Data-Depend Hash Algorithm

ZiJie Xu and Ke Xu
xuzijiewz@gmail.com
xukezp@gmail.com

Abstract

We study some technologys that people had developed to analyse and attack hash algorithm. We find a way that use data-depend function to resist differential attack. Then we design a hash algorithm that called Data-Depend Hash Algorit(DDHA). And DDHA is simple and strong under differential attack.

Key Word: Hash algorithm, data-depend function

1. Introduction

Hash algorithm is the algorithm that computes a fixed size message digest from arbitrary size messages. After SHA-O was published, some technologys that analyse and attack hash algorithm is developed. The major technologys is Differential attack. Papers[Wy05, Dau05] has explain the attack.

Differential attack is the best technique to attack hash function. To attack hash function, it need do the work as follow:

1. Constitute a feasible difference path that has good possibility.
2. Constitute the adequate conditions for the difference path.
3. Find some technique to raise the possibility of the difference path.

From mentioned above description of differential attack, it is easy to know that constituting a feasible difference path is the hinge. If it can make it hard to constitute a feasible difference path, it will be hard to attack the hash function. In appenix 1, we know that the data-depend circular shift has good defence feature. And we find a message expension function that make any difference path will has at least eight data-depend circular shift difference [appenix 2]. This make it hard to constitute a feasible difference path.

At the same time, we study some technologys[1,2] that used to attack hash algorithm, DDHA use some ways to resist these attack ways.

The following operations are applied to 32-bit or 64-bit words in DDHA:

1. \leftarrow variable assignment
2. Bitwise logical word operations: ' \wedge ' - AND, ' \vee ' -OR, ' \oplus ' XOR and ' \neg ' - Negation.
3. Addition ‘+' modulo 2^{32} or modulo 2^{64}.
4. The shift right operation, $\operatorname{SHR}^{n}(x)$, where x is a 32 -bit or 64-bit word and n is an integer with $0 \leqslant n<32$ (resp. $0 \leqslant n<64$).
5.The shift left operation, $\operatorname{SHL}^{n}(x)$, where x is a 32 -bit or 64 -bit word and n is an integer with $0 \leqslant n<32$ (resp. $0 \leqslant n<64$).

6 . The rotate right (circular right shift) operation, $\operatorname{ROTR}^{n}(x)$, where x is a 32-bit or 64-bit word and n is an integer with $0 \leqslant \mathrm{n}<32$ (resp. $0 \leqslant \mathrm{n}<$ 64).
7. The rotate left (circular left shift) operation, $\operatorname{ROTL}^{n}(x)$, where x is a 32 -bit or 64 -bit word and n is an integer with $0 \leqslant \mathrm{n}<32$ (resp. $0 \leqslant \mathrm{n}<$ 64).

2. Data-Depend Hash Algorithm (DDHA)

DDHA has two hash functions: DDHA-256(32-bitversion), DDHA-512 (64-bitversion). DDHA-256 is used for message no bigger than 2^{64}, DDHA-512 is used for message no bigger than 2^{64}, The properties as follow:

	word	Message size	Block size	Hash value size
DDHA-256	32	$<2^{64}$	512	256
DHA-512	64	$<2^{64}$	1024	512

Properties of DDHA hash functions(size in bits)
In DDHA, the message will be preprocessed. After message is preprocessed, the message will prased in N message blocks, these blocks will be processed with a compression function in order.

2.1 Preprocessing

Preprocessing in DDHA include steps:
a. padding the message M , parsing the padded message into message blocks,
b. setting the initial hash value,

2.1.1 Padding and parsing

Suppose that the length of the message M is L bits. Append the bit " 1 "
to the end of the message, followed by k zero bits, where k is the smallest, non-negative solution to the equation $L+1+k \equiv 448 \bmod 512$ (resp. L+1+k $\equiv 960$ mod 1024). Then append the 64-bit block that is equal to the number L expressed using a binary representation.

After message is padded, the message will be parsed into N 512-bits(resp. 1024-bits) message blocks.

2.1.2 Initial Hash Value and constants

DDHA use the same initial hash value as that of SHA-2 (given as follow):

DDHA-256	DDHA-512
$H_{0}^{0}=0 \times 6 a 09 e 667$,	$H_{0}^{0}=0 \times 6 a 09 e 667$ f $3 b c c 908$,
$H_{1}^{0}=0 \times b b 67 a e 85$,	$H_{1}^{0}=0 \times b b 67 a e 8584 c a a 73 b$,
$H_{2}^{0}=0 \times 3 c 6 e f 372$,	$H_{2}^{0}=0 \times 3 c 6 e f 372$ fe94 f82b,
$H_{3}^{0}=0 \times a 54 f f 53 a$,	$H_{3}^{0}=0 \times a 54$ ff $53 a 5$ f1d $36 f 1$,
$H_{4}^{0}=0 \times 510 e 527 f$,	$H_{4}^{0}=0 \times 510 e 527$ fade682d f,
$H_{5}^{0}=0 \times 9 b 05688 c$,	$H_{5}^{0}=0 \times 9 b 05688 c 2 b 3 e 6 c 1 f$,
$H_{6}^{0}=0 \times 1 f 83 d 9 a b$,	$H_{6}^{0}=0 \times 1 f 83 d 9 a b f b 41 b d 6 b$,
$H_{7}^{0}=0 \times 5 b e 0 c d 19$,	$H_{7}^{0}=0 \times 5 b e 0 c d 19137 e 2179$,

The initial hash value for DDHA

DDHA use 32 contant words, these words separate into two parts C1 and C2, C1 as follow:

DDHA-256	DDHA-512
$C 1_{0}=0 \times d 76 a a 478$,	$C 1_{0}=0 \times d 76 a a 478$ fffa3942,
$C 1_{1}=0 \times e 8 c 7 b 756$,	$C 1_{1}=0 \times e 8 c 7 b 7568771 f 681$,
$C 1_{2}=0 \times 242070 d b$,	$C 1_{2}=0 \times 242070$ db699d6122,
$C 1_{3}=0 \times c 1 b d c e e e$,	$C 1_{3}=0 \times c 1 b d c e e e f d e 5380 c$,
$C 1_{4}=0 \times f 57 c 0$ faf,	$C 1_{4}=0 \times f 57 c 0$ fafa $4 b e e a 44$,
$C 1_{5}=0 \times 4787 c 62 a$,	$C 1_{5}=0 \times 4787 c 62 a 4 b d e c f a 9$,
$C 1_{6}=0 \times a 8304613$,	$C 1_{6}=0 \times a 8304613 f 6 b b 4 b 60$,
$C 1_{7}=0 \times f d 469501$,	$C 1_{7}=0 \times f d 469501 b e b f b c 70$,
$C 1_{8}=0 \times 698098 d 8$,	$C 1_{8}=0 \times 698098 d 8289 b 7 e c 6$,
$C 1_{9}=0 \times 8 b 44 f 7 a f$,	$C 1_{9}=0 \times 8 b 44 f 7 a f e a a 127 \mathrm{fa}$,

$C 1_{10}=0 x f f f f 5 b b 1$,	$C 1_{10}=0 x f f f f 5 b b 1 d 4 e f 3085$,
$C 1_{11}=0 x 895 c d 7 b e$,	$C 1_{11}=0 x 895 c d 7 b e 04881 d 05$,
$C 1_{12}=0 x 6 b 901122$,	$C 1_{12}=0 x 6 b 901122 d 9 d 4 d 039$,
$C 1_{13}=0 x f d 987193$,	$C 1_{13}=0 x f d 987193 e 6 d b 99 e 5$,
$C 1_{14}=0 x a 679438 e$,	$C 1_{14}=0 x a 679438 e 1$ fa $27 c f 8$,
$C 1_{15}=0 x 49 b 40821$,	$C 1_{15}=0 x 49 b 40821 c 4 a c 5665$,

Constants C1 of DDHA

C2 as follow:

DDHA-256	DDHA-512
$C 2_{0}=0 \times f 61 e 2562$,	$C 2_{0}=0 \times f 61 e 2562 f 4292244$,
$C 2_{1}=0 \times 040 b 340$,	$C 2_{1}=0 \times c 040 b 340432 a f f 97$,
$C 2_{2}=0 \times 265 e 5 a 51$,	$C 2_{2}=0 \times 265 e 5 a 51 a b 9423 a 7$,
$C 2_{3}=0 \times e 9 b 6 c 7 a a$,	$C 2_{3}=0 \times e 9 b 6 c 7 a a f c 93 a 039$,
$C 2_{4}=0 \times d 62$ f105d,	$C 2_{4}=0 \times d 62$ f105d655b59c3,
$C 2_{5}=0 \times 02441453$,	$C 2_{5}=0 \times 024414538 f 0 c c c 92$,
$C 2_{6}=0 \times d 8 a 1 e 681$,	$C 2_{6}=0 \times d 8 a 1 e 681 f f e f f 47 d$,
$C 2_{7}=0 \times e 7 d 3 f b c 8$,	$C 2_{7}=0 \times e 7 d 3$ fbc885845dd,
$C 2_{8}=0 \times 21 e 1 c d e 6$,	$C 2_{8}=0 \times 21 e 1 c d e 66$ fa87e4f,
$C 2_{9}=0 \times 33707 d 6$,	$C 2_{9}=0 \times c 33707 d 6$ fe2ce6e,
$C 2_{10}=0 \times f 4 d 50 d 87$,	$C 2_{10}=0 \times f 4 d 50 d 87 a 3014314$,
$C 2_{11}=0 \times 455 a 14 e d$,	$C 2_{11}=0 \times 455 a 14 e d 4 e 0811 a 1$,
$C 2_{12}=0 \times a 9 e 3 e 905$,	$C 2_{12}=0 \times a 9 e 3 e 905 f 7537 e 82$,
$C 2_{13}=0 \times f c e f a 3 f 8$,	$C 2_{13}=0 \times f c e f a 3 f 8 b d 3 a f 235$,
$C 2_{14}=0 \times 676 f 02 d 9$,	$C 2_{14}=0 \times 676 f 02 d 92 a d 7 d 2 b b$,
$C 2_{15}=0 \times 8 d 2 a 4 c 8 a$,	$C 2_{15}=0 \times 8 d 2 a 4 c 8 a e b 86 d 391$,

Constants C2 of DDHA

2.2 processing.

If there are N message blocks M_{0}, \ldots, M_{N-1}.
The DDHA has a compression function. The input of compression function include chaining variable(8 words, $H_{0}^{i}, \ldots, H_{7}^{i}$), message block(16 words, $m_{0}^{i}, \ldots, m_{15}^{i}$), constants(32 words, $C 1_{0}, \ldots, C 1_{15}, C 2_{0}, \ldots, C 2_{15}$).

Then the processing as foollow:

$$
\begin{aligned}
& \text { for } j=0 \text { to } 15 \\
& \qquad t m_{j} \leftarrow 0 \\
& \text { next } j
\end{aligned}
$$

```
for i=1 to N-1
    for j=0 to 15
        j1\leftarrowj+1
        tm}\mp@subsup{m}{j1-1}{}\leftarrowt\mp@subsup{m}{j1-1}{}+\mp@subsup{m}{j1-1}{i-1
        if (tm
        while j1<16
            tm
            if tm}\mp@subsup{j\mp@code{1}}{<1}{<1}\mathrm{ then
                j1\leftarrowj1+1
                else
                j1\leftarrow16
                end if
                end while
            end if
        next j
        hi}\leftarrowcompression(repeat_times, m-1 , h-1,c1,c2
next i
hN-1}\leftarrow\neg\mp@subsup{h}{}{N-1
c2 \leftarrow\negc2
c1\leftarrowc1\oplustm
hN}\leftarrowcompression(repeat_times, m m-1,h ', ,c1,c2
return h h
```


Processing of DDHA

2.3 compresion fuction

The function compression(repeat_times,m,h,ct1,ct2) takes as input five values:

* an integer value repeat_times. User can set repeat_times to get higher intensity. The default value of repeat_times is 1.
* a chain value $h=h_{0}, \ldots, h_{7}$
* a message block $m=m_{0}, \ldots, m_{32}$
* a Constant $c t 1=c t 1_{0}, \ldots, c t 1_{15}$
* a Constant $c t 2=c t 2_{0}, \ldots, c t 2_{15}$

The compression function use two functions: sub_round(m, h,ct1,ct2),
message_expension(m). In DDHA, the word is carved up to sixteen parts, every part is used as parameter of data-depend circular shift once. And in function message_expension(m), the circular shift operation is based on part not bit.

2.3.1 sub_round(m,h,ct1,ct2)

The function sub_round($\mathrm{m}, \mathrm{h}, \mathrm{ct1}, \mathrm{ct} 2$) takes as input four values:

* a chain value $h=h_{0}, \ldots, h_{7}$
* a message block $m=m_{0}, \ldots, m_{32}$
* a Constant $c t 1=c t 1_{0}, \ldots, c t 1_{15}$
* a Constant $c t 2=c t 2_{0}, \ldots, c t 2_{15}$

And sub_round(m,h,ct1,ct2) as follow:

$$
\begin{aligned}
& \text { for } i=0 \text { to } 15 \\
& i m \leftarrow i \gg 1+(i \bmod 2) \times 8 \\
& h_{0} \leftarrow\left(h_{0}+m_{i m}\right) \\
& \text { for } j=1 \text { to } 7 \\
& i m 1 \leftarrow(i \gg 1+j) \bmod 8+(i \bmod 2) \times 8 \\
& h_{j} \leftarrow \operatorname{ROTR}^{\left(m_{i m}>((j-1) \times r l)\right) \wedge r v}\left(h_{j}+m_{i m 1}\right) \\
& \text { next } j \\
& \text { for } j=1 \text { to } 7 \\
& h_{j} \leftarrow \operatorname{ROTR} R^{\left(m_{i m} \gg((j+6) \times r l)\right) \wedge v}\left(h_{j}+h_{j-1}\right) \\
& \text { next } j \\
& t \leftarrow \operatorname{ROTR}^{\left(m_{i m} \gg(14 \times r l)\right) \wedge r v}\left(\left(\left(h_{4}+h_{5}\right) \oplus h_{6}\right)+h_{7}\right)+c t 1_{i} \\
& h_{3} \leftarrow \operatorname{ROTR}^{\left(m_{i m} \gg(15 \times r l)\right) \wedge r v}\left(\left(\left(h_{0}+h_{1}\right) \oplus h_{2}\right)+h_{3}\right)+c t 2_{i} \\
& \text { for } j=1 \text { to } 7 \\
& h_{j} \leftarrow h_{j-1} \\
& \text { next } j \\
& h_{0} \leftarrow t \\
& \text { next } i
\end{aligned}
$$

> sub_round function of DDHA

In DDHA-256, the word length is 32 , rl is 2 , rv is 3 . In DDHA- 512 , the word length is 64 , rl is $4, \mathrm{rv}$ is 15 .

2.3.2 message_expension(m)

The function message_expension(m) takes as input one value:

* a message block $m=m_{0}, \ldots, m_{15}$

And message_expension1(m) as follow:

```
\(t=\oplus_{i=0}^{15}\left(m_{i}\right)\)
for \(i=0\) to 15
        \(m_{i} \leftarrow\left(t \oplus m_{i}\right)\)
next \(i\)
for \(i=0\) to 15
        \(m_{i} \leftarrow R O T R^{i \times r l}\left(m_{i}\right)\)
next \(i\)
\(t=\bigoplus_{i=0}^{15}\left(m_{i}\right)\)
for \(i=0\) to 15
        \(m_{i} \leftarrow\left(m_{i} \oplus t\right)\)
next \(i\)
return m
```


function message_expension1 of DDHA

In DDHA-256, the word length is 32, rl is 2 . In DDHA- 512, the word length is $64, \mathrm{rl}$ is 4.

With function sub_round(m,h,ct1,ct2), message_expension(m), the compression function as follows:

```
\(h \leftarrow h^{i}\)
\(c 3 \leftarrow c t 1\)
\(c 4 \leftarrow c t 2\)
\(m a \leftarrow m\)
\(m b \leftarrow\) message _ exp ension ( \(m\) )
for \(j=1\) to repeat _ times
        sub _round ( \(m a, h, c 3, c 4\) )
        sub _round ( \(m b, h, c 4, c 3\) )
        if repeat _ times \(>1\) then
            for \(j 1=0\) to 15
                        \(c 3_{j 1} \leftarrow \operatorname{ROTR}{ }^{1}\left(c 3_{j 1}\right)\)
                        \(c 4_{j 1} \leftarrow \operatorname{ROTR}{ }^{1}\left(c 4_{j 1}\right)\)
            next \(j 1\)
            end if
next \(j\)
\(h \leftarrow h+h^{i}\)
return \(h\)
```

compression function of DDHA

In DDHA-256, the word bit-length is 32. In DDHA- 512, the word bit-length is 64.

3 Security of DDHA

In this section, we discuss the resistance of DDHA to Differential attack, Length extension, Multicollisions.

3.1 Differential attack

From appendix 2, we will know that if there is any difference in the message, the difference path for DDHA will has at least eight data-depend circular shift difference that $\Delta r \neq 0, r$ is the parameter of data-depend circular shift.

By theorem A.1, it is known that if a data-depend circular shift difference that $\left(r_{1}-r_{2}\right) \neq 0$, the possibility of a data-depend circular shift difference is $2^{\mathrm{gcd}-n}, \mathrm{gcd}$ is the greatest common divisor of $(r 1-r 2)$ and n.

In DDHA, the bit-length of the parameter of data-depend circular shift less than 4(resp.16). then there has:

$$
\begin{array}{ll}
0 \leq r_{1}, r_{2}<4 & 0 \leq r_{1}, r_{2}<16 \\
-4<(r 1-r 2)<4 & -16<(r 1-r 2)<16 \\
\operatorname{gcd}=G C D(r 1-r 2,32) \leq 2 & \operatorname{gcd}=G C D(r 1-r 2,64) \leq 8 \\
D D H A-256 & D D H A-512
\end{array}
$$

So the possibility of a difference path for DDHA will be:

$$
p=2^{(\operatorname{gcd}-n) \times 8} \leq 2^{16-8 \times n}\left(\text { resp } .2^{64-8 \times n}\right)
$$

At the same time, in a difference path for DDHA if a chain value that $\Delta r=0$ has defences, some bits in the parameter r will be fixed, this depend on the defences that the chain value has. Here we suppose attacker can find the needed defences.

3.2 Length extension

Let Σ is the sum of several members, and the addition operator is modulo 2^{512} or modulo 2^{1024}.

Length extension is the attaca against keyed hash of form $h=H_{k}(\mathrm{~m})$ or $h=H(k \| m)$. The attack as: given $h=H_{k}(m)$, the padding data is p, then find m^{\prime} that make $h=H\left(k\|m\| p \| m^{\prime}\right)$. The ($m\|p\| m^{\prime}$) is the fabricated message.

In DDHA, if $\left(\ldots\left\|m^{N-2}\right\| m^{N-1}\right)$ is padded message data, and m^{N-1} is the
last message block, the final chain values is $h^{N}=\operatorname{compression}\left(\neg h^{N-1}, m^{N-1}\right.$, $\left.c 1 \oplus\left(\sum_{i=0}^{N-2} m^{i}\right), \neg c 2\right)$. If a block m^{N} is extended, then the chain value between m^{N-1}, m^{N} will be $h^{N}=\operatorname{compression}\left(h^{N-1}, m^{N-1}, c 1, c 2\right)$ from $h^{N}=\operatorname{compression}($ $\left.\neg h^{N-1}, m^{N-1}, c 1 \oplus\left(\sum_{i=0}^{N-2} m^{i}\right), \neg c 2\right)$. The knowledge of $D D H A\left(\ldots\left\|m^{N-2}\right\| m^{N-1}\right)$ can not be used to compute the hash of $\left(\ldots\left\|m^{N-2}\right\| m^{N-1} \| m^{N}\right)$.

3.3 Multicollisions

Let Σ is the sum of several members, and the addition operator is modulo 2^{512} or modulo 2^{1024}.

Many technique is developed to find Multicollisions of hash function, Joux's technique[1] and Kelsey/Schneier's technique[2] is representative technique.

3.3.1 Joux's technique

Joux [1] has proposed a technique to find a 2^{k}-collision for hash functions with n-bit hash values in $k \times 2^{n / 2}$ as follow:

In Joux's technique, we can find that replace $m 1^{i}$ with $m 2^{i}$ will not change the final chain value h^{k}. In DDHA, if a message $m:=\left(\ldots\left\|m 1^{i}\right\| \ldots\right)$, replace $m 1^{i}$ with $m 2^{i}$ will change the final chain value h^{k} from $h^{k}=\operatorname{compression}\left(\neg h^{k-1}, m^{k}, c 1 \oplus\left(\sum_{i=0}^{N-2} m^{i}\right), \neg c 2\right) \quad$ to $\quad h^{k}=\operatorname{compression}\left(\neg h^{k-1}, m^{k}, c 1 \oplus\right.$ $\left.\left(\left(\sum_{i=0}^{N-2} m^{i}\right)-m 1^{i}+m 2^{i}\right), \neg c 2\right)$.

And it can alter Joux's technique to apply it on DDHA. To pair (h^{i}, h^{i+1}), if find message blocks ($m 3^{0}, \ldots, m 3^{i 3-1}, m 4^{0}, \ldots, m 4^{i 4-1}$) that satisfy:

$$
\left\{\begin{array}{l}
\sum_{i i=0}^{i 3-1} m 3^{i i}=\sum_{i i=0}^{i 4-1} m 4^{i i} \tag{3.1}\\
h 3^{1}=\operatorname{compression}\left(h^{i}, m 3^{0}, c 1, c 2\right) \\
h 3^{i i+1}=\operatorname{compression}\left(h 3^{i i}, m 3^{i i}, c 1, c 2\right) \quad i i=1, \ldots,(i 3-2) \\
h^{i+1}=\operatorname{compression}\left(h 3^{i 3-1}, m 3^{i 3-1}, c 1, c 2\right) \\
h 4^{1}=\operatorname{compression}\left(h{ }^{i}, m 4^{0}, c 1, c 2\right) \\
h 4^{i+1}=\operatorname{compression}\left(h 4^{i i}, m 4^{i i}, c 1, c 2\right) \quad i i=1, \ldots,(i 4-2) \\
h^{i+1}=\operatorname{compression}\left(h 4^{i 4-1}, m 4^{i 4-1}, c 1, c 2\right)
\end{array}\right.
$$

So to find Multicollisions of DDHA, to every pair chain value (h^{i}, h^{i+1}), it need find message blocks that satisfy (3.1). Then to 2^{k}-collision for DDHA, the message blocks must satify k systems that like (3.1).

3.3.2 Kelsey/Schneier's technique

Kelsey/Schneier's technique bases on fixed-points of hash function. But in DDHA, when admit a fixed-points $m f p$ for DDHA, the the final chain value will be $h^{k}=\operatorname{compression}\left(\neg h^{k-1}, m^{k}, c 1 \oplus\left(\left(\sum_{i=0}^{k-1} m^{i}\right)+m f p\right), \neg c 2\right)$ from $h^{k}=\operatorname{compression}\left(\neg h^{k-1}, m^{k}, c 1 \oplus\left(\sum_{i=0}^{k-1} m^{i}\right), \neg c 2\right)$.

4. Improvement

In compression function, there are 512 data-depend circular shift operations, this will increase the calculation. There exists a way to improve it. The function sub_round(m,h,ct1,ct2) and compression(repeat_times,m,h, $\mathrm{ct1} 1, \mathrm{ct} 2)$ will be changed to sub_round1(m1,m2,h,ct1,ct2,b) and compression1(repeat_times, $\mathrm{m}, \mathrm{h}, \mathrm{ct1}, \mathrm{ct} 2$) as follow:

4.1 sub_round1(m1,m2,h,ct1,ct2,b)

The function sub_round1(m1,m2,h,ct1,ct2,b) takes as input six values:

* a chain value $h=h_{0}, \ldots, h_{7}$
* a message block $m 1=m 1_{0}, \ldots, m 1_{32}$
* a message block $m 2=m 2_{0}, \ldots, m 2_{32}$
* a Constant $c t 1=c t 1_{0}, \ldots, c t 1_{15}$
* a Constant $c t 2=c t 2_{0}, \ldots, c t 2_{15}$
* an integer b

And sub_round1(m1,m2,h,ct1,ct2,b) as follow:

$$
\begin{aligned}
& \text { for } i=b \text { to } 7+b \\
& i m \leftarrow i \gg 1+(i \bmod 2) \times 8 \\
& h_{0} \leftarrow\left(h_{0}+m 2_{i m}\right) \\
& \text { for } j=1 \text { to } 7 \\
& \operatorname{im1} \leftarrow(i \gg 1+j) \bmod 8+(i \bmod 2) \times 8 \\
& h_{j} \leftarrow R O T R^{\left(m 1_{m} \gg((j-1) \times r l)\right) \wedge r v}\left(h_{j}+m 2_{i m 1}\right) \\
& \text { next } j \\
& \text { for } j=1 \text { to } 7 \\
& h_{j} \leftarrow \operatorname{ROTR}^{\left(m 1_{m} \gg((j+6) \times r l)\right) \wedge v}\left(h_{j}+h_{j-1}\right) \\
& \text { next } j
\end{aligned}
$$

$$
\begin{aligned}
& t \leftarrow R O T R^{\left(m 1_{i m} \gg(14 \times r l)\right) \wedge r v}\left(\left(\left(h_{4}+h_{5}\right) \oplus h_{6}\right)+h_{7}\right)+c t 1_{i} \\
& h_{3} \leftarrow R O T R^{\left(m 1_{i m}>(15 \times r l)\right) \wedge r v}\left(\left(\left(h_{0}+h_{1}\right) \oplus h_{2}\right)+h_{3}\right)+c t 2_{i} \\
& \quad \text { for } j=1 \text { to } 7 \\
& \quad h_{j} \leftarrow h_{j-1} \\
& \text { next } j \\
& h_{0} \leftarrow t \\
& \text { next } i
\end{aligned}
$$

function sub_round1 of DDHA
In DDHA-256, the word length is 32 , rl is 2 , rv is 3 . In DDHA-512, the word length is $64, r l$ is $4, r v$ is 15.
compression(repeat_times, $\mathrm{m}, \mathrm{h}, \mathrm{ct} 1, \mathrm{ct} 2$) will be as follow:

4.2 compression1(repeat_times,m,h,ct1,ct2)

The function compression1(repeat_times,m,h,ct1,ct2) takes as input five values:

* an integer value repeat_times. User can set repeat_times to get higher intensity. The default value of repeat_times is 1.
* a chain value $h=h_{0}, \ldots, h_{7}$
* a message block $m=m_{0}, \ldots, m_{32}$
* a Constant $c t 1=c t 1_{0}, \ldots, c t 1_{15}$
* a Constant $c t 2=c t 2_{0}, \ldots, c t 2_{15}$

Function compression1(repeat_times,m,h,ct1,ct2) as follow:

```
h}\leftarrow\mp@subsup{h}{}{i
c3}\leftarrowct
c4}\leftarrowct
ma}\leftarrow
mb \leftarrow message _ exp ension ( m )
for j=1 to repeat _ times
        sub _ round 1(ma ,ma ,h,c c, c 4,0)
        sub _round 1(ma , mb,h,c 4,c 3,8)
        if repeat _ times > 1 then
            for j1 = 0 to 15
                        c 3 j1 }\leftarrow~ROTR '1 (c3 j1)
                        c4 j1 }\leftarrow~ROTR 1'(c4 jor )
                next j1
        end if
next j
h}\leftarrowh+\mp@subsup{h}{}{i
```

function compression1 of DDHA
In DDHA-256, the word bit-length is 32. In DDHA- 512, the word bit-length is 64.

After sub_round(m,h,ct1,ct2) and compression(repeat_times,m,h, ct1, ct 2) is changed to sub_round1(m1,m2,h,ct1,ct2,b) and compression1(repeat_times, $\mathrm{m}, \mathrm{h}, \mathrm{ct1} 1, \mathrm{ct} 2)$. There are 256 data-depend circular shift perations, this will reduce calculation, And at the same time, function message_expension(m) will make there are many defferences when there are few defferences in message. Here we will not discuss it detailedly.

5. Conclusions

After study the technologys[wy05, Dau05] and the defence feature of data-depend function, and we find a message expension function that will make every defence path for DDHA will has at least eight data-depend circular shift defence, this make it hard to constitute a feasible difference path that has good possibility. Base on data-depende function and the message expension function, we design the hash function DDHA.

At the same time, we study other attack technologys[1,2] and length extension, and we use some measures in view of these technologys, these measures wreck the condition that applying the technologys need, this make it harder to apply these technologys on DDHA.

DDHA uses a value that user can set the value to change rounds to change the strength.

So DDHA adopts various measures in view of the techniques that use to attack hash function, this will make DDHA resists these attacks.

References:

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Cramer [Cra05], pages 19-35.
[Dau05] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-Universit"at Bochum, 2005.
[1] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded construc-tions. In CRYPTO, 2004.
[2] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much ess than 2^{n} work. In EUROCRYPT, 2005.

Appendix 1: Difference of data-depend circular shift

Here we just discuss circular right shift. And we just discuss XOR differences[Dau05].

If $x \in F_{2}^{n}, x$ has n-bits as:

$$
x \mapsto\left(x_{n-1}, \ldots, x_{0}\right)
$$

If y, x is n -bits word, n is 32 (resp. 64), $0 \leq r<32$ (resp.64) is an integer that has 5(resp. 6) bits, then the circular right shift is:

$$
y=\operatorname{ROTR}^{r}(x)=((x \ll(n-r)) \vee(x \gg r))
$$

If there is ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{r} 1$) and ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{r} 3$) meet:

$$
y 1=\operatorname{ROTR}^{r 1}(x 1) \quad y 2=\operatorname{ROTR}^{r 2}(x 2)
$$

At fistr, there is: $\left(w b l=\log _{2}^{n}-1\right)$

$$
\left\{\begin{array}{l}
r 1-r 2=\sum_{i=0}^{w b l}\left(\Delta^{ \pm}\left(r 1_{i}, r 2_{i}\right) \times 2^{i}\right) \\
y 1:=\left(x 1_{r 1-1}, \ldots, 1_{0}, x 1_{n-1}, \ldots, x 1_{r 1}\right) \\
y 2:=\left(x 2_{r 2-1}, \ldots, x 2_{0}, x 2_{n-1}, \ldots, x 2_{r 2}\right) \\
\Delta^{\oplus}(x 1, x 2):=\left(\Delta^{\oplus}\left(x 1_{n-1}, x 2_{n-1}\right), \ldots, \Delta^{\oplus}\left(x 1_{0}, x 2_{0}\right)\right) \\
\Delta^{\oplus}(y 1, y 2):=\left(\Delta^{\oplus}\left(x 1_{r 1-1}, x 2_{r 2-1}\right), \ldots, \Delta^{\oplus}\left(x 1_{r 1}, x 2_{r 2}\right)\right)
\end{array}\right.
$$

Let the greatest common divisor of $(r 1-r 2)$ and n is $\operatorname{gcd}=G C D(r 1-r 2, n)$. Then there exists:

1. if $\mathrm{r} 1=\mathrm{r} 2$, there has:

$$
\begin{aligned}
\Delta^{\oplus}(y 1, y 2) & =\left(\Delta^{\oplus}\left(x 1_{r 1-1}, x 2_{r 1-1}\right), \ldots, \Delta^{\oplus}\left(x 1_{0}, x 2_{0}\right), \Delta^{\oplus}\left(x 1_{n-1}, x 2_{n-1}\right), \ldots, \Delta^{\oplus}\left(x 1_{r 1}, x 2_{r 1}\right)\right) \\
& =R O T R^{11}\left(\Delta^{\oplus}(x 1, x 2)\right)
\end{aligned}
$$

So, if r1=r2, the difference of y 1 and y 2 will just depend on the difference of x 1 and x 2 . of course it also depend on r 1 .

To given Δ^{\oplus}, there are $2^{n} x 1$. To given $\left(x 1, \Delta^{\oplus}\right)$, there is a $x 2$ that meet $x 2=x 1 \oplus \Delta^{\oplus}(x 1, x 2)$. So there are 2^{n} pair ($x 1, x 2$) has same Δ^{\oplus}.
2. if $r 1 \neq r 2$.

Divide $\Delta^{\oplus}(y 1, y 2)$ and $\Delta^{\oplus}(x 1, x 2)$ into gcd parts as follow:

$$
\left\{\begin{align*}
p x_{j} & :=\left(\Delta^{\oplus}\left(x 1_{(j+i \times \operatorname{gcd}) \bmod n}, x 2_{(j+i \times \operatorname{gcd}) \bmod n}\right)\right. \\
\mid i & =0, \ldots,(n / \operatorname{gcd}-1)) \quad j=0, \ldots, \operatorname{gcd}-1 \tag{A.1}\\
p y_{j} & :=\left(\Delta ^ { \oplus } \left(x 1_{(j+i \times \operatorname{gcd}) \bmod }, x 2_{(n+r 2-r 1+j+i \times \operatorname{gcd})} \bmod n\right.\right.
\end{align*}\right)
$$

To gven defence of patr $p x_{j}, p y_{j}$:

$$
\begin{aligned}
& d x:=\left(\Delta^{\oplus}\left(x 1_{(j+i x g c d) \operatorname{mod~} n}, x 2_{(j+i \mathrm{xgcd}) \bmod n}\right)\right. \\
& \mid i=0, \ldots,(n / \operatorname{gcd}-1))
\end{aligned}
$$

There are $2^{n / g \mathrm{sd}-1}$ diffence as follow:

$$
\begin{aligned}
& d y 1:=\left(\Delta^{\oplus}\left(x 1_{(j+i \mathrm{xgcd})} \bmod n, x 2_{(n+r 2-r 1+j+i \mathrm{igcd}) \bmod n}\right)\right. \\
& \mid i=0, \ldots,(n / \operatorname{gcd}-2))
\end{aligned}
$$

To given pair (dx, dy1), there exists:

$$
\begin{align*}
& \oplus_{i=0}^{n / \mathrm{gcd}-1} \Delta^{\oplus}\left(x 1_{(j+\mathrm{ixgcd}) \bmod n}, x 2_{(j+\mathrm{ixgcl}) \bmod n}\right) \\
& \oplus\left(\oplus_{i=0}^{n / \mathrm{gcd}-2} \Delta^{\oplus}\left(x 1_{(j+i \mathrm{xgcd}) \bmod n}, x 2_{(n+r 2-r 1+j+i \mathrm{xgcd}) \bmod n}\right)\right) \\
& =\Delta^{\oplus}\left(x 1_{(j+n-\mathrm{gcd}) \bmod n}, x 2_{(2 \times n+r 2-r 1+j-\mathrm{gcc}) \bmod n}\right) \tag{A.2}
\end{align*}
$$

Theorem A.1: if $r 1 \neq r 2$, the possibility of a difference pair $\left(\Delta^{\oplus}(y 1, y 2), \Delta^{\oplus}(x 1, x 2)\right)$ is $2^{\varepsilon \varepsilon d-n}$.

Proof:
At first, Divide $\Delta^{\oplus}(y 1, y 2)$ and $\Delta^{\oplus}(x 1, x 2)$ into gcd parts as (A.1), and every part satisfy (A.2). To given pair (dx, dy1), it will has the system:

$$
\left\{\begin{array}{l}
d x_{j, i}=x 1_{(j+i \times g \mathrm{gcd}) \bmod n} \oplus x 2_{(j+i \mathrm{iggcd}) \bmod n} \tag{A.3}\\
\quad i=0, \ldots,(n / \operatorname{gcd}-1) \\
d y 1_{j, i}=x 1_{(j+i \mathrm{xgcd}) \bmod n} \oplus x 2_{(n+2-r 1+j+i \mathrm{xgcd}) \bmod n} \\
\quad i=0, \ldots,(n / \operatorname{gcd}-2)
\end{array}\right.
$$

The system has $2 \times(n / \mathrm{gcd}-1)$ variables and $2 \times n / \mathrm{gcd}-3$ equations. The
system has two roots on GF(2).
The difference pair $\left(\Delta^{\oplus}(y 1, y 2), \Delta^{\oplus}(x 1, x 2)\right)$ include gcd parts that satisfy (A.2) (A.3). So there are $2^{\text {gcd }}$ pair ($x 1, x 2$) satify these systems.

So there are $2^{\text {gcd }}$ pair $(x 1, x 2)$ have the given defference $\left(\Delta^{\oplus}(y 1, y 2), \Delta^{\oplus}(x 1, x 2)\right)$. Of course these pairs ($x 1, x 2$) satisfy $x 2=\Delta^{\oplus}(x 1, x 2) \oplus x 1$.

To given defference ($\Delta^{\oplus}(x 1, x 2)$), there are $2^{n} x 1$, And to given pair $\left(\Delta^{\oplus}(x 1, x 2), x 1\right)$, there is a $x 2$ that satisfy $x 2=\Delta^{\oplus}(x 1, x 2) \oplus x 1$, so there are 2^{n} pair ($x 1, x 2$) have the given defference ($\Delta^{\oplus}(x 1, x 2)$).

So the possibility of a difference pair $\left(\Delta^{\oplus}(y 1, y 2), \Delta^{\oplus}(x 1, x 2)\right)$ is $2^{\text {gcd-n }}$.

Appendix 2: Message_expension(m)

In DDHA, the message m is expand from 16 words to 32 words. It can use a 512×1024 (resp. 1024×2048) generator matrix to describe it. It a little hard to find out the minimum deffences in expand message words with the big matrix. We will find out the minimum deffences in expand message words with other way.

At first, the follow facts is used to simplify the discussion:

1. Because the degree of the Algebraic Normal Form (ANF) that describe function Message_expension(m) is 1. Finding out the minimum deffences in expand message words is be equal finding out the minimum hamming weight of the expand message words if the Hamming weight of message bigger than 0 .
2. The words in DDHA is carved up to sixteen parts. So it can describe a word as follow:

$$
W:=\left(w_{15}, \ldots, w_{0}\right)
$$

Where $w_{i}:=\left(b_{J}, \ldots, b_{0}\right) \quad 0 \leq i<16$, every part w_{i} has J bits. Then the message words m and expand message words $e m$ as follow:

$$
\left\{\begin{array}{l}
m:=\left(m_{0,15}, m_{0,14}, \ldots, m_{0,0}, . ., m_{15,0}\right) \\
e m:=\left(e m_{0,15}, e m_{0,14}, \ldots, e m_{0,0}, . . e m_{31,0}\right) \\
e m_{i, j}=m_{i, j} \quad 0 \leq i, j \leq 15
\end{array}\right.
$$

Then function Message_expension(m) can be described with steps as follow, let $m 1$ and $m 2$ include 16 words.

$$
\left\{\begin{array}{l}
m 1_{i} \leftarrow\left(\oplus_{j=0}^{15} m_{j}\right) \oplus m_{i} \quad 0 \leq i \leq 15 \\
m 2_{i} \leftarrow R O T R^{i}\left(m 1_{i}\right) \quad 0 \leq i \leq 15 \\
e m_{i+16} \leftarrow\left(\oplus_{j=0}^{15} m 2_{j}\right) \oplus m 2_{i} \quad 0 \leq i \leq 15
\end{array}\right.
$$

Then there exists:

$$
m 2_{i, j}=m 1_{i,(16-i+j)} \bmod 16
$$

Let HW(w) is Hamming weight of w. Then there exists:
Theorem B.1: If

$$
\begin{cases}x:=\left(x_{0}, \ldots, x_{15}\right) & 0 \leq i \leq 15 \\ y:=\left(y_{0}, \ldots, x_{15}\right) & 0 \leq i \leq 15 \\ y_{i}=x_{i} \oplus\left(\oplus_{j=0}^{15} x_{j}\right) & 0 \leq i \leq 15\end{cases}
$$

There exists:

1. If $\oplus_{j=0}^{15} x_{j}=0$, then $\operatorname{HW}(\mathrm{y})=\mathrm{HW}(\mathrm{x})$.
2. If $\oplus_{j=0}^{15} x_{j}=1$, then $\operatorname{HW}(\mathrm{y})=16-\mathrm{HW}(\mathrm{x})$.
3. If $H W(x) \geq 1$, then $H W(y) \geq 1$
proof:1
There exists:

$$
\begin{equation*}
H W(x)=\sum_{j=0}^{15} x_{j} \leq 16 \tag{B.1.1}
\end{equation*}
$$

When $x_{j}=1 \quad 0 \leq j<15$, the equality sign hold water.

1. If $\oplus_{j=0}^{15} x_{j}=0$ Then

$$
y_{i}=x_{i} \oplus\left(\oplus_{j=0}^{15} x_{j}\right)=x_{i} \quad 0 \leq i \leq 15
$$

Then

$$
H W(y)=H W(x)
$$

2. If $\oplus_{j=0}^{15} x_{j}=1$ Then

$$
y_{i}=x_{i} \oplus\left(\oplus_{j=0}^{15} x_{j}\right)=x_{i} \oplus 1=\neg x_{i} \quad 0 \leq i \leq 15
$$

Then

$$
H W(y)=\sum_{i=0}^{15} y_{i}=\sum_{i=0}^{15}\left(1-x_{i}\right)=16-\sum_{i=0}^{15}\left(x_{i}\right)=16-H W(x)
$$

3. If $H W(x) \geq 1$ and $\oplus_{j=0}^{15} x_{j}=0$, then $H W(y)=H W(x) \geq 1$.

If $H W(x) \geq 1$ and $\oplus_{j=0}^{15} x_{j}=1$, then by (B.1.1), there exists:

$$
\begin{aligned}
& 16>H W(x)>0 \\
& H W(y)=16-H W(x) \geq 1 .
\end{aligned}
$$

Theorem B.2: In message words of DDHA, if there exists $0 \leq j 1 \leq 15$ make $\oplus_{i=0}^{15} m_{i, j 1}=1$, Then there exist $H W(e m) \geq 16$.

Proof:
There has:

$$
\begin{aligned}
& e m_{i}=m_{i} \quad 0 \leq i \leq 15 \\
& \bigoplus_{i=0}{ }^{15} e m_{i, j 1}=\bigoplus_{i=0}^{15} m_{i, j 1}=1
\end{aligned}
$$

Suppose $I=\left\{i \mid m_{j 1}=1\right\} \quad$ and $H W\left(\left(e m_{0, j i}, \ldots, e m_{15, j 1}\right)\right)=H 0$
There has: $m 1_{i}=e m_{i} \oplus\left(\oplus_{j=0}^{15} e m_{i, j}\right)$
By theorem B.1, thus

$$
\begin{aligned}
& H W\left(\left(m 1_{0, j 1}, \ldots, m 1_{15, j 1}\right)\right)=16-H 0 \\
& m 1_{i, j 1}=1 \quad i \notin I
\end{aligned}
$$

Let $J=\{(i+j 1) \quad \bmod 16 \mid i \notin I\}$, there are $16-H 0$ members in J.
Because

$$
m 2_{i, j}=m 1_{i,(16-i+j) \bmod 16}
$$

Then

$$
\begin{aligned}
m 2_{i, j} & =m 1_{i,(16-i+j) \bmod 16} \quad i \notin I \quad j \in J \\
& =m 1_{i,(16-i+i+j 1) \bmod 16} \\
& =m 1_{i, j 1} \\
& =1
\end{aligned}
$$

So there exists: $16 \geq H W\left(\left(m 2_{0, j}, \ldots, m 2_{15, j}\right)\right) \geq 1 \quad j \in J$
By theorem B.1, there exits:

$$
\begin{aligned}
& H W\left(\left(e m_{16, j}, \ldots, m 2_{31, j}\right)\right) \geq 1 \quad j \in J \\
& \begin{aligned}
H W\left(\left(e m_{16}, \ldots, m 2_{31}\right)\right) & =\left(\sum_{j \in J} \sum_{i=16}^{31} e m_{i, j}\right)+\sum_{j \notin J} \sum_{i=16}^{31} e m_{i, j} \\
& \geq \sum_{j \in J} \sum_{i=16}^{31} e m_{i, j} \\
& \geq 16-H 0
\end{aligned}
\end{aligned}
$$

Then

$$
\begin{aligned}
H W(e m) & =H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right)+H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right) \\
& \geq H 0+(16-H 0) \\
& =16
\end{aligned}
$$

Theorem B.3: In message words of DDHA, if $H W(m) \geq 0$ there exist $H W(e m) \geq 8$.

Proof:
There exists:

$$
\begin{aligned}
& e m_{i}=m_{i} \quad 0 \leq i \leq 15 \\
& H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right)=H W\left(\left(m_{0}, \ldots, m_{15}\right)\right)
\end{aligned}
$$

1.if there exists $j 1$ make $\oplus_{i=0}^{15} e m_{i, j 1}=1$, by theorem B.2, there has exists:

$$
H W(e m) \geq 16>8 \quad \text { (B.3.a) }
$$

2. if there exists

$$
\bigoplus_{i=0}^{15} e m_{i, j}=0 \quad 0 \leq j \leq 15
$$

Then there exists:

$$
\begin{aligned}
& m 1_{i, j}=e m_{i, j} \oplus\left(\bigoplus_{i 1=0}^{15} e m_{i 1, j}\right)=e m_{i, j} \quad 0 \leq i, j \leq 15 \\
& m 2_{i, j}=m 1_{i,(i+j) \bmod 16}
\end{aligned}
$$

Let $\quad I 0_{j}=\left\{i \mid e m_{i, j}=1 \quad 0 \leq i \leq 15 \quad 0 \leq j \leq 15\right\}, \quad I 1_{j}=\left\{i \mid m 1_{i, j}=1 \quad 0 \leq i \leq 15 \quad 0 \leq j \leq 15\right\}$ then:

$$
\begin{aligned}
& I 1_{j}=\left\{i \mid m 1_{i, j}=1 \quad 0 \leq i \leq 15 \quad 0 \leq j \leq 15\right\} \\
&=\left\{i \mid e m_{i, j}=1 \quad 0 \leq i \leq 15 \quad 0 \leq j \leq 15\right\} \\
&=I 0_{j} \\
& H W(m 1)=H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right)
\end{aligned}
$$

Let $J B 0=\left\{j b_{0}, \ldots\right\}=\left\{j \mid\left(\sum_{i=0}^{15} I 1_{i, j}\right)>0 \quad 15 \geq j \geq 0\right\}$, and because

$$
\oplus_{i=0}^{15} e m_{i, j}=0 \quad 0 \leq j \leq 15
$$

Then:

$$
\begin{equation*}
\left(\sum_{i \in I 1_{j}} m 1_{i, j}\right)=\left(\sum_{i \in I 1_{j}} e m_{i, j}\right) \geq 2 \quad j \in J B 0 \tag{B.3.1}
\end{equation*}
$$

Let $J 2_{j}=\left\{i \mid m 2_{i, j}=1 \quad 0 \leq i \leq 15 \quad 0 \leq j \leq 15\right\}$ then there has:

$$
\left.\begin{array}{ll}
J 2_{j}=\left\{i \mid i \in I 1_{(j+i) \bmod }{ }^{16}\right\} & 0 \leq j \leq 15 \\
I 1_{j}=\left\{i \mid i \in J 1_{(16-i+j) \bmod } 16\right.
\end{array}\right\} \quad 0 \leq j \leq 15
$$

This means that every bit of $m 2$ is equal to a bit of $m 1$, and every bit of m 1 is equal to a bit of m 2 . So there exist:

$$
\begin{equation*}
H W\left(\left(m 2_{0}, \ldots, m 2_{15}\right)\right)=H W\left(\left(m 1_{0}, \ldots, m 1_{15}\right)\right)=H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right) \tag{B.3.2}
\end{equation*}
$$

2.1 If there exists i1c make $\left(\oplus_{i=0}^{15} m 2_{i, i c 1}\right)=1$, by theroem B. 1 and (B.3.2), there exists:

$$
\begin{align*}
& H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right) \geq H W\left(\left(e m_{16, \text { icc }}, \ldots, e m_{31, i \mathrm{ic}}\right)\right) \\
& \\
& =16-H W\left(\left(m 2_{0, i 1 c}, \ldots, m 2_{15, \text { icc }}\right)\right) \\
& \begin{aligned}
H W\left(\left(e m_{0}, \ldots, e m_{31}\right)\right) & =H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right)+H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right) \\
& \geq H W\left(\left(m 2_{0}, \ldots, m 2_{15}\right)\right)+16-H W\left(\left(m 2_{0, i 1 c}, \ldots, m 2_{15, i c 1}\right)\right) \\
& \geq H W\left(\left(m 2_{0, i 1 c}, \ldots, m 2_{15, i 1 c}\right)\right)+16-H W\left(\left(m 2_{0, i c c}, \ldots, m 2_{15, \text { i1c }}\right)\right) \\
& =16>8
\end{aligned}
\end{align*}
$$

2.2 If $\left(\oplus_{i=0}^{15} m 2_{i}\right)=0$. Then there exist:

$$
\begin{array}{ll}
e m_{i, j}=m 2_{i-16, j} \oplus\left(\oplus_{i=0}^{15} m 2_{i 1, j}\right)=m 2_{i-16, j} & 16 \leq i \leq 31 \\
H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right)=H W(m 2) \tag{B.3.3}
\end{array}
$$

Because $H W(m) \geq 0$, there are at least one member in JBO. Let $j b 0=j b_{0}$ and there are at least two members in $I 1_{j b 0}$. Suppose $i 1 a \neq i 1 b \in I 1_{j b 0}$, then:

$$
m 1_{i 1 a, j b 0}=1 \quad \text { and } \quad m 1_{i 1 b, j b 0}=1
$$

Then there has:

$$
\begin{array}{llll}
m 1_{i 1 a, j b 0}=m 2_{i 11 a,} & (16+j b 0-i 1 a) & \bmod & 16=1 \\
m 1_{i 1 b, j b 0}=m 2_{i 1 b,}(16+j b 0-i i b) & \bmod & 16=1
\end{array}
$$

Because $\left(\oplus_{i=0}^{15} m 2_{i}\right)=0$, there are at least two members in $\left\{m 2_{i,(16+j b 0-i l a)} \bmod 16 \quad 15 \geq i \geq 0\right\}$ and $\left\{m 2_{i,(16+j b 0-i l b)} \bmod 16 \quad 15 \geq i \geq 0\right\}$ is 1 . Then:

$$
\begin{align*}
& \left(\sum_{i=0}^{15} m 2_{i,(16+j b 0-i l a)} \bmod 16\right) \geq 2 \\
& \left(\sum_{i=0}^{15} m 2_{i,(16+j b 0-i 1 a) \bmod 16}\right) \geq 2 \\
& H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right)= \\
& \quad H W(m 2) \\
& \geq H W\left(\left(m 2_{0,(16+j b 0-i l a) \bmod 16}, \ldots, m 2_{15,((16+j b 0-i 1 a) \bmod 16}\right)\right)+ \\
& \tag{B.3.4}\\
& \\
& \quad H W\left(\left(m 2_{0,((16+j b 0-i b) \bmod 16}, \ldots, m 2_{15,(16+j b 0-i l b) \bmod 16}\right)\right)
\end{align*}
$$

By (B.3.2) (B.3.3) (B.3.4), there exist:

$$
\begin{aligned}
H W\left(\left(e m_{0}, \ldots, e m_{31}\right)\right) & =H W\left(\left(e m_{0}, \ldots, e m_{15}\right)\right)+H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right) \\
& =2 \times H W\left(\left(e m_{16}, \ldots, e m_{31}\right)\right) \\
& \geq 2 \times 4=8
\end{aligned}
$$

So by (B.3.a) (B.3.b) (B.3.c), if $H W(m) \geq 0$ there exist $H W(e m) \geq 8$.

Because every part is as parameter of data-depend circular shift once. Theroem B. 3 means in any difference path for DDHA, there will be at least eight data-depend circular shift defference.

