumulated value AccX′ and sends it to the
user along with the update information Upd required to update all the witnesses.

With this information Upd, the user is able to reconstruct the set Xd of deleted elements by
checking for each element of x, if its corresponding witness can be successfully updated using Upd
and the algorithm UpdWitness. That is if the result of w′ = UpdWitness(w,Upd) is not a valid
witness i.e. Check(x,w′, X) = ⊥, then the element has been deleted. Note that this condition
is necesarry as in the contrary the scheme would be incorrect (some existing elements in X ′

could not have their witness updated) or insecure (it could be possible to compute witnesses for
deleted elements).

Hence, as the user is able to recompute the set of deleted elements Xd only using the value
Upd, Upd must contain at least the information required to code a subset with m elements of
a set with n elements. There are

(
n
m

)
such subsets, so the minimum quantity of information

required is log
(
n
m

)
bits. A standard lower bound for the binomial coefficient is

(
n
m

)
≥ (nm)m.

Then we have log(
(
n
m

)
) ≥ m log n

m .

5 Conclusion

This result shows that the batch update property as proposed in [FN02] cannot be obtained, as
the time to update all the witnesses cannot be only linear in the security parameter k, i.e O(k),
but is at least O(m) = O(n) = O(p(k)) = ω(k) where p is a polynomial. Our lower bound is
not tight as Camenisch and Lysyanskaya’s accumulator requires O(p(k) · k) time to update the
witnesses after possible O(p(k)) changes, however, this bound can only be improved in a factor
of k as our bound is O(n) = O(p(k)).

Finally considering an accumulator that would only allow addition of elements, can be im-
plemented trivially by signing the elements of the set, as in this case there is no replay-attack

5

and the witness for every element consists in its signature under the manager’s private key, and
need not to be updated.

References

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: a decentralized alter-
native to digital signatures. In Proceedings of EUROCRYPT, volume 1440, pages
274–285, 1994.

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Proceedings of CRYPTO, volume 2442, pages
61–76, 2002.

[FN02] Nelly Fazio and Antonio Nicolisi. Cryptographic accumulators: Definitions, construc-
tions and applications. Technical report, 2002.

[WWP07] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. A new dynamic accumulator
for batch updates. In Information and Communications Security, volume 4861, pages
98–112, 2007.

[WWP08] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Improvement of a dynamic
accumulator at icics 07 and its application in multi-user keyword-based retrieval on
encrypted data. Asia-Pacific Conference on Services Computing. 2006 IEEE, 0:1381–
1386, 2008.

6

