
On the Analysis of Cryptographic Assumptions in the Generic Ring

Model∗

Tibor Jager Jörg Schwenk

December 17, 2009

Abstract

At Eurocrypt 2009 Aggarwal and Maurer proved that breaking RSA is equivalent to factoring
in the generic ring model. This model captures algorithms that may exploit the full algebraic
structure of the ring of integers modulo n, but no properties of the given representation of ring
elements. This interesting result raises the question how to interpret proofs in the generic ring
model. For instance, one may be tempted to deduce that a proof in the generic model gives some
evidence that solving the considered problem is also hard in a general model of computation.
But is this reasonable?

We prove that computing the Jacobi symbol is equivalent to factoring in the generic ring
model. Since there are simple and efficient non-generic algorithms computing the Jacobi symbol,
we show that the generic model cannot give any evidence towards the hardness of a computa-
tional problem. Despite this negative result, we also argue why proofs in the generic ring model
are still interesting, and show that solving the quadratic residuosity and subgroup decision prob-
lems is generically equivalent to factoring.

1 Introduction

The security of asymmetric cryptographic systems relies on assumptions that certain computational
problems, mostly from number theory and algebra, are intractable. Since proving useful lower com-
plexity bounds in a general model of computation1 seems to be impossible with currently available
techniques, these assumptions have been analyzed in restricted models, see [Sho97, Mau05, Bro05,
AM09], for instance. A natural and very general class of algorithms is considered in the generic
ring model. This model captures all algorithms solving problems defined over an algebraic ring
without exploiting specific properties of a given representation of ring elements. Such algorithms
work in a similar way for arbitrary representations of ring elements, thus are generic.2

Considering fundamental cryptographic problems in the generic model is motivated by the fol-
lowing ideas. First, showing that a cryptographic assumption holds with respect to a restricted but
meaningful class of algorithms might indicate that the idea of basing the security of cryptosystems
on this assumption is not totally flawed, and may therefore be seen as evidence that the assumption
is also valid in a general model of computation. Second, showing that a large class of algorithms
is not able to solve a computational problem efficiently is an important insight for the search for
∗An extended abstract of this paper appears at ASIACRYPT 2009. This is the full version. The research leading

to these results has received funding from the European Community (FP7/2007-2013) under grant agreement number
ICT-2007-216646 - European Network of Excellence in Cryptology II (ECRYPT II).

1Such as the Turing machine model, for instance.
2See Appendix A for a comparison between the generic group and the generic ring model.

1

cryptanalytic algorithms, and can be used to deduce the optimality of certain classes of algorithms.
Moreover, the generic model is a valuable tool to study the relationship among computational prob-
lems, such as the equivalence of the discrete logarithm and the Diffie-Hellman problem, as done
in [BL96, MW98, MW99, MR07, AJR08], for instance.

In this paper we prove a general theorem which states that solving certain subset membership
problems in the ring Zn is equivalent to factoring n. This main theorem allows us to provide an
example for a computational problem with high cryptographic relevance which is easy to solve in
general, but equivalent to factoring in the generic model. Concretely, we show that computing the
Jacobi symbol is equivalent to factoring in the generic ring model.

For many common idealized models in cryptography it has been shown that a cryptographic
reduction in the ideal model need not guarantee security in the “real world”. Well-known examples
are, for instance, the random oracle model [CGH04], the ideal cipher model [Bla06], and the generic
group model [Fis00, Den02]. All these results have in common that they provide somewhat “ar-
tificial” computational problems that deviate from standard cryptographic practice.3 In contrast,
our result on the generic equivalence of computing the Jacobi symbol and factoring is an example
for a truly practical computational problem that is provably hard in the generic model, but easy
to solve in general. This is an important aspect for interpreting results in the generic ring model,
like [BV98, Bro05, LR06, AJR08, AM09]. Thus a proof in the generic model is unfortunately not
even an indicator that the considered problem is indeed useful for cryptographic applications.

This negative result does not affect the other mentioned motivations for the analysis of com-
putational problems in the generic ring model. A lower bound in this model allows to deduce the
optimality of certain classes of algorithms, and gives insight into the relationship between cryp-
tographic problems, which is also of interest. Motivated by this fact, we also show that solving
the quadratic residuosity and subgroup decision problems is generically equivalent to factoring. For
the latter problem we show that the equivalence holds even in presence of a Diffie-Hellman oracle.
Thus, a Diffie-Hellman oracle does not help in solving the subgroup decision problem.

By taking a closer look at the construction of the simulator used in the proof of our main
theorem, we furthermore deduce that for a certain class of computational problems there exists an
efficient generic ring algorithm if and only if there is an efficient straight line program solving the
problem.

In contrast to previous work [Bro05, LR06, AJR08, AM09], where integer factorization is re-
duced to solving search problems (in the sense that the algorithm has to search for a certain ring
element or integer), we show that in order to factor n it suffices to be able to solve decisional
problems in Zn. We consider algorithms that may exploit the full algebraic structure of Zn. Our
results do not only cover the case where n is the product of two different odd primes, but hold in
the general case where n is the product of at least two different primes.

1.1 Related Work

Previous work considering fundamental cryptographic assumptions in the generic model considered
primarily discrete logarithm-based problems and the RSA problem. Starting with Shoup’s semi-
nal paper [Sho97], it was proven that solving the discrete logarithm problem, the Diffie-Hellman
problem, and related problems [MW98, Mau05, RLB+08] is hard with respect to generic group
algorithms. Damg̊ard and Koprowski showed the generic intractability of root extraction in groups
of hidden order [DK02].

3An exception is the result of [NS01], showing a (non-generic) attack on a scheme with provable security in the
generic model. However, [KM06] note that this stems not from a weakness in the generic model, but from an incorrect
security proof.

2

Brown [Bro05] reduced the problem of factoring integers to solving the low-exponent RSA
problem with straight line programs, which are a subclass of generic ring algorithms. Leander and
Rupp [LR06] augmented this result to generic ring algorithms, where the considered algorithms
may only perform the operations addition, subtraction and multiplication modulo n, but not mul-
tiplicative inversion operations. Recently, Aggarwal and Maurer [AM09] extended this result from
low-exponent RSA to full RSA and to generic ring algorithms that may also compute multiplicative
inverses. Boneh and Venkatesan [BV98] have shown that there is no straight line program reducing
integer factorization to the low-exponent RSA problem, unless factoring integers is easy.

The notion of generic ring algorithms has also been applied to study the relationship between
the discrete logarithm and the Diffie-Hellman problem and the existence of ring-homomorphic
encryption schemes [BL96, MR07, AJR08].

2 Preliminaries

2.1 Notation

For a set A and a probability distribution D on A, we denote with a D← A the action of sampling an
element a from A according to distribution D. We denote with U the uniform distribution. When
sampling k elements a1, . . . , ak

D← A, we assume that all elements are chosen independently.
Throughout the paper we let n be the product of at least two different primes, and denote with

n =
∏k

i=1 p
ei
i the prime factor decomposition of n such that gcd(pei

i , p
ej

j) = 1 for i 6= j.
Let P = (S1, . . . , Sm) be a finite sequence. Then |P | denotes the length of P , i.e. |P | = m.

For k ≤ m we denote with Pk the subsequence (S1, . . . , Sk) of P . For a sequences P with we write
Pk v P to denote that Pk is a subsequence of P such that Pk consists of the first |Pk| elements of
P .

2.2 Uniform Closure

By the Chinese Remainder Theorem, for n =
∏k

i=1 p
ei
i the ring Zn is isomorphic to the direct

product of rings Zp
e1
1
×· · ·×Zp

ek
k

. Let φ be the isomorphism Zp
e1
1
×· · ·×Zp

ek
k
→ Zn, and for C ⊆ Zn

let Ci := {y mod pei
i | y ∈ C} for 1 ≤ i ≤ k.

Definition 1 (Uniform Closure). We say that U [C] ⊆ Zn is the uniform closure of C ⊆ Zn, if

U [C] = {y ∈ Zn | y = φ(y1 . . . , yk), yi ∈ Ci for 1 ≤ i ≤ k}.

A simple example is given in Appendix B.
In particular note that C ⊆ U [C], but not necessarily U [C] ⊆ C. The following lemma follows

directly from the above definition.

Lemma 1. Sampling y U← U [C] uniformly random from U [C] is equivalent to sampling yi uniformly
and independently from Ci for 1 ≤ i ≤ k and setting y = φ(y1, . . . , yk).

2.3 Straight Line Programs

A straight line program over a ring R is a generic ring algorithm performing a fixed sequence of
ring operations, without branching, that outputs an element of R. Thus straight line programs
are a subclass of generic ring algorithms. The following definition is a simple extension of [Bro05,
Definition 1] to straight line programs that may also compute multiplicative inverses.

3

Definition 2 (Straight Line Programs). A straight line program P of length m over Zn is a sequence
of tuples

P = ((i1, j1, ◦1), · · · , (im, jm, ◦m))

where −1 ≤ ik, jk < k and ◦i ∈ {+,−, ·, /} for i ∈ {1, . . . ,m}. The output P (x) of straight line
program P on input x ∈ Zn is computed as follows.

1. Initialize L−1 := 1 ∈ Zn and L0 := x.

2. For k from 1 to m do:

• if ◦k = / and Ljk
6∈ Z∗n then return ⊥,

• else set Lk := Lik ◦ Ljk
.

3. Return P (x) = Lm.

We say that each triple (i, j, ◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote with Pk the
straight line program given by the sequence of the first k elements of P , with the additional
convention that P−1(x) = 1 and P0(x) = x for all x ∈ Zn.

2.4 Generic Ring Algorithms

Similar to straight line programs, generic ring algorithms perform a sequence of ring operations on
the input values 1, x ∈ Zn. However, while straight line programs perform the same fixed sequence
on ring operations to any input value, generic ring algorithms can decide adaptively which ring
operation is performed next. The decision is made either based on equality checks, or on coin
tosses. Moreover, the output of generic ring algorithms is not restricted to ring elements.

We formalize the notion of generic ring algorithms in terms of a game between an algorithm A
and a black-box O, the generic ring oracle. The generic ring oracle receives as input a secret value
x ∈ Zn. It maintains a sequence P , which is set to the empty sequence at the beginning of the
game, and implements two internal subroutines test() and equal().

• The test()-procedure takes a tuple (j, ◦) ∈ {−1, . . . , |P |}×{+,−, ·, /} as input. The procedure
returns false if ◦ = / and Pj(x) 6∈ Z∗n, and true otherwise.

• The equal()-procedure takes a tuple (i, j) ∈ {−1, . . . , |P |} × {−1, . . . , |P |} as input. The
procedure returns true if Pi(x) ≡ Pj(x) mod n and false otherwise.

In order to perform computations, the algorithm submits SLP-steps to O. Whenever the al-
gorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /}, the oracle runs test(j, ◦). If test(j, ◦) = false, the
oracle returns the error symbol ⊥. Otherwise (i, j, ◦) is appended to P . Moreover, the algorithm
can query the oracle to check for equality of computed ring elements by submitting a query (i, j, ◦)
such that ◦ ∈ {=}. In this case the oracle returns equal(i, j). We measure the complexity of A by
the number of oracle queries.

2.5 Some Lemmas on Straight Line Programs over Zn

In the following we will state a few lemmas on straight line programs over Zn that will be useful
for the proof of our main theorem.

4

Lemma 2. Suppose there exists a straight line program P such that for x, x′ ∈ Zn holds that
P (x′) 6=⊥ and P (x) =⊥. Then there exists Pj v P such that Pj(x′) ∈ Z∗n and Pj(x) 6∈ Z∗n.

Proof. P (x) =⊥ means that there exists an SLP-step (i, j, ◦) ∈ P such that ◦ = / and Lj = Pj(x) 6∈
Z∗n. However, P (x′) does not evaluate to ⊥, thus it must hold that Pj(x′) ∈ Z∗n.

The following lemma provides a lower bound on the probability of factoring n by evaluating
a certain straight line program P with y

U← U [C] and computing gcd(n, P (y)), relative to the
probability that P (x′) 6∈ Z∗n and P (x) ∈ Z∗n for randomly chosen x, x′

U← C.

Lemma 3. For any straight line program P and C ⊆ Zn holds that

Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← U [C]

]
.

Similar to the above, the following lemma provides a lower bound on the probability of factoring
n by computing gcd(n, P (y)−Q(y)) with y U← U [C] for two given straight line programs P and Q,
relative to the probability Pr[(P (x) ≡n Q(x) and P (x′) 6≡n Q(x′)) | x, x′ U← C].

Lemma 4. For any pair (P,Q) of straight line programs and C ⊆ Zn holds that

Pr
[
P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) | x, x′ U← C

]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)−Q(y)) 6∈ {1, n} | y U← U [C]

]
.

Proofs for Lemma 3 and 4 are given in Appendix C and D, respectively. We also discuss the
intuition behind these lemmas in Appendix E.

3 Subset Membership Problems in the Generic Ring Model

Definition 3 (Subset Membership Problem). Let C ⊆ Zn and V ⊆ Zn be subsets of Zn such that
V ⊆ C ⊆ Zn. The subset membership problem defined by (C,V) is: given x

U← C, decide whether
x ∈ V.

Whenever considering a subset membership problem in the following we assume that |V| > 1.
Let (C,V) be subsets of Zn defining a subset membership problem. We formalize the notion of

subset membership problems in the generic ring model in terms of a game between an algorithm A
and a generic ring oracle Osmp. Oracle Osmp is defined exactly like the generic ring oracle described
in Section 2.4, except that Osmp receives a uniformly random element x U← C as input. We say that
A wins the game, if x ∈ V and AOsmp(n) = 1, or x 6∈ V and AOsmp(n) = 0.

Note that any algorithm for a given subset membership problem (C,V) has at least the trivial
success probability Π(C,V) := max{|V|/|C|, 1 − |V|/|C|} by guessing, due to the fact that x is
sampled uniformly from C. For an algorithm solving the subset membership problem given by
(C,V) with success probability Pr[S], we denote with

Adv(C,V)(AOsmp(n)) := |Pr[S]−Π(C,V)|

the advantage of A.

5

Theorem 1. For any generic ring algorithm A solving a given subset membership problem (C,V)
over Zn with advantage Adv(C,V)(AOsmp(n)) by performing m queries to Osmp, there exists an algo-
rithm B that outputs a factor of n with success probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from U [C].

Proof Outline. We replace Osmp with a simulator Osim. Let Ssim denote the event that A is
successful when interacting with the simulator, and let F denote the event thatOsim answers a query
of A different from how Osmp would have answered. Then Osmp and Osim are indistinguishable
unless F occurs. Therefore the success probability Pr[S] of A in the simulation game is upper
bound by Pr[Ssim] + Pr[F] (cf. the Difference Lemma [Sho06, Lemma 1]). We derive a bound on
Pr[Ssim] and describe a factoring algorithm whose success probability is lower bound by Pr[F].

3.1 Introducing a Simulation Oracle

We replace oracle Osmp with a simulator Osim. Osim receives x U← C as input, but never uses this
value throughout the game. Instead, all computations are performed independent of the challenge
value x. Note that the original oracle Osmp uses x only inside the test() and equal() procedures. Let
us therefore consider an oracle Osim which is defined exactly like Osmp, but replaces the procedures
test() and equal() with procedures testsim() and equalsim().

• The testsim()-procedure samples xr
U← C and returns false if ◦ = / and Pj(xr) 6∈ Z∗n, and true

otherwise (even if Pj(xr) =⊥).

• The equalsim()-procedure samples xr
U← C and returns true if Pi(xr) ≡ Pj(xr) mod n and false

otherwise (even if Pi(xr) =⊥ or Pj(xr) =⊥).

Note that the simulator samples m random values xr, r ∈ {1, . . . ,m}. Also note that all com-
putations of A are independent of the challenge value x when interacting with Osim. Hence, any
algorithm A has at most trivial success probability in the simulation game, and therefore

Pr[Ssim] ≤ Π(C,V).

3.2 Bounding the Probability of Simulation Failure

We say that a simulation failure, denoted F , occurs if Osim does not simulate Osmp perfectly.
Observe that an interaction of A with Osim is perfectly indistinguishable from an interaction with
Osmp, unless at least one of the following events occurs.

1. The testsim()-procedure fails to simulate test() perfectly. This means that testsim() returns
false on a procedure call where test() would have returned true, or testsim() returns true where
test() would have returned false. Let Ftest denote the event that this happens on at least one
call of testsim().

2. The equalsim()-procedure fails to simulate equal() perfectly. This means that equalsim() has
returned true where equal() would have returned false, or equalsim() has returned false where
equal() would have returned true. Let Fequal denote the event that this happens at at least
one call of equalsim().

6

Since F implies that at least one of the events Ftest and Fequal has occurred, it holds that

Pr[F] ≤ Pr[Ftest] + Pr[Fequal].

In the following we will bound Pr[Ftest] and Pr[Fequal] separately.

3.2.1 Bounding the Probability of Ftest.

The testsim()-procedure fails to simulate test() only if either testsim() has returned false where test()
would have returned true, or testsim() has returned true where test() would have returned false. A
necessary condition4 for this is that there exists Pj v P and xr ∈ {x1, . . . , xm} such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n),

or
(Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n) or (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n).

We can simplify this condition a little by applying Lemma 2. The existence of Pj v P and xr such
that (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n) implies the existence of Pk v P such that k < j and (Pk(xr) 6∈
Z∗n and Pk(x) ∈ Z∗n). An analogous argument holds for the case (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n).
Hence, testsim()-procedure fails to simulate test() only if there exists Pj v P such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n).

Proposition 1.

Pr[Ftest] ≤ 2m(m+ 2) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

The proof of Proposition 1 is deferred to Appendix F.

3.2.2 Bounding the Probability of Fequal

The equalsim()-procedure fails to simulate equal() only if either equalsim() has returned false where
equal() would have returned true, or equalsim() has returned true where equal() would have returned
false. A necessary5 condition for this is that there exist Pi, Pj v P and xr ∈ {x1, . . . , xm} such that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or (Pi(x) ≡n Pj(x) and (Pi(xr) =⊥ or Pj(xr) =⊥))

or

(Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) or (Pi(xr) ≡n Pj(xr) and (Pi(x) =⊥ or Pj(x) =⊥)).

Again we can apply Lemma 2 to simplify this a little: the existence of Pj ∈ P and xr such that
(Pj(xr) =⊥ and Pj(x) 6=⊥) implies the existence of Pk ∈ P such that (Pk(xr) 6∈ Z∗n and Pk(x) ∈
Z∗n). Analogous arguments hold for the other cases where one straight line program evaluates to
⊥. Hence, equalsim()-procedure fails to simulate equal() only if there exist Pi, Pj v P or Pk v P
such that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x))

or
(Pk(xr) 6∈ Z∗n and Pk(x) ∈ Z∗n) or (Pk(x) 6∈ Z∗n and Pk(xr) ∈ Z∗n).

4The condition is not sufficient, because algorithm A need not have queried a division by Pj in its r-th query.
5The condition is not sufficient, because algorithm A need not have queried (i, j, =) in its r-th query.

7

Proposition 2.

Pr[Fequal] ≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

The proof of Proposition 2, which is based on the same ideas as the proof of Proposition 1, is
given in Appendix G.

3.2.3 Bounding the Probability of F .

Summing up, we obtain that the total probability of F is at most

Pr[F] ≤ Pr[Ftest] + Pr[Fequal]

≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 4m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

3.3 Bounding the Success Probability

Since all computations of A are independent of the challenge value x in the simulation game, any
algorithm has only the trivial success probability when interacting with the simulator. Thus the
success probability of any algorithm when interacting with the original oracle is bound by

Π(C,V) + Adv(C,V)(AOsmp) = Pr[S] ≤ Pr[Ssim] + Pr[F] ≤ Π(C,V) + Pr[F],

which implies
Adv(C,V)(AOsmp) ≤ Pr[F].

3.4 The Factoring Algorithm

Consider a factoring algorithm B running A, recording the sequence of queries A issues, and
proceeding as follows.

• Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /} in its r-th query, the algorithm
samples y U← U [C] and computes gcd(Pk(y), n) for 0 ≤ k ≤ r.

• Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {=} in its r-th query, the algorithm samples
y

U← U [C] and computes gcd(Pi(y)− Pj(y), n) for −1 ≤ i < j ≤ r.

3.4.1 Running time.

By assumption, A submits m queries. Thus, the algorithm evaluates O(m2) straight line programs.
Each query can be evaluated by performing at most m steps, which yields O(m3) operations in Zn.
Moreover, the algorithm samples m random values y from U [C] and performs m gcd-computations
on dlog2 ne-bit numbers.

8

3.4.2 Success probability.

B evaluates any straight line program Pk with a uniformly random element y of U [C]. In particular,
B computes gcd(Pk(y), n) for y U← U [C] and the straight line program Pk v P satisfying

Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]

= max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

Let γ1 := max0≤k≤m{Pr[Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′
U← C]}, then by Lemma 3 algorithm B

finds a factor in this step with probability at least γ1

(
|C|
|U [C]|

)2
.

Moreover, B evaluates any pair Pi, Pj of straight line programs in P with a uniformly random
element y U← U [C]. So in particular B evaluates gcd(Pi(y) − Pj(y), n) with y

U← U [C] for the pair
of straight line programs Pi, Pj v P satisfying

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

= max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

.

Let γ2 := max−1≤i<j≤m{Pr[Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′
U← C]}, then by Lemma 4

algorithm B succeeds in this step with probability at least γ2

(
|C|
|U [C]|

)2
.

So, for γ := max{γ1, γ2}, the total success probability of algorithm B is at least

γ

(
|C|
|U [C] |

)2

.

3.4.3 Relating the success probability of B to the advantage of A.

Using the above definitions of γ1, γ2, and γ, the fact that Adv(C,V)(AOsmp(n)) ≤ Pr[F], and the
derived bound on Pr[F], we can obtain a lower bound on γ by

Adv(C,V)(AOsmp(n)) ≤ Pr[F] ≤ 4m(m+ 1)γ1 + 2m(m2 + 3m+ 1)γ2 ≤ 2m(m2 + 5m+ 3)γ,

which implies the inequality

γ ≥
Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

.

Therefore the success probability of B is at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

.

4 Computing the Jacobi Symbol with Generic Ring Algorithms

Let us denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Z∗n | x ≡ y2 mod n, y ∈ Z∗n}.

9

Let (x | n) denote the Jacobi symbol [Sho05, p.287] and let Jn := {x ∈ Zn | (x | n) = 1} be the set
of elements of Zn having Jacobi symbol 1. Recall that QRn ⊆ Jn, and therefore given x ∈ Zn\Jn

it is easy to decide that x is not a quadratic residue by computing the Jacobi symbol.
There exist simple efficient algorithms computing the Jacobi symbol in Zn without factoring

n. These algorithms are not generic, cf. [Sho05, p.288]. However, let us consider the subset
membership problem (C,V) with C = Z∗n and V = Jn. The following theorem states that there is
no efficient generic algorithm solving this problem, unless factoring n is easy.

Theorem 2. Suppose there exist a generic ring algorithm A solving the subset membership problem
given by (C,V) with C = Z∗n and V = Jn with advantage Adv(C,V)(AOsmp(n)) by performing m ring
operations. Then there exists an algorithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from Z∗n.

Proof. The theorem follows by applying Theorem 1 and the fact that U [Z∗n] = Z∗n, since(
|C|
|U [C] |

)2

=
(
|Z∗n|
|Z∗n|

)2

= 1

5 The Generic Quadratic Residuosity Problem and Factoring

Definition 4 (Quadratic Residuosity Problem). The quadratic residuosity problem is the subset
membership problem given by C = Jn and V = QRn.

Given the factorization of n, solving the quadratic residuosity problem in Zn is easy, also for
generic ring algorithms. Thus, in order to show the equivalence of generic quadratic residuosity
and factoring, we have to prove the following theorem.

Theorem 3. Suppose there exist a generic ring algorithm A that solves the quadratic residuosity
problem in Zn with advantage Adv(C,V)(AOsmp(n)) by performing m ring operations. Then there
exists an algorithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
8m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-computations on
dlog2 ne-bit numbers, and sampling m random elements from Z∗n.

Proof. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends on whether n is
a square in N.

|Jn| =

{
φ(n)/2, if n is not a square in N,
φ(n), if n is a square in N,

where φ(·) is the Euler totient function [Sho05, p.24]. Note also that U [Jn] = U [C] = Z∗n. Therefore
it holds that |Jn| = |C| ≥ φ(n)/2 and |U [C] | = |Z∗n| = φ(n). Thus we can apply Theorem 1, using
that (

|C|
|U [C] |

)2

=
(
|Jn|
|Z∗n|

)2

≥
(
φ(n)/2
φ(n)

)2

=
1
4
.

10

6 The Generic Subgroup Decision Problem and Factoring

Let n = pq and let G be a cyclic group of order n. Then there exists a subgroup Gp ⊆ G of order
p.

Definition 5 (Subgroup Decision Problem). The subgroup decision problem is the subset mem-
bership problem (C,V) with C = G and V = Gp.

Clearly solving the subgroup membership problem is easy if the factorization of n is given. In
the following we will show that solving the subgroup membership problem is equivalent to factoring
n with respect to generic algorithms, even if the algorithm has access to an oracle solving the Diffie-
Hellman problem in G. We are not able to apply the framework described in Section 3 directly,
because there we had to require that the challenge is sampled uniformly from C. Therefore we
introduce a different technique that is more specific, but works for challenges chosen according to
an distribution D such that Pr[x ∈ V | x D← C] ≈ 1/2, even though C is exponentially larger than V.

6.1 The Subgroup Decision Problem in the Generic Model

Recall that any cyclic group of order n is isomorphic to the additive group of integers (Zn,+). Now,
since we are going to consider generic algorithms, we may assume that the algorithm operates on the
group G = (Zn,+), of course without exploiting any property of this representation.6 Assuming an
oracle DH solving the Diffie-Hellman problem in G, we observe that this operation corresponds to
the multiplication in Zn. Hence, the group G together with oracle DH exhibits the same algebraic
structure as the ring Zn.

By the Chinese Remainder Theorem, the ring Zn is isomorphic to the direct product Zp × Zq.
Let φ : Zp×Zq → Zn denote this isomorphism. The subgroup Gp of G with order p consists of the
elements Gp = {φ(xp, 0) | xp ∈ Zp}. So for generic ring algorithms the subgroup decision problem
can be stated as: given x ∈ Zn, decide whether x ≡ 0 mod q.

In order to model the generic subgroup decision problem, consider an oracle Osdp which is
defined exactly like the generic ring oracle described in Section 2.4, except that it does not provide
the operation /. Osdp receives an element x ∈ Zn as input, where x is constructed as follows: sample
(xp, xq) U← Zp×Zq and bit b U← {0, 1} uniformly random, and let x := φ(xp, bxq). An algorithm can
query the oracle for the (inverse) group operation by submitting a query (i, j, ◦) with ◦ ∈ {+,−}.
The Diffie-Hellman oracle is queried by submitting (i, j, ◦) with ◦ ∈ {·}.

We say that the algorithm wins the game, if x ∈ Gp and AOsdp(n) = 1, or x 6∈ Gp and
AOsdp(n) = 0. We define the advantage of an algorithm A solving the subgroup decision problem
with probability Pr[S] as

Adv(AOsdp(n)) :=
∣∣∣∣Pr[S]−

(
1
2

+
1
q

)∣∣∣∣ .
Remark 1. If we would also allow to query the oracle for divisions (which correspond to an “inverse
Diffie-Hellman oracle” in the above setting), then there would be a simple algorithm determining
whether x ∈ Gp by returning true iff division by x fails. Interestingly, we will show that there is
no generic algorithm making similar use of a standard Diffie-Hellman oracle, unless factoring n is
easy. Therefore a further consequence of the theorem presented in the following section is that
a standard Diffie-Hellman oracle does not imply a inverse Diffie-Hellman oracle in general, unless
factoring is easy.

6Technically, we assume that the generic group oracle uses the group (Zn, +) for the internal representation of
group elements.

11

Remark 2. The subgroup decision problem was introduced in [BGN05] for groups with bilinear
pairing. Essentially such a pairing can be added to the generic model by allowing the algorithm
to perform a single multiplication operation when evaluating the bilinear pairing map,7 as done
in [BB08]. By providing a Diffie-Hellman oracle, we do not restrict the algorithm to a fixed number
of multiplications. Hence, our proof includes the problem stated in [BGN05] as a special case.

6.2 The Subgroup Decision Problem is Generically Equivalent to Factoring

It is easy to see that there exists a generic algorithm solving the subgroup decision problem, if
the factorization of the group order is known. In order to show the equivalence of the generic
subgroup decision problem and factoring, it remains to reduce factoring integers to the generic
subgroup decision problem. In the sequel we show that solving the subgroup decision problem in
groups of order n is as hard as factoring n, even if the algorithm has access to an oracle solving the
Diffie-Hellman problem.

Theorem 4. Suppose there exist a generic ring algorithm A solving the subgroup membership
problem in G with advantage Adv(AOsdp(n)) by making m queries to an oracle performing the
(inverse) group operation and solving the Diffie-Hellman problem. Then there exists an algorithm
B finding a factor of n with probability at least Adv(AOsdp(n)) by running A once and performing
O(m3) additional operations in Zn and m gcd-computations on dlog2 ne-bit numbers.

Proof. Let us consider an interaction of A with an oracle Op which is defined as follows. Op works
similar to Osdp, but performs all computations in Zp. That is, the equal()-procedure returns true
on input (i, j) iff Pi(x) ≡ Pj(x) mod p. Note that now all computations are performed in the
Zp-component of the decomposition Zp × Zq of Zn, hence the algorithm receives no information
on whether x ≡ 0 mod q. Thus in the simulation game any algorithm has only trivial success
probability Pr[Ssim] = 1/2 + 1/q.

Now consider an interaction of A with oracle Osdp. Either this interaction is indistinguishable
from an oracle Op, in which case the algorithm has only trivial success probability, or there exist
Pi, Pj v P with such that Pi(x) ≡ Pj(x) mod p, but Pi(x) 6≡ Pj(x) mod n. In this case a factor of
n is found by computing gcd(Pi(x)− Pj(x), n). Note that

1
2

+ Adv(C,V)(AOsdp(n)) ≤ Pr[Ssim] + Pr[F] ⇐⇒ Adv(C,V)(AOsdp(n)) ≤ Pr[F]

Thus, n is factored this way by running A, recording P and computing gcd(Pi(x) − Pj(x), n) for
all −1 ≤ i < j ≤ m with probability at least Adv(C,V)(AOsdp(n)).

The above proof generalizes from n = pq to n =
∏k

i=1 p
ei
i for all subgroups with prime-power

order pei
i in a straightforward manner.

7 Analyzing Search Problems in the Generic Ring Model

In Section 3 we have constructed a simulator for a generic ring oracle for the ring Zn. When
interacting with the simulator, all computations are independent of the secret challenge value x.
Therefore we have been able to conclude that any generic algorithm has only the trivial probability
of success in solving certain decisional problems (namely the considered subset membership prob-
lems) when interacting with the simulator. Moreover, we have shown that any algorithm that can

7Plus some minor technical details to distinguish between different groups.

12

distinguish between simulator and original oracle can be turned into a factoring algorithm with
(asymptotically) the same running time.

In contrast to decisional problems, where the algorithm outputs a bit, our construction of the
simulator can also be applied to prove the generic hardness of search problems where the algorithm
outputs a ring element or integer. Let us sketch two possibilities. The first one is to formulate
a suitable subset membership problem which reduces to the considered search problem and then
apply Theorem 1. Another possibility is to use our construction of the simulator to bound the
probability of a simulation failure relative to factoring. In order to bound the success probability
in the simulation game, it remains to show that there exists no straight line program solving the
considered problem efficiently under the factoring assumption.

Acknowledgements. We would like to thank Andy Rupp and Sven Schäge for helpful discus-
sions, and Yvo Desmedt and the program commitee members for valuable suggestions.

References

[AJR08] Kristina Altmann, Tibor Jager, and Andy Rupp. On black-box ring extraction and
integer factorization. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126
of Lecture Notes in Computer Science, pages 437–448. Springer, 2008. (cited in Sections
1 and 1.1.)

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring.
In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer
Science, pages 36–53. Springer, 2009. (cited in Sections 1 and 1.1.)

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008. (cited in Sections 2
and A.)

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
325–341. Springer, 2005. (cited in Section 2.)

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application
to cryptography (extended abstract). In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 283–297. Springer, 1996. (cited in Sections
1 and 1.1.)

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes
in Computer Science, pages 328–340. Springer, 2006. (cited in Section 1.)

[Bro05] Daniel R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology ePrint
Archive, Report 2005/380, 2005. http://eprint.iacr.org/. (cited in Sections 1, 1.1,
and 2.3.)

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to
factoring. In Kaisa Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in
Computer Science, pages 59–71. Springer, 1998. (cited in Sections 1 and 1.1.)

13

http://eprint.iacr.org/

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-
ited. J. ACM, 51(4):557–594, 2004. (cited in Section 1.)

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic
group model. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in
Computer Science, pages 100–109. Springer, 2002. (cited in Section 1.)

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and
signature schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT, volume
2332 of Lecture Notes in Computer Science, pages 256–271. Springer, 2002. (cited in
Section 1.1.)

[Fis00] Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki Okamoto,
editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 458–469.
Springer, 2000. (cited in Section 1.)

[KM06] Neal Koblitz and Alfred J. Menezes. Another look at generic groups. pages 13–28, 2006.
(cited in Section 3.)

[LR06] Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding
generic ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume
4284 of Lecture Notes in Computer Science, pages 241–251. Springer, 2006. (cited in
Sections 1, 1.1, and A.)

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2005. (cited in Sections 1, 1.1, and A.)

[MR07] Ueli Maurer and Dominik Raub. Black-box extension fields and the inexistence of field-
homomorphic one-way permutations. In Kaoru Kurosawa, editor, ASIACRYPT, volume
4833 of Lecture Notes in Computer Science, pages 427–443. Springer-Verlag, 2007. (cited
in Sections 1 and 1.1.)

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In
Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, volume 1403 of
Lecture Notes in Computer Science, pages 72–84, 1998. (cited in Sections 1 and 1.1.)

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput., 28(5):1689–1721, 1999.
(cited in Section 1.)

[NS01] Phong Q. Nguyen and Igor Shparlinski. On the insecurity of a server-aided RSA protocol.
In Colin Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science,
pages 21–35. Springer, 2001. (cited in Section 3.)

[RLB+08] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza
Sadeghi. Sufficient conditions for intractability over black-box groups: Generic lower
bounds for generalized DL and DH problems. In Josef Pieprzyk, editor, ASIACRYPT,
volume 5350 of Lecture Notes in Computer Science, pages 489–505. Springer, 2008.
(cited in Sections 1.1 and A.)

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. (cited in Section A.)

14

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT 1997, volume 1233 of Lecture
Notes in Computer Science, pages 256–266, 1997. (cited in Sections 1, 1.1, and A.)

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2005. (cited in Sections 4 and 5.)

[Sho06] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs,
2006. URL: http://eprint.iacr.org/2004/332. (cited in Section 3.)

A Comparing the Generic Ring Model to the Generic Group
Model

The generic ring model (GRM) is an extension of the generic group model (GGM) (see [Sho97], for
instance). Despite many similarities to the GGM, showing the hardness of computational problems
in the GRM seems to be more involved than standard proofs in the GGM. The reason is that a
typical proof in the GGM (cf. [Sho97, Mau05, LR06], for instance) introduces a simulation game
where group elements are replaced with polynomials that are (implicitly) evaluated with some group
elements corresponding to a given problem instance. A key argument in these proofs is that, by
construction of the simulator, the degree of these polynomials cannot exceed a certain small bound
(often degree one or two). Following Shoup’s seminal work [Sho97], a lower bound on the success
probability of any generic group algorithm for the given problem is then derived by bounding the
number of roots of these polynomials by applying the Schwartz Lemma [Sch80, Sho97]. Usually the
bound is useful if the number of roots is sufficiently small. Rupp et al. [RLB+08] have even been
able to describe sufficient conditions for the generic hardness of discrete log type problems, that
essentially make sure that there is no possibility to compute polynomials with “too large” degree.

In the GGM the number of roots of polynomials is kept small by performing only addition
operations on polynomials of degree one in the simulation game (sometimes also a small bounded
number of multiplications, for instance when the model is extended to groups with bilinear pairing
map, as done in [BB08]). However, in the generic ring model we explicitly allow for multiplication
operations, and we do not want to bound the number of allowed multiplication explicitly, in order
to keep the model as general as possible. Thus, by repeated squaring an algorithm may compute
polynomials of exponential degree. In this case applying the Schwartz Lemma does not yield a
useful bound on the number of roots.8

B A Simple Example for U [C]
Let p, q be different primes, n = pq, and φ be the isomorphism Zp × Zq → Zn. For x ∈ Zn let
xp := x mod p and xq := x mod q. Consider the subset C ⊆ Zn such that

C = {a, b, c} = {φ(ap, aq), φ(bp, bq), φ(cp, cq)}.

The uniform closure U [C] of C is the set

U [C] = {φ(dp, dq) | dp ∈ {ap, bp, cp}, dq ∈ {aq, bq, cq}}.
8There are also some technical obstacles when using the standard technique with polynomials for proofs in the

generic ring model, which are one reason why we used the notion of straight line programs instead.

15

C Proof of Lemma 3

C.1 Auxiliary Lemma

Let us first state a simple lemma which will be useful for the proofs of Lemma 3 and Lemma 4.

Lemma 5. For k ∈ N and µi ∈ [0, 1] with i ∈ {1, . . . , k} holds that(
1−

k∏
i=1

(1− µi)

)k

≥
k∏

i=1

µi

Proof. The lemma is proven easily by complete induction on k. The inequality holds obviously for
k = 1. Assuming the inequality holds for k, the step k → k + 1 proceeds as follows.(

1−
k+1∏
i=1

(1− µi)

)k+1

=

(
1−

k+1∏
i=1

(1− µi)

)k(
1−

k+1∏
i=1

(1− µi)

)

≥

(
1−

k∏
i=1

(1− µi)

)k

(1− (1− µk+1))

hyp.
≥

k∏
i=1

µi · µk+1 =
k+1∏
i=1

µi

C.2 Proving Lemma 3

For notational convenience, let us define Γ(P) := Pr[P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′
U← C] and

Λ(P) := Pr[gcd(n, P (y)) 6∈ {1, n} | y U← U [C]]. Thus, in order to prove Lemma 3 we have to show
that the inequality (

|U [C] |
|C|

)2

Λ(P) ≥ Γ(P)

holds. To this end, we will proceed as follows.

1. We define an auxiliary function νi(P).

2. We express Γ(P) and Λ(P) in terms of νi(P). More precisely, we will upper bound Γ(P) by
an expression in νi(P) and lower bound Λ(P) by an expression in νi(P).

3. Then we can apply Lemma 5 to shows that resulting inequality holds.

C.2.1 Defining an auxiliary function.

Recall that we denote with n =
∏k

i=1 p
ei
i the prime factor decomposition of n. Let

νi(P) := Pr
[
P (x) ≡ 0 mod pi | x

U← U [C]
]

be the probability that P (x) ≡ 0 mod pi for some prime pi dividing n and x
U← U [C]. Recall

that φ : Zp
e1
1
× · · · × Zp

ek
k
→ Zn is a ringisomorphism, and P performs only ring operations

in Zn. Therefore P implicitly performs all operations on each component Zp
ei
i

separately (and

16

independently). Moreover, sampling x U← U [C] is equivalent to sample φ(x1, . . . , xk) with xi chosen
independently and uniform from Ci for 1 ≤ i ≤ k (cf. Lemma 1). Thus we can express the
probability that P (x) ∈ Z∗n for x U← U [C] as

Pr
[
P (x) ∈ Z∗n | x

U← U [C]
]

=
k∏

i=1

(
1− Pr

[
P (x) ≡ 0 mod pi | x

U← U [C]
])

=
k∏

i=1

(1− νi(P)).

C.2.2 Bounding Γ(P) in terms of νi(P).

For independently sampled x, x′, we have

Γ(P) = Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]

= Pr
[
P (x) 6∈ Z∗n | x

U← C
]
· Pr

[
P (x) ∈ Z∗n | x

U← C
]

Note that, since C ⊆ U [C], it holds that

Pr
[
P (x) ∈ Z∗n | x

U← C
]
≤ Pr

[
P (y) ∈ Z∗n | y

U← U [C]
]
· Pr

[
y ∈ C | y U← U [C]

]−1

= Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] |U [C] |
|C|

and

Pr
[
P (x) 6∈ Z∗n | x

U← C
]
≤ Pr

[
P (y) 6∈ Z∗n | y

U← U [C]
]
· Pr

[
y ∈ C | y U← U [C]

]−1

= Pr
[
P (y) 6∈ Z∗n | y

U← U [C]
] |U [C] |
|C|

=
(

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
]) |U [C] |

|C|
.

Therefore

Γ(P) ≤ Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] (

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
])(|U [C] |

|C|

)2

=
k∏

i=1

(1− νi(P))

(
1−

k∏
i=1

(1− νi(P))

)(
|U [C] |
|C|

)2

. (1)

C.2.3 Bounding Λ(P) in terms of νi(P).

We can find a factor of n by computing gcd(n, P (y)), if P (y) ≡ 0 mod pi for at least one prime pi

dividing n, and P (y) 6≡ 0 mod n. Using similar arguments as above, we can therefore express Λ(P)
in terms of νi(P) as

Λ(P) = Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← C

]
≥ 1−

k∏
i=1

Pr
[
P (y) ≡ 0 mod pi | y

U← U [C]
]
−

k∏
i=1

(
1− Pr

[
P (y) ≡ 0 mod pi | y

U← U [C]
])

= 1−
k∏

i=1

νi(P)−
k∏

i=1

(1− νi(P)). (2)

17

C.2.4 Putting things together.

Combining (1) and (2), we see that the inequality(
|U [C] |
|C|

)2

Λ(P) ≥ Γ(P)

holds if inequality

1−
k∏

i=1

νi(P)−
k∏

i=1

(1− νi(P)) ≥
k∏

i=1

(1− νi(P))

(
1−

k∏
i=1

(1− νi(P))

)

⇐⇒

(
1−

k∏
i=1

(1− νi(P))

)2

≥
k∏

i=1

νi(P)

holds. Applying Lemma 5, we may conclude that this inequality holds for k ≥ 2.

D Proof of Lemma 4

In the following, for straight line programs P,Q let Γ′(P,Q) := Pr[P (x) ≡n Q(x) and P (x′) 6≡n

Q(x′) | x, x′ U← C] and Λ′(P,Q) := Pr[gcd(n, P (y) −Q(y)) 6∈ {1, n} | y U← U [C]]. Then, in order to
prove our claim, we have to show that(

|U [C] |
|C|

)2

Λ′(P,Q) ≥ Γ′(P,Q).

The proof will proceed very similar to the proof of Lemma 3, except that we have to define a slightly
different auxiliary function.

D.1 Defining an auxiliary function.

For n =
∏k

i=1 p
ei
i , let

ν ′i(P,Q) := Pr
[
P (y)−Q(y) ≡ 0 mod pei

i | y
U← U [C]

]
.

Thus, for two straight line programs P,Q, the function ν ′i determines the probability that P (y)−
Q(y) ≡ 0 mod pei

i for uniform sampled y U← U [C]. Using similar arguments as above, we can express
the probability that P (y) ≡ Q(y) mod n for y U← U [C] as

Pr
[
P (y) ≡ Q(y) mod n | y U← U [C]

]
= Pr

[
P (y)−Q(y) ≡ 0 mod n | y U← U [C]

]
=

k∏
i=1

Pr
[
P (y)−Q(y) ≡ 0 mod pei

i | y
U← U [C]

]
=

k∏
i=1

ν ′i(P,Q).

From here the proof proceeds just like the proof of Lemma 3. We express Λ′(P,Q) and Γ′(P,Q) in
terms of ν ′i(P,Q), and apply Lemma 5 to prove the resulting inequality.

18

D.2 Bounding Γ′(P,Q) in terms of ν ′i(P,Q).

Since x, x′ are sampled independently, we have

Γ′(P,Q) := Pr
[
(P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) | x, x′ U← C

]
= Pr

[
(P (x) ≡n Q(x) | x U← C

]
· Pr

[
P (x) 6≡n Q(x) | x U← C

]
.

Again, in order to be able to sample from U [C] instead of C, we use that C ⊆ U [C] to bound

Pr
[
P (x) ≡n Q(x) | x U← C

]
≤ Pr

[
P (y) ≡n Q(y) | y U← U [C]

] |U [C] |
|C|

and

Pr
[
P (x) 6≡n Q(x) | x U← C

]
≤ Pr

[
P (y) 6≡n Q(y) | y U← U [C]

] |U [C] |
|C|

.

Therefore

Γ′(P,Q) = Pr
[
(P (x) ≡n Q(x) | x U← C

]
· Pr

[
P (x) 6≡n Q(x) | x U← C

]
≤Pr

[
P (y) ≡n Q(y) | y U← U [C]

]
· Pr

[
P (y) 6≡n Q(y) | y U← U [C]

](|U [C] |
|C|

)2

= Pr
[
P (y) ≡n Q(y) | x U← U [C]

] (
1− Pr

[
P (y) ≡n Q(y) | y U← U [C]

])(|U [C] |
|C|

)2

=
k∏

i=1

ν ′i(P,Q)

(
1−

k∏
i=1

ν ′i(P,Q)

)(
|U [C] |
|C|

)2

. (3)

D.3 Bounding Λ′(P,Q) in terms of ν ′i(P,Q).

As above, we can find a factor of n by computing gcd(n, P (y)), if P (y) ≡ 0 mod pei
i for at least one

prime power pei
i dividing n, and P (y) 6≡ 0 mod n. Thus we can express Λ′(P,Q) in terms of ν ′i(P)

as

Λ′(P,Q) = Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← U [C]

]
≥ 1−

k∏
i=1

ν ′i(P,Q)−
k∏

i=1

(1− ν ′i(P,Q)). (4)

D.4 Putting things together.

Combining (3) and (4), we see that(
|U [C] |
|C|

)2

Λ′(P,Q) ≥ Γ′(P,Q)

holds if

1−
k∏

i=1

ν ′i(P,Q)−
k∏

i=1

(1− ν ′i(P,Q)) ≥

(
k∏

i=1

ν ′i(P,Q)

)(
1−

k∏
i=1

ν ′i(P,Q)

)

⇐⇒

(
1−

k∏
i=1

ν ′i(P,Q)

)2

≥
k∏

i=1

(1− ν ′i(P,Q))

holds. By Lemma 5 the claim follows now for k ≥ 2 by letting µi := 1− ν ′i(P,Q).

19

E The Intuition behind Lemma 3 and 4

Simplifying a little, Lemma 3 and 4 state essentially9 that: if we are given a straight line program
mapping “many” inputs to zero and “many” inputs to a non-zero value, then we can find a factor of
n by sampling y U← U [C] and computing gcd(n, P (y)). At a first glance this seems counterintuitive.

For instance, consider the case C = Zn, then we have U [C] = Zn. Assume a straight line
program P mapping half of the elements of Zn to 0, and the other half to 1. Then P maps “many”
inputs to zero and “many” inputs to a non-zero value, but clearly computing gcd(n, P (y)) for any
y

U← Zn yields only trivial factors of n, hence this seems to be a counterexample to Lemma 3
and 4. However, in fact this is not a counterexample, since there exists no straight line program P
satisfying the assumed property, if n is the product of at least two different primes.

The reason for this is a consequence of the Chinese Remainder Theorem. Let n = pq with
gcd(p, q) = 1 (p and q not necessarily prime, but p, q > 1). By the Chinese Remainder Theorem,
the ring Zn is isomorphic to Zp × Zq. Let φ : Zp × Zq → Zn denote this isomorphism. Assume
x, x′ ∈ Zn and a straight line program P such that P (x) ≡ 0 mod n and P (x′) ≡ 1 mod n. Since φ
is a ringisomorphism and P performs only ring operations, it holds that

P (x) = φ(P (x) mod p, P (x) mod q) = φ(0, 0)

and
P (x′) = φ(P (x′) mod p, P (x′) mod q) = φ(1, 1).

The crucial observation is now that for each pair (x, x′) ∈ Z2
n, there exist c, d ∈ Zn such that

c = φ(x′ mod p, x mod q) and d = φ(x mod p, x′ mod q). Evaluating P with c or d yields

P (c) = φ(P (x′) mod p, P (x) mod q) = φ(1, 0)

or
P (d) = φ(P (x) mod p, P (x′) mod q) = φ(0, 1).

We therefore have gcd(n, P (c)) = q and gcd(n, P (d)) = p. Thus, if P has the property that
P (x) = φ(0, 0) and P (x′) = φ(1, 1) with “high” probability for x, x′ U← Zn, then we can also sample
y

U← Zn such that P (y) = φ(0, 1) or P (y) = φ(1, 0) with “high” probability. A factor of n can
therefore be found by sampling y and computing gcd(n, P (y)).

Generalizing the notion described above, putting it into a more precise and formal language,
and handling some technical obstacles,10 we obtain the proofs given in Appendices C and D.

F Proof of Proposition 1

By construction of the simulator, Pr[Ftest] is bound by the probability that there exists Pj v P
such that either

1. testsim() has returned false where test() would have returned true, i.e. it holds that

(a) (Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or

9In case of Lemma 3 note that P (x) ∈ Z∗n and P (x′) 6∈ Z∗n means that P (x′) is zero modulo at least one prime factor
of n, while P (x) 6≡ 0 modulo all prime factors of n. In case of Lemma 4 observe that if we have P (x)−Q(x) ≡ 0 mod n
and P (x′) −Q(x′) 6≡ 0 mod n, then x is mapped to zero and x′ is not mapped to zero by the straight line program
S(x) := P (x)−Q(x).

10E.g. the fact that simulator and factoring algorithm sample from subsets of Zn (what made it necessary to define
the uniform closure of subsets of Zn).

20

(b) (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n)

2. or testsim() has returned true where test() would have returned false, i.e. it holds that

(a) (Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n) or

(b) (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Note that if there exists Pj such that (Pj(x) =⊥ and Pj(xr) 6=⊥), then this implies that there
exists Pk v P with k < j such that (Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) by Lemma 2. Hence, in order
to bound the probability of Ftest, it suffices to consider the probability that there exists a straight
line program Pj v P such that

(Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(xr) ∈ Z∗n) (5)

for x, x1, . . . , xm
U← C.

For fixed Pj we can bound this probability as follows.

Pr
[
(Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(xr) ∈ Z∗n) | x, x1, . . . , xm

U← C
]

≤mPr
[
(Pj(x′) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n) | x, x′ U← C

]
=m

(
Pr
[
Pj(x′) 6∈ Z∗n and Pj(x) ∈ Z∗n | x, x′

U← C
]

+ Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
])

=mPr
[
Pj(x′) 6∈ Z∗n and Pj(x) ∈ Z∗n | x, x′

U← C
]

+mPr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]

=2mPr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]
.

Using this, we obtain the following bound on the probability that there exists any Pj v P satisfy-
ing (5).

Pr[Ftest] ≤ 2m
m∑

j=0

Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]

≤ 2m(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

G Proof of Proposition 2

By construction of the simulator, Pr[Fequal] is bound by the probability that there exist Pi, Pj v P
and xr ∈ {x1, . . . , xm} such that either

1. equalsim() has returned false where equal() would have returned true, i.e. it holds that

(a) (Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or

(b) (Pi(x) ≡n Pj(x) and Pi(xr) =⊥) or

(c) (Pi(x) ≡n Pj(x) and Pj(xr) =⊥)

2. or equalsim() has returned true where equal() would have returned false, i.e. it holds that

21

(a) (Pi(xr) ≡n Pj(x) and Pi(x) 6≡n Pj(x)) or

(b) (Pi(xr) ≡n Pj(x) and Pi(x) =⊥) or

(c) (Pi(xr) ≡n Pj(x) and Pj(x) =⊥)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Applying Lemma 2 to cases 1.b), 1.c), 2.b), and 2.c), we see that in order to bound the prob-
ability of Fequal, it suffices to consider the probability that there exist Pi, Pj v P or Pk v P such
that

1. equalsim() has returned false where equal() would have returned true, i.e. it holds that

(a) (Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr)) or

(b) (Pk(x) ∈ Z∗n and Pk(xr) 6∈ Z∗n)

2. or equalsim() has returned true where equal() would have returned false, i.e. it holds that

(a) (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) or

(b) (Pk(xr) ∈ Z∗n and Pk(x) 6∈ Z∗n)

for x U← C and one of the values x1, . . . , xm
U← C sampled by the simulator.

Let us first consider the cases 1.a) and 2.a). For fixed Pi, Pj we can bound the probability of
1.a) and 2.a) as follows.

Pr[(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr))

or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x)) | x, x1, . . . , xm
U← C]

≤mPr[(Pi(x) ≡n Pj(x) and Pi(x′)) 6≡n Pj(x′)

or ((Pi(x′) ≡n Pj(x′) and Pi(x) 6≡n Pj(x)) | x, x′ U← C]

=mPr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

+mPr
[
Pi(x′) ≡n Pj(x′) and Pi(x) 6≡n Pj(x) | x, x′ U← C

]
=2mPr

[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

Using the last term, the probability that there exists any pair Pi, Pj ∈ P such that 1.a) or 2.a)
holds is at most

2m
∑

−1≤i<j≤m

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]

≤2m(m+ 2)(m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

=2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

Now let us consider the cases 1.b) and 2.b). Comparing these cases to Expression (5), the proof
of Proposition 1 shows that the probability that there exists any Pk ∈ P such that 1.b) or 2.b)
holds is at most

2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

22

Since Fequal implies that there exists either a pair Pi, Pj ∈ P such that 1.a) or 2.a) holds, or Pk ∈ P
such that 1.b) or 2.b) holds, we may conclude

Pr[Fequal] ≤ 2m(m2 + 3m+ 1) max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′

U← C
]}

+ 2m(m+ 1) max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

23

	Introduction
	Related Work

	Preliminaries
	Notation
	Uniform Closure
	Straight Line Programs
	Generic Ring Algorithms
	Some Lemmas on Straight Line Programs over Zn

	Subset Membership Problems in the Generic Ring Model
	Introducing a Simulation Oracle
	Bounding the Probability of Simulation Failure
	Bounding the Probability of Ftest.
	Bounding the Probability of Fequal
	Bounding the Probability of F.

	Bounding the Success Probability
	The Factoring Algorithm
	Running time.
	Success probability.
	Relating the success probability of B to the advantage of A.

	Computing the Jacobi Symbol with Generic Ring Algorithms
	The Generic Quadratic Residuosity Problem and Factoring
	The Generic Subgroup Decision Problem and Factoring
	The Subgroup Decision Problem in the Generic Model
	The Subgroup Decision Problem is Generically Equivalent to Factoring

	Analyzing Search Problems in the Generic Ring Model
	Comparing the Generic Ring Model to the Generic Group Model
	A Simple Example for U[C]
	Proof of Lemma 3
	Auxiliary Lemma
	Proving Lemma 3
	Defining an auxiliary function.
	Bounding (P) in terms of i(P).
	Bounding (P) in terms of i(P).
	Putting things together.

	Proof of Lemma 4
	Defining an auxiliary function.
	Bounding '(P,Q) in terms of 'i(P,Q).
	Bounding '(P,Q) in terms of 'i(P,Q).
	Putting things together.

	The Intuition behind Lemma 3 and 4
	Proof of Proposition 1
	Proof of Proposition 2

