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Abstract

The GHS attack is known as a method to map the discrete loga-
rithm problem(DLP) in the Jacobian of a curve C0 defined over the d
degree extension kd of a finite field k to the DLP in the Jacobian of a
new curve C over k which is a covering curve of C0.

Recently, classification and density analysis were shown for all ellip-
tic and hyperelliptic curves C0/kd of genus 2, 3 which possess (2, . . . , 2)
covering C/k of P1 under the isogeny condition (i.e. when g(C) =
d · g(C0)). In this paper, we show a complete classification of small
genus hyperelliptic curves C0/kd which possesses (2, .., 2) covering C
over k without the isogeny condition. Our main approach is to use rep-
resentation of the extension of Gal(kd/k) acting on cov(C/P1). In the
classification we restricted the group order or key-length of the DLP to
certain range reasonable in cryptographic application. Explicit defin-
ing equations of such curves and the existence of a model of C over k
are also presented.

Keywords : Weil descent attack, GHS attack, Elliptic curve cryptosystems,
Hyperelliptic curve cryptosystems, Index calculus, Galois representation

1 Introduction

Let kd := Fqd , k := Fq (d > 1), q be a power of a prime number.
Weil descent was firstly introduced by Frey [8] to elliptic curve cryptosys-

tems. This idea is developed into the well-known GHS attack in [12]. This
attack maps the discrete logarithm problem (DLP) in the Jacobian of a curve
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C0 defined over the d degree extension field kd of the finite field k to the DLP
in the Jacobian of a curve C over k by a conorm-norm map. The GHS attack
is further extended and analyzed in [2][4][9] [10][15][16][17][20][25][26], and
is conceptually generalized to the cover attack [6]. The cover attack maps
the DLP in the Jacobian of a curve C0/kd to the DLP in the Jacobian of a
covering curve C/k of C0 when a covering map or a non-constant morphism
between C0 and C exists.

If the DLP in the Jacobian of C0 can be solved more efficiently in the
Jacobian of C, we call C0 a weak curve or say that it has weak covering C
against GHS or cover attack. Thus, it is important and interesting to know
what kind of curves C0 have such coverings C, how many are they, etc..

It is known that the most efficient attack to DLP in the Jacobian of
algebraic curve based systems is the index calculus algorithms. In [11],
Gaudry first proposed his variant of the Adleman-DeMarrais-Huang algo-
rithm [1] to attack hyperelliptic curve discrete logarithm problems, which is
faster than Pollard’s rho algorithm when the genus is larger than 4 but be-
comes impractical for large genera. Recently, a single-large-prime variation
[27] and a double-large-prime variation [13][24] are proposed. These varia-
tions can be applied in the GHS attack if the curve C/k is a hyperelliptic
curve of g(C) ≥ 3. The complexity of these double-large-prime algorithms
are Õ(q2−2/g). On the other hand, when C/k is a non-hyperelliptic curve,
Diem’s recent proposal of a double-large-prime variation [5] can be applied
with complexity of Õ(q2−2/(g−1)). This algorithm is not only faster than
Pollard’s rho algorithm but also the fastest attack algorithm to curve based
cryptosystems at present.

Recently, a thorough security analysis of elliptic and hyperelliptic curves
C0/kd with weak covering C/k is shown in [3][21][22][23] under the following
isogeny condition. Assuming that there exists a covering curve C/k of C0/kd,

∃π/kd : C −→ C0 (1)

such that for

π∗ : J(C) −→ J(C0), (2)
Res(π∗) : J(C) −→ Reskd/kJ(C0) (3)

is an isogeny, here J(C) is the Jacobian variety of C and Reskd/kJ(C0) is
its Weil restriction. Then g(C) = d · g(C0).

Under this isogeny condition, C0/kd which possesses covering curves C/k
as (2, . . . , 2) covering of P1 are classified for hyperelliptic curves of genus 1,2,3
in [3][14][21][22][23]. Density and defining equations are also presented for
these curves. Further in [18], when g(C) = d·g(C0)+e, (e > 0, d = 2, 3, 4) for
g(C0) = 1, 2, 3 hyperelliptic curves in the cryptographic applications, certain
classes of curves C0/kd which have weak coverings C/k were showed.
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In this paper, we show a complete classification of hyperelliptic curves
C0/kd of genus 1,2,3 with (2, . . . , 2) covering C/k without isogeny condition.
In particular, we assume that g(C) = d · g(C0) + e, e > 0. The classification
is then restricted to a certain range of the group order or key-length rea-
sonable for cryptographic applications. Our approach for the classification
is a representation theoretical one, to investigate action of the extension of
Gal(kd/k) on cov(C/P1). We also present defining equations of these curves
and existential conditions of a model of C over k explicitly.

2 GHS attack and (2, . . . , 2) covering

Firstly, we summarize the GHS attack and the cover attack. Let kd(C0)
be the function field of a curve C0/kd, Cl0(kd(C0)) the class group of the
degree 0 divisors of kd(C0), σkd/k the Frobenius automorphism of kd over
k. Assume σkd/k is extended to an automorphism σ of order d in the
separable closure of kd(x). The Galois closure of kd(C0)/k(x) is F ′ :=
kd(C0) · σ(kd(C0)) · · ·σd−1(kd(C0)) and the fixed field of F ′ by the auto-
morphism σ is F := {α ∈ F ′ | σ(α) = α}. The DLP in Cl0(kd(C0)) is
mapped to the DLP in Cl0(F ) using the following composition of conorm
and norm maps:

NF ′/F ◦ ConF ′/kd(C0) : Cl0(kd(C0)) −→ Cl0(F ).

This map is called the conorm-norm homomorphism in the original GHS
paper on the elliptic curve case [12].

This attack has been extended to wider classes of curves [2][4][9][10][15][16]
[17][25][26]. The GHS attack is conceptually generalized to the cover attack
by Frey and Diem [6]. When there exist an algebraic curve C/k and a cov-
ering π/kd : C −→ C0, the DLP in J(C0)(kd) can be mapped to the DLP in
J(C)(k) by a pullback-norm map.

J(C)(kd)

N
��

J(C0)(kd)
π∗

oo

N◦π∗
xxpppppppppp

J(C)(k)

Hereafter, let q be a power of an odd prime. Assume C0 is a g(C0) ∈ {1, 2, 3}
hyperelliptic curve given by

C0/kd : y2 = f(x). (4)

Then we have a tower of extensions of function fields such that kd(x, y, σ
1
y, . . . , σ

n−1
y)

/kd(x) (n ≤ d) is a

n︷ ︸︸ ︷
(2, . . . , 2) type extension. Here, a

n︷ ︸︸ ︷
(2, . . . , 2) covering is
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defined as a covering π/kd : C −→ P1

n︷ ︸︸ ︷
(2, . . . , 2)︷ ︸︸ ︷

C −→ C0 −→ P1(x)︸ ︷︷ ︸
2

(5)

such that cov(C/P1) ≃ Fn
2 , here cov(C/P1) := Gal(kd(C)/kd(x)).

3 Representation of Gal(kd/k) on cov(C/P1)

Next, we consider the Galois group Gal(kd/k) acting on the covering group
cov(C/P1) ≃ Fn

2 .

Gal(kd/k) y cov(C/P1) ≃ Fn
2 (6)

Then one has a map onto Aut(cov(C/P1)).

ξ : Gal(kd/k) ↪→ Aut(cov(C/P1)) ≃ GLn(F2) (7)

Then, the representation of σ for given n, d is as follows:

σ =


♠1 O · · · O

O ♠2
. . .

...
...

. . . . . . O

O · · · O ♠s


}
n1

}
ns

n =
s∑

i=1

ni (8)

where the O is a zero matrix,

♠i =


⋆i ⋆i Õ · · ·

Õ ⋆i
. . . . . .

...
. . . . . . ⋆i

Õ · · · Õ ⋆i


1

...

li

(9)

is an ni×ni matrix which has a form of an li×li block matrix. The sub-block
⋆i is an ni/li × ni/li matrix and Õ is an ni/li × ni/li zero matrix. Here, if
Fi(x) :=(the characteristic polynomial of ⋆i )li , then F (x) := LCM{Fi(x)}
is the minimal polynomial of σ. Obviously, Fi(σ) = 0 and F (σ) = 0. When
di :=ord( ♠i ), d = LCM{di}.

The examples of the representation of σ for given n and d are as follows:
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Example 3.1. n = 2, d = 2

σ =
(

1 1
0 1

)
(10)

F (σ) = (σ + 1)2 = 0

Example 3.2. n = 2, d = 3

σ =
(

1 1
1 0

)
(11)

F (σ) = σ2 + σ + 1 = 0

Example 3.3. n = 3, d = 3

σ =

1 0 0
0 1 1
0 1 0

 (12)

F (σ) = (σ + 1)(σ2 + σ + 1) = 0

Example 3.4. n = 4, d = 6

σ =


1 1 1 1
1 0 1 0
0 0 1 1
0 0 1 0

 or


1 1 0 0
0 1 0 0
0 0 1 1
0 0 1 0

 (13)

F (σ) = (σ2 + σ + 1)2 = 0 or F (σ) = (σ + 1)2(σ2 + σ + 1) = 0.
Notice that

⋆1 =
(

1 1
1 0

)
or ♠1 =

(
1 1
0 1

)
, ♠2 = ⋆2 =

(
1 1
1 0

)
respectively. (14)

4 Upper bound of e in g(C) = dg(C0) + e

From now, we consider the case of a hyperelliptic curve C0/kd for g(C0) ∈
{1, 2, 3} such that there is a covering π/kd : C −→ C0 and the covering
curve C/k has genus g(C) = d · g(C0) + e (e > 0). Here, e can be regarded
as the dimension of ker(Res(π∗)). Firstly, for C0 which are used in the
cryptographic applications, we will estimate an upper bound of e for g(C0) ∈
{1, 2, 3}. In algebraic curve based cryptosystems, the standard key length is
above 160 bits at present. This means the size of the Jacobian of C0/kd is

qg(C0)d ≥ 2160. (15)

We assume that the size of Jacobian of C/k is qdg0+e ≤ 2a.
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Remark 4.1. In this paper, we discuss within a ≤ 320. However, the
procedures in the section 4.3 can apply to any a such that qdg0+e ≤ 2a.
Besides, we notice that Lemma 5.1 and the procedure in the section 5.2 are
independent of choice of the range.

4.1 Case g(C0) = 1

Then, we have the following situation for g0 = 1{
qd+e ≤ 2a

2160 ≤ qd.
(16)

Now, since qd+e

qd = 2a

2160 , qe ≤ 2a−160. Consequently,

log qe ≤ log 2a−160.

It follows that an upper bound of e is

e ≤ (a− 160)d
160

. (17)

When we assume a ≤ 320, e ≤ d is obtained.

4.2 Case g(C0) = 2, 3

Similarly, when g(C0) = 2, assume that{
q2d+e ≤ 2a

2160 ≤ q2d.
(18)

Then e ≤ 2d if a ≤ 320. When g(C0) = 3, the double-large-prime algorithms
have the cost of Õ(q

4
3
d). Accordingly, the condition q3d ≥ 2180 (i.e. q

4
3
d ≥

280) should be adopted instead of q3d ≥ 2160 (q
4
3
d ≥ 271.11...) to keep the

same security level with g0 = 1, 2 hyperelliptic curves (the costs of attack to
each DLP are q

d
2 ≥ 280 for g0 = 1, qd ≥ 280 for g0 = 2 respectively). Thus,

one can assume{
q3d+e ≤ 2a

2180 ≤ q3d.
(19)

Consequently, e ≤ 7
3d if a ≤ 320. In the next subsection, we enumerate

the candidates of n, d, e, S within these bounds of e for g(C0) = 1, 2, 3.
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4.3 The candidates of (n, d, e, S)

Let S be the number of fixed points of C/P1 covering. By the Riemann-
Hurwitz theorem, 2g−2 = 2n(−2)+2n−1S, then S = 4+ dg0+e−1

2n−2 . Hereafter,
we consider the following two types:

• Type (A) : ∃di s.t. di = d (= LCM{di})
then, S = 4 + dg0+e−1

2n−2 ≥ max{d, 2g0 + 3}

• Type (B) : di ̸= d for ∀di

then, S = 4 + dg0+e−1
2n−2 ≥ max{q(d), 2g0 + 4}

here q(d) :=
∑
pei

i for d =
∏
pei

i (pi’s are distinct prime numbers). See the
example 3.4 again. We notice the left and right matrices are a type (A) and
a type (B) respectively.

4.3.1 Type (A)

• Case g0 = 1:
From the above, d + e − 1 ≥ 2n−2d − 2n when g0 = 1. Since we assume
0 < e ≤ d, 2d−1 ≥ d+e−1 ≥ 2n−2d−2n. Then 2n−1 ≥ (2n−2−2)d (n ≥ 3).
Now, if n > 3,

(n ≤) d ≤ 4 +
7

2n−2 − 2
. (20)

Consequently, it follows that n ≥ 6 is not within the candidates. From
this result and the property of σ, the candidates of 4-triple (n, d, e, S) are:
(5, 5, 4, 5), (4, 4, 1, 5), (4, 5, 4, 6), (4, 6, 3, 6), (4, 7, 6, 7), (3, 3, 2, 6), (3, 4, 1, 6),
(3, 4, 3, 7), (3, 7, 2, 8), (3, 7, 4, 9), (3, 7, 6, 10), (2, 2, 1, 6), (2, 2, 2, 7), (2, 3, 1, 7),
(2, 3, 2, 8), (2, 3, 3, 9).

• Case g0 = 2:
Similarly, when g0 = 2, since we assume 0 < e ≤ 2d, 4d− 1 ≥ 2d+ e− 1 ≥
2n−2d− 2n. Then, if n > 4,

(n ≤) d ≤ 4 +
15

2n−2 − 4
. (21)

Thus the candidates of (n, d, e, S) are: (4, 4, 5, 7), (4, 5, 3, 7), (4, 5, 7, 8), (4, 6, 1, 7),
(4, 6, 5, 8), (4, 6, 9, 9), (4, 7, 3, 8), (4, 7, 7, 9), (4, 7, 11, 10), (4, 15, 15, 15), (4, 15, 19, 16),
(4, 15, 23, 17), (4, 15, 27, 18), (3, 3, 1, 7), (3, 3, 3, 8), (3, 3, 5, 9), (3, 4, 1, 8), (3, 4, 3, 9),
(3, 4, 5, 10), (3, 4, 7, 11), (3, 7, 1, 11), (3, 7, 3, 12), (3, 7, 5, 13), (3, 7, 7, 14), (3, 7, 9, 15),
(3, 7, 11, 16), (3, 7, 13, 17), (2, 2, 1, 8), (2, 2, 2, 9), (2, 2, 3, 10), (2, 2, 4, 11), (2, 3, 1, 10),
(2, 3, 2, 11), (2, 3, 3, 12), (2, 3, 4, 13), (2, 3, 5, 14), (2, 3, 6, 15).
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• Case g0 = 3:
Next, if g0 = 3 (0 < e ≤ 7

3d), then

(5 ≤ n ≤) d ≤ 4 +
61

3(2n−2 − 16
3 )
. (22)

Hence possible (n, d, e, S) are: (5, 8, 17, 9), (4, 4, 9, 9), (4, 5, 6, 9), (4, 5, 10, 10),
(4, 6, 3, 9), (4, 6, 7, 10), (4, 6, 11, 11), (4, 7, 4, 10), (4, 7, 8, 11), (4, 7, 12, 12), (4, 7, 16, 13),
(4, 15, 4, 16), (4, 15, 8, 17), (4, 15, 12, 18), (4, 15, 16, 19), (4, 15, 20, 20), (4, 15, 24, 21),
(4, 15, 28, 22), (4, 15, 32, 23), (3, 3, 2, 9), (3, 3, 4, 10), (3, 3, 6, 11), (3, 4, 1, 10), (3, 4, 3, 11),
(3, 4, 5, 12), (3, 4, 7, 13), (3, 4, 9, 14), (3, 7, 2, 15), (3, 7, 4, 16), (3, 7, 6, 17), (3, 7, 8, 18),
(3, 7, 10, 19), (3, 7, 12, 20), (3, 7, 14, 21), (3, 7, 16, 22), (2, 2, 1, 10), (2, 2, 2, 11), (2, 2, 3, 12),
(2, 2, 4, 13), (2, 3, 1, 13), (2, 3, 2, 14), (2, 3, 3, 15), (2, 3, 4, 16), (2, 3, 5, 17), (2, 3, 6, 18),
(2, 3, 7, 19).

4.3.2 Type (B)

• Case 2 - d:
Now, d = LCM{di} ≤

∏
di ≤

∏
(2ni − 1) < 2n. (di is the order of ♠i in

(8)). Here, if g0 = 1 (0 < e ≤ d), then

d+ e− 1 ≤ 2d− 1 < 2n+1. (23)

On the other hand, it follows that

d+ e− 1 ≥ 2n−2(q(d) − 4) (24)

since S = 4 + d+e−1
2n−2 ≥ q(d). From (23)(24), one obtains

2n+1 > 2n−2(q(d) − 4). (25)

Consequently, 12 > q(d). Besides, we have 20 > q(d) for g0 = 2 (0 < e ≤ 2d)
since 2n−2(q(d)− 4) ≤ 2d+ e− 1 < 2n+2. By the similar manner, 26 > q(d)
when g0 = 3 (0 < e ≤ 7

3d).
• Case 2 | d:
In this case, ni = limi, di = 2rid0

i (2 - d0
i ), then d0

i | 2mi − 1. Let r :=
max{ri}. Here, we obtain 2ri−1 + 1 ≤ li ≤ 2ri for ri ≥ 1. Accordingly,
2r−1 + 1 ≤ l1 ≤ 2r when we assume l1 with r1 ≥ 1. Now, notice that

♠i =


⋆i ⋆i Õ · · ·

Õ ⋆i
. . . . . .

...
. . . . . . ⋆i

Õ · · · Õ ⋆i


1

li

(
⋆i

) }
mi. (26)

8



Then

d = LCM{2rid0
i } = 2r · LCM{d0

i } ≤ 2r ·
∏

d0
i (27)

≤ 2r ·
∏

(2mi − 1) (28)

<

{
2r+

∑
i≥1 mi (m1 ≥ 2)

2r+
∑

i≥2 mi (m1 = 1).
(29)

On the other hand, we know

dg0 + e− 1 ≥ 2n−2(q(d) − 4). (30)

Hence, if g0 = 1 (0 < e ≤ d), then

2d− 1 ≥ 2n−2(q(d) − 4). (31)

From (29) (31), we obtain

2r+(
∑

i≥1 mi)+1 > 2n−2(q(d) − 4) (32)

23+r+(
∑

i≥1 mi)−n > q(d) − 4 (33)

23+r−2r−1m1 > q(d) − 4 (34)

for m1 ≥ 2. Similarly, 23+r−2r−1−1 > q(d) − 4 for m1 = 1. Therefore, we
obtain 8 > q(d). In the same way, we have 12 > q(d) and 15 > q(d) for
g0 = 2 and g0 = 3.

From these upper bounds and the property of σ, we obtain a list of pos-
sible (g0, n, d, e, S).
(1, 4, 6, 3, 6), (2, 5, 12, 9, 8), (2, 5, 12, 17, 9), (2, 5, 14, 13, 9), (2, 5, 14, 21, 10),
(2, 5, 21, 7, 10), (2, 5, 21, 15, 11), (2, 5, 21, 23, 12), (2, 5, 21, 31, 13), (2, 5, 21, 39, 14),
(2, 4, 6, 5, 8), (2, 4, 6, 9, 9), (3, 6, 21, 34, 10), (3, 6, 28, 29, 11), (3, 6, 28, 45, 12),
(3, 6, 28, 61, 13), (3, 5, 21, 2, 12), (3, 5, 21, 10, 13), (3, 5, 21, 18, 14), (3, 5, 21, 26, 15),
(3, 5, 21, 34, 16), (3, 5, 21, 42, 17), (3, 5, 14, 7, 10), (3, 5, 14, 15, 11), (3, 5, 14, 23, 12),
(3, 5, 14, 31, 13), (3, 5, 12, 13, 10), (3, 5, 12, 21, 11), (3, 4, 6, 7, 10), (3, 4, 6, 11, 11).

Next, within the above lists, we construct explicitly classes of hyperel-
liptic curves C0/kd for g(C0) ∈ {1, 2, 3} such that there is a covering π/kd :
C −→ C0 and the covering curve C/k has genus g(C) = d ·g(C0)+e (e > 0).

5 Elliptic/Hyperelliptic curves C0 against GHS at-
tack

5.1 Existence of a model of C over k

Here, we show conditions for existence of a model of C over k.
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Consider that C0 is a hyperelliptic curve over kd defined by y2 = c · f(x)
where c ∈ k×d , f(x) is a monic polynomial in kd[x]. Denote by F (x) ∈ F2[x]
the minimal polynomial of σ. Define F̂ (x) ∈ F2[x] as a polynomial such that
xd + 1 = F (x)F̂ (x) ∈ F2[x]. We have the following necessary and sufficient
condition:

C has a model over kd ⇐⇒
F (σ)y2 ≡ F (σ)c = cF (q) ≡ 1 mod (kd(x)×)2,
G(σ)y2 ̸≡ 1 mod (kd(x)×)2 for∀G(x) | F (x), G(x) ̸= F (x). (35)

Now we know a model of C over k exists iff the extension σ of the
Frobenius automorphism σkd/k is an automorphism of kd(C) of order d in
the separable closure of kd(x).

Consequently, in the following lemma, we make the condition for c ex-
plicitly.

Lemma 5.1. Assume the condition (35) holds. In order that the curve C
has a model over k, c needs to be a square c ∈ (k×d )2 when F̂ (1) = 0. When
F̂ (1) = 1, there is a ϕ ∈ cov(C/P1) such that σϕ has order d even if σ does
not have order d. Therefore C always has a model over k.

Proof: Let M := { b(x)
a(x) |kd[x] ∋ a(x), b(x) : monic}.

Now, one has

F (σ)y ≡ ϵc
F (q)

2 mod M, here ϵ = ±1
F̂ (σ)F (σ)y ≡ F̂ (σ)ϵc

F̂ (q)F (q)
2

σd+1y ≡ ϵF̂ (1)c
qd+1

2

σd
y ≡ ϵF̂ (1)c

qd−1
2 y

We first consider two possibilities of F (1) = 1 and F (1) = 0 respectively.

• Case F (1) = 1 :

We notice F̂ (1) = 0 in this case. From σd
y ≡ c

qd−1
2 y, it follows that

c
qd−1

2 = 1. Hence c ∈ (k×d )2.

• Case F (1) = 0 :
Here, we consider further two possibilities of F̂ (1) = 0 and F̂ (1) = 1.
(a) F̂ (1) = 0

From σd
y ≡ c

qd−1
2 y, we know c ∈ (k×d )2.

(b) F̂ (1) = 1

Then σd
y ≡ ϵc

qd−1
2 y.

If ϵ = +1 and c ∈ (k×d )2, then σ has order d (i.e. σd
y = y).
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If ϵ = −1 or c /∈ (k×d )2, then σ has order 2d.
However, we can show that ∃ϕ ∈ cov(C/P1) such that (σϕ)d = 1.
Indeed, suppose d = 2r · d1 (2 - d1). Since σϕ = σϕσ−1, we have

(σϕ)d = σϕσ−1 · σ2ϕσ−2 · · ·σdϕσ−d · σd

= σϕ σ2
ϕ · · · σd

ϕ σd

= σϕ σ2
ϕ · · · σ2rd1

ϕ σd

= (ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ)d1 σd.

Here we use the additive notation of the Galois action on cov(C/P1) ≃
Fn

2 . Define

J :=


0 1 . . . 0
...

. . . . . .
...

...
. . . 1

0 . . . 0 0


m ≤ 2r .

Then Jm = O. Choose ϕ := t(0, 0, . . . , 1). Now, σi
ϕ corresponds to

(I + J)i · t(0, . . . 0, 1). Since

I+(I+J)+ · · ·+(I+J)2
r−1 =



O if m < 2r
0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 if m = 2r,

where O is the zero matrix, it follows that

ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ =
{

0 = t(0, 0, . . . , 0) if m < 2r

ψ := t(1, 0, . . . , 0) if m = 2r.

On the other hand, σd is an element in the center of Gal(kd(C)/k(x)),
i.e., σd ∈ Z(Gal(kd(C)/k(x))) = {1, ψ}. Thus, in the multiplicative
notation,

(σϕ)d = (ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ)d1 σd =
{

1d1 · 1 = 1 if m < 2r

ψd1 · ψ = 1 if m = 2r.

As a result, we can adopt the above σϕ instead of σ.
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5.2 The defining equations of C0

Finally, we show how to derive the defining equations of C0/kd for candidates
of (n, d, g0, e, S). Suppose F (σ)f(x) ≡ 1 mod (kd(x)×)2 is satisfied. Recall
xd + 1 = F (x)F̂ (x). We will define the following notation as bi = 1 when
there exists a ramification point (αqi

, 0) on C0 and let bi = 0 otherwise for
i = 0, . . . , d − 1. Let ϕ(x) := bd−1x

d−1 + · · · + b1x + b0. We know that
F (x)ϕ(x) ≡ 0 mod xd + 1 ⇔ ϕ(x) ≡ 0 mod F̂ (x). Hence ∃a(x) ∈ F2[x],
(a(x), F (x)) = 1, deg a(x) < degF (x), ϕ(x) ≡ a(x)F̂ (x) mod xd + 1 for
given n, d.

Further, we define the equivalence (b0, b1, . . . , bd−1) ∼ (bj , . . . , bd−1, b0, . . . , bj−1),
then corresponding ϕ(x)’s belong to the same class of C0. Indeed, xra(x)F̂ (x) ≡
a(x)F̂ (x) mod xd + 1 ⇔ xr + 1 ≡ 0 mod F̂ (x) for 1 ≤ r ≤ d. Since
F̂ (x)F2[x]/(xd + 1) ∼= F2[x]/(F (x)), the number of the classes of C0 is
N := #{(F2[x]/(F (x)))×}/d.

From the facts, we obtain a procedure to derive the defining equations
of C0 is as follows:

1. Choose a polynomial a(x) = 1, then ϕ(x) = F̂ (x) defines a class of C0.
If N = 1, then this procedure is completed.

2. If N ̸= 1, choose another polynomial a(x) satisfied the above condition
and define ϕ(x) = a(x)F̂ (x).

3. Find the class of C0 defined by ϕ(x).

4. Repeat step 2,3 until N − 1 different polynomials a(x) are found so
that the coefficients of ϕ(x) defined by a(x) are not cyclic permutation
of each others (See the example 5.4 as an instance of N ̸= 1).

Example 5.1. n = 2, d = 2 (Type A)
From x2 + 1 = (x+ 1)2, F (x) = (x+ 1)2, F̂ (x) = 1. Now, choose a(x) = 1
since N = 1, then ϕ(x) = 1. Thus, there exists a ramification point α ∈
Fqd′ \ Fqj′ (j′ |̸= d′, 2 | d′) on C0.
• Case g0 = 2, e = 1, S = 8
The form of C0/Fq2 is y2 = c · h2(x)h1(x). Here, h1(x) ∈ Fq[x], h2(x) ∈
Fq2 [x] \ Fq[x], deg h2(x) = 2,deg h1(x) ∈ {4, 3}, c := 1 or a non-square
element in Fq2 because F̂ (1) = 1. Then h2(x) = (x − α1)(x − α2) since
S = 2/Fq2 + 2/Fq2 + 4/Fq is satisfied (Note that 2/Fq2 and 4/Fq mean the
numbers of fixed points over Fq2 and Fq respectively). In this case, notice

the ramification points α1, α2 ∈ Fq2 \Fq or α1, α2 ∈ Fq4 \Fq2, α2 := αq2

1 (i.e.
d′ = 2, 4). See the list in the Appendix for details.
• Case g0 = 1, e = 2, S = 7
The form of C0/Fq2 is y2 = c · h2(x)h1(x). Here, h1(x) ∈ Fq[x], h2(x) ∈
Fq2 [x] \ Fq[x], deg h2(x) = 3,deg h1(x) ∈ {1, 0}, c := 1 or a non-square
element in Fq2. Then h2(x) = (x− α1)(x− α2)(x− α3) since S = 2/Fq2 +
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2/Fq2 + 2/Fq2 + 1/Fq. In this case, the ramification points are α1, α2, α3 ∈
Fq2 \ Fq or α1 ∈ Fq4 \ Fq2 α2 := αq2

1 α3 ∈ Fq2 \ Fq or α1 ∈ Fq6 \ (Fq2 ∪ Fq3)

α2 := αq2

1 α3 := αq4

1 (i.e. d′ = 2, 4, 6).

Example 5.2. n = 2, d = 3 (Type A)
x3 + 1 = (x+ 1)(x2 + x+ 1), F (x) = x2 + x+ 1, F̂ (x) = x+ 1. Now, choose
a(x) = 1 since N = 1, then ϕ(x) = x+1. Consequently, C0 has ramification
points α, αq ∈ Fqd′ \ Fqj′ (j′ |̸= d′, 3 | d′). However, there is no class of C0

within the list of the previous section.

Example 5.3. n = 3, d = 3 (Type A)
F (x) = (x+1)(x2 +x+1), F̂ (x) = 1. Similarly, C0 has a ramification point
α ∈ Fqd′ \Fqj′ (j′ |̸= d′, 3 | d′). In this case, consider also (n, d) = (2, 3) (i.e.
ramification points α, αq ∈ Fqd′ \ Fqj′ (j′ |̸= d′, 3 | d′)).
• Case g0 = 2, e = 3, S = 8
Then, there exist two cases as follow:

1. S = 3/Fq3 + 5/Fq

C0/Fq3 is y2 = c · (x − α)h1(x). Here, α ∈ Fq3 , h1(x) ∈ Fq[x],
deg h1(x) ∈ {5, 4}, c := 1 or a non-square element in Fq3.

2. S = 3/Fq3 + 3/Fq3 + 2/Fq

C0/Fq3 is y2 = c · (x − α1)(x − αq
1)(x − α2)(x − αq

2)h1(x). Here,
(x − α1)(x − αq

1)(x − α2)(x − αq
2) ∈ Fq3 [x] \ Fq[x], h1(x) ∈ Fq[x],

deg h1(x) ∈ {2, 1}, c := 1 or a non-square element in Fq3. In this case,
the ramification points are α1, α2 ∈ Fq3 \ Fq or α1 ∈ Fq6 \ (Fq2 ∪ Fq3)

α2 := αq3

1 .

Example 5.4. n = 4, d = 6 (Type A)
x6 + 1 = (x+ 1)2(x2 + x+ 1)2.

• Case(a)
F (x) = (x2 + x + 1)2, F̂ (x) = (x + 1)2. Now, choose a(x) = 1 and
a(x) = x+1 since N = 2, then ϕ(x) = x2+1 and ϕ(x) = x3+x2+x+1.
In these cases, C0 has ramification points α, αq2

or α, αq, αq2
, αq3 ∈

Fqd′ \ Fqj′ (j′ | ̸= d′, 6 | d′).

• Case(b)
F (x) = (x+1)2(x2+x+1), F̂ (x) = (x2+x+1). Now, choose a(x) = 1
since N = 1, then ϕ(x) = x2 + x+ 1. In the case, C0 has ramification
points α, αq, αq2 ∈ Fqd′ \ Fqj′ (j′ |̸= d′, 6 | d′).

Example 5.5. n = 4, d = 6 = 2 · 3 (Type B)
x6 + 1 = (x+ 1)2(x2 + x+ 1)2, F (x) = (x+ 1)2(x2 + x+ 1).
Then we consider the candidates of (n, d) = (2, 2), (2, 3), (3, 3) (i.e. ramifica-
tion points β ∈ Fqe′ \Fql′ (l′ |̸= e′, 2 | e′) and α, αq ∈ Fqd′ \Fqj′ (j′ |̸= d′, 3 | d′)
or β ∈ Fqe′ \ Fql′ (l′ |̸= e′, 2 | e′) and α ∈ Fqd′ \ Fqj′ (j′ |̸= d′, 3 | d′).

Lists are shown in the Appendices for all defining equations C0.
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Appendices

A Classification for type (A) : ∃di = d

Here, h1(x) ∈ Fq[x], hd(x) ∈ Fqd [x] \ Fqj [x] (j |̸= d),
η := 1 or a non-square element in Fqd .
α, γ ∈ Fqd \ Fqj (j |̸= d), αi ∈ Fqd′ \ Fqj′ (j′ |̸= d′, d | d′).
Notice d′ = d, 2d, . . . ,max{i}d for i in the tables.

C0/kd : y2 = c · h(x)h1(x)
(1) n = 4, d = 4
Then h(x) = hd(x).

(n, d, g0, e, S) hd(x) deg h1(x) c

(4, 4, 1, 1, 5) (x− α)(x− αq)(x− αq2
) 1, 0 η

(4, 4, 2, 5, 7) (x− α)(x− αq)(x− αq2
) 3, 2 η

(4, 4, 3, 9, 9) (x− α)(x− αq)(x− αq2
) 5, 4 η

(x− α)(x− γq)(x− γq2
) 5, 4 η

(2) n = 4, d = 5
h(x) = hd(x)

(n, d, g0, e, S) hd(x) deg h1(x) c

(4, 5, 3, 10, 10)
∏2

i=1(x− αi)(x− αq
i )(x− αq2

i )(x− αq3

i ) 0 1

(3) n = 4, d = 6
h(x) = hd(x)

(n, d, g0, e, S) hd(x) deg h1(x) c

(4, 6, 1, 3, 6) (x− α)(x− αq)(x− αq2
)(x− αq3

) 0 1
(4, 6, 2, 9, 9) (x− α)(x− αq)(x− αq2

) 3,2 η

(4) n = 4, d = 7
h(x) = hd(x)

(n, d, g0, e, S) hd(x) deg h1(x) c

(4, 7, 2, 7, 9) (x− α)(x− αq)(x− αq2
)(x− αq4

) 2, 1 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) 2, 1 η

(4, 7, 2, 11, 10) (x− α)(x− αq2
)(x− αq3

) 3, 2 η

(x− α)(x− αq)(x− αq3
) 3, 2 η

(4, 7, 3, 8, 11) (x− α)(x− αq)(x− αq2
)(x− αq4

) 4, 3 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) 4, 3 η

(4, 7, 3, 12, 12) (x− α)(x− αq2
)(x− αq3

) 5, 4 η

(x− α)(x− αq)(x− αq3
) 5, 4 η
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Here, α ∈ Fqd \ Fqj (j |̸= d), αi ∈ Fqd′ \ Fqj′ (j′ |̸= d′, d | d′).
C0/kd : y2 = c · h(x)h1(x)
(5) n = 3, d = 3
h(x) = hd(x)

(n, d, g0, e, S) hd(x) deg h1(x) c

(3, 3, 1, 2, 6) x− α 3, 2 η

(3, 3, 2, 1, 7) (x− α)(x− αq) 4, 3 η

(3, 3, 2, 3, 8) x− α 5, 4 η∏2
i=1(x− αi)(x− αq

i ) 2, 1 η

(3, 3, 2, 5, 9) (x− α)(x− αq)(x− γ) 3, 2 η

(3, 3, 3, 2, 9) (x− α)(x− αq) 6, 5 η

(3, 3, 3, 4, 10) x− α 7, 6 η∏2
i=1(x− αi)(x− αq

i ) 4, 3 η

(3, 3, 3, 6, 11) (x− α)(x− αq)(x− γ) 5, 4 η∏3
i=1(x− αi)(x− αq

i ) 2, 1 η

(6) n = 3, d = 4 β ∈ Fq2 \ Fq, βi ∈ Fqe′ \ Fql′ (l′ |̸= e′, 2 | e′), h2(x) ∈
Fq2 [x] \ Fq[x]
h(x) = hd(x)h2(x)

(n, d, g0, e, S) hd(x) h2(x) deg h1(x) c

(3, 4, 1, 1, 6) (x− α)(x− αq) 1 2, 1 1
(3, 4, 1, 3, 7) (x− α)(x− αq) x− β 1, 0 1
(3, 4, 2, 1, 8) (x− α)(x− αq) 1 4, 3 1
(3, 4, 2, 3, 9) (x− α)(x− αq) x− β 3, 2 1
(3, 4, 2, 5, 10) (x− α1)(x− αq

1)(x− α2)(x− αq
2) 1 2, 1 1

(x− α)(x− αq) (x− β1)(x− β2) 2, 1 1
(3, 4, 2, 7, 11) (x− α)(x− αq)

∏3
i=1(x− βi) 1, 0 1∏2

i=1(x− αi)(x− αq
i ) x− β 1, 0 1

(3, 4, 3, 1, 10) (x− α)(x− αq) 1 6, 5 1
(3, 4, 3, 3, 11) (x− α)(x− αq) x− β 5, 4 1
(3, 4, 3, 5, 12)

∏2
i=1(x− αi)(x− αq

i ) 1 4, 3 1
(x− α)(x− αq) (x− β1)(x− β2) 4, 3 1

(3, 4, 3, 7, 13) (x− α)(x− αq)
∏3

i=1(x− βi) 3, 2 1∏2
i=1(x− αi)(x− αq

i ) x− β 3, 2 1
(3, 4, 3, 9, 14) (x− α)(x− αq)

∏4
i=1(x− βi) 2, 1 1∏2

i=1(x− αi)(x− αq
i ) (x− β1)(x− β2) 2, 1 1∏3

i=1(x− αi)(x− αq
i ) 1 2, 1 1
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(7) n = 2, d = 2
h(x) = hd(x)

(n, d, g0, e, S) hd(x) deg h1(x) c

(2, 2, 1, 1, 6) (x− α1)(x− α2) 2, 1 η

(2, 2, 1, 2, 7)
∏3

i=1(x− αi) 1, 0 η

(2, 2, 2, 1, 8)
∏2

i=1(x− αi) 4, 3 η

(2, 2, 2, 2, 9)
∏3

i=1(x− αi) 3, 2 η

(n, d, g0, e, S) hd(x) deg h1(x) c

(2, 2, 2, 3, 10)
∏4

i=1(x− αi) 2, 1 η

(2, 2, 2, 4, 11)
∏5

i=1(x− αi) 2, 1 η

(2, 2, 3, 1, 10)
∏2

i=1(x− αi) 6, 5 η

(2, 2, 3, 2, 11)
∏3

i=1(x− αi) 5, 4 η

(2, 2, 3, 3, 12)
∏4

i=1(x− αi) 4, 3 η

(2, 2, 3, 4, 13)
∏5

i=1(x− αi) 3, 2 η

B Classification for type (B): ∀di ̸= d

Here, h1(x) ∈ Fq[x], η := 1 or a non-square element in Fqd .

C0/kd : y2 = c · h(x)h1(x)
(1) n = 6, d = 28 = 7 · 4, α ∈ Fq7 \ Fq, β ∈ Fq4 \ Fq2

Then h(x) = h7(x)h4(x).

(n, d, g0, e, S) h7(x) h4(x) deg h1(x) c

(6, 28, 3, 61, 13) (x− α)(x− αq)(x− αq2
)(x− αq4

) (x− β)(x− βq) 2, 1 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) (x− β)(x− βq) 2, 1 η

(2) n = 5, d = 12 = 4 · 3, α ∈ Fq4 \ Fq2 , β ∈ Fq3 \ Fq

h(x) = h4(x)h3(x)

(n, d, g0, e, S) h4(x) h3(x) deg h1(x) c

(5, 12, 2, 17, 9) (x− α)(x− αq) (x− β)(x− βq) 2, 1 η

(5, 12, 3, 21, 11) (x− α)(x− αq) (x− β)(x− βq) 4, 3 η

(3) n = 5, d = 14 = 7 · 2, α ∈ Fq7 \ Fq, β ∈ Fq2 \ Fq, βi ∈ Fqd′ \ Fqj′ (j′ |̸=
d′, 2 | d′), h2(x) ∈ Fq2 [x] \ Fq[x]
h(x) = h7(x)h2(x)
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(n, d, g0, e, S) h7(x) h2(x) deg h1(x) c

(5, 14, 2, 21, 10) (x− α)(x− αq)(x− αq2
)(x− αq4

) x− β 1, 0 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) x− β 1, 0 η

(5, 14, 3, 23, 12) (x− α)(x− αq)(x− αq2
)(x− αq4

) x− β 3, 2 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) x− β 3, 2 η

(5, 14, 3, 31, 13) (x− α)(x− αq)(x− αq2
)(x− αq4

)
∏2

i=1(x− βi) 2, 1 η

(x− α)(x− αq2
)(x− αq3

)(x− αq4
)

∏2
i=1(x− βi) 2, 1 η

(x− α)(x− αq2
)(x− αq3

) x− β 4, 3 η

(x− α)(x− αq)(x− αq3
) x− β 4, 3 η

C0/kd : y2 = c · h(x)h1(x)
(4) n = 5, d = 21 = 7 · 3, α ∈ Fq7 \ Fq, β ∈ Fq3 \ Fq, βi ∈ Fqd′ \ Fqj′ (j′ |̸=
d′, 3 | d′), h3(x) ∈ Fq3 [x] \ Fq[x]
h(x) = h7(x)h3(x)

(n, d, g0, e, S) h7(x) h3(x) deg h1(x) c

(5, 21, 2, 7, 10) (x− α)(x− αq)(x− αq2
)(x− αq4

) (x− β)(x− βq) 0 1
(x− α)(x− αq2

)(x− αq3
)(x− αq4

) (x− β)(x− βq) 0 1
(5, 21, 3, 2, 12) (x− α)(x− αq)(x− αq2

)(x− αq4
) (x− β)(x− βq) 2, 1 1

(x− α)(x− αq2
)(x− αq3

)(x− αq4
) (x− β)(x− βq) 2, 1 1

(5, 21, 3, 10, 13) (x− α)(x− αq)(x− αq2
)(x− αq4

)
∏2

i=1(x− βi)(x− βq
i ) 0 1

(x− α)(x− αq2
)(x− αq3

)(x− αq4
)

∏2
i=1(x− βi)(x− βq

i ) 0 1

(5) n = 4, d = 6 = 3 · 2, α ∈ Fq3 \ Fq, αi ∈ Fqd′ \ Fqj′ (j′ |̸= d′, 3 | d′),
β ∈ Fq2 \ Fq, βi ∈ Fqe′ \ Fql′ (l′ |̸= e′, 2 | e′), h3(x) ∈ Fq3 [x] \ Fq[x], h2(x) ∈
Fq2 [x] \ Fq[x]
h(x) = h3(x)h2(x)

(n, d, g0, e, S) h3(x) h2(x) deg h1(x) c

(4, 6, 1, 3, 6) (x− α)(x− αq) x− β 0 η

(4, 6, 2, 5, 8) (x− α)(x− αq) x− β 3, 2 η

(4, 6, 2, 9, 9) x− α x− β 4, 3 η∏2
i=1(x− αi)(x− αq

i ) x− β 1, 0 η

(x− α)(x− αq)
∏2

i=1(x− βi) 2, 1 η

(4, 6, 3, 7, 10) (x− α)(x− αq) x− β 5, 4 η

(4, 6, 3, 11, 11) x− α x− β 6, 5 η∏2
i=1(x− αi)(x− αq

i ) x− β 3, 2 η

(x− α)(x− αq)
∏2

i=1(x− βi) 4, 3 η
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