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Abstract. We need to perform arithmetic in Fp(z)12 to use Ate pairing
on a Barreto-Naehrig (BN) curve, where p(z) is a prime given by p(z) =
36z4 + 36z3 + 24z2 + 6z+ 1 with an integer z. In many implementations
of Ate pairing, Fp(z)12 has been regarded as the 6-th extension of Fp(z)2 ,

and it has been constructed as Fp(z)12 = Fp(z)2 [v]/(v6−ξ) for an element

ξ ∈ Fp(z)2 such that v6 − ξ is irreducible in Fp(z)2 [v]. Such ξ depends on
the value of p(z), and we may use mathematic software to find ξ. This
paper shows that when z ≡ 7, 11 (mod 12) we can universally construct
Fp(z)2 as Fp(z)12 = Fp(z)2 [v]/(v6−u−1), where Fp(z)2 = Fp(z)[u]/(u2+1).

Key words: pairing, Barreto-Naehrig curve, extension field, quadratic
residue, cubic residue, Euler’s conjecture.

1 Introduction

Many new cryptographic protocols, such as identity-based key agreement [18],
identity-based encryption [6], identity-based signature [10], ring signature [20],
keyword search encryption [5], efficient broadcast encryption [8], aggregate sig-
nature [7], and certificateless public key cryptography [1], can be constructed
using pairings. Arithmetic in Fp and Fpk , which is the k-th extension of Fp, is
needed to implement pairing, and Fpd is also needed when we use twisted pairing,
which is suitable for fast implementation, where k and d are integers depending
on E and p with 1 < d < k. It is desirable for the definition polynomials for
Fpk and Fpd to have fewer terms and smaller coefficients to fast implement pair-
ings. However, the form of these polynomials depends on the prime p in general.
Therefore, we have to change these definition polynomials when p is changed
each time.

Ate pairing, which this paper targets, is one of the fastest pairings due to
fewer loops of Miller’s algorithm and the availability of the twist technique. When
we implement Ate pairing on a Barreto-Naehrig (BN) curve [3], which is most
suitable for 128-bit security, we need to implement finite fields, Fp, Fp2 , and Fp12 .
Fp2 can be constructed as Fp2 = Fp[u]/(u2 − λ) such that λ is quadratic non-
residue modulo p. Since Fp12 is the 6-th extension of Fp2 , Fp12 can be constructed
as Fp12 = Fp2 [v]/(v6 − ξ) with ξ ∈ Fp2 \ Fp, where v6 − ξ is irreducible in
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Fp2 [v]. There are specific examples of such ξ’s corresponding to some p’s [9] or
methods constructing such ξ’s, which require cubic residue judgment modulo p
and depending on p’s [3, 4]. However, a method for universally constructing Fp12

independent from p is not yet known.
A method for universally constructing the 12-th extension field for Ate pairing

is proposed. Specifically, this paper shows that if primes are given by p(z) =
36z4 + 36z3 + 24z2 + 6z+ 1 with z ≡ 7, 11 (mod 12), Fp(z)12 can be universally
constructed as Fp(z)2 = Fp(z)[u]/(u+ 1), Fp(z)12 = Fp(z)2 [v]/(v − ξ) (ξ = u+ 1).
Such p(z)’s are used to generate a BN curve, and such primes are called BN
primes in this paper. Note that the proposed construction of Fp(z)12 is suitable
for fast implementation because all coefficients of the definition polynomials are
1 or −1. To prove this, we need Euler’s conjecture on cubic residue modulo p.
To apply Euler’s conjecture to a prime p, we have to represent p as p = a3 + 3b2

for integers a and b. However, it is generally not easy to find such a and b if p
is so large that these integers are used for practical cryptographic applications.
However, applying Euler’s conjecture to BN primes is easy because each BN
prime p(z) is represented as p(z) = (6z2 + 3z + 1)2 + 3z2, that is, we can set
a = 6z2 + 3z + 1 and b = z for all z’s. This representation of p(z) derives the
result of this paper.

2 Elliptic Curve and Pairing

This section explains elliptic curve, twist, and pairing.

2.1 Elliptic Curve

Let p be a prime ≥ 5, and let q be the power of p. For an elliptic curve over Fq,

E : y2 = x3 + ax+ b, a, b ∈ Fq, (1)

the set E(Fq) of Fq rational points on E is defined as

E(Fq)={(x, y)∈Fq × Fq : y2 =x3+ax+b} ∪ {O},
where O is the point at infinity. E(Fq) forms an additive group with zero O.

The following integer t is called the trace of E(Fq).

t = q + 1−#E(Fq)

Let r be the largest prime factor of #E(Fq). Then the smallest integer k ≥ 1
satisfying r|(qk − 1) is called the embedding degree.

For two elliptic curves E and E′ over Fq, E′ is called a twist of E of degree
d if there exists an isomorphism ψd : E′ → E and d is minimal1. If there is such
a map ψ, d is equal to 1, 2, 3, 4 or 5 [19, Proposition X.5.4]. Table 1 lists the
form of twist E′ of each degree d of E, the isomorphic map ψd, and #E(Fq).
1 E′ is often not called the twist if d = 1, however, in this paper E′ with d = 1 is also

called the twist.
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Table 1. Form of twist E′ of E of each degree d, isomorphism ψd, and #E′(Fq)

d E′ ψd : E′ → E #E′(Fq) Expression fsatisfies

2 y2 = x3 + (a/h2)x+ b/h3 (x, y)→ (hx, h3/2y) q + 1 + t

3 y2 = x3 + b/h (x, y)→ (h1/3x, h1/2y) q + 1− (3f − t)/2 (t2 − 4q = −3f2)
q + 1− (−3f − t)/2 (t2 − 4q = −3f2)

4 y2 = x3 + (a/h)x (x, y)→ (h1/2x, h3/4y) q + 1 + f (t2 − 4q = −f2)
q + 1− f (t2 − 4q = −f2)

6 y2 = x3 + b/h (x, y)→ (h1/3x, h1/2y) q + 1− (−3f + t)/2 (t2 − 4q = −3f2)
q + 1− (3f + t)/2 (t2 − 4q = −3f2)

2.2 Pairing

Let r be a prime, G1 and G2 be additive groups of r elements, and G3 be a
multiplicative group of r elements. A map e : G1 ×G2 → G3 is called pairing if
it is bilinear (e.g., e(aP, bQ) = e(P,Q)ab is satisfied for any P ∈ G1, Q ∈ G2 and
a, b are integers) and non-degeneracy (e.g., there exist P ∈ G1 and Q ∈ G2 such
that e(P,Q) 6= 1).

Ate pairing is one of the pairings that have the smallest computational cost,
in which G1 and G2 are groups based on elliptic curves. When an elliptic curve
E over a prime field Fp has the embedding degree 12 and has the 6-th twist
E′, where E is regarded as over Fp2 not Fp (BN curve described in Sec. 2.3 is
an example of such a curve), the computational cost of Ate can be additionally
reduced using the twist technique [11] and the map ψ6 : E′ → E explained in
Sec. 2.1 and Table 1. In the case where such an elliptic curve is used to define
Ate pairing, Ate pairing is a bilinear map given by

E(Fp)[r]× E′(Fp2)[r]→ F ∗p12 , (2)

where r is the largest prime factor of #E(Fp). Ate pairing is accurately defined
as e(P,Q) = ft,Q′(P )(qk−1)/r ∈ F ∗p12 with the function f whose divisor satisfies
(ft,Q′) = t(Q′) − (tQ′) − (t − 1)(O), where Q′ = ψ6(Q). Therefore, we need to
perform arithmetic on Fp, Fp2 , and Fp12 to implement the Ate pairing of Eq.
(2).

2.3 Barreto-Naehrig (BN) Curve

Barreto and Naehrig proposed a method for efficiently constructing elliptic curves
with the embedding degree of 12 and a twist of degree of 6 [3].

Let t(z), n(z), p(z) be polynomials in z given by

t(z) = 6z2 + 1,
n(z) = 36z4 + 36z3 + 18z2 + 6z + 1,
p(z) = n(z) + t(z)− 1

= 36z4 + 36z3 + 24z2 + 6z + 1.





(3)
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In this paper primes p(z) with an integer z are called BN primes. By fixing a
BN prime p(z) and choosing b at random, an elliptic curve,

E : y2 = x3 + b,

always has the embedding degree of 12, and #E(Fq) is equal to n(z) with pos-
sibility of 1/6. Then, when we would like to construct an elliptic curve over
Fp(z) whose order is n(z), we first choose a coefficient b of E : y2 = x3 + b
at random, next we check whether E is desirable as follows: 1) picking up a
point P ∈ E(Fp(z)), 2) computing n(z)P , and 3) if it is equal to O, then E is a
desirable curve, if not we choose another b.

Although we generally need a high cost process in the complex multiplica-
tion (CM) method [2] to construct elliptic curves of desirable order, the process
becomes only checking order using a BN curve. Therefore, a BN curve is one of
pairing-friendly elliptic curves that are most efficiently constructed. Moreover,
the embedding degree of 12 of a BN curve is most suitable for 128-bit, which is
expected to become standard security [15], corresponding to 3,072-bit RSA and
256-bit elliptic curve cryptography.

Therefore, a BN curve is easy to construct and has the desirable embedding
degree of 12. There are variants of Ate pairing, R-ate [13] and Xate [17], which
are defined on only a BN curve and have smaller computational cost than general
Ate pairing.

3 Current Construction Methods of 12-th Extension
Field

As described in Sec. 2.2, to implement Ate pairing on a BN curve over Fp,
we need to perform arithmetic not only on Fp but also on Fp2 and Fp12 . We
may construct Fp2 as Fp2 = Fp[u]/(u2 − λ) for quadratic non-residue element λ
modulo p. To construct Fp12 we have to find ξ ∈ Fp2 \ Fp such that v6 − ξ is
irreducible in Fp2 [v]. After that, we can construct Fp2 as Fp12 = Fp2 [v]/(v6 − ξ).

Since the computational cost of arithmetic in Fp2 and Fp12 greatly depends
on λ and ξ, we have to carefully select them. When λ is regarded as an integer,
λ = −1 is one of the best selections possible because its absolute value is the
smallest. Similarly, when ξ is represented as ξ = au+ b ∈ Fp2(= Fp[u]/(u2−λ)),
ξ = u + 1 is one of the best selections possible because its coefficients are the
smallest.

Explicitly finding quadratic non-residue element λ modulo p is easy using the
quadratic residue theory [12]. On the other hand, explicitly finding ξ is much
more difficult.

Barreto and Naehrig showed that such ξ always existed for BN primes p, and
that ξ might be ξ = (ν2µ3)−1, where ν was cubic non-residue modulo p and µ
was non-square in Fp2 [3]. However, how to find such µ was not explained, and
ξ had to be re-selected when changing p.

Devegili et al. dealt with implementation of pairing using a BN curve and
constructed Fp2 = Fp[u]/(u2 + 2),Fp12 = Fp2 [v]/(v6 − ξ) with ξ = −u − 1 for
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a specific p [9]. They described that u2 + 2 was always irreducible when p ≡ 1
(mod 8). On the other hand, they described that there only always existed ξ
such that (v6 − ξ) was irreducible when p ≡ 1 (mod 6), however, the did not
give any method on how to find such ξ.

Benger and Scott proposed methods for construct extension fields for various
pairings [4]. For the 12-th extension field for a BN curve, if a2 +b2 was quadratic
non-residue and cubic non-residue modulo p, we could construct Fp12 as Fp12 =
Fp(
√−1, (a− b√−1)1/6). However, they did not explain when a2 + b2 was cubic

non-residue.
As mentioned above, current methods for constructing Fp12 for Ate pairing

using BN curve are not universal, that is, these methods require cubic residue
judgment modulo each p, and when p is changed we have to reconstruct Fp12 .
Then, we have the following question.

Question 1.
Does there exist a method for universally constructing Fp12 independent from
p?

The purpose of this paper is to give a solution to Question 1.

4 Preliminary

This section introduces two known theorems needed for solving Question 1.
The first is Euler’s conjecture2 on cubic residue [14], and the second is for the
irreducibility of binomials [16].

Let p be a prime with p ≡ 1 (mod 3). If a ∈ F ∗p is written as a = b3 for
some b ∈ F ∗p , a is called cubic residue modulo p and denoted by

(
a

p

)

3

= 1.

If a is not cubic residue modulo p, a is called cubic non-residue modulo p.

Theorem 1 (Euler’s Conjecture).
(a) Let p be a prime with p ≡ 1 (mod 3). Then p can be always written as
p = a3 + 3b2 with integers a and b. 3

(b) Let p be a prime, and let a and b be integers as stated in (a). Then
(

2
p

)

3

if and only if 3|b. (4)

Proof) Refer to [14]. �
2 Although Euler’s conjecture is called “conjecture”, it has already been proven.
3 The theorem just states that representation p = a3 + 3b2 exists, and it does not give

how to find such a and b.
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Theorem 2.
Let t be an integer with t ≥ 2, and let a ∈ F ∗q . Then a binomial xt − a is
irreducible in Fq[x] if and only if the following two conditions are satisfied:
(a) each prime factor of t divides the order e of a in F ∗q , but not (q − 1)/e.
(b) q ≡ 1 (mod 4) if t ≡ 0 (mod 4).

Proof) Refer to [16]. �

5 Proposed Theorem – Constructing 12-th Extension
Field of BN Primes

This section proves the following theorem for universally constructing the 12-th
extension field for Ate pairing using BN curves.

Theorem 3 (Proposed Theorem).
Let p(z) = 36z4 + 36z3 + 24z2 + 6z+ 1 be a BN prime with z ≡ 7, 11 (mod 12).
Then Fp12 can be constructed as follows:

Fp(z) = Fp(z)[u]/(u2 + 1),
Fp(z)12 = Fp(z)2 [v]/(v6 − u− 1).

�

Theorem 3 states that Fp(z)12 can be universally constructed for all BN primes
p(z) with z ≡ 7, 11 (mod 12), and gives a solution to Question 1. Moreover, in
the proposed construction of Fp(z)12 , all coefficients of the definition polynomials
(e.g., u2 + 1 and v2 − u− 1) are ±1, then the construction of Fp(z)12 is suitable
for efficient implementation of Ate pairing. Sections. 5.1 and 5.2 give lemmas
needed to prove Theorem 3, and Sec. 5.3 completes the proving of Theorem 3.

5.1 Irreducibility of v6 − ξ
When Fp12 is constructed as Fp12 = Fp2 [v]/(v6 − ξ) as Theorem 3, v6 − ξ has to
be irreducible in Fp2 [v]. The following lemma deduced from Theorem 2 shows
that irreducibility judgment of v6 − ξ is reduced to quadratic and cubic residue
judgments.

Lemma 1.
Let p(z) be a BN prime and let ξ ∈ Fp(z)2 \ Fp(z) be not square and not cube in
Fp(z)2 . Then the polynomial v6 − ξ is irreducible in Fp(z)2 [v].

(Proof) We apply Theorem 2 to the case of t = 6. Let α be a generator of
F ∗p(z)2 . It is seen that p(z)2 ≡ 1 (mod 12) for any integer z; therefore, we write
p(z)2 − 1 = 12Q (Q is an integer.) Since ξ is neither square nor cube in Fp(z)2 ,
we may write ξ = α6s+1 or ξ = α6s+5 for some integer s.
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Suppose ξ = α6s+1. Let R be an integer defined as

R = gcd(6s+ 1, p(z)2 − 1(= 12Q)).

Then R is neither a multiple of 2 nor 3, and the order of ξ in F ∗p(z)2 is written
as 12Q

R . Note that R|12Q from the definition of R, then 12Q
R is a multiple of 6.

Therefore, ξ satisfies the first condition of Theorem 2-(a). It is seen that ξ also
satisfies the second condition because

p(z)2 − 1
the order of ξ in Fp(z)2

=
12Q
12Q
R

= R,

and R is not a multiple of 2 nor 3. Therefore, v6 − ξ is irreducible in Fp(z)2 [v]
due to Theorem 2.

For ξ = α6s+5, we can similarly show that v6− ξ is irreducible in Fp(z)2 [v]. �
The following lemma shows that square and cube judgments of an element

in Fp2 are reduced to quadratic and cubic residue judgments modulo p.

Lemma 2.
Let p be a prime with

p ≡ 3 (mod 8), and (p+ 1)/4 6≡ 0 (mod 3), (5)

which means that 2p′ + 1 6≡ 0 (mod 3) is satisfied when p is written as p =
8p′ + 3. And let Fp2 be constructed as Fp2 = Fp[u]/(u2 + 1). (Note that such
construction of Fp2 is possible if p ≡ 3 (mod 4).) Then the following statements
are satisfied.
(a) The order of u+ 1 in F ∗p is equal to 4 times the order of −4 in F ∗p .
(b) u+ 1 is a square in Fp2 if and only if −1 is quadratic residue modulo −1.
(c) u+ 1 is a cube in Fp2 if and only if 2 is cubic residue modulo p.

Proof) (a) In Fp2 = Fp[u]/(u2 + 1), u2 + 1 = 0 is held, then we have

(u+ 1)2 = 2u, (u+ 1)3 = 2u− 2, (u+ 1)4 = −4. (6)

Therefore, let t be the order of −4 in F ∗p , then (u+ 1)4t = 1 is held. This means
the order of u + 1 in Fp2 is a divisor of 4t. To show that the order of u + 1 in
Fp2 is equal to 4t, it is enough to show (u+ 1)s 6= 1 for any s with 1 ≤ s < 4t.

Let s′ = bs/4c for 1 ≤ s < 4t. Then (u+ 1)s is written as follows due to Eq.
(6).

(u+ 1)s =





(−4)s
′

if s ≡ 0 (mod 4)
(−4)s

′ · (u+ 1) if s ≡ 1 (mod 4)
(−4)s

′ · 2u if s ≡ 2 (mod 4)
(−4)s

′ · (2u− 2) if s ≡ 3 (mod 4)

Due to definitions of t and s′, we have (−4)s
′ 6= 1, and since u, 2u, 2u− 2 6∈ Fp,

each of them is never the inverse of (−4)s
′ ∈ Fp. We then have (−4)s

′ · (u+ 1) 6=
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1, (−4)s
′ · 2u 6= 1, and (−4)s

′ · (2u − 2) 6= 1. Therefore, we have (u + 1)s 6= 1,
which completes the proving that the order of (u+ 1) in F ∗p2 is equal to 4t.
(b) The order of each element a ∈ F ∗p is a divisor of p − 1 since a satisfies
ap−1 = 1. Let (p − 1)/w be the order of −4 in F ∗p for an integer w. Then the
order of (u+ 1) in F ∗p2 is written as 4(p− 1)/w due to (a), and then we have

u+ 1 is a square in Fp2 ⇔ (p2 − 1)/2 is a multiple of 4(p− 1)/w
⇔ (p2 − 1)/2÷ 4(p− 1)/w is an integer
⇔ w(2p′ + 1)/2 is an integer
⇔ w/2 is an integer (i.e., w is even)
⇔ −4 is quadratic residue modulo p
⇔ −1 is quadratic residue modulo p.

Therefore, (b) is shown.
(c) Let (p− 1)/w be the order of −4 in F ∗p as well as the proof of (b). Then the
order of (u+ 1) ∈ F ∗p2 is written as 4(p− 1)/w, and then we have

u+ 1 is a cube in Fp2 ⇔ (p2 − 1)/3 is a multiple of 4(p− 1)/w
⇔ (p2 − 1)/3÷ 4(p− 1)/w is an integer
⇔ w(2p′ + 1)/3 is an integer
⇔ w/3 is an integer

(since 2p′ + 1 is not a multiple of 3
due to the assumption)

⇔ −4 is cubic residue modulo p
⇔ 2 is cubic residue modulo p.

Therefore, (c) is shown. �
Any BN prime p(z) satisfies the condition (6) of Lemma 2 if z ≡ 7, 11

(mod 12). Then Lemmas 1 and 2 reduce the irreducibility judgment of v6 − ξ
with ξ = u + 1 in Fp(z)2 [v] to square residue judgment of −1 and cubic residue
judgment of 2 modulo p(z).

5.2 Square and Cubic Residue Modulo BN Prime

BN primes have a special property, making applying Theorem 1 easy. We have
to find integers a and b such that p = a2 + 3b2 for a prime p when we apply
Theorem 1 to p, this task is generally difficult. On the other hand, any BN prime
p(z) = 36z4 + 36z3 + 24z + 6z + 1 is written as

p(z) = (6z2 + 3z + 1)2 + 3z2,

then we set a = 6z2 + 3z + 1, b = z. This fact derives the following lemma.

Lemma 3.
For any BN prime p(z) = 36z4 + 36z3 + 24z + 6z + 1, the following (a) and (b)
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are satisfied:
(a) Quadratic Residue of –1:

( −1
p(z)

)
=
{

1 if z is even
−1 if z is odd,

where ( ) is the Legendre symbol.
(b) Cubic Residue of 2:

(
2
p(z)

)

3

{
= 1 if z ≡ 0 (mod 3)
6= 1 if z ≡ 1, 2 (mod 3).

(Proof) (a) If z is even, we have
(
−1
p(z)

)
= 1 since p(z) ≡ 1 (mod 4) for any

integer z. If z is odd, we have
(
−1
p(z)

)
= −1 since p(z) ≡ 3 (mod 4) for any

integer z.
(b) For any BN prime p(z) is written as p(z) = (6z2 + 3z + 1)2 + 3z2. Then we
can set a = 6z2 + 3z + 1, b = z at Theorem 2. Due to Theorem 2, we have

(
2
p(z)

)

3

= 1⇔ 3|z (due to Theorem 2-(b) and Eq. (7))

⇔ z ≡ 0 (mod 3)

�

5.3 Proof of Theorem 3

Since z is odd, −1 is quadratic non-residue modulo p(z) due to Lemma 3-(a);
therefore, Fp(z)2 is written as Fp(z)2 = Fp(z)[u]/(u2 + 1).

For construction of Fp(z)12 , first consider the case of z ≡ 7 (mod 12). Let
z be z = 12z′ + 7. Then we have p(12z′ + 7) ≡ 3 (mod 8) since p(12z′ + 7) =
8(93312z′4 + 225504z′3 + 204552z′2 + 82539z′+ 12500) + 3. In addition, we have
(p(12z′ + 7) + 1)/4 6≡ 0 (mod 3) since (p(12z′ + 7) + 1)/4 = 3(62208z′4 +
150336z′3 + 136368z′2 + 55026 ∗ z′ + 8333) + 2. We then can apply Lemma 2
to p(12z′ + 7). We know that −1 is quadratic non-residue modulo p(z) due to
Lemma 3-(a), then u + 1 is non-square in Fp(z)2 due to Lemma 2-(b). We also
know that 2 is cubic non-residue module p(z) due to Lemma 3-(b), then u + 1
is non-cube in Fp(z)2 due to Lemma 2-(c). Therefore, v6 − (u+ 1) is irreducible
in Fp(z)2 [v] due to Lemma 1.

Next, consider the case of z ≡ 11 (mod 12). Let z be z = 12z′ + 11. Then
we have p(12z′+11) ≡ 3 (mod 8) since p(12z′+11) = 8(93312z′4 +349920z′3 +
492264z′2 + 307899z′+ 72245) + 3. In addition, we have (p(12z′+ 7) + 11)/4 6≡ 0
(mod 3) since (p(12z′ + 11) + 1)/4 = 3(62208z′4 + 233280z′3 + 328176z′2 +
205266z′+48163)+2, then we can apply Lemma 2 to p(12z′+11). The remainder
of the proof is the same as the case of z ≡ 7 (mod 12). �
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6 Conclusion

This paper has shown that the 12-th extension field for each BN prime p(z) with
z ≡ 7, 11 (mod 12) has been universally constructed as

Fp(z)2 = Fp(z)[u]/(u2 + 1),

Fp(z)12 = Fp(z)2 [v]/(v6 − ξ) (ξ = u+ 1).

In the current construction of Fp12 , we have to change the definition poly-
nomials when p is changed each time, and need cubic redidue judgment, which
is non-trivial. Then Question 1 of Sec. 3 is posed. On the other hand, with the
proposed construction of Fp(z)12 , we can fix the definition polynomials for p(z)
with z ≡ 1, 11 (mod 12), which gives a solution to Question 1. Moreover, all
their coefficients are ±1, which is suitable for efficient implementation of Ate
pairing.
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