
Attacks on Hash Functions based on Generalized Feistel —

Application to Reduced-Round Lesamnta and

SHAvite-3512

Charles Bouillaguet1, Orr Dunkelman1,2,
Gäetan Leurent1, and Pierre-Alain Fouque1

1 Département d’Informatique
École normale supérieure

45 Rue D’Ulm
75320 Paris, France

{charles.bouillaguet, gaetan.leurent, pierre-alain.fouque}@ens.fr
2 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26

Rehovot 76100, Israel
orr.dunkelman@weizmann.ac.il

Abstract. In this paper we study the strength of two hash functions which are based
on Generalized Feistels. Our proposed attacks themselves are mostly independent of the
round function in use, and can be applied to similar hash functions which share the same
structure but have different round functions. We start with a 22-round generic attack on
the structure of Lesamnta , and adapt it to the actual round function to attack 24-round
Lesamnta . We then show a generic integral attack on 20-round Lesamnta (which can be
used against the block cipher itself). We follow with an attack on 9-round SHAvite-3512

which is the first cryptanalytic result on the hash function (which also works for the
tweaked version of SHAvite-3512).

1 Introduction

Cryptanalysis of block ciphers and hash functions is mostly based on statistical properties, such
as differential cryptanalysis. Another type of attacks is the self-similarity attacks such as the slide
and related-key attacks. Recently, algebraic attacks which treat the problem of cryptanalysis as
a set of equations to be solved, were also discussed as a cryptographic tool.

In this paper we try a slightly different approach for the cryptanalysis of hash functions, an
analysis based on cancellation properties. The main idea behind this approach, which is extremely
useful in the cryptanalysis of hash functions, is to cancel the affects of the nonlinear operations
using specially selected message words. To some extent, one may consider the local collisions
of [2] as such type of cryptanalysis.

In this paper we study two possible ways to build a 4n-bit Feistel scheme out of a n-bit round
function:

Si+1 Ti+1 Ui+1 Vi+1

Si Ti Ui Vi

Ki

Fi ⊕

Lesamnta structure

Si+1 Ti+1 Ui+1 Vi+1

Si Ti Ui Vi

Ki

K ′

i

Fi ⊕F ′

i ⊕

SHAvite-3512 structure

The keyed function F (k, x) is usually defined as P (k⊕x), where P is a fixed permutation (or
a fixed function). We consider concrete ciphers based on these structures, and we show generic
attacks as well as specific attacks using the properties of the fixed function.

The first candidate for the technique is the Lesamnta hash function. In the submission doc-
ument of Lesamnta, an attack on 16-round reduced variant is described which is independent
of the actual round function. We start with extending this attack to a generic attack on 22-
round Lesamnta (hereandafter, generic stands for independent of the actual round function). We
then extend the attack to 24-round attack (which can be used to find pseudo preimages for the
compression function). We follow with an adaptation of this attack to 24-round Lesamnta-256
by taking the structure of the true round function into account. We also discuss the 20-round
SQUARE attack proposed in [5], and propose improvements of it based on the cancellation

property of Lesamnta.
Finally, we present an attack on 9-round SHAvite-3512, suggesting the first attack on 9 rounds

of SHAvite-3512. The attack also works for the tweaked version of SHAvite-3512. The attack
makes use of the generalized Feistel structure of SHAvite-3512, and allows fixing one out of the
four output words with two compression function calls. This allows a second preimage attack on
9-round SHAvite-3512 that takes about 2496 time.

The paper is organized as follows. Section 2 explains the basic idea of our cancellation attacks.
Section 3 gives a short description of the Lesamnta compression function. We briefly describe
the previous results on Lesamnta in Section 4, and introduce our new attacks in Section 5.
SQUARE properties of Lesamnta are analyzed in Section 6. We describe a similar result on
9-round SHAvite-3512 in Section 7. Finally, Section 8 summarizes this paper.

2 The Cancellation Property

In this paper we apply cancellation cryptanalysis to generalized Feistel schemes. In the ideal
case, these schemes are used with independent randomly selected round functions. However, in
practice, the round functions are usually all derived from a single fixed permutation (or function).
This is the basis of the cancellation property.

Our basic attacks are independent of the round function, as long as all the round functions
are derived from a single function in the following way: Fi(Xi) , F (Xi ⊕Ki) for some F (·).

Generic Properties of Fi(Xi) = F (Xi ⊕ Ki). Let us assume that the round functions Fi

are built by applying a fixed permutation (or function) F to Ki ⊕Xi, where Ki is a round key
and Xi is the state input. This practice is common in many primitives e.g., DES and Lesamnta.

This implies the followings, for all i, j, k:

(i) ∃ci,j : ∀x, Fi(x ⊕ ci,j) = Fj(x).
(ii) ∀α, #

{

x : Fi(x) ⊕ Fj(x) = α
}

is even
(iii)

⊕

x Fk

(

Fi(x)⊕ Fj(x)
)

= 0

Property (i) is the basis of the cancellation attack. We will refer to it as the cancellation

property. It states that if the inputs of two round functions are related by a fixed (specific)
difference, then the outputs of both rounds are the same. In a differential attack, this means that
if the same difference enters two round functions, and the adversary has some control over the
input values, he can force the input to the F to be the same, and therefore the output values will
be the same. This allows countering the non-linear effects of the round function. The reminder
of the paper is exploring this property.

Properties (ii) and (iii) will be used in an integral attack. Note that Property (ii) is a well
known fact from differential cryptanalysis.

Proof.

(i) Set cij = Ki ⊕Kj .
(ii) If Ki = Kj , then ∀x, Fi(x) = Fj(x). Otherwise, let x be such that Fi(x) ⊕ Fj(x) = α.

Then Fi(x ⊕Ki ⊕Kj) ⊕ Fj(x ⊕Ki ⊕Kj) = Fj(x) ⊕ Fi(x) = α. Therefore x is in the set
iff x⊕Ki ⊕Kj is in the set, and all the elements can be grouped in pairs.

(iii) Each term Fk(α) in the sum appears an even number of times following (ii).

Our attacks use a second property of the Feistel schemes of Lesamnta and SHAvite-3512: the
diffusion is relatively slow. When a difference is introduced in the state, it take several rounds to
affect the full state. Note that the slow diffusion of Lesamnta is the basis of a 16-round attack [5],
and the slow diffusion of SHAvite-3512 gives a similar 8-round attack [11].

Let us assume that the input differences of the round function at rounds i and j is δ (in both
rounds), and let us denote the corresponding input values by xi and xj . The output differences
of rounds i and j is Fi(xi) ⊕ Fi(xi ⊕ δ) and Fj(xj) ⊕ Fj(xj ⊕ δ), respectively. Thanks to the
Cancellation Property, if we set the value xi ⊕ xj to a particular value cij = Ki ⊕Kj, then the
output differences of rounds i and j are the same.

Table 1. Computing Five Rounds of Lesamnta.

Round Si Ti Ui Vi

0 a b c d

1 F0(c)⊕ d a b c

2 F1(b)⊕ c F0(c)⊕ d a b

3 F2(a)⊕ b F1(b)⊕ c F0(c)⊕ d a

4 F3(F0(c)⊕ d)⊕ a F2(a)⊕ b F1(b)⊕ c F0(c)⊕ d

5 F4(F1(b)⊕ c) ⊕ F0(c)⊕ d F3(F0(c)⊕ d)⊕ a F2(a)⊕ b F1(b)⊕ c

More precisely, let us describe how to use the cancellation property against Lesamnta. In
Table 1, we show the computation of five rounds of Lesamnta. For the description of Lesamnta,
see Section 3. Consider S5 = F4(F1(b)⊕ c)⊕ F0(c)⊕ d. Using the cancellation property, we can
remove the dependency of S5 on c if F1(b) = K0 ⊕K4:

S5 = F4(F1(b)⊕ c)⊕ F0(c)⊕ d

= F (K4 ⊕ F1(b)⊕ c)⊕ F (K0 ⊕ c)⊕ d

= F (K0 ⊕ c)⊕ F (K0 ⊕ c)⊕ d = d.

Therefore, we can put any difference in U0, since it will not affect S5 as long as we fix the value
of T0 = F−1(K0 ⊕K4)⊕K1. Note that in a hash function setting those keys are known to the
adversary (or controlled by him).

This shows the three main requirements of our cancellation attacks:

– The Generalized Feistel structures we study have a relatively slow diffusion. Therefore, the
same difference can be used more than once as the input difference to a round function.

– The round functions are built from a fixed permutation (or a function), using a small round
key. This differs from the ideal Feistel case where all round functions are chosen independently
at random.

– In a hash function setting the key is known to the adversary, and he can control some of the
inner values.

Note that some of these requirement are not strictly necessary. In Section 6 we show an integral
attack on 20-rounds of the inner block cipher of Lesamnta which does not assume knowledge of
the keys. Moreover, in Section 7 we show an attack on SHAvite-3512, where the round function
uses more keying material.

3 A Short Description of Lesamnta

Lesamnta is a hash function proposal by Hirose, Kuwakado, and Yoshida as a candidate in the
SHA-3 competition [5]. It makes an extensive use of the building blocks of the AES. Four al-
gorithms are in fact described, Lesamnta-224, Lesamnta-256, Lesamnta-384, and Lesamnta-512.
While each algorithm has its own digest size, Lesamnta-224 and Lesamnta-256 share many of
their building blocks, just like Lesamnta-384 and Lesamnta-512. All the functions are built in a
standard Merkle-Damg̊ard iteration of a compression function. The compression functions them-
selves are built using the Matyas-Meyer-Oseas (MMO) transformation of a block cipher:

CF (h, m) = Eh(m)⊕m

We note that Lesamnta is composed of two block ciphers. The first one is used in the 224- and
256-bit versions, while the second one is used in the 384- and 512-bit versions. Both share many
of the design and the main differences are mostly related to the word size. We mostly describe
the 256-bit block cipher, and we pinpoint the differences with the 512-bit one when necessary.
Also, note that a different block cipher is used in the last invocation of the compression function.
As this has no relevance to our attacks, we do not describe the differences in this paper.

The block cipher has a key schedule algorithm which expands the chaining value (key) into
32 words (this is the “chaining value expansion” of the compression function). As our results
are independent of the key “chaining value expansion”, we omit its description, and refer the
interested reader to [5]. The “compressing part” encrypts the message block in 32 successive
rounds, using 32 subkeys. Both the round function and the key expansion are based on a 4-
thread unbalanced Feistel networks. Each thread is 64-bit wide (128-bit wide for Lesamnta-512).

Round Function. Four other registers S0, T0, U0, and V0 are initialized with the message block
(plaintext) and then updated according to the following process:

Si+1 = Vi ⊕ F (Ui ⊕Ki) , Ti+1 = Si, Ui+1 = Ti, Vi+1 = Ui,

The F function resembles four AES rounds where the AddRoundKey operation is omitted. An
alternative description is possible (where we only keep the S register, and use the name X to
avoid confusion with the “standard’ values of S):

Xi = Xi−4 ⊕ F (Xi−3 ⊕Ki)

where the message block is initially loaded into X−3, X−2, X−1 and X0. The last four values of
X are the output of the block cipher (before the feed forward operation). The F256 function used
in Lesamnta-256 is a permutation over 64 bits (F512 is the permutation over 128 bits used in
Lesamnta-512). It is similar to four AES rounds up to the omission of the AddRoundKey after
each round (whereas F512 is precisely four AES rounds, without the AddRoundKey operation).
F256 operates over a 2× 4 byte matrix and iterates the following operations four times:

1. The AES S-box is applied to all bytes.

2. The second row is cyclically shifted: (a, b, c, d) → (b, c, d, a). In this paper, we denote this
operation by “ShiftRows”.

3. A 2× 2 MDS matrix over GF (28) is applied in parallel to the four columns. We denote this
operation by “MixColumns”. The matrix is defined by:

MF =

(

2 1
1 2

)

4 Previous Results on Lesamnta

Several attacks on reduced-round Lesamnta are presented in [5]. A series of 16-round attacks for
collisions and (second) preimage attacks are presented, all of which are based on the following
16-round truncated differential with probability 1:

Round Si Ti Ui Vi

Input ∆0 ∆1 ∆2 ∆3 ⊕ δ
0 ∆3 ∆0 ∆1 ∆2

1 0 ∆3 ∆0 ∆1

2 0 0 ∆3 ∆0

3 0 0 0 ∆3

4 ∆3 0 0 0
5 0 ∆3 0 0
6 0 0 ∆3 0
7 ? 0 0 ∆3

8 ∆3 ? 0 0
9 0 ∆3 ? 0
10 ? 0 ∆3 ?
11 ? ? 0 ∆3

12 ∆3 ? ? 0
13 ? ∆3 ? ?
14 ? ? ∆3 ?
15 ? ? ? ∆3

Feedforward ? ? ? δ

where

∆2 = M2 ⊕ F−1(F (M2 ⊕K0)⊕ δ)⊕K0,

∆1 = M1 ⊕ F−1(F (M1 ⊕K1)⊕∆2)⊕K1,

∆0 = M0 ⊕ F−1(F (M0 ⊕K2)⊕∆1)⊕K2,

∆3 = (M3 ⊕ δ)⊕ F−1(F (M0 ⊕K3 ⊕ δ)⊕∆0)⊕K3,

and Mi are the corresponding message words of the message block.

This truncated differential allows fixing the fourth output word to a constant value determined
by the adversary using at most two queries to the compression function (independent of the
chaining value). This is done by picking a random message m, and checking whether the fourth
output word has the desired value, d. If not, let the value of the fourth word be d′. It is possible
to pick m′ = m⊕ (∆0, ∆1, ∆2, ∆3⊕ δ) (where δ = d⊕ d′), for which it is assured that the fourth
output word is d.

This allows a more efficient collision attack (of expected time complexity 297) and second
preimage attack (of expected time complexity 2193). We note that this property is independent
of F (as long as F is bijective), and can be applied even when the round function is an ideal
permutation. We also note that to some extent the 16-round attack may be considered “more”
generic, as it allows for different and completely independent round functions all together.

5 New Collision and Preimage Attacks on Reduced-Round Lesamnta

In this section we show some improvements to the 16-round attacks of the submission document.
We first show some attacks that are generic in F , as long as the round functions are defined as
Fi(Xi) = F (Xi ⊕Ki). After showing the new generic attacks (on 22, 23, and 24 rounds), we use
a specific property of the round function of Lesamnta-256 to obtain a better 24-round attack.

5.1 Generic Attacks

The cancellation property of Section 2 can be used three times, thus, controlling a specific word
up to 17 rounds, as shown in Table 2. We end up with X17 = F (c⊕ α)⊕ β, where

α = K9 ⊕ F6(F3(a)⊕ b)⊕ F2(b) and β = d

provided that (a, b, d) is the unique triplet satisfying:

round 5 F2(b) = c1,5 = K1 ⊕K5 (⇒ b , F−1
2 (K1 ⊕K5))

round 11 F8(d) = c7,11 = K7 ⊕K11 (⇒ d , F−1
8 (K7 ⊕K11)

round 17 F14(F3(a)⊕ b) = K13 ⊕K17 (⇒ a , F−1

3 (F−1

14 (K13 ⊕K17)⊕ b))

Hence, one can set X17 to any desired value by setting:

c = F−1

9 (X17 ⊕ d)⊕ F6(F3(a)⊕ b)⊕ F2(b).

Table 2. Repeating the Cancellation Property

Round Xi

−3 d

−2 c

−1 b

0 a

1 F1(c)⊕ d

2 F2(b)⊕ c

3 F3(a)⊕ b

4 F4(F1(c)⊕ d)⊕ a

5 F5(F2(b)⊕ c) ⊕ F1(c) ⊕ d

6 F6(F3(a)⊕ b)⊕ F2(b)⊕ c

7 F7(F4(F1(c)⊕ d)⊕ a)⊕ F3(a)⊕ b

8 F8(d)⊕ F4(F1(c)⊕ d)⊕ a

9 F9(F6(F3(a)⊕ b)⊕ F2(b)⊕ c)⊕ d

10 F10(F7(F4(F1(c)⊕ d)⊕ a)⊕ F3(a)⊕ b)⊕ F6(F3(a)⊕ b)⊕ F2(b)⊕ c

11 F11(F8(d)⊕ F4(F1(c)⊕ d)⊕ a) ⊕ F7(F4(F1(c)⊕ d)⊕ a) ⊕ F3(a)⊕ b

12 ?
13 F13(X10)⊕ F9(F6(F3(a)⊕ b)⊕ F2(b)⊕ c)⊕ d

14 F14(F3(a)⊕ b)⊕X10

15 ?
16 ?
17 F17(F14(F3(a)⊕ b)⊕X10) ⊕ F13(X10) ⊕ F9(F6(F3(a)⊕ b)⊕ F2(b)⊕ c) ⊕ d

Table 3. Collision and Preimage Characteristic for the 22-Round Attack.
α and β can be computed from a, b, d and the key:
α = K11 ⊕ F8(F5(a)⊕ b)⊕ F4(b), β = d

round Si Ti Ui Vi

0 c - - -
1 - c - -
2 - - c -

2–19 Repeated Cancellation Property: Table 2

19 F (c⊕ α)⊕ β ? ? ?
20 ? F (c⊕ α) ⊕ β ? ?
21 ? ? F (c⊕ α)⊕ β ?
22 ? ? ? F (c⊕ α)⊕ β

22-Round Attacks. As a straightforward application of the cancellation path in Table 2, we
can build attacks on 22-round Lesamnta. We just add two rounds at the beginning, and set
the values of the state variables as given in Table 3. A dash (-) is used to denote a value that
is independent of c. A different interpretation of this property as a differential characteristic is
described in Table 4.

This characteristics allows to choose the last output word of the compression function. The
attack is similar to the generic attack on 16 rounds described in [5]. Let H be the target value
of the fourth output word, then the attack proceeds as follows:

1. Set a, b, and d to the values that allow the cancellation property (as described in Section 5.1)
and pick a random value for c. This sets the state at round 2: S2, T2, U2, V2.

2. Compute the round function backwards up to round 0, and downwards to round 22.

Table 4. Differential Characteristic for the 22-Round Attacks

i Si Ti Ui Vi

0 x - - -
1 - x - -
2 - - x -
3 y - - x x→ y

4 x y - -
5 - x y -
6 z - x y

7 - z - x x→ y

8 x - z -
9 w x - z z → w

10 z w x -
11 x1 z w x x→ x1

12 r x1 z w

13 - r x1 z z → w

14 ? - r x1

15 x1 + t ? - r r → t

16 r x1 + t ? -
17 ? r x1 + t ?
18 ? ? r x1 + t

19 x1 ? ? r r → t

20 ? x1 ? ?
21 ? ? x1 ?
22 ? ? ? x1

FF ? ? ? x1

3. If V22 is the desired value (i.e., V22 = H ⊕ V0), stop. Otherwise, compute the desired value
V ∗

22 for V22 as V ∗

22 = H ⊕ V0.

4. Compute U∗

2 = F−1(V ∗

22 ⊕ β)⊕ α (for the required α and β described above).

5. Starting from the state S2, T2, U
∗

2 , V2, computing two rounds backwards to obtain S∗

0 , T ∗

0 , U∗

0 , V0

we are assured to generate the desired output.

This costs at most two compression function calls, and does not require any memory.

For a given chaining value (i.e., a set of subkeys), there is only one message which this
algorithm can output. To make a full preimage or collision attack on the compression function,
this has to be repeated with random chaining values. Since the attack works for any chaining
value, we can build attacks on the hash function using a prefix block to randomize the chaining
value. This gives a collision attack with complexity 297 (2193 for Lesamnta-512), and a second-
preimage attack with complexity 2193 (2385 for Lesamnta-512).

23-Round Attacks Table 5 shows what happens when add round at the beginning. If we add
one extra round, we end up with steps 1-24 of Table 6, without the first step. The output word
we try to control is equal to c⊕F (c⊕ α)⊕ β ⊕ γ. Define hα(x) = x⊕ F (x⊕ α), and build a big
inversion table for all hα. Using this inversion table, we can choose one output word just like in
the 22-round attack.

We note that there are 2n/4 tables, each of size 2n/4. Once a, b, d are fixed, the adversary just
picks the corresponding table. Hence, if we start with a, b, d satisfying the cancellation conditions,
and a random c, the last output word of the compression function is V0⊕V23 = hα(c)⊕β⊕γ. If the

Table 5. Going up from the state (a, b, c, d).
X1 = c⊕ γ, with γ = F1(b⊕ F2(a⊕ F3(d)))
X0 = λ⊕ F0(c⊕ γ), with λ = d

Round Xi

0 d⊕ F0(c⊕ F1(b⊕ F2(a⊕ F3(d))))
1 c⊕ F1(b⊕ F2(a⊕ F3(d)))
2 b⊕ F2(a⊕ F3(d))
3 a⊕ F3(d)
4 d

5 c

6 b

7 a

target value is H , we set δ = H⊕V0⊕V23 and we just have to use the value c∗ = h−1
α (hα(c)⊕ δ),

so that hα(c∗) = hα(c)⊕ δ.

Table 6. Collision and preimage path for the 24-round attack.
α, β, γ and λ can be computed from a, b, d and the key:
α = K13 ⊕ F10(F7(a)⊕ b)⊕ F6(b), β = d
γ = F1(b ⊕ F2(a⊕ F3(d))), λ = d

round Si Ti Ui Vi

0 - - c⊕ γ F (c⊕ γ)⊕ λ

1 - - - c⊕ γ

2 c - - -
3 - c - -
4 - - c -

4–21 Repeated Cancellation Property: Table 2

21 F (c⊕ α)⊕ β ? ? ?
22 ? F (c⊕ α) ⊕ β ? ?
23 ? ? F (c⊕ α)⊕ β ?
24 ? ? ? F (c⊕ α)⊕ β

24-Round Attacks Similarly, we can still add one extra round at the beginning of the path.
The resulting 24-round path is given in Table 6. The output word we try to control is equal to
F (c⊕γ)⊕F (c⊕α)⊕β⊕λ, for some constants α, β, γ and λ that depend on the chaining value.
We will have to invert the family of functions hα,γ(x) = F (x⊕ α)⊕ F (x⊕ γ).

5.2 Attacks Using Specific Properties of the Round Function

We now use a specific property of the round function of Lesamnta-256 to improve our attacks.
We will show a preimage and collision attack on 24-round without the need of the huge table of
the previous attacks.

Neutral Subspaces in F256. We first describe a property of the F function of Lesamnta-256
which limits the difference to some subspace of this function. If the input difference to the round

function is in a space Γ , then the output difference is in a space Λ. For some input differences of
this function, the output is in another subspace. This property can be used with a new differential
characteristic, similarly to those used in [5].

The round function of Lesamnta-256 achieves full diffusion of the values, but some linear
combinations of the output are not modified after 4 rounds. Starting from a single active column,
we have:

SR
−−→

MC
−−→

SR
−−→

MC
−−→

SR
−−→

MC
−−→

SR
−−→

MC
−−→

All the output bytes are active, but there are some linear relations between them, since the
MixColumns operation is linear. Indeed, the last MixColumns is a linear mapping and a difference
on 16 bits in the input of this operation is changed into another difference on the 64 bits of
output. However, as can be easily seen, all these differences must be of a special form (i.e., that
the inverse MixColumns operation leads to a difference with two inactive bytes). Therefore, we
can equivalently say that there are 16 linear relations of the output bits that are not affected by
16 input bits.

In terms of difference, another description of this property is that there exists linear subspaces
Γ and Λ, such that

x⊕ x′ ∈ Γ ⇒ F (x)⊕ F (x′) ∈ Λ

Γ has dimension 16, and Λ has dimension 48 (out of 64 bits). This property is used to build
specific attacks on Lesamnta-256.

Improved Collision and Preimage Attacks. This property can be used in an attack following
the path of Table 6.

This attack allows to choose 16 linear relations of the output of the compression function,
which correspond to the the projection of the output on the subspace Λ (cf. 5.2). The adversary
first selects a state at round 4 satisfying the conditions of the extended cancellation property. a,
b, and d will be fixed, while c can be chosen at random. Then he computes 20 rounds forwards
and 4 rounds backwards, and gets the output through the feed-forward.

He checks that the output value is in Λ and if it gives the desired 16 bits of output, the
adversary can modify c with a difference in Γ and get 216 messages for which the same linear
relations still holds. This gives an amortized cost of 1 compression function call per message with
16 chosen bits.

This allows to make a second-preimage attack on Lesamnta-256 (a preimage attack on the
compression function) reduced to 24 rounds with complexity 2240, and a collision attack on the
compression function with complexity 2120.

6 A Integral Distinguisher for 20-Round Lesamnta

In this section, we show the applicability of the cancellation technique to block ciphers. We
will show an application to the implicit block cipher of Lesamnta. The main difference with the
hash function attacks is that in a block cipher the attacker does not know the key, and can not
select the message that will ensure that the cancellation property will happen. Therefore, we use
an integral cryptanalysis to exploit the cancellation property. The basic idea is to use a set of
messages, knowing that a subset of the messages in the set follow the cancellation path.

In the original submission document of Lesamnta [5] a 19-round SQUARE distinguisher is
described. This SQUARE is very straightforward, and suggests an efficient distinguisher for
Lesamnta. However, the original SQUARE is faulty. This was found by experimenting with

reduced version, and we will give an explanation of why the SQUARE attack does not work. Then
we suggest an improved and corrected 20-round integral attack which relies on the cancellation
property. We use the term integral cryptanalysis rather than SQUARE to describe our new
attack, because we use a higher order property.

In Table 7, the symbols b1, b2, b3 are used to denote three variables that independently take
all possible values. So, in the first round, T0, U0, V0 take all the 23n/4 possible values. At round
1, we have S1 = F1(U0)⊕ V0. We see that F1(U0)⊕ V0, T0, U0 take all possible values, so we can
reuse the symbol b3 for S1. This can be seen as a change of variables.

However, starting from round 4, we have two values denoted by b3 in the original SQUARE.
This is used to denote that R4, S4, T4 take all possible values, while S4, T4, U4 also take all
possible values. But this leads to a contradiction later on because when we reuse symbols we
are performing a change of variable, but it cannot be done for a variable that appears twice.
The first problem appears at round 7. We have that S6, T6, V6 and S6, U6, V6 take all possible
values. The original SQUARE suggests that this implies that S7, S6, T6 take all possible values,
where S7 = F7(U6) ⊕ V6. However this is not true in general. For instance, we could have
U6 = F−1

7 (T6 ⊕ V6). This is compatible with the assumptions of independence but in this case
we have S7 = T6 and S7, S6, T6 do not take all possible values.

In fact the SQUARE described in this attack can be detected after 18 rounds, but not after
19 rounds.

Table 7. The originally suggested SQUARE, and its actual development. We see that the inde-
pendence assumptions of round 7 do not hold.

Round Si Ti Ui Vi

0 - b1 b2 b3

1 b3 - b1 b2

2 b2 b3 - b1

3 b1 b2 b3 -
4 b3 b1 b2 b3

5 b3 b3 b1 b2

6 b2 b3 b3 b1

7 b1 b2 b3 b3

Suggested in [5]

Round Si Ti Ui Vi

0 - b1 b2 b3

1 b3 - b1 b2

2 b2 b3 - b1

3 b1 b2 b3 -
4 F (b3) b1 b2 b3

5 F (b2)⊕ b3 F (b3) b1 b2

6 F (b1)⊕ b2 F (b2)⊕ b3 F (b3) b1

7 F (F (b3))⊕ b1 F (b1)⊕ b2 F (b2)⊕ b3 F (b3)

Actual SQUARE

6.1 The New Attack

In Table 8, we describe the integral property used in our new attack.
At round 8, we use the value F8(C ⊕ b) ⊕ F4(b). Using Property (i), we know that the sum

will vanish for a particular C. For the rest of the path, we assume that C takes this particular
value.

At round 14, we have F14(F7(F4(b))) ⊕ F10(F7(F4(b))). This has the special property that
each value is taken an even number of times, according to Property (ii).

At round 17, we have F17(F14(F7(F4(b)))⊕F10(F7(F4(b))))⊕F13(F10(F7(F4(b))))⊕ b. When
we sum this over all b’s, we have:

⊕

b

F17

(

F14

(

F7(F4(b))
)

⊕ F10

(

F7(F4(b))
)

)

⊕
⊕

b

F13(F10(F7(F4(b))))⊕
⊕

b

b

The first term sums to zero because each input to F17 is taken an even number of times (cf.
Property (iii)), and the two last terms cancel each other because both are permutations of b.
This value is the fourth output word after 20 rounds (S17 = V20), so our distinguisher works on
20 rounds.

This property can be used to attack the block cipher of Lesamnta. The adversary takes 2n/2

plaintexts, iterating over all possible C and b. Then, for each C, he computes the sum of V20

over all b, and checks whether this sum is zero. If the data was generated using Lesamnta’s
compression functions, he knows that at least one value of C gives a zero sum over b. Otherwise,
there is a 1/e probability that all the sums are non-zero. By querying a new set of 2n/4 plaintexts
with the same C, one can easily identify that the right C value was used, and even retrieve some
keying material (specifically, K4⊕K8). This has been experimentally verified on reduced versions.

Table 8. Integral Attack.
The second part of the path assumes that C is fixed to be K4⊕K8, and only gives the dependencies
in b.

−3 b

−2 C

−1 -
0 -
1 b

2 C

3 -
4 F4(b)
5 C + b

6 C

7 F7(F4(b))
8 F8(C ⊕ b) ⊕ F4(b)
9 b

10 F10(F7(F4(b)))
11 F7(F4(b))
12 F12(b)
13 F13(F10(F7(F4(b))))⊕ b

14 F14(F7(F4(b)))⊕ F10(F7(F4(b)))
15 F15(F12(b))⊕ F7(F4(b))
16 F16(F13(F10(F7(F4(b))))⊕ b)⊕ F12(b)
17 F17(F14(F7(F4(b)))⊕ F10(F7(F4(b))))⊕ F13(F10(F7(F4(b))))⊕ b

7 9-Round Attack on SHAvite-3512

7.1 A Short Description of SHAvite-3512

SHAvite-3512 is part of the SHA-3 candidate SHAvite-3, designed to produce outputs of 257–512
bits [1]. SHAvite-3512 is based on a 4-thread Feistel construction with two nonlinear functions in
each round, where the nonlinear functions themselves are composed of four full AES rounds (with
a whitening key before the first round, and where the last AddRoundKey operation is omitted).
The key schedule algorithm accepts a message (SHAvite-3512 employs the Davies-Meyer mode)
of 1024 bits, a salt of 512 bits, and a counter of 128 bits, which are then transformed into 112

Xi+1YiYi+1Xi

XiYi−1YiXi−1

Ki

K′

i

F ′⊕ F⊕

Xi+1 = Yi−1 ⊕ Fi(Xi)

Yi+1 = Xi−1 ⊕ F ′

i (Yi)

Xi−1 = Yi+1 ⊕ F ′

i (Yi)

Yi−1 = Xi+1 ⊕ Fi(Xi)

Fig. 1. The Underlying Block Cipher of C512

subkeys of 128 bits each. We note that the original key schedule allowed for a specific set of
message, salt, and counter to lead to all the subkeys being zero, and thus was tweaked. We note
that our attack applies both for the original message expansion as well as the tweaked version.

SHAvite-3512 is based on the compression function C512, which accepts a chaining value of
512 bits, a message block of 1024 bits, a salt of 512 bits, and a bit counter of 128 bits. As this
is a Davies-Meyer construction, the message block, the salt, and the bit counter enter the key
schedule algorithm of the underlying block cipher E512. The chaining value is divided into four
128-bit words, and each round two of these 128-bit words enter the nonlinear round function and
affect the other two (each word enters one nonlinear function and affect one word). The nonlinear
function F 4(·) is composed of four full rounds of AES. The compression function is depicted in
Figure 1 and the message expansion is given in Appendix A.

Note that the round functions of SHAvite-3512 are not defined as F (k, x) = P (k ⊕ x) for a
fixed permutation P . Instead, each function takes 4 keys as it is defined as

F (k0, k1, k2, k3, x) = P (k3 ⊕ P (k2 ⊕ P (k1 ⊕ P (k0 ⊕ x)))).

To apply the cancellation property to SHAvite-3512, we will need that the inner keys of the two
cancelling functions are the same, so that both F functions collapses to P (k0⊕x). In Appendix B
we discuss an algorithm to find such a key through the message expansion.

The cancellation path is described in Table 9. We have a cancellation property on 7 rounds
under the following condition:

Round 7 ∀x, F ′

4(x) = F6(F5(c⊕ F4(d))⊕ x).
This happens if k0

1,4 = k0
0,6 ⊕ F5(c⊕ F4(d)) and (k1

1,4, k
2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6).

Moreover, if we can satisfy an extra condition at round 9, we have a cancellation property on 9
round:

Round 9 ∀x, F ′

6(x) = F8(F7(a)⊕ x).
This happens if k0

1,6 = k0
0,8 ⊕ F7(a) and (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8).

The constraints for the 7-round property are easy to satisfy and allow a 7-round attack on
SHAvite-3512. If we can additionally satisfy the constraints at round 9, then we can have an
attack on 9-round SHAvite-3512.

7.2 Dealing with the key expansion

To make the attack on 9-rounds of SHAvite-3512, we need to satisfy a 768-bit condition on the
subkeys:

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8)

Table 9. Cancellation Property on SHAvite-3512

Round Xi−1 Yi Yi−1 Xi

0 X−1 Y0 Y−1 X0

(4 rounds)
4 a b c d

(5 rounds)
9 X8 Y9 Y8 X9

FF X8 ⊕X−1 Y9 ⊕ Y0 Y8 ⊕ Y−1 X9 ⊕X0

Round Xi

X0 d⊕ F3(a)⊕ F ′

1(a⊕ F2(b⊕ F ′

3(c)))
Y0 b⊕ F ′

3(c)⊕ F1(c⊕ F ′

2(d⊕ F3(a)))
X1 c⊕ F ′

2(d⊕ F3(a))
Y1 a⊕ F2(b⊕ F ′

3(c))
X2 b⊕ F ′

3(c)
Y2 d⊕ F3(a)
X3 a

Y3 c

X4 d

Y4 b

X5 c⊕ F4(d)
Y5 a⊕ F ′

4(b)
X6 b⊕ F5(c⊕ F4(d))
Y6 d⊕ F ′

5(a⊕ F ′

4(b))

X7 a⊕ F ′

4(b) ⊕ F6(b⊕ F5(c⊕ F4(d)))
Y7 c⊕ F4(d)⊕ F ′

6(d⊕ F ′

5(a⊕ F ′

4(b)))
X8 d⊕ F ′

5(a⊕ F ′

4(b))⊕ F7(a)

X9 c⊕ F4(d)⊕ F ′

6(d⊕ F ′

5(a⊕ F ′

4(b))) ⊕ F8(d⊕ F ′

5(a⊕ F ′

4(b))⊕ F7(a))

In Appendix B we outline a technique to find a suitable message (recall that SHAvite-3512

is used in a Davies-Meyer mode). We have to solve a system involving linear and non-linear
equations, and we use the fact that the system is almost triangular. We note that it might be
possible to improve our results using the technique of Khovratovich, Biryukov and Nikolic [10]
to find a good message efficiently.

7.3 Applying Cancellation Attack to SHAvite-3512

The cancellation property allows to find a key/message pair with a given value on the last 128-bit
for an amortized cost of one hash function evaluation. The attack is the following: first find a
message that fulfills the conditions on the subkeys. Then pick a state a, c, d at round 4 satisfying
the cancellation conditions, and compute 5 rounds forwards and 4 rounds backwards as shown
in Table 9. Then, X9 is fixed, and it is easy to compute the b that gives the desired X0. Each
key (message) can be used with 2128 different a,c,d, and the cost of finding a suitable key is
2224 (see Appendix B). Hence, the amortized cost for finding one value is 296. Hence, the cost of
finding a pseudo-preimage for the compression function is 2480. The full attack is described in
Appendix B.

Algorithm 1 SHAvite-3512 cancellation attack on 9 rounds

Input: Target value H̃

Output: A message M and a chaining value X s.t. CF (X, M) = H̃

Running Time: 2480

1: loop

2: Find a message M s.t. (k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) and (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8)

(see Appendix B for the exact algorithm).
3: a← F−1

7 (k0
1,6 ⊕ k0

0,8)
4: for all c do

5: d← F−1

4 (F−1

5 (k0
1,4 ⊕ k0

0,6)⊕ c)

6: Compute b as F−1

2 (F ′−1

1 (H̃4 ⊕ c⊕ F4(d)⊕ d⊕ F3(a))⊕ a)⊕ F ′

3(c)
7: Compute 4 rounds backwards and 5 rounds forwards from a, b, c, d

8: Then H4 = X0 ⊕X9 = H̃4

9: if H = H̃ then

10: return X, M

11: end if

12: end for

13: end loop

8 Conclusion

In this paper, we presented attacks on the Lesamnta hash function and on the SHAvite-3512 hash
function. We summarize the obtained attacks in Tables 10 and 11.

These attacks are based on the cancellation property which we show to be an efficient tech-
nique to study generalized Feistel structures.

Table 10. Summary of the Attacks on Lesamnta

Version Attack Rounds Complexity
Data Time Memory

Lesamnta-256 Collision [5] 16 297 297 -

Lesamnta-256 Second Preimage [5] 16 2193 2193 -

Lesamnta-512 Collision [5] 16 2193 2193 -

Lesamnta-512 Second Preimage [5] 16 2385 2385 -

Lesamnta-256 Collision (Sect. 5.1) 22 297 297 -

Lesamnta-256 Second Preimage (Sect. 5.1) 22 2193 2193 -

Lesamnta-512 Collision (Sect. 5.1) 22 2193 2193 -

Lesamnta-512 Second Preimage (Sect. 5.1) 22 2385 2385 -

Lesamnta-256 Second Preimage (Sect. 5.1) 23 2193 2193 2128

Lesamnta-512 Second Preimage (Sect. 5.1) 23 2385 2385 2256

Lesamnta-256 Second Preimage (Sect. 5.1) 24 2193 2193 2192

Lesamnta-512 Second Preimage (Sect. 5.1) 24 2385 2385 2384

Lesamnta-256 Collision (Sect. 5.2) 24 2120 2120 -

Lesamnta-256 Second Preimage (Sect. 5.2) 24 2240 2240 -

Table 11. Summary of the Attacks on SHAvite-3512

Attack Rounds Complexity
Data Time

Second Preimage [11] 8 2448 2448

Second Preimage (Sect. 7) 9 2496 2496

Acknowledgements

We would like to thank the members of the Graz ECRYPT meeting. Especially, we would like
to express our gratitude to Emilia Käsper, Christian Rechberger, Søren S. Thomsen, and Ralf-
Philipp Weinmann for the inspiring discussions.

References

1. Eli Biham and Orr Dunkelman, The SHAvite-3 Hash Function, submission for SHA-3 competition,
2008.

2. Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advances in Cryptology, proceed-
ings of CRYPTO 1998, Lecture Notes in Computer Science 1462, pp. 56–71, Springer, 1998.

3. Christophe De Cannière and Christian Rechberger, Finding SHA-1 Characteristics: General Results
and Applications, Advances in Cryptology, proceedings of ASIACRYPT 2006, Lecture Notes in
Computer Science 4284, pp. 1–20, Springer, 2006

4. Joan Daemen and Vincent Rijmen, Plateau characteristics, IET Information Security, vol. 1, issue 1,
pp. 11–17, March 2007.

5. Shoichi Hirose, Hidenori Kuwakado, and Hirotaka Yoshida, SHA-3 Proposal: Lesamnta, submission
for SHA-3 competition, 2008.

6. National Institute of Standard and Technology, NIST’s Plan for New Cryptographic Hash Functions,
available on-line at http://www.csrc.nist.gov/pki/HashWorkshop/index.html, 2007.

7. Tri Van Le, Rüdiger Sparr, Ralph Wernsdorf, and Yvo Desmedt, Complementation-Like and Cyclic
Properties of AES Round Functions, proceedings of AES Conference 2004, Lecture Notes in Com-
puter Science 3373, pp. 128–141, Springer, 2004.

8. Xiaoyun Wang and Hongbo Yu, How to Break MD5 and Other Hash Functions, Advances in Cryptol-
ogy, proceedings EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pp. 19–35, Springer,
2005.

9. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin, Finding Collisions in the Full SHA-1, Advances
in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in Computer Science 3621, pp. 17–36,
Springer, 2005.

10. Dmitry Khovratovich, Alex Biryukov and Ivica Nikolic, Speeding up Collision Search for Byte-
Oriented Hash Functions, proceeding of CT-RSA 2009, Lecture Notes in Computer Science 5473,
pp. 164–181, Springer, 2009.

11. Private communication A preimage attack on 8-round SHAvite-3-512, Graz ECRYPT meeting 2009.

A SHAvite-3512 Message Expansion

The message expansion of SHAvite-3512 accepts a 1024-bit message block, a 128-bit counter, and
a 512-bit salt. All are treated as arrays of 32-bit words (of 32, 4, and 16 words, respectively),
which are used to generate 112 subkeys of 128 bits each, or a total of 448 32-bit words.

Let rk[·] be an array of 448 32-bit words whose first 32 words are initialized with msg[0, . . . , 31]
(the message). Besides the message, the key schedule algorithm accepts a counter cnt[0, . . . , 3]

http://www.csrc.nist.gov/pki/HashWorkshop/index.html

and a salt salt[0, . . . , 15], which in our attacks we assume to be fixed to some pre-determined
value.

After the initialization of rk[0, . . . , 31], two processes are repeated, a nonlinear one (which
generates 32 new words using the AES round function) and a linear one (which generates the
next 32 words in a linear manner). These processes are repeated 6 times, and then the nonlinear
process is repeated once more.

As the counter has no effect on the results of the paper, we omit its use from the description.
The computation of rk[·] is done as follows (up to the counter):

– For i = 0, . . . , 31 set rk[i]← msg[i].

– Set i← 32

– Repeat six times:

1. Nonlinear Expansion Step: Repeat twice:

(a) Let

t[0..3] = AESR
(

(rk[i− 31]||rk[i− 30]||rk[i− 29]||rk[i− 32])⊕ (salt[0]||salt[1]||salt[2]||salt[3])
)

.

(b) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(c) i← i + 4.
(d) Let

t[0..3] = AESR
(

(rk[i− 31]||rk[i− 30]||rk[i− 29]||rk[i− 32])⊕ (salt[4]||salt[5]||salt[6]||salt[7])
)

.

(e) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(f) i← i + 4.
(g) Let

t[0..3] = AESR
(

(rk[i− 31]||rk[i− 30]||rk[i− 29]||rk[i− 32])⊕ (salt[8]||salt[9]||salt[10]||salt[11])
)

.

(h) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(i) i← i + 4.
(j) Let

t[0..3] = AESR
(

(rk[i− 31]||rk[i− 30]||rk[i− 29]||rk[i− 32])⊕ (salt[12]||salt[13]||salt[14]||salt[15])
)

.

(k) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(l) i← i + 4.

2. Linear Expansion Step: Repeat 32 times:

(a) rk[i]← rk[i− 32]⊕ rk[i− 7].
(b) i← i + 1.

– Repeat the Nonlinear Expansion Step an additional time.

where AESR(x) is an AES round (without the AddRoundKey operation).

Once rk[·] is initialized, its 448 words are parsed as 112 words of 128-bit each, which are the
subkeys (14 double quartets of 128-bit words each), i.e.,

RK0,0 = (k0
0,0, k

1
0,0, k

2
0,0, k

3
0,0) =

(

(rk[0], rk[1], rk[2], rk[3]), (rk[4], rk[5], rk[6], rk[7]),

(rk[8], rk[9], rk[10], rk[11]) (rk[12], rk[13], rk[14], rk[15])
)

RK1,0 = (k0
1,0, k

1
1,0, k

2
1,0, k

3
1,0) =

(

(rk[16], rk[17], rk[18], rk[19]), (rk[20], rk[21], rk[22], rk[23])

((rk[24], rk[25], rk[26], rk[27]), (rk[28], rk[29], rk[30], rk[31])
)

...
...

...

RK0,i = (k0
0,i, k

1
0,i, k

2
0,i, k

3
0,i) =

(

(rk[32 · i], rk[32 · i + 1], rk[32 · i + 2], rk[32 · i + 3]),

(rk[32 · i + 4], rk[32 · i + 5], rk[32 · i + 6], rk[32 · i + 7]),
(rk[32 · i + 8], rk[32 · i + 9], rk[32 · i + 10], rk[32 · i + 11]),

(rk[32 · i + 12], rk[32 · i + 13], rk[32 · i + 14], rk[32 · i + 15])
)

RK1,i = (k0
1,i, k

1
1,i, k

2
1,i, k

3
1,i) =

(

(rk[32 · i + 16], rk[32 · i + 17], rk[32 · i + 18], rk[32 · i + 19]),

(rk[32 · i + 20], rk[32 · i + 21], rk[32 · i + 22], rk[32 · i + 23]),
(rk[32 · i + 24], rk[32 · i + 25], rk[32 · i + 26], rk[32 · i + 27]),

(rk[32 · i + 28], rk[32 · i + 29], rk[32 · i + 30], rk[32 · i + 31])
)

...
...

...

B Dealing with the key expansion of SHAvite-3512

For the cancellation attack on 9-round SHAvite-3512, we need to solve a set of equations on the
subkeys:

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8)

Or in rk[·] terms:

rk[148, . . . , 159] = rk[196, . . . , 207] rk[212, . . . , 223] = rk[260, . . . , 271]

For the description of the algorithm we define tk[·] to be the values after applying AESR(·)
to rk[·], i.e.,

tk[156, . . . , 159] = AESR
(

(rk[157]||rk[158]||rk[159]||rk[156])⊕ (salt[12]||salt[13]||salt[14]||salt[15])
)

We are actually trying a system of equation with:

– 224 variables: tk[128..159], tk[192..223] and rk[128..287]

– 192 equations from the key schedule (64 non-linear and 128 linear)

– 24 constraints

Therefore we have 8 degrees of freedom.

B.1 Propagation of the constraints

First, we will propagate the constraints and deduce new equalities between the variables.
The non-linear equation of the key-schedule give:

tk[156, . . . , 159] = AESR
(

(rk[157]||rk[158]||rk[159]||rk[156])⊕ (salt[12]||salt[13]||salt[14]||salt[15])
)

tk[204, . . . , 207] = AESR
(

(rk[205]||rk[206]||rk[207]||rk[204])⊕ (salt[12]||salt[13]||salt[14]||salt[15])
)

since rk[156..159] = rk[204..207], we know that tk[156..159] = tk[204..207]. Similarly, we get
tk[148..159] = tk[196..207].

From the key expansion, we have rk[191] = rk[223]⊕rk[216], and rk[239] = rk[271]⊕rk[264].
Since we have the constraints rk[223] = rk[271] and rk[216] = rk[264], we can deduce that
rk[191] = rk[239]. Similarly, we get that rk[187..191] = rk[235..239].

From the linear part of the expansion, we have rk[186] = rk[190] ⊕ tk[158] and rk[234] =
rk[238]⊕tk[206]. We have shown that rk[190] = rk[238] and tk[158] = tk[206], therefore rk[186] =
rk[234]. Similarly, we get rk[176..186] = rk[224..234].

Again, from the linear part of the key expansion, we have rk[211] = rk[218] ⊕ rk[186] and
rk[259] = rk[266] ⊕ rk[234]. We have seen that rk[186] = rk[234] and rk[218] = rk[266], thus
rk[211] = rk[259]. Similarly, we obtain rk[201..211] = rk[249..259].

Note that we have rk[201..207] = rk[153..159] as a constraint, so we must have rk[249..255] =
rk[153..159].

B.2 Finding a solution

To find a solution to the system, we will use a guess and determine technique. We guess 15 state
variables, and we will show how to compute the rest of the state and check for consistency. Since
we have only 8 degrees of freedom, we expect the random initial choice to be valid one time out
of 232×7 = 2224. This gives a complexity of 2224 to find a good message.

– Choose a random value from rk[209..223]
– Compute rk[184..191] from rk[209..223]
– Compute tk[156..159] from rk[184..191]
– Compute rk[156..159] from tk[156..159]. Note that rk[252..255] = rk[156..159].
– Compute tk[212..223] from rk[212..223].
– Compute rk[240..251] from tk[212..223] and rk[252..255].
– Compute tk[208..211] from rk[240..243] and rk[236..239] (= rk[188..191]).
– Compute rk[208..211] from tk[208..211] and check consistency with the initial values of

rk[209..211].
– Get rk[201..207] from rk[249..255].
– Compute rk[176..183] from rk[201..215].
– Get rk[224..239] from rk[176..191]. One full state rk[224..255] has been recovered, and it

possible to check the consistency of the solution.

	Attacks on Hash Functions based on Generalized Feistel --- Application to Reduced-Round and SHAvite-3512
	Charles Bouillaguet cl@@auth, Orr Dunkelman cl@@auth, Gäetan Leurent cl@@auth, Pierre-Alain Fouque

