Classification of Elliptic/hyperelliptic Curves with Weak Coverings against GHS Attack without Isogeny Condition

Tsutomu Iijima * Fumiyuki Momose ${ }^{\dagger}$ Jinhui Chao *
2011/12/3

Abstract

The GHS attack is known as a method to map the discrete logarithm problem(DLP) in the Jacobian of a curve C_{0} defined over the d degree extension k_{d} of a finite field k to the DLP in the Jacobian of a new curve C over k. Recently, classification and density analysis were shown for all elliptic curves and hyperelliptic curves C_{0} / k_{d} of genus 2 , 3 which possess $(2, \ldots, 2)$ covering C / k of \mathbb{P}^{1}, therefore subjected to GHS attack, under the isogeny condition (i.e. when $g(C)=d \cdot g\left(C_{0}\right)$). In this paper, we first show a general classification procedure for the odd characteristic case. Our main approach is to use representation of the extension of $\operatorname{Gal}\left(k_{d} / k\right)$ acting on $\operatorname{cov}\left(C / \mathbb{P}^{1}\right)$. Then a classification of small genus hyperelliptic curves C_{0} / k_{d} which possesses $(2, . ., 2)$ covering C over k is presented without the isogeny condition. Explicit defining equations of such curves C_{0} / k_{d} and existential conditions of a model of C over k are also presented.

Keywords : Weil descent attack, GHS attack, Elliptic curve cryptosystems, Hyperelliptic curve cryptosystems, Index calculus, Galois representation

1 Introduction

Let $k_{d}:=\mathbb{F}_{q^{d}}, k:=\mathbb{F}_{q}(d>1), q$ be a power of a prime number.
Weil descent was firstly introduced by Frey [7] to elliptic curve cryptosystems. This idea is developed into the well-known GHS attack in [11]. This attack maps the discrete logarithm problem (DLP) in the Jacobian of

[^0]a curve C_{0} defined over the d degree extension field k_{d} of the finite field k to the DLP in the Jacobian of a curve C over k by a conorm-norm map. The GHS attack is further extended and analyzed by many researchers and is conceptually generalized to the cover attack [5]. The cover attack maps the DLP in the Jacobian of a curve C_{0} / k_{d} to the DLP in the Jacobian of a covering curve C / k of C_{0} when a covering map or a non-constant morphism between C_{0} and C exists.

If the DLP in the Jacobian of C_{0} can be solved more efficiently in the Jacobian of C, we call C_{0} a weak curve or say that it has weak covering C against GHS or cover attack. Thus, it is important and interesting to know what kind of curves C_{0} have such coverings C, how many are they, etc..

It is known that the most efficient attack to DLP in the Jacobian of algebraic curve based systems is the index calculus algorithms. In [9], Gaudry first proposed his variant of the Adleman-DeMarrais-Huang algorithm [1] to attack hyperelliptic curve discrete logarithm problems, which is faster than Pollard's rho algorithm when the genus is larger than 4 but becomes impractical for large genera. Recently, a single-large-prime variation [25] and a double-large-prime variation [12][21] are proposed. These variations can be applied in the GHS attack if the curve C / k is a hyperelliptic curve of $g(C) \geq 3$. The complexity of these double-large-prime algorithms are $\tilde{O}\left(q^{2-2 / g}\right)$. On the other hand, when C / k is a non-hyperelliptic curve, Diem's recent proposal of a double-large-prime variation [4] can be applied with complexity of $\tilde{O}\left(q^{2-2 /(g-1)}\right)$. Besides, Gaudry showed a general algorithm solving discrete logarithms on Abelian varieties of dimension n^{\prime} in running time $\tilde{O}\left(q^{2-2 / n^{\prime}}\right)$ [10]. In particular, for elliptic curves over cubic extension field k_{3}, the running time is $\tilde{O}\left(q^{4 / 3}\right)$.

Recently, security analyses of elliptic and hyperelliptic curves C_{0} / k_{d} with weak covering C / k were shown under the following isogeny condition $[2][18][19][20][22][23]$. Assume that there exists a covering curve C / k of C_{0} / k_{d} and

$$
\begin{equation*}
{ }^{\exists} \pi / k_{d}: C \rightarrow C_{0} \tag{1}
\end{equation*}
$$

such that for

$$
\begin{align*}
\pi_{*} & : J(C) \rightarrow J\left(C_{0}\right) \tag{2}\\
\operatorname{Res}\left(\pi_{*}\right) & : J(C) \longrightarrow \operatorname{Res}_{k_{d} / k} J\left(C_{0}\right) \tag{3}
\end{align*}
$$

defines an isogeny over k, here $J(C)$ is the Jacobian variety of C and $\operatorname{Res}_{k_{d} / k} J\left(C_{0}\right)$ is its Weil restriction. Then $g(C)=d \cdot g\left(C_{0}\right)$. Under this condition, the curves C_{0} / k_{d} which possess covering curves C / k as $(2, \ldots, 2)$ covering of \mathbb{P}^{1} are already classified for hyperelliptic curves of genus $1,2,3$ [18][19][20]. Here, classification means to give a complete list of all such weak curves C_{0}. In particular, defining equations are presented for these curves. Density of the weak curves are also obtained for certain cases.

In this paper, we first discuss the existence of a model of C over k. Then we show a general classification procedure for the odd characteristic case of hyperelliptic curves $C_{0} / k_{d}: y^{2}=c \cdot f(x)$ of genus $1,2,3$ with $(2, \ldots, 2)$ covering C / k. By applying this procedure, we obtain a classification of these weak curves C_{0} without isogeny condition. Specifically, we assume that $g(C)=d \cdot g\left(C_{0}\right)+e, e>0$. Here, e is the dimension of $\operatorname{ker}\left(\operatorname{Res}\left(\pi_{*}\right)\right)$. Our approach for the classification is a representation theoretical one, to investigate action of the extension of $\operatorname{Gal}\left(k_{d} / k\right)$ on $\operatorname{cov}\left(C / \mathbb{P}^{1}\right)$. As a result, we obtain a complete list of defining equations of these weak curves C_{0} / k_{d} for small values of e which is corresponding to cryptographically meaningful classes of C_{0}. Furthermore, representation theoretical approach gives the condition for a model of C over k explicitly.

2 GHS attack and $(2, \ldots, 2)$ covering

Firstly, we review briefly the GHS attack and the cover attack.
Let $k_{d}\left(C_{0}\right)$ be the function field of a curve $C_{0} / k_{d}, C l^{0}\left(k_{d}\left(C_{0}\right)\right)$ the class group of the degree 0 divisors of $k_{d}\left(C_{0}\right), \sigma_{k_{d} / k}$ the Frobenius automorphism of k_{d} over k, x the transcendental element over k_{d}. Unless otherwise noted, we assume $\sigma_{k_{d} / k}$ is extended to an automorphism σ of order d in the separable closure of $k_{d}(x)$. It is showed by Diem [3] that $\sigma_{k_{d} / k}$ can extend an automorphism of the order d when d is odd for the odd characteristic case. We will extend the condition in the case of any $d>1$ and the odd characteristic in the section 4 . The Galois closure of $k_{d}\left(C_{0}\right) / k(x)$ is $\mathcal{F}^{\prime}:=k_{d}\left(C_{0}\right) \cdot \sigma\left(k_{d}\left(C_{0}\right)\right) \cdots \sigma^{d-1}\left(k_{d}\left(C_{0}\right)\right)$ and the fixed field of \mathcal{F}^{\prime} by the automorphism σ is $\mathcal{F}:=\left\{\zeta \in \mathcal{F}^{\prime} \mid \sigma(\zeta)=\zeta\right\}$. The DLP in $C l^{0}\left(k_{d}\left(C_{0}\right)\right) \cong J\left(C_{0}\right)\left(k_{d}\right)$ is mapped to the DLP in $C l^{0}(\mathcal{F}) \cong J(C)(k)$ using the following composition of conorm and norm maps:

$$
N_{\mathcal{F}^{\prime} / \mathcal{F}} \circ \operatorname{Con}_{\mathcal{F}^{\prime} / k_{d}\left(C_{0}\right)}: C l^{0}\left(k_{d}\left(C_{0}\right)\right) \longrightarrow C l^{0}(\mathcal{F}) .
$$

This map is called the conorm-norm homomorphism in the original GHS paper on the elliptic curve case [11].

This attack has been extended to wider classes of curves. The GHS attack is conceptually generalized to the cover attack by Frey and Diem [5]. When there exist an algebraic curve C / k and a covering $\pi / k_{d}: C \longrightarrow C_{0}$, the DLP in $J\left(C_{0}\right)\left(k_{d}\right)$ can be mapped to the DLP in $J(C)(k)$ by a pullbacknorm map.

Hereafter, let q be a power of an odd prime. Assume C_{0} is a hyperelliptic
curve with $g\left(C_{0}\right) \in\{1,2,3\}$ given by

$$
\begin{equation*}
C_{0} / k_{d}: y^{2}=c \cdot f(x) \tag{4}
\end{equation*}
$$

where $c \in k_{d}^{\times}, f(x)$ is a monic polynomial in $k_{d}[x]$. Then assume that we have a tower of extensions of function fields such that $k_{d}\left(x, y,{ }^{\sigma^{1}} y, \ldots,{ }^{\sigma^{n-1}} y\right) \simeq$ $k_{d}(C) / k_{d}(x)(n \leq d)$ is a $\overbrace{(2, \ldots, 2)}^{n}$ type extension. Here, a $\overbrace{(2, \ldots, 2)}^{n}$ covering is defined as a covering $\pi / k_{d}: C \longrightarrow \mathbb{P}^{1}$

$$
\begin{equation*}
\overbrace{C \longrightarrow \underbrace{C_{0} \longrightarrow \mathbb{P}^{1}(x)}_{2}}^{\overbrace{(2, \ldots, 2)}^{n}} \tag{5}
\end{equation*}
$$

such that $\operatorname{cov}\left(C / \mathbb{P}^{1}\right) \simeq \mathbb{F}_{2}^{n}$, here $\operatorname{cov}\left(C / \mathbb{P}^{1}\right):=\operatorname{Gal}\left(k_{d}(C) / k_{d}(x)\right)$.

3 Representation of $\operatorname{Gal}\left(k_{d} / k\right)$ on $\operatorname{cov}\left(C / \mathbb{P}^{1}\right)$

Next, we consider the Galois group $\operatorname{Gal}\left(k_{d} / k\right)$ acting on the covering group $\operatorname{cov}\left(C / \mathbb{P}^{1}\right) \simeq \mathbb{F}_{2}^{n}$.

$$
\begin{align*}
\operatorname{Gal}\left(k_{d} / k\right) \times \operatorname{cov}\left(C / \mathbb{P}^{1}\right) & \longrightarrow \operatorname{cov}\left(C / \mathbb{P}^{1}\right) \tag{6}\\
\left(\sigma_{k_{d} / k}^{i}, \phi\right) & \longmapsto \sigma^{i} \phi:=\sigma^{i} \phi \sigma^{-i} \tag{7}
\end{align*}
$$

Then one has a map onto $\operatorname{Aut}\left(\operatorname{cov}\left(C / \mathbb{P}^{1}\right)\right)$.

$$
\begin{equation*}
\xi: G a l\left(k_{d} / k\right) \hookrightarrow \operatorname{Aut}\left(\operatorname{cov}\left(C / \mathbb{P}^{1}\right)\right) \simeq G L_{n}\left(\mathbb{F}_{2}\right) \tag{8}
\end{equation*}
$$

Thus the representation of σ for given n, d is (we use the same notation for σ and its representation):

$$
\left.\sigma=\left(\begin{array}{cccc}
\boxed{\boldsymbol{\Lambda}_{1}} & O & \cdots & O \tag{9}\\
O & \boxed{\boldsymbol{巾}_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & O \\
O & \cdots & O & \boxed{\boldsymbol{\omega}_{s}}
\end{array}\right)\right\} n_{s}
$$

is consisted of the diagonal blocks of matrices which are denoted by where $n=\sum_{i=1}^{s} n_{i}$ and the O are zero matrices,

$$
\boxed{\boldsymbol{\Phi}_{i}}=\left(\begin{array}{cccc}
\boxed{\star_{i}} & \boxed{\star_{i}} & \hat{O} & \cdots \tag{10}\\
\hat{O} & \boxed{\star_{i}} & \ddots & \ddots \\
\vdots & \ddots & \ddots & \star_{i} \\
\hat{O} & \cdots & \hat{O} & \begin{array}{|c}
\star_{i}
\end{array}
\end{array}\right)_{l_{i}}
$$

is an $n_{i} \times n_{i}$ matrix which has a form of an $l_{i} \times l_{i}$ block matrix. The sub-blocks $\boxed{\star_{i}}$ are $n_{i} / l_{i} \times n_{i} / l_{i}$ matrices and \hat{O} 's are $n_{i} / l_{i} \times n_{i} / l_{i}$ zero matrices. Here, if $F_{i}(x):=\left(\text { the characteristic polynomial of } \star_{i}\right)^{l_{i}}$, then $F(x):=L C M\left\{F_{i}(x)\right\}$ is the minimal polynomial of σ. When $d_{i}:=\operatorname{ord}\left(\boldsymbol{\varphi}_{i}\right), d=L C M\left\{d_{i}\right\}$. The examples of the representation of σ for given n and d are as follows:

Example 3.1. $n=2, d=2$

$$
\sigma=\left(\begin{array}{ll}
1 & 1 \tag{11}\\
0 & 1
\end{array}\right), F(x)=(x+1)^{2}=x^{2}+1
$$

Example 3.2. $n=2, d=3$

$$
\sigma=\left(\begin{array}{ll}
1 & 1 \tag{12}\\
1 & 0
\end{array}\right), F(x)=x^{2}+x+1
$$

Example 3.3. $n=3, d=3$

$$
\sigma=\left(\begin{array}{lll}
1 & 0 & 0 \tag{13}\\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), F(x)=(x+1)\left(x^{2}+x+1\right)=x^{3}+1
$$

Example 3.4. $n=3, d=4$

$$
\sigma=\left(\begin{array}{lll}
1 & 1 & 0 \tag{14}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), F(x)=(x+1)^{3}=x^{3}+x^{2}+x+1
$$

Example 3.5. $n=4, d=6$

$$
\sigma=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \tag{15}\\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \text { or } \quad\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus, σ have the minimal polynomials as $F(x)=\left(x^{2}+x+1\right)^{2}$, or $F(x)=$ $(x+1)^{2}\left(x^{2}+x+1\right)$.

4 Existence of a model of C over k

In this paper, we consider C_{0} as a hyperelliptic curve over k_{d} defined by $y^{2}=c \cdot f(x)$ where $c \in k_{d}^{\times}, f(x)$ is a monic polynomial in $k_{d}[x]$. Denote by $F(x) \in \mathbb{F}_{2}[x]$ the minimal polynomial of σ. Here, we have the following
necessary and sufficient condition for given n, d, σ :
C has a model over $k_{d} \Longleftrightarrow$

$$
\begin{align*}
& F(\sigma) y^{2}={ }^{F(\sigma)} c \cdot{ }^{F(\sigma)} f(x)=c^{F(q)} \cdot{ }^{F(\sigma)} f(x) \equiv 1 \quad \bmod \left(k_{d}(x)^{\times}\right)^{2}, \\
& G(\sigma) y^{2} \not \equiv 1 \quad \bmod \left(k_{d}(x)^{\times}\right)^{2} \text { for }{ }^{\forall} G(x) \mid F(x), G(x) \neq F(x) \tag{16}
\end{align*}
$$

Firstly, we show conditions for existence of a model of C over k. Now we know a model of C over k exists iff the extension σ of the Frobenius automorphism $\sigma_{k_{d} / k}$ is an automorphism of $k_{d}(C)$ of order d in the separable closure of $k_{d}(x)$. Diem showed in [3] that the Frobenius automorphism $\sigma_{k_{d} / k}$ on $k_{d}(x)$ is extended to an automorphism of $\mathcal{F}^{\prime} / k_{d}(x)$ of order d when d is odd for the odd characteristic case. We extend the condition in the case of any $d>1$. In the following lemma, we show explicitly the condition for c in case of any $d>1$. For the rest of this paper, define $\hat{F}(x) \in \mathbb{F}_{2}[x]$ as a polynomial such that $x^{d}+1=F(x) \hat{F}(x) \in \mathbb{F}_{2}[x]$.
Lemma 4.1. In order that the curve C has a model over k, when $\hat{F}(1)=0$, c needs to be a square $c \in\left(k_{d}^{\times}\right)^{2}$. When $\hat{F}(1)=1$, there is a $\phi \in \operatorname{cov}\left(C / \mathbb{P}^{1}\right)$ such that $\sigma \phi$ has order d if σ does not have order d, so we can adopt such $\sigma \phi$ instead of σ. Therefore C always has a model over k when $\hat{F}(1)=1$.

Proof: Let $M:=\left\{\left.\frac{b(x)}{a(x)} \right\rvert\, k_{d}[x] \ni a(x), b(x):\right.$ monic $\}$.
Since ${ }^{F(\sigma)} f(x) \equiv 1 \bmod \left(k_{d}(x)^{\times}\right)^{2}$, we have

$$
\begin{align*}
F(\sigma) y^{2} & \equiv F(\sigma) c=c^{F(q)} \quad \bmod \left(k_{d}(x)^{\times}\right)^{2} \tag{17}\\
F(\sigma) y & \equiv \epsilon c^{\frac{F(q)}{2}} \bmod M, \quad \text { here } \epsilon= \pm 1 \tag{18}\\
\hat{F}(\sigma) F(\sigma) & \equiv \hat{F}(\sigma) \epsilon c^{\frac{\hat{F}(q) F(q)}{2}} \tag{19}\\
\sigma^{d}+1 & \equiv \epsilon^{\hat{F}(1)} c^{\frac{q^{d}+1}{2}} \tag{20}\\
\sigma^{d} y & \equiv \epsilon^{\hat{F}(1)} c^{\frac{q^{d}-1}{2}} y \tag{21}
\end{align*}
$$

We first consider two possibilities of $F(1)=1$ and $F(1)=0$ respectively.

- Case $F(1)=1$:

We notice $\hat{F}(1)=0$ in this case. Now, $\sigma^{d} y \equiv c^{\frac{q^{d}-1}{2}} y$. In order that σ has order d (i.e. $\sigma^{d} y \equiv y$), c needs to be a square $c \in\left(k_{d}^{\times}\right)^{2}$.

- Case $F(1)=0$:

Here, we consider further two possibilities of $\hat{F}(1)=0$ and $\hat{F}(1)=1$.
(a) $\hat{F}(1)=0$

Similarly, $\sigma^{d} y \equiv c^{\frac{q^{d}-1}{2}} y . c$ should be a square element in k_{d}^{\times}.
(b) $\hat{F}(1)=1$

Then $\sigma^{d} y \equiv \epsilon c^{\frac{q^{d}-1}{2}} y$.
If $\epsilon=+1$ and $c \in\left(k_{d}^{\times}\right)^{2}$, then σ has order d (i.e. $\sigma^{d} y=y$).

If $\epsilon=-1$ or $c \notin\left(k_{d}^{\times}\right)^{2}$, then σ has order $2 d$.
However, we can show that ${ }^{\exists} \phi \in \operatorname{cov}\left(C / \mathbb{P}^{1}\right)$ such that $(\sigma \phi)^{d}=1$.
Suppose $d=2^{r} \cdot d^{\prime}\left(2 \nmid d^{\prime}\right)$. Since ${ }^{\sigma} \phi:=\sigma \phi \sigma^{-1}$, we have

$$
\begin{align*}
(\sigma \phi)^{d} & =\sigma \phi \sigma^{-1} \cdot \sigma^{2} \phi \sigma^{-2} \cdots \sigma^{d} \phi \sigma^{-d} \cdot \sigma^{d} \tag{22}\\
& ={ }^{\sigma} \phi^{\sigma^{2}} \phi \cdots \sigma^{d} \phi \sigma^{d} \tag{23}\\
& ={ }^{\sigma} \phi \sigma^{\sigma^{2}} \phi \cdots \sigma^{\sigma^{r^{\prime}}} \phi \sigma^{d} . \tag{24}
\end{align*}
$$

Now, we choose $\phi:={ }^{t} \overbrace{0,0, \ldots, 1}^{m}, 0, \ldots, 0) \in \operatorname{cov}\left(C / \mathbb{P}^{1}\right)$. Define

$$
\left.I \text { as the identity matrix, } J:=\left(\begin{array}{cccc}
0 & 1 & & O \\
\vdots & \ddots & \ddots & \\
\vdots & O & \ddots & 1 \\
0 & \cdots & \cdots & 0
\end{array}\right)\right\} m \leq 2^{r} \text {. }
$$

Then $J^{m}=O$. We notice that the representation of σ is

$$
\left(\begin{array}{ll}
\boldsymbol{ధ} & O \tag{25}\\
O & *
\end{array}\right) \text { where } \boldsymbol{ధ}:=I+J .
$$

Here, $\sigma^{\sigma^{i}} \phi$ corresponds to $(I+J)^{i} \cdot t(\overbrace{0, \ldots 0,1}^{m})$. Now, since $\sigma^{\sigma^{2 r}} \phi=\phi$, $(\sigma \phi)^{d}=\left(\phi^{\sigma} \phi^{\sigma^{2}} \phi \ldots \sigma^{\sigma^{2}-1} \phi\right)^{d^{\prime}} \sigma^{d}$. Furthermore, since

$$
I+(I+J)+\cdots+(I+J)^{2^{r}-1}=\left\{\begin{array}{cccc}
& O & & \text { if } m<2^{r} \tag{26}\\
\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right) \quad \text { if } m=2^{r},
\end{array}\right.
$$

where O is the zero matrix, it follows that

$$
\phi^{\sigma} \phi^{\sigma^{2}} \phi \ldots{ }^{\sigma^{2 r}-1} \phi=\left\{\begin{align*}
{ }^{t}(0,0, \ldots, 0) & \text { if } m<2^{r} \tag{27}\\
\psi:={ }^{t}(1,0, \ldots, 0) & \text { if } m=2^{r} .
\end{align*}\right.
$$

On the other hand, σ^{d} is an element in the center of $\operatorname{Gal}\left(\mathcal{F}^{\prime} / k(x)\right)$, i.e., $\sigma^{d} \in Z\left(\operatorname{Gal}\left(\mathcal{F}^{\prime} / k(x)\right)\right)=\{1, \psi\}$. When $\operatorname{ord}(\sigma)=2 d, \sigma^{d}=\psi$. Furthermore, notice that $m=2^{r}$ in the case of (b). Thus, in the multiplicative notation,

$$
\begin{equation*}
(\sigma \phi)^{d}=\left(\phi^{\sigma} \phi \sigma^{\sigma^{2}} \phi \ldots \sigma^{2^{r}-1} \phi\right)^{d^{\prime}} \sigma^{d}=\psi^{d^{\prime}} \cdot \psi=1 \tag{28}
\end{equation*}
$$

As a result, we can adopt the above $\sigma \phi$ instead of σ.

Example 4.1. $n=2, d=2$
$x^{2}+1=(x+1)^{2}, F(x)=(x+1)^{2}, \hat{F}(x)=1$
Since $\hat{F}(x)=1, \hat{F}(1)=1$. Therefore, c should be 1 or a non-square element in k_{2} in order that the curve C has a model over k under the assumption $F(\sigma) f(x) \equiv 1 \bmod \left(k_{d}(x)^{\times}\right)^{2}$.

Example 4.2. $n=2, d=3$
$x^{3}+1=(x+1)\left(x^{2}+x+1\right), F(x)=x^{2}+x+1, \hat{F}(x)=x+1$
Since $\hat{F}(x)=x+1, \hat{F}(1)=0$. It follows that c is a square element $c \in\left(k_{3}^{\times}\right)^{2}$ (i.e. $c=1$).

Example 4.3. $n=3, d=3$
$x^{3}+1=(x+1)\left(x^{2}+x+1\right), F(x)=x^{3}+1, \hat{F}(x)=1$
Since $\hat{F}(x)=1, \hat{F}(1)=1$. Similarly, we obtain that c is 1 or a non-square element in k_{3}.

Example 4.4. $n=3, d=4$
$x^{4}+1=(x+1)^{4}, F(x)=(x+1)^{3}, \hat{F}(x)=x+1$
In this case, $\hat{F}(1)=0$. Consequently, $c \in\left(k_{4}^{\times}\right)^{2}$.
Example 4.5. $n=4, d=6$
$x^{6}+1=(x+1)^{2}\left(x^{2}+x+1\right)^{2}$

1. $F(x)=\left(x^{2}+x+1\right)^{2}, \hat{F}(x)=(x+1)^{2}$

Now, $\hat{F}(1)=0$ since $\hat{F}(x)=x^{2}+1$. Hence c is a square element $c \in\left(k_{6}^{\times}\right)^{2}$.
2. $F(x)=(x+1)^{2}\left(x^{2}+x+1\right), \hat{F}(x)=x^{2}+x+1$

Then, $\hat{F}(1)=1$. As a result, c is 1 or a non-square element in k_{6}.

5 Classification procedure of elliptic/hyperelliptic curves C_{0} with weak coverings

From now, we show a procedure to classify all weak curves C_{0} / k_{d} for given n, d. The procedure will output their defining equations and a complete list of such curves.

5.1 Ramification points of C_{0} / \mathbb{P}^{1}

Also for the rest of this paper, we assume the condition ${ }^{F(\sigma)} f(x) \equiv 1$ $\bmod \left(k_{d}(x)^{\times}\right)^{2}$. Recall that $\hat{F}(x) \in \mathbb{F}_{2}[x]$ is a polynomial such that $x^{d}+1=$ $F(x) \hat{F}(x) \in \mathbb{F}_{2}[x]$. We will define the following notation as $b_{i}=1$ when there exists a ramification point ($\alpha^{q^{i}}, 0$) on C_{0} and let $b_{i}=0$ otherwise for $i=0, \ldots, d-1$. Here, α is either in $k_{d}\left(\alpha \in k_{d} \backslash k_{v},\left.v\right|_{\neq d)}\right.$ or in certain
extension of $k_{d}\left(\alpha \in k_{d \tau} \backslash k_{v},\left.v\right|_{\neq d \tau}{ }^{\exists} \tau \in \mathbb{N}_{>1}\right)$ if $f(x)$ contains all conjugate factors of $\alpha^{q^{i}}$ over k_{d}. Let $\Phi(x):=b_{d-1} x^{d-1}+\cdots+b_{1} x+b_{0}$. Then $\Phi(x)$ defines a minimal Galois-invariant set of ramification points of C_{0} / \mathbb{P}^{1} over k_{d}.

Since ${ }^{F(\sigma)} f(x) \equiv 1 \bmod \left(k_{d}(x)^{\times}\right)^{2}, F(x) \Phi(x) \equiv 0 \bmod \left(x^{d}+1\right)$. Then, $F(x) \Phi(x) \equiv 0 \bmod \left(x^{d}+1\right) \Leftrightarrow \Phi(x) \equiv 0 \bmod \hat{F}(x)$. Therefore, it follows that $\Phi(x) \equiv a(x) \hat{F}(x) \bmod \left(x^{d}+1\right)$ for given $n, d\left({ }^{\exists} a(x) \in \mathbb{F}_{2}[x]\right.$, $\operatorname{deg} a(x)<\operatorname{deg} F(x))$. Additionally, we can prove that $\hat{F}(x) \mathbb{F}_{2}[x] /\left(x^{d}+1\right) \cong$ $\mathbb{F}_{2}[x] /(F(x))$. This suggests that we can know candidates of the ramification points of C_{0} / \mathbb{P}^{1} if $a(x) \in \mathbb{F}_{2}[x]$ are determined for given $\hat{F}(x) \in \mathbb{F}_{2}[x]$. Hereafter, we assume that $\operatorname{gcd}(F(x), a(x))=1$ in order to treat $\Phi(x)$ corresponding to given $F(x)$. Next, we define the equivalence relation such that $\left(b_{0}, b_{1}, \ldots, b_{d-1}\right) \sim\left(b_{j}, \ldots, b_{d-1}, b_{0}, \ldots, b_{j-1}\right)$ (i.e. the coefficients of $\Phi(x)$'s are cyclic permutation of each other), then corresponding $\Phi(x)$'s belong to the same class of C_{0}. Furthermore, $x^{r} a(x) \hat{F}(x) \equiv a(x) \hat{F}(x) \bmod \left(x^{d}+1\right)$ $\Leftrightarrow x^{r}+1 \equiv 0 \bmod F(x)$ for $1 \leq r \leq d$. Thus, we obtain that $r=d$. From these results, the number of the classes of C_{0} is $N:=\#\left\{\left(\mathbb{F}_{2}[x] /(F(x))\right)^{\times}\right\} / d$. This means that we obtain candidates of the ramification points of C_{0} / \mathbb{P}^{1} if N different $\Phi(x)$'s are found so that they are not cyclic permutation of each other for given $\hat{F}(x)$. From these facts, we show a procedure to derive candidates of the ramification points $\left\{\left(\alpha^{q^{i}}, 0\right) \mid b_{i}=1\right\}$ on C_{0} for given n, d, σ.

1. Choose a polynomial $a(x)=1$, then $\Phi(x):=\hat{F}(x)$ gives ramification points $\left\{\left(\alpha^{q^{i}}, 0\right) \mid b_{i}=1\right\}$ on C_{0}. If $N=1$, then this procedure is completed. If $N \geq 2$, then repeat step $2 \sim 4$ until N different $a(x)$'s are found so that the coefficients of $\Phi(x)^{\prime}$'s are not cyclic permutation of each other.
2. Choose another polynomial $a(x)$ such that $(a(x), F(x))=1$ and $\operatorname{deg} a(x)<$ $\operatorname{deg} F(x)$ are satisfied. Next, define $\Phi(x):=a(x) \hat{F}(x)$.
3. Check whether all $\Phi(x)$'s are cyclic permutation of each other or not. If so, discard such $a(x)$. Go to step 2 again. If they are not cyclic permutation of each others, we add $\left\{\left(\alpha^{q^{i}}, 0\right) \mid b_{i}=1\right\}$ defined by $\Phi(x)$ to the candidates.
4. Check whether N different $a(x)$'s are found. If yes, then this procedure is completed. Otherwise, return to step 2.

Example 5.1. $n=2, d=2$
$x^{2}+1=(x+1)^{2}, F(x)=(x+1)^{2}, \hat{F}(x)=1$
Now, $N=1$. Choose $a(x)=1$, then $\Phi(x)=a(x) \hat{F}(x)=1$. Thus, there exists a ramification point $(\alpha, 0)$ on C_{0} as a candidate.

Example 5.2. $n=2, d=3$
$x^{3}+1=(x+1)\left(x^{2}+x+1\right), F(x)=x^{2}+x+1, \hat{F}(x)=x+1$

Similarly, $N=1$. Choose $a(x)=1$, then $\Phi(x)=x+1 . C_{0}$ has ramification points $\left\{(\alpha, 0),\left(\alpha^{q}, 0\right)\right\}$ on C_{0}.

Example 5.3. $n=3, d=3$
$x^{3}+1=(x+1)\left(x^{2}+x+1\right), F(x)=x^{3}+1, \hat{F}(x)=1, N=1$
Choose $a(x)=1$, then $\Phi(x)=1$. Consequently, C_{0} has a ramification point $(\alpha, 0)$ on C_{0}.

Example 5.4. $n=3, d=4$
$x^{4}+1=(x+1)^{4}, F(x)=(x+1)^{3}, \hat{F}(x)=x+1, N=1$
Choose $a(x)=1$, then $\Phi(x)=x+1$. C_{0} has ramification points $\left\{(\alpha, 0),\left(\alpha^{q}, 0\right)\right\}$ on C_{0}.

Example 5.5. $n=4, d=6$
$x^{6}+1=(x+1)^{2}\left(x^{2}+x+1\right)^{2}$

1. $F(x)=\left(x^{2}+x+1\right)^{2}, \hat{F}(x)=(x+1)^{2}, N=2$

Now, choose $a(x)=1$ and $a(x)=x+1$, then $\Phi(x)=x^{2}+1$ and $\Phi(x)=x^{3}+x^{2}+x+1$. In these cases, C_{0} has ramification points $\left\{(\alpha, 0),\left(\alpha^{q^{2}}, 0\right)\right\}$ or $\left\{(\alpha, 0),\left(\alpha^{q}, 0\right),\left(\alpha^{q^{2}}, 0\right),\left(\alpha^{q^{3}}, 0\right)\right\}$ as candidates.
2. $F(x)=(x+1)^{2}\left(x^{2}+x+1\right), \hat{F}(x)=x^{2}+x+1, N=1$

Now, choose $a(x)=1$, then $\Phi(x)=x^{2}+x+1$. In the case, C_{0} has ramification points $\left\{(\gamma, 0),\left(\gamma^{q}, 0\right),\left(\gamma^{q^{2}}, 0\right)\right\}$.

5.2 Defining equations of C_{0}

Now, we are considering the case of a hyperelliptic curve C_{0} / k_{d} for $g\left(C_{0}\right) \in$ $\{1,2,3\}$ such that there is a covering $\pi / k_{d}: C \longrightarrow C_{0}$ and the covering curve C / k has genus $g(C)=d \cdot g\left(C_{0}\right)+e$ (Notice that the procedure in the section 5 and Lemma 4.1 are applicable to any $e \geq 0$). Let S be the number of fixed points of C / \mathbb{P}^{1} covering. By the Riemann-Hurwitz theorem, $2 g-2=2^{n}(-2)+2^{n-1} S$, then $S=4+\frac{d g_{0}+e-1}{2^{n-2}}$. Hereafter, we consider the following two types:

- Type (A) : ${ }^{\exists} d_{i}$ s.t. $d_{i}=d\left(=L C M\left\{d_{i}\right\}\right)$
then, $S=4+\frac{d g_{0}+e-1}{2^{n-2}} \geq \max \left\{d, 2 g_{0}+3\right\}$
- Type (B) : $d_{i} \neq d$ for ${ }^{\forall} d_{i}$ then, $S=4+\frac{d g_{0}+e-1}{2^{n-2}} \geq \max \left\{q(d), 2 g_{0}+4\right\}$
here $q(d):=\sum p_{i}^{e_{i}}$ for $d=\prod p_{i}^{e_{i}}\left(p_{i}\right.$'s are distinct prime numbers). Notice that a Type(B) matrix has Type(A) matrices as subrepresentations.

Remark 5.1. See Example 3.5 again. We notice the left and right matrices are a Type (A) and a Type (B) respectively. Notice for the two cases:

$$
\begin{aligned}
& \operatorname{Type}(A): \sigma=\left(\begin{array}{cc}
\boxed{\star_{1}} & \boxed{\star_{1}} \\
\hline O & \left.\begin{array}{|c}
\star_{1} \\
\end{array}\right), \star_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
\end{array}\right.
\end{aligned}
$$

The procedure in the section 5.1 showed us how to drive the candidates of the ramification points $\left\{\left(\alpha^{q^{i}}, 0\right)\right\}$ on $C_{0}\left(\alpha \in k_{d} \backslash k_{v},\left.v\right|_{\neq d}\right.$ or $\alpha \in$ $k_{d \tau} \backslash k_{v},\left.v\right|_{\neq d \tau}, \tau \in \mathbb{N}_{>1}$ if $f(x)$ contains all conjugate factors of $\alpha^{q^{i}}$ over k_{d}). Below, we show main steps to find the defining equations for every weak curve C_{0}.

1. Calculate the number of fixed points of C / \mathbb{P}^{1} covering $S=4+\frac{d g_{0}+e-1}{2^{n-2}}$ for given n, d, g_{0}, e using Riemann-Hurwitz formula and test if σ is Type (A) or (B).
2. If Type (A) case and σ : irreducible, go to step 3 with ramification points $\left\{\left(\alpha^{q^{i}}, 0\right) \mid b_{i}=1\right\}$ on C_{0} obtained by using the procedure in the section 5.1.
Otherwise, go to step 3 with ramification points obtained from all subrepresentations of σ except the trivial representation (1) by the procedure in the section 5.1. Notice that the Type (B) matrix has Type (A) matrices as sub-blocks. Therefore, we can reuse the results for Type (A) in the section 5.1.
3. Find $f(x)$ to try all combinations of polynomials which contain all conjugate factors of $x-\alpha^{q^{i}}$ for each ramification point and have the right degree of genus g_{0}.

The above operations are explained in further details in the following examples.

Example 5.6. $n=2, d=2, g_{0}=2, e=1, g=5$ (Type A)
In this case, we can know that $f(x)$ has a factor $x-\alpha_{i}$ as in Example 5.1
 factors of α_{i} over $\left.k_{2}\right)$. Since $S=4+\left(d \cdot g_{0}+e-1\right) / 2^{n-2}=8$, we have the following two forms as candidates of C_{0} / k_{2} :
(a) $S=\#\left\{\alpha_{1}, \alpha_{1}^{q}\right\}+\#\left\{\alpha_{2}, \alpha_{2}^{q}\right\}+4=2+2+4$
$C_{0} / k_{2}: \quad y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) h_{1}(x)$.
(b) $S=\#\left\{\alpha_{1}, \alpha_{1}^{q}\right\}+\#\left\{\alpha_{2}, \alpha_{2}^{q}\right\}+\#\left\{\alpha_{3}, \alpha_{3}^{q}\right\}+\#\left\{\alpha_{4}, \alpha_{4}^{q}\right\}=2+2+2+2$ $C_{0} / k_{2}: y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)$.
Here, $h_{1}(x) \in k[x], \operatorname{deg} h_{1}(x) \in\{4,3\}, \prod\left(x-\alpha_{i}\right) \in k_{2}[x] \backslash k[x]$. As $g_{0}=2$ in this case, (a) should be chosen from two forms. We remark the ramification
points are $\alpha_{1}, \alpha_{2} \in k_{2} \backslash k$ or $\alpha_{1} \in k_{4} \backslash k_{2}, \alpha_{2}:=\alpha_{1}^{q^{2}}$ in consideration of conjugate factors of α_{1} over k_{2}. Recall Example 4.1. $\hat{F}(1)=1$ since $\hat{F}(x)=1$. Let η be 1 or a non-square element in k_{2}. As a result, we obtain $C_{0} / k_{2}: y^{2}=\eta\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) h_{1}(x)$. Now, $g=d \cdot g_{0}+e=5$. Roughly, the attacking costs on $J(C / k)$ is lower than on $J\left(C / k_{d}\right)$ as follows:

$C_{0} / k_{d}:$	$C / k:$ hyper	$C / k:$ non-hyper
$\tilde{O}\left(q^{\frac{d \cdot g_{0}}{2}}\right)=\tilde{O}\left(q^{2}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e}}\right)=\tilde{O}\left(q^{8 / 5}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e-1}}\right)=\tilde{O}\left(q^{3 / 2}\right)$

Example 5.7. $n=3, d=3, g_{0}=2, e=3, g=9$ (Type A)
Now, $f(x)$ has a factor $x-\alpha$. Additionally, consider also $(n, d)=(2,3)$ (i.e. $\left.\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right) \mid f(x)\right)$. Since $S=4+\left(d \cdot g_{0}+e-1\right) / 2^{n-2}=8$, there exist two cases as follows:
(1) $S=3+5$

$$
C_{0} / k_{3}: y^{2}=\eta(x-\alpha) h_{1}(x)
$$

Here, $\alpha \in k_{3} \backslash k, h_{1}(x) \in k[x], \operatorname{deg} h_{1}(x) \in\{5,4\}$.
(2) $S=3+3+2$
$C_{0} / k_{3}: y^{2}=\eta\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{q}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{q}\right) h_{1}(x)$
Here, $\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{q}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{q}\right) \in k_{3}[x] \backslash k[x], h_{1}(x) \in k[x], \operatorname{deg} h_{1}(x) \in$ $\{2,1\}$. The ramification points are $\alpha_{1}, \alpha_{2} \in k_{3} \backslash k$ or $\alpha_{1} \in k_{6} \backslash\left(k_{2} \cup k_{3}\right)$, $\alpha_{2}:=\alpha_{1}^{q^{3}}$. Remark that $\eta:=1$ or a non-square element in k_{3}. The rough estimation of the attacking costs between $J\left(C_{0} / k_{d}\right)$ and $J(C / k)$ is as follows:

$C_{0} / k_{d}:$	$C / k:$ hyper	$C / k:$ non-hyper
$\tilde{O}\left(q^{\frac{d \cdot g_{0}}{2}}\right)=\tilde{O}\left(q^{3}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e}}\right)=\tilde{O}\left(q^{16 / 9}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e-1}}\right)=\tilde{O}\left(q^{7 / 4}\right)$

Example 5.8. $n=3, d=3, g_{0}=2, e=1, g=7$ (Type A)
Similarly, we consider factors $x-\alpha$ and $(x-\alpha)\left(x-\alpha^{q}\right)$. Now $S=4+\left(d \cdot g_{0}+\right.$ $e-1) / 2^{n-2}=7$. Consequently, we obtain $C_{0} / k_{3}: y^{2}=\eta(x-\alpha)\left(x-\alpha^{q}\right) h_{1}(x)$ when $S=3+4$. Here, $\alpha \in k_{3} \backslash k, h_{1}(x) \in k[x], \operatorname{deg} h_{1}(x) \in\{4,3\}, \eta:=1$ or a non-square element in k_{3}. The rough estimation between the attacking costs is as follows:

$C_{0} / k_{d}:$	$C / k:$ hyper	$C / k:$ non-hyper
$\tilde{O}\left(q^{\frac{d \cdot g_{0}}{2}}\right)=\tilde{O}\left(q^{3}\right)$	$\tilde{O}\left(q^{2-\frac{2}{2 \cdot g_{0}+e}}\right)=\tilde{O}\left(q^{12 / 7}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e-1}}\right)=\tilde{O}\left(q^{5 / 3}\right)$

Example 5.9. $n=3, d=4, g_{0}=2, e=1, g=9$ (Type A)
Recall that $(x-\alpha)\left(x-\alpha^{q}\right) \mid f(x)\left(\alpha \in k_{4} \backslash k_{2}\right.$ or $\alpha \in k_{4 \tau} \backslash k_{v},\left.v\right|_{\neq 4 \tau, \tau \in \mathbb{N}_{>1}}$ if $f(x)$ contains all conjugate factors of $\alpha^{q^{i}}$ over k_{4}) when $(n, d)=(3,4)$, and $(x-\beta) \mid f(x)\left(\beta \in k_{2} \backslash k\right.$ or $\beta \in k_{2 \tau} \backslash k_{v},\left.v\right|_{\neq 2 \tau, \tau \in \mathbb{N}_{>1} \text { if } f(x)}$ contains all conjugate factors of β over k_{2}) when $(n, d)=(2,2)$. Then, $S=4+\left(d \cdot g_{0}+e-1\right) / 2^{n-2}=8$. Since $g_{0}=2$, we obtain $C_{0} / k_{4}: y^{2}=$ $(x-\alpha)\left(x-\alpha^{q}\right) h_{1}(x)$ when $S=4+4$. Here, $\alpha \in k_{4} \backslash k_{2}, h_{1}(x) \in k[x]$, $\operatorname{deg} h_{1}(x) \in\{4,3\}$. The comparison similar to the above examples is as follows:

$C_{0} / k_{d}:$	$C / k:$ hyper	$C / k:$ non-hyper
$\tilde{O}\left(q^{\frac{d \cdot g_{0}}{2}}\right)=\tilde{O}\left(q^{4}\right)$	$\tilde{O}\left(q^{2-\frac{2}{2} \cdot g_{0}+e}\right)=\tilde{O}\left(q^{16 / 9}\right)$	$\tilde{O}\left(q^{2-\frac{2}{2} \cdot g_{0}+e-1}\right)=\tilde{O}\left(q^{7 / 4}\right)$

Example 5.10. $n=4, d=6, g_{0}=1, e=3, g=9$ (Type A)
In this case, consider the combination of $(x-\alpha)\left(x-\alpha^{q^{2}}\right) \mid f(x)$ and $(x-$ $\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right) \mid f(x)$. Now, $S=4+\left(d \cdot g_{0}+e-1\right) / 2^{n-2}=6$. Since $g_{0}=1$, we obtain $C_{0} / k_{6}: y^{2}=(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)$ $\left(\alpha \in k_{6} \backslash\left(k_{3} \cup k_{2}\right)\right)$ when $S=6+0$. The comparison between attacking costs is :

$C_{0} / k_{d}:$	$C / k:$ hyper	$C / k:$ non-hyper
$\tilde{O}\left(q^{\frac{d \cdot g_{0}}{2}}\right)=\tilde{O}\left(q^{3}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e}}\right)=\tilde{O}\left(q^{16 / 9}\right)$	$\tilde{O}\left(q^{2-\frac{2}{d \cdot g_{0}+e-1}}\right)=\tilde{O}\left(q^{7 / 4}\right)$

Example 5.11. $n=4, d=6, g_{0}=1, e=3, g=9$ (Type B)
We know $(x-\gamma)\left(x-\gamma^{q}\right)\left(x-\gamma^{q^{2}}\right) \mid f(x)$ as in Example 5.5. Next, consider all proper subrepresentations of σ except the trivial representation (1). Derive candidates of the ramification points for $(n, d)=(3,3),(2,3),(2,2)$. From the results of Example 5.3, 5.2 and 5.1, they have been already obtained: $(x-\alpha)\left|f(x),(x-\alpha)\left(x-\alpha^{q}\right)\right| f(x)$ and $(x-\beta) \mid f(x)\left(\right.$ Here, $\alpha \in k_{3} \backslash k$ or $\alpha \in k_{3 \tau} \backslash k_{v},\left.v\right|_{\neq 3 \tau, \tau} \in \mathbb{N}_{>1}$, and $\beta \in k_{2} \backslash k$ or $\beta \in k_{2 \tau} \backslash k_{v},\left.v\right|_{\neq 2 \tau, \tau} \in$ $\mathbb{N}_{>1}$ respectively). Finally, find $f(x)$ to try all combinations of polynomials which contain all conjugate factors of the aboves to consider that C_{0} / k_{6} have $g_{0}=1$ and $S=6$. In this case, it follows that C_{0} / k_{6} has the form $y^{2}=\eta(x-\alpha)\left(x-\alpha^{q}\right)(x-\beta) h_{1}(x)$ when $S=3+2+1$. Here, $\alpha \in k_{3} \backslash k$, $\beta \in k_{2} \backslash k, h_{1}(x) \in k[x], \operatorname{deg} h_{1}(x) \in\{1,0\}, \eta:=1$ or a non-square element in k_{6}. The comparison between attacking costs is the same as Example 5.10.

See the lists in Appendices for other defining equations C_{0} / k_{d}.

6 Classification of elliptic/hyperelliptic curves C_{0} without isogeny condition

Here, we apply the procedure in section 5 to classify C_{0} / k_{d}. In particular, we consider cases of a hyperelliptic curve C_{0} / k_{d} for $g\left(C_{0}\right) \in\{1,2,3\}$ such that there is a covering $\pi / k_{d}: C \longrightarrow C_{0}$ and the covering curve C / k has genus $g(C)=d \cdot g\left(C_{0}\right)+e(e>0)$.

6.1 Upper bound of e in $g(C)=d g\left(C_{0}\right)+e(e>0)$

Firstly, since C_{0} are used in the cryptographic applications, we need to restrict C_{0} to a practically meaningful class. Thus we will tentatively estimate an upper bound of e for $g\left(C_{0}\right) \in\{1,2,3\}$. In algebraic curve based cryptosystems, the standard key length is above 160 bits at present. This means the size of the Jacobian of C_{0} / k_{d} is

$$
\begin{equation*}
q^{g\left(C_{0}\right) d} \geq 2^{160} . \tag{29}
\end{equation*}
$$

Next, we assume that the size of Jacobian of C / k is $q^{d g_{0}+e} \leq 2^{a}$.
Remark 6.1. Hereafter, we discuss within $a \leq 320$. Meanwhile, Lemma 4.1 and the procedures in the previous section can apply to any $e \geq 0$ and $q^{d g_{0}+e}>2^{320}$. The treatment of these cases will be reported in the near future.

6.1.1 Case $g\left(C_{0}\right)=1$

Then, we have the following situation for $g_{0}=1$

$$
\left\{\begin{array}{l}
q^{d+e} \leq 2^{a} \tag{30}\\
2^{160} \leq q^{d} .
\end{array}\right.
$$

Now, since $\frac{q^{d+e}}{q^{d}} \leq \frac{2^{a}}{2^{160}}, q^{e} \leq 2^{a-160}$. Consequently,

$$
\log q^{e} \leq \log 2^{a-160}
$$

It follows that an upper bound of e is

$$
\begin{equation*}
e \leq \frac{(a-160) d}{160} \tag{31}
\end{equation*}
$$

When we assume $a \leq 320, e \leq d$ is obtained.

6.1.2 Case $g\left(C_{0}\right)=2,3$

Similarly, when $g\left(C_{0}\right)=2$, assume that

$$
\left\{\begin{array}{l}
q^{2 d+e} \leq 2^{a} \tag{32}\\
2^{160} \leq q^{2 d}
\end{array}\right.
$$

Then $e \leq 2 d$ if $a \leq 320$. When $g\left(C_{0}\right)=3$, the double-large-prime algorithms have the cost of $\tilde{O}\left(q^{\frac{4}{3} d}\right)$. Accordingly, the condition $q^{3 d} \geq 2^{180}$ (i.e. $q^{\frac{4}{3} d} \geq$ $\left.2^{80}\right)$ should be adopted instead of $q^{3 d} \geq 2^{160}\left(q^{\frac{4}{3} d} \geq 2^{71.11 \ldots}\right)$ to keep the same security level with $g_{0}=1,2$ hyperelliptic curves (the costs of attack to each DLP are $q^{\frac{d}{2}} \geq 2^{80}$ for $g_{0}=1, q^{d} \geq 2^{80}$ for $g_{0}=2$ as a key length of more than 2^{160} respectively). Thus, one can assume

$$
\left\{\begin{array}{l}
q^{3 d+e} \leq 2^{a} \tag{33}\\
2^{180} \leq q^{3 d}
\end{array}\right.
$$

Consequently, $e \leq \frac{7}{3} d$ if $a \leq 320$. In the next subsection, we enumerate the candidates of n, d, e, S within these bounds of e for $g\left(C_{0}\right)=1,2,3$.

6.2 The candidates of (n, d, e, S)

6.2.1 Type (A)

- Case $g_{0}=1$:

From the above, $d+e-1 \geq 2^{n-2} d-2^{n}$ when $g_{0}=1$. Since we assume $0<e \leq d, 2 d-1 \geq d+e-1 \geq 2^{n-2} d-2^{n}$. Then $2^{n}-1 \geq\left(2^{n-2}-2\right) d(n \geq 3)$. Now, if $n>3$,

$$
\begin{equation*}
(n \leq) d \leq 4+\frac{7}{2^{n-2}-2} \tag{34}
\end{equation*}
$$

Consequently, it follows that $n \geq 6$ is not within the candidates. From this result and the property of σ, the candidates of 4 -triple (n, d, e, S) are: $(5,5,4,5),(4,4,1,5),(4,5,4,6),(4,6,3,6),(4,7,6,7),(3,3,2,6),(3,4,1,6)$, $(3,4,3,7),(3,7,2,8),(3,7,4,9),(3,7,6,10),(2,2,1,6),(2,2,2,7),(2,3,1,7)$, $(2,3,2,8),(2,3,3,9)$.

- Case $g_{0}=2$:

Similarly, when $g_{0}=2$, since we assume $0<e \leq 2 d, 4 d-1 \geq 2 d+e-1 \geq$ $2^{n-2} d-2^{n}$. Then, if $n>4$,

$$
\begin{equation*}
(n \leq) d \leq 4+\frac{15}{2^{n-2}-4} \tag{35}
\end{equation*}
$$

Thus the candidates of (n, d, e, S) are: $(4,4,5,7),(4,5,3,7),(4,5,7,8),(4,6,1,7)$, $(4,6,5,8),(4,6,9,9),(4,7,3,8),(4,7,7,9),(4,7,11,10),(4,15,15,15),(4,15,19,16)$, $(4,15,23,17),(4,15,27,18),(3,3,1,7),(3,3,3,8),(3,3,5,9),(3,4,1,8),(3,4,3,9)$, $(3,4,5,10),(3,4,7,11),(3,7,1,11),(3,7,3,12),(3,7,5,13),(3,7,7,14),(3,7,9,15)$, $(3,7,11,16),(3,7,13,17),(2,2,1,8),(2,2,2,9),(2,2,3,10),(2,2,4,11),(2,3,1,10)$, $(2,3,2,11),(2,3,3,12),(2,3,4,13),(2,3,5,14),(2,3,6,15)$.

- Case $g_{0}=3$:

Next, if $g_{0}=3\left(0<e \leq \frac{7}{3} d\right)$, then

$$
\begin{equation*}
(5 \leq n \leq) d \leq 4+\frac{61}{3\left(2^{n-2}-\frac{16}{3}\right)} \tag{36}
\end{equation*}
$$

Hence possible (n, d, e, S) are: $(5,8,17,9),(4,4,9,9),(4,5,6,9),(4,5,10,10)$, $(4,6,3,9),(4,6,7,10),(4,6,11,11),(4,7,4,10),(4,7,8,11),(4,7,12,12),(4,7,16,13)$, $(4,15,4,16),(4,15,8,17),(4,15,12,18),(4,15,16,19),(4,15,20,20),(4,15,24,21)$, $(4,15,28,22),(4,15,32,23),(3,3,2,9),(3,3,4,10),(3,3,6,11),(3,4,1,10),(3,4,3,11)$, $(3,4,5,12),(3,4,7,13),(3,4,9,14),(3,7,2,15),(3,7,4,16),(3,7,6,17),(3,7,8,18)$, $(3,7,10,19),(3,7,12,20),(3,7,14,21),(3,7,16,22),(2,2,1,10),(2,2,2,11),(2,2,3,12)$, $(2,2,4,13),(2,3,1,13),(2,3,2,14),(2,3,3,15),(2,3,4,16),(2,3,5,17),(2,3,6,18)$, (2, 3, 7, 19).

6.2.2 Type (B)

- Case $2 \nmid d$:

Now, $d=\operatorname{LCM}\left\{d_{i}\right\} \leq \prod d_{i} \leq \prod\left(2^{n_{i}}-1\right)<2^{n}$. $\left(d_{i}\right.$ is the order of \square
(9)). Here, if $g_{0}=1(0<e \leq d)$, then

$$
\begin{equation*}
d+e-1 \leq 2 d-1<2^{n+1} \tag{37}
\end{equation*}
$$

On the other hand, it follows that

$$
\begin{equation*}
d+e-1 \geq 2^{n-2}(q(d)-4) \tag{38}
\end{equation*}
$$

since $S=4+\frac{d+e-1}{2^{n-2}} \geq q(d)$. From $(37)(38)$, one obtains

$$
\begin{equation*}
2^{n+1}>2^{n-2}(q(d)-4) \tag{39}
\end{equation*}
$$

Consequently, $12>q(d)$. Besides, we have $20>q(d)$ for $g_{0}=2(0<e \leq 2 d)$ since $2^{n-2}(q(d)-4) \leq 2 d+e-1<2^{n+2}$. By the similar manner, $26>q(d)$ when $g_{0}=3\left(0<e \leq \frac{7}{3} d\right)$.

- Case $2 \mid d$:

In this case, $n_{i}=l_{i} m_{i}, d_{i}=2^{r_{i}} d_{i}^{\prime}\left(2 \nmid d_{i}^{\prime}\right)$, then $d_{i}^{\prime} \mid 2^{m_{i}}-1$. Let $r:=$ $\max \left\{r_{i}\right\}$. Here, we obtain $2^{r_{i}-1}+1 \leq l_{i} \leq 2^{r_{i}}$ for $r_{i} \geq 1$. Accordingly, $2^{r-1}+1 \leq l_{1} \leq 2^{r}$ when we assume l_{1} with $r_{1} \geq 1$. Now, notice that

$$
\left.\overline{\boldsymbol{\leftrightarrow}_{i}}=\left(\begin{array}{cccc}
\boxed{\star_{i}} & \boxed{\star_{i}} & \hat{O} & \cdots \tag{40}\\
\hat{O} & \boxed{\star_{i}} & \ddots & \ddots \\
\vdots & \ddots & \ddots & \boxed{\star_{i}} \\
\hat{O} & \cdots & \hat{O} & \boxed{\star_{i}}
\end{array}\right) l_{i} \quad\left(\boxed{\star_{i}}\right)\right\} m_{i}
$$

Then

$$
\begin{align*}
d=\operatorname{LCM}\left\{2^{r_{i}} d_{i}^{\prime}\right\}=2^{r} \cdot \operatorname{LCM}\left\{d_{i}^{\prime}\right\} & \leq 2^{r} \cdot \prod d_{i}^{\prime} \tag{41}\\
& \leq 2^{r} \cdot \prod\left(2^{m_{i}}-1\right) \tag{42}\\
& <\left\{\begin{array}{c}
2^{r+\sum_{i \geq 1} m_{i}}\left(m_{1} \geq 2\right) \\
2^{r+\sum_{i \geq 2} m_{i}}\left(m_{1}=1\right)
\end{array}\right. \tag{43}
\end{align*}
$$

On the other hand, we know

$$
\begin{equation*}
d g_{0}+e-1 \geq 2^{n-2}(q(d)-4) \tag{44}
\end{equation*}
$$

Hence, if $g_{0}=1(0<e \leq d)$, then

$$
\begin{equation*}
2 d-1 \geq 2^{n-2}(q(d)-4) \tag{45}
\end{equation*}
$$

From (43) (45), we obtain

$$
\begin{align*}
2^{r+\left(\sum_{i \geq 1} m_{i}\right)+1} & >2^{n-2}(q(d)-4) \tag{46}\\
2^{3+r+\left(\sum_{i \geq 1} m_{i}\right)-n} & >q(d)-4 \tag{47}\\
2^{3+r-2^{r-1} m_{1}} & >q(d)-4 \tag{48}
\end{align*}
$$

for $m_{1} \geq 2$. Similarly, $2^{3+r-2^{r-1}-1}>q(d)-4$ for $m_{1}=1$. Therefore, we obtain $8>q(d)$. In the same way, we have $12>q(d)$ and $15>q(d)$ for $g_{0}=2$ and $g_{0}=3$ respectively.

From these upper bounds and the property of σ, we obtain a list of possible $\left(g_{0}, n, d, e, S\right)$:
$(1,4,6,3,6),(2,5,12,9,8),(2,5,12,17,9),(2,5,14,13,9),(2,5,14,21,10)$,
$(2,5,21,7,10),(2,5,21,15,11),(2,5,21,23,12),(2,5,21,31,13),(2,5,21,39,14)$,
$(2,4,6,5,8),(2,4,6,9,9),(3,6,21,34,10),(3,6,28,29,11),(3,6,28,45,12)$,
$(3,6,28,61,13),(3,5,21,2,12),(3,5,21,10,13),(3,5,21,18,14),(3,5,21,26,15)$, $(3,5,21,34,16),(3,5,21,42,17),(3,5,14,7,10),(3,5,14,15,11),(3,5,14,23,12)$, $(3,5,14,31,13),(3,5,12,13,10),(3,5,12,21,11),(3,4,6,7,10),(3,4,6,11,11)$.

Within the above lists, we constructed explicitly all classes of hyperelliptic curves C_{0} / k_{d} for $g\left(C_{0}\right) \in\{1,2,3\}$ such that there is a covering π / k_{d} : $C \longrightarrow C_{0}$ and the covering curve C / k has genus $g(C)=d \cdot g\left(C_{0}\right)+e(e>0)$. Lists for all defining equation C_{0} / k_{d} are shown in the Appendices.

References

[1] L. Adleman, J. DeMarrais, and M. Huang, "A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields," Algorithmic Number Theory, Springer-Verlag, LNCS 877, pp.28-40, 1994.
[2] J. Chao, "Elliptic and hyperelliptic curves with weak coverings against Weil descent attack," Talk at the 11th Elliptic Curve Cryptography Workshop, 2007.
[3] C. Diem, "The GHS attack in odd characteristic," J. Ramanujan Math.Soc, 18 no.1, pp.1-32,2003.
[4] C. Diem, "Index calculus in class groups of plane curves of small degree," an extensive preprint from ANTS VII, 2006. Available from http://www.math.uni-leipzig.de/ diem/preprints/small-degree.ps
[5] C. Diem, "A study on theoretical and practical aspects of Weilrestrictions of varieties," dissertation, 2001.
[6] A. Enge and P.Gaudry, "A general framework for subexponential discrete logarithm algorithms," Acta Arith., pp.83-103, 2002.
[7] G. Frey, "How to disguise an elliptic curve," Talk at the 2nd Elliptic Curve Cryptography Workshop, 1998.
[8] G. Fujisaki, "Fields and Galois theory," Iwanami, 1991, in Japanese.
[9] P. Gaudry, "An algorithm for solving the discrete logarithm problem on hyperelliptic curves," Advances is Cryptology-EUROCRYPTO 2000, Springer-Verlag, LNCS 1807, pp.19-34, 2000.
[10] P. Gaudry, "Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem," J. Symbolic Computation, vol.44,12, pp.1690-1702, 2009.
[11] P. Gaudry, F. Hess and N. Smart, "Constructive and destructive facets of Weil descent on elliptic curves," J. Cryptol, 15, pp.19-46, 2002.
[12] P. Gaudry, N. Thériault, E. Thomé, and C. Diem, "A double large prime variation for small genus hyperelliptic index calculus," Math. Comp. 76, pp.475-492, 2007.
[13] N. Hashizume, F. Momose and J. Chao "On implementation of GHS attack against elliptic curve cryptosystems over cubic extension fields of odd characteristics ," preprint, 2008. Available from http://eprint.iacr.org/2008/215
[14] T. Iijima, F. Momose, and J. Chao "On certain classes of elliptic/hyperelliptic curves with weak coverings against GHS attack," Proc. of SCIS2008, IEICE Japan, 2008.
[15] T. Iijima, F. Momose, and J. Chao "Classification of Weil restrictions obtained by $(2, \ldots, 2)$ coverings of \mathbb{P}^{1} without isogeny condition in small genus cases," Proc. of SCIS2009, IEICE Japan, 2009.
[16] T. Iijima, F. Momose, and J. Chao "Classification of elliptic/hyperelliptic curves with weak coverings against GHS attack without isogeny condition," Proc. of SCIS2010, IEICE Japan, 2010.
[17] S. Lang, "Algebra (Revised Third Edition)," Graduate Text in Mathematics, no.211, Springer-Verlag, 2002.
[18] F. Momose and J. Chao "Classification of Weil restrictions obtained by $(2, \ldots, 2)$ coverings of $\mathbb{P}^{1}, "$ preprint, 2006. Available from http://eprint.iacr.org/2006/347
[19] F. Momose and J. Chao "Scholten forms and elliptic/hyperelliptic curves with weak Weil restrictions," preprint, 2005. Available from http://eprint.iacr.org/2005/277
[20] F. Momose and J. Chao "Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics," preprint, 2009. Available from http://eprint.iacr.org/2009/236
[21] K. Nagao, "Improvement of Thériault algorithm of index calculus for jacobian of hyperelliptic curves of small genus," preprint, 2004. Available from http://eprint.iacr.org/2004/161
[22] M. Shimura, F. Momose, and J. Chao "Elliptic curves with weak coverings over cubic extensions of finite fields with even characteristic," Proc. of SCIS2010, IEICE Japan, 2010.
[23] M. Shimura, F. Momose, and J. Chao "Elliptic curves with weak coverings over cubic extensions of finite fields with even characteristic II," Proc. of SCIS2011, IEICE Japan, 2011.
[24] H. Stichtenoth, "Algebraic function fields and codes," Universitext, Springer-Verlag, 1993.
[25] N.Thériault, "Index calculus attack for hyperelliptic curves of small genus," Advances in Cryptology-ASIACRYPT 2003, LNCS 2894, pp.75-92, 2003

Appendices

A Classification for Type (A) : ${ }^{\exists} d_{i}=d$

Let $h_{1}(x) \in k[x], h_{d}(x) \in k_{d}[x] \backslash k_{u}[x]\left(\left.u\right|_{\neq d}\right), \eta:=1$ or a non-square element in $k_{d}, \alpha, \gamma \in k_{d} \backslash k_{v}\left(\left.v\right|_{\neq d)}, \alpha_{i} \in k_{\tau_{i}} \backslash k_{w_{i}}\left(\left.w_{i}\right|_{\left.\neq \tau_{i}\right)}\right.\right.$. Here, choose α_{i} and $\tau_{i} \in\{d, 2 d, \cdots, \max \{i\} d\}$ such that $h_{d}(x) \in k_{d}[x] \backslash k_{u}[x]\left(\left.u\right|_{\neq d)}\right.$. Refer to Example $5.6\left(n, d, g_{0}, e, S\right)=(2,2,2,1,8)$ as an example of how to choose α_{i} and τ_{i}. Let $C_{0} / k_{d}: y^{2}=c \cdot h_{d}(x) h_{1}(x)$.

$\left(n, d, g_{0}, e, S\right)$	c	$h_{d}(x)$	$\operatorname{deg} h_{1}(x)$
$(4,4,1,1,5)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)$	1,0
$(4,4,2,5,7)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)$	3,2
$(4,4,3,9,9)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)$	5,4
	η	$(x-\alpha)\left(x-\gamma^{q}\right)\left(x-\gamma^{q^{2}}\right)$	5,4
$(4,5,3,10,10)$	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)\left(x-\alpha_{i}^{q^{2}}\right)\left(x-\alpha_{i}^{q^{3}}\right)$	0
$(4,6,1,3,6)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)$	0
$(4,7,2,7,9)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	2,1
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	2,1
$(4,7,2,11,10)$	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)$	3,2
	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{3}}\right)$	3,2
$(4,7,3,8,11)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	4,3
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	4,3
$(4,7,3,12,12)$	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)$	5,4
	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{3}}\right)$	5,4
$(3,3,1,2,6)$	η	$x-\alpha$	3,2
$(3,3,2,1,7)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	4,3
$(3,3,2,3,8)$	η	$x-\alpha$	5,4
	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	2,1
$(3,3,2,5,9)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)(x-\gamma)$	3,2
$(3,3,3,2,9)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	6,5
$(3,3,3,4,10)$	η	$x-\alpha$	7,6
	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	4,3
$(3,3,3,6,11)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)(x-\gamma)$	5,4
	η	$\prod_{i=1}^{3}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	2,1
$(2,2,1,1,6)$	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)$	2,1
$(2,2,1,2,7)$	η	$\prod_{i=1}^{3}\left(x-\alpha_{i}\right)$	1,0
$(2,2,2,1,8)$	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)$	4,2
$(2,2,2,2,9)$	η	$\prod_{i=1}^{3}\left(x-\alpha_{i}\right)$	4,3
$(2,2,2,3,10)$	η	$\prod_{i=1}^{4}\left(x-\alpha_{i}\right)$	3,2
$(2,2,2,4,11)$	η	$\prod_{i=1}^{=}\left(x-\alpha_{i}\right)$	2,1
$(2,2,3,1,10)$	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)$	1,0
$(2,2,3,2,11)$	η	$\prod_{i=1}^{3}\left(x-\alpha_{i}\right)$	6,5
$(2,2,3,3,12)$	η	$\prod_{i=1}^{4}\left(x-\alpha_{i}\right)$	5,4
$(2,2,3,4,13)$	η	$\prod_{i=1}^{s}\left(x-\alpha_{i}\right)$	3,3

Let $\beta \in k_{2} \backslash k, \beta_{j} \in k_{\omega_{j}} \backslash k_{\rho_{j}}\left(\rho_{j} \mid \neq \omega_{j}\right), h_{2}(x) \in k_{2}[x] \backslash k[x]$.
Here, choose β_{j} and $\omega_{j} \in\{d, 2 d, \cdots, \max \{j\} d\}$ such that $h_{2}(x) \in k_{2}[x] \backslash k[x]$.
Let $C_{0} / k_{d}: y^{2}=c \cdot h_{d}(x) h_{2}(x) h_{1}(x)$.

$\left(n, d, g_{0}, e, S\right)$	c	$h_{d}(x)$	$h_{2}(x)$	$\operatorname{deg} h_{1}(x)$
$(3,4,1,1,6)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	1	2,1
$(3,4,1,3,7)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	1,0
$(3,4,2,1,8)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	1	4,3
$(3,4,2,3,9)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	3,2
$(3,4,2,5,10)$	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	1	2,1
	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{2}\left(x-\beta_{i}\right)$	2,1
$(3,4,2,7,11)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{3}\left(x-\beta_{i}\right)$	1,0
	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	$x-\beta$	1,0
$(3,4,3,1,10)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	1	6,5
$(3,4,3,3,11)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	5,4
$(3,4,3,5,12)$	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	1	4,3
	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{3}\left(x-\beta_{i}\right)$	4,3
$(3,4,3,7,13)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{j}\left(x-\beta_{j}\right)$	3,2
	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	$x-\beta$	3,2
$(3,4,3,9,14)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{4}\left(x-\beta_{j}\right)$	2,1
	1	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	$\prod_{j=1}^{2}\left(x-\beta_{j}\right)$	2,1
	1	$\prod_{i=1}^{3}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	1	2,1

B Classification for Type (B): ${ }^{\forall} d_{i} \neq d$

Here, $h_{v}(x) \in k_{v}[x] \backslash k_{w}[x]\left(\left.w\right|_{\neq v), ~} \eta:=1\right.$ or a non-square element in k_{d}.
(1) $n=6, d=28, \alpha \in k_{7} \backslash k, \beta \in k_{4} \backslash k_{2}$
$C_{0} / k_{d}: y^{2}=c \cdot h_{7}(x) h_{4}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{7}(x)$	$h_{4}(x)$	$\operatorname{deg} h_{1}(x)$
$(6,28,3,61,13)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	2,1
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	2,1

(2) $n=5, d=12, \alpha \in k_{4} \backslash k_{2}, \beta \in k_{3} \backslash k$
$C_{0} / k_{d}: y^{2}=c \cdot h_{4}(x) h_{3}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{4}(x)$	$h_{3}(x)$	$\operatorname{deg} h_{1}(x)$
$(5,12,2,17,9)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	2,1
$(5,12,3,21,11)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	4,3

(3) $n=5, d=14, \alpha \in k_{7} \backslash k, \beta \in k_{2} \backslash k, \beta_{1}, \beta_{2} \in k_{2} \backslash k$ or $\beta_{1} \in k_{4} \backslash k_{2}$, $\beta_{2}:=\beta_{1}^{q^{2}}, \quad C_{0} / k_{d}: y^{2}=c \cdot h_{7}(x) h_{2}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{7}(x)$	$h_{2}(x)$	$\operatorname{deg} h_{1}(x)$
$(5,14,2,21,10)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$x-\beta$	1,0
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$x-\beta$	1,0
$(5,14,3,23,12)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$x-\beta$	3,2
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$x-\beta$	3,2
$(5,14,3,31,13)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$\prod_{i=1}^{2}\left(x-\beta_{i}\right)$	2,1
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$\prod_{i=1}^{2}\left(x-\beta_{i}\right)$	2,1
	η	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)$	$x-\beta$	4,3
	η	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{3}}\right)$	$x-\beta$	4,3

(4) $n=5, d=21, \alpha \in k_{7} \backslash k, \beta \in k_{3} \backslash k, \beta_{1}, \beta_{2} \in k_{3} \backslash k$ or $\beta_{1} \in k_{6} \backslash\left(k_{2} \cup k_{3}\right)$, $\beta_{2}:=\beta_{1}^{q^{3}}, \quad C_{0} / k_{d}: y^{2}=c \cdot h_{7}(x) h_{3}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{7}(x)$	$h_{3}(x)$	$\operatorname{deg} h_{1}(x)$
$(5,21,2,7,10)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	0
	1	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	0
$(5,21,3,2,12)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	2,1
	1	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$(x-\beta)\left(x-\beta^{q}\right)$	2,1
$(5,21,3,10,13)$	1	$(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{4}}\right)$	$\prod_{i=1}^{2}\left(x-\beta_{i}\right)\left(x-\beta_{i}^{q}\right)$	0
	1	$(x-\alpha)\left(x-\alpha^{q^{2}}\right)\left(x-\alpha^{q^{3}}\right)\left(x-\alpha^{q^{4}}\right)$	$\prod_{i=1}^{2}\left(x-\beta_{i}\right)\left(x-\beta_{i}^{q}\right)$	0

(5) $n=4, d=6, \alpha \in k_{3} \backslash k, \beta \in k_{2} \backslash k, \gamma \in k_{6} \backslash\left(k_{2} \cup k_{3}\right), \quad \alpha_{1}, \alpha_{2} \in k_{3} \backslash k$ or $\alpha_{1} \in k_{6} \backslash\left(k_{2} \cup k_{3}\right), \alpha_{2}:=\alpha_{1}^{q^{3}}, \beta_{1}, \beta_{2} \in k_{2} \backslash k$ or $\beta_{1} \in k_{4} \backslash k_{2}, \beta_{2}:=\beta_{1}^{q^{2}}$, $C_{0} / k_{d}: y^{2}=c \cdot h_{3}(x) h_{2}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{3}(x)$	$h_{2}(x)$	$\operatorname{deg} h_{1}(x)$
$(4,6,1,3,6)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	1,0
$(4,6,2,5,8)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	3,2
$(4,6,2,9,9)$	η	$x-\alpha$	$x-\beta$	4,3
	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	$x-\beta$	1,0
	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{2}\left(x-\beta_{j}\right)$	2,1
$(4,6,3,7,10)$	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$x-\beta$	5,4
$(4,6,3,11,11)$	η	$x-\alpha$	$x-\beta$	6,5
	η	$\prod_{i=1}^{2}\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{q}\right)$	$x-\beta$	3,2
	η	$(x-\alpha)\left(x-\alpha^{q}\right)$	$\prod_{j=1}^{2}\left(x-\beta_{j}\right)$	4,3

$C_{0} / k_{d}: y^{2}=c \cdot h_{6}(x) h_{1}(x)$

$\left(n, d, g_{0}, e, S\right)$	c	$h_{6}(x)$	$\operatorname{deg} h_{1}(x)$
$(4,6,2,9,9)$	η	$(x-\gamma)\left(x-\gamma^{q}\right)\left(x-\gamma^{q^{2}}\right)$	3,2

[^0]: *Department of Information and System Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
 ${ }^{\dagger}$ Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

 The first manuscript was uploaded to the cryptology e-print archive on December 10, 2009.

