Obtaining More Karatsuba-Like Formulae over the Binary Field

Haining Fan, Ming Gu, Jiaguang Sun and Kwok-Yan Lam

Abstract

The aim of this paper is to find more Karatsuba-like formulae for a fixed set of moduli polynomials in $G F(2)[x]$. To this end, a theoretical framework is established. We first generalize the division algorithm, and then present a generalized definition of the remainder of integer division. Finally, a previously generalized Chinese remainder theorem is used to achieve our initial goal. As a by-product of the generalized remainder of integer division, we rediscover Montgomery's N-residue and present a systematic interpretation of definitions of Montgomery's multiplication and addition operations.

Index Terms

Karatsuba algorithm, polynomial multiplication, Chinese remainder theorem, Montgomery algorithm, finite field.

I. Introduction

Efficient $G F\left(2^{n}\right)$ multiplication operation is important in cryptosystems. The main advantage of subquadratic multipliers is that their low asymptotic space complexities make it possible to implement VLSI multipliers for large values of n. Karatsuba-Ofman algorithm provides a practical solution for subquadratic $G F\left(2^{n}\right)$ multipliers [1]. Because time and space complexities of these multipliers depend on low-degree Karatsuba-like formulae, much effort has been devoted to obtain Karatsuba-like formulae with low multiplication complexity. Using the Chinese remainder theorem (CRT), Lempel, Seroussi and Winograd obtained a quasi-linear upper bound of the multiplicative complexity of multiplying two polynomials over finite field [2]. Weimerskirch and

[^0]Paar generalized Karatsuba-Ofman algorithm and showed how to use it with the least number of operations [3]. Based on an exhaustive search method, Montgomery presented Karatsubalike formulae which multiply two polynomials of degree at most 4 , 5, or 6 in $G F(2)[x]$ [4]. He also obtained new upper bounds on the multiplication complexity of n-term (degree $n-1$) polynomials for some small n. Recently, some bounds in [4] were improved by Fan and Hasan [5], Cenk and Özbudak [6], Oseledets [7] and Cenk, Koç and Özbudak [8].

Apart from Weimerskirch and Paar's method, the above methods can be classified into two categories: the exhaustive search method [4] [7] and the CRT-based method [2] [5] [6] [7] [8]. The exhaustive search method can find all n-term Karatsuba-like formulae for a fixed value of n, but its drawback is obvious, namely, it can only be used for small values of n. The CRT-based method is suitable for both small and large values of n, but only one n-term Karatsuba-like formula can be derived once the set of moduli polynomials is chosen.

The purpose of this paper is to find more Karatsuba-like formulae for a fixed set of moduli polynomials in $G F(2)[x]$. To this end, a theoretical framework is established. We first generalize the division algorithm, and then present a generalized definition of the remainder of integer division. As a by-product of these generalizations, we find that the residue class determined by this generalized remainder turns out to be Montgomery's N-residue [10]; and furthermore, we present a systematic interpretation of definitions of Montgomery's multiplication and addition operations. Finally, a previously generalized CRT is used to achieve our initial goal.

The remainder of this article is organized as follows: We present the generalized division algorithm in Section II. After presenting two examples in Section III, we summarize a method to obtain more Karatsuba-like formulae. Finally, concluding remarks are made in Section IV.

II. A Generalization of the Division Algorithm

A. A Generalization of the Division Algorithm

The integer division algorithm is the basis of the congruence theory.
Theorem 1 (The division algorithm): $\forall 0<m, a \in \mathbb{Z}$, there exist unique integers q^{\prime} and r^{\prime} with $0 \leq r^{\prime}<m$ such that $a=m \cdot q^{\prime}+r^{\prime}$.

Based on Theorem 1, we have the classical definition of the remainder of a modulo m, i.e.,
Definition 1: $\forall 0<m, a \in \mathbb{Z}$, the remainder of a modulo m is defined as $a \bmod m:=r^{\prime}=$ $a-m q^{\prime}$, where r^{\prime} and q^{\prime} are unique integers determined by Theorem 1.

More precisely, r^{\prime} in Theorem 1 is called the least non-negative remainder. In the following, we will use $\langle a\rangle_{m}$ to denote $a \bmod m$. Before we present the proposed generalization of Theorem 1 , we introduce another generalization of the division algorithm.

Theorem 2 (The 1st generalization of the division algorithm): $\forall 0<m, a, d \in \mathbb{Z}$, there exist unique integers q^{\prime} and r^{\prime} with $d \leq r^{\prime}<m+d$ such that $a=m q^{\prime}+r^{\prime}$.

Especially, if $d=-\left\lfloor\frac{m}{2}\right\rfloor$ then $-\left\lfloor\frac{m}{2}\right\rfloor \leq r^{\prime}<m-\left\lfloor\frac{m}{2}\right\rfloor$. In this case, r^{\prime} is called the least absolute remainder. As an application of this generalization, the original Euclidean algorithm for integers can be slightly speeded up [9, Exercise 3.13 and 3.30].

Let $\mathbb{Z}_{m}^{*}=\left\{i \mid i \in \mathbb{Z}_{m}\right.$ and $\left.\operatorname{gcd}(i, m)=1\right\}$ be the multiplicative group of \mathbb{Z}_{m} and "." denote the multiplication operation in \mathbb{Z}. The second generalization of the division algorithm is as follows.

Proposition 3 (The 2nd generalization of the division algorithm): $\forall 0<m, a \in \mathbb{Z}$. Let $R^{-1} \in$ \mathbb{Z}_{m}^{*} be the multiplicative inverse of $R \in \mathbb{Z}_{m}^{*}$. Then there exist unique integers q and r with $0 \leq r<m$ such that $a=m \cdot q+R^{-1} \cdot r$.

Proof:

$\because R^{-1}$ is the multiplicative inverse of R in \mathbb{Z}_{m}^{*},
$\therefore \exists u \in \mathbb{Z}$ such that $1=u m+R R^{-1}$.
$\therefore a=a u m+a R R^{-1}$.
By the division algorithm, there exist unique integers $q^{\prime \prime}$ and $r^{\prime \prime}$ such that $a R=m q^{\prime \prime}+r^{\prime \prime}$, where $0 \leq r^{\prime \prime}=\langle a R\rangle_{m}<m$. Therefore, $a=a u m+(a R) R^{-1}$ can be rewritten as

$$
\begin{aligned}
a & =a u m+\left(m q^{\prime \prime}+r^{\prime \prime}\right) R^{-1} \\
& =a u m+m q^{\prime \prime} R^{-1}+R^{-1} r^{\prime \prime} \\
& =\left(a u+q^{\prime \prime} R^{-1}\right) m+R^{-1} r^{\prime \prime}
\end{aligned}
$$

\therefore There exist integers $q=\left(u a+q^{\prime \prime} R^{-1}\right)$ and $r=r^{\prime \prime}=\langle a R\rangle_{m}$ with $0 \leq r<m$ such that $a=m q+R^{-1} r$.

To prove the uniqueness, we assume, on the contrary, that there exist q_{1}, q_{2}, and $0 \leq r_{1}, r_{2}<m$ such that $a=m \cdot q_{1}+R^{-1} \cdot r_{1}=m \cdot q_{2}+R^{-1} \cdot r_{2}$.

If $r_{1}=r_{2}$ then it is easy to prove that $q_{1}=q_{2}$.
For the case $r_{1} \neq r_{2}$, since $\left(m, R^{-1}\right)=1$ and m divides $0=a-a=m\left(q_{1}-q_{2}\right)+R^{-1} \cdot\left(r_{1}-r_{2}\right)$, we have $r_{1}=r_{2}$. This is a contradiction.

Obviously, Proposition 3 becomes Theorem 1 when $R=R^{-1}=1$.

Because the classical definition of the remainder of a modulo m, i.e., $\langle a\rangle_{m}$ in Definition 1, is based on the classical division algorithm Theorem 1, and we have just generalized Theorem 1 to Proposition 3, the unique integer $r=\langle a R\rangle_{m}$ appeared in the proof of Proposition 3 can be naturally viewed as a generalization of $\langle a\rangle_{m}$, i.e.,

Definition 2 (A generalized remainder of a modulo m): $\forall 0<m, a \in \mathbb{Z}$ and $R \in \mathbb{Z}_{m}^{*}$. The generalized remainder of a modulo m w.r.t. R is defined as $\langle a\rangle_{(m, R)}:=\langle a \cdot R\rangle_{m}$.

The reader may be familiar with $\langle a R\rangle_{m}$. In fact, it corresponds to the N-residue of a defined by Montgomery in [10]. Montgomery's representation involves only one parameter R. Using the generalized division algorithm, we can readily deal with two or more R 's. The following equation is such an example, and it will be used in the next section.

$$
\begin{equation*}
\langle a b\rangle_{\left(m, R_{c}\right)}=\left\langle a R_{a} \cdot b R_{b} \cdot \frac{R_{c}}{R_{a} R_{b}}\right\rangle_{m}=\left\langle\langle a\rangle_{\left(m, R_{a}\right)} \cdot\langle b\rangle_{\left(m, R_{b}\right)} \cdot \frac{R_{c}}{R_{a} R_{b}}\right\rangle_{m} \tag{1}
\end{equation*}
$$

B. A Systematic Interpretation of Definitions of Montgomery's Multiplication and Addition Operations

Let $a=m \cdot q_{a}+R^{-1} \cdot r_{a}$ and $b=m \cdot q_{b}+R^{-1} \cdot r_{b}$ be two positive integers, whose N residues correspond to $r_{a}=\langle a\rangle_{(m, R)}=\langle a \cdot R\rangle_{m}$ and $r_{b}=\langle b\rangle_{(m, R)}=\langle b \cdot R\rangle_{m}$ respectively. In Montgomery's representation, the addition operation " \oplus ", i.e., $r_{a} \oplus r_{b}:=\left\langle r_{a}+r_{b}\right\rangle_{m}$, is defined the same as that in \mathbb{Z}_{m}. But the definition of the multiplication operation " \otimes " is different, which is defined as $r_{a} \otimes r_{b}:=\left\langle r_{a} \cdot r_{b} \cdot R^{-1}\right\rangle_{m}$. The reason that operation " \otimes " is defined in this way, not other expressions, can be traced back to the N-residue of $a \cdot b$, which is uniquely determined by the generalized division algorithm. Or, more precisely, expanding $a \cdot b=$ $\left(m \cdot q_{a}+R^{-1} \cdot r_{a}\right)\left(m \cdot q_{b}+R^{-1} \cdot r_{b}\right)$ as

$$
a \cdot b=m\left(m q_{a} q_{b}+q_{a} R^{-1} r_{b}+q_{b} R^{-1} r_{a}\right)+R^{-1}\left(R^{-1} \cdot r_{a} \cdot r_{b}\right)
$$

and expressing $\left(R^{-1} \cdot r_{a} \cdot r_{b}\right)$ as $R^{-1} \cdot r_{a} \cdot r_{b}=m\left\lfloor\frac{R^{-1} \cdot r_{a} \cdot r_{b}}{m}\right\rfloor+\left\langle R^{-1} \cdot r_{a} \cdot r_{b}\right\rangle_{m}$ by the division algorithm, we have

$$
a \cdot b=m\left(m q_{a} q_{b}+q_{a} R^{-1} r_{b}+q_{b} R^{-1} r_{a}+R^{-1}\left\lfloor\frac{R^{-1} \cdot r_{a} \cdot r_{b}}{m}\right\rfloor\right)+R^{-1}\left[\left\langle R^{-1} \cdot r_{a} \cdot r_{b}\right\rangle_{m}\right] .
$$

By Proposition 3 and Definition 2, the integer $\left\langle R^{-1} \cdot r_{a} \cdot r_{b}\right\rangle_{m}=\langle(a \cdot b) R\rangle_{m}$ in the square brackets just corresponds to the N-residue of $a \cdot b$.

The definition of Montgomery's addition operation of N-residues can also be interpreted similarly: expressing $a+b$ by the generalized division algorithm as

$$
\begin{aligned}
a+b & =\left(m \cdot q_{a}+R^{-1} \cdot r_{a}\right)+\left(m \cdot q_{b}+R^{-1} \cdot r_{b}\right) \\
& =m\left(q_{a}+q_{b}\right)+R^{-1}\left(r_{a}+r_{b}\right) \\
& =m\left(q_{a}+q_{b}+R^{-1}\left\lfloor\frac{r_{a}+r_{b}}{m}\right\rfloor\right)+R^{-1}\left\langle r_{a}+r_{b}\right\rangle_{m},
\end{aligned}
$$

the integer $\left\langle r_{a}+r_{b}\right\rangle_{m}$ corresponds to Montgomery's summation of two N-residues r_{a} and r_{b}, i.e., $r_{a} \oplus r_{b}$.

C. A Generalization of the CRT

The following is an integer version of the CRT.
Theorem 4 (CRT): Let $t>1, m_{1}, m_{2}, \cdots, m_{t}$ be pairwisely coprime positive integers, $M=$ $\prod_{i=1}^{t} m_{i}$ and $M_{i}=\frac{M}{m_{i}}$. Then the unique solution y modulo M to the system of linear congruences $\langle y\rangle_{m_{i}}=y_{i}^{\prime}$ is

$$
\begin{equation*}
y=\left\langle\sum_{i=1}^{t} y_{i}^{\prime} \cdot M_{i} \cdot\left\langle M_{i}^{-1}\right\rangle_{m_{i}}\right\rangle_{M} \tag{2}
\end{equation*}
$$

where $\left\langle M_{i}^{-1}\right\rangle_{m_{i}}$ is the multiplicative inverse of M_{i} in $\mathbb{Z}_{m_{i}}^{*}$ and $1 \leq i \leq t$.
In the above subsection, we have presented a generalized definition of the remainder of integer division. Therefore, it is natural to seek the solution to the system of the generalized linear congruences $\langle y\rangle_{\left(m_{i}, R_{i}\right)}=y_{i}$. This consideration leads to a rediscovery of the following generalized CRT [11]:

Theorem 5 (A generalized CRT): Let $t>1, m_{1}, m_{2}, \cdots, m_{t}$ be pairwisely coprime positive integers, $M=\prod_{i=1}^{t} m_{i}, M_{i}=\frac{M}{m_{i}}$ and $R_{i} \in \mathbb{Z}_{m_{i}}^{*}$. Then the unique solution y modulo M to the system of generalized linear congruences $\langle y\rangle_{\left(m_{i}, R_{i}\right)}=y_{i}$ is

$$
\begin{equation*}
y=\left\langle\sum_{i=1}^{t} y_{i} \cdot M_{i} \cdot\left\langle\left\langle M_{i}^{-1}\right\rangle_{m_{i}} \cdot\left\langle R_{i}^{-1}\right\rangle_{m_{i}}\right\rangle_{m_{i}}\right\rangle_{M} \tag{3}
\end{equation*}
$$

where $\left\langle M_{i}^{-1}\right\rangle_{m_{i}}$ and $\left\langle R_{i}^{-1}\right\rangle_{m_{i}}$ are multiplicative inverses of M_{i} and R_{i} in $\mathbb{Z}_{m_{i}}^{*}$ respectively and $1 \leq i \leq t$.

The correctness of this theorem is clear since the system of linear congruences $\langle y\rangle_{\left(m_{i}, R_{i}\right)}=$ $\left\langle y \cdot R_{i}\right\rangle_{m_{i}}=y_{i}$ is equivalent to the system of linear congruences $\langle y\rangle_{m_{i}}=\left\langle y_{i} \cdot R_{i}^{-1}\right\rangle_{m_{i}}$, which has the solution (3) by (2).

Until now, we have focussed only on the ring \mathbb{Z}_{m}. In fact, these results can be transferred to the polynomial ring $F[x]$ without essential modification, where F is a field. For simplicity, we do not rewrite them here.

III. Obtaining More Karatsuba-Like Formulae in $G F(2)[x]$

We now use the above results to obtain more Karatsuba-like formulae for a fixed set of moduli polynomials in $G F(2)[x]$. Two examples are presented first to illustrate the main idea.

A. 3-term Karatsuba-like Formulae

This example provides all 3-term Karatsuba-like formulae that can be derived from the generalized CRT Theorem 5. These formulae compute $C=\sum_{i=0}^{4} c_{i} x^{i}=A B=\left(a_{2} x^{2}+a_{1} x+\right.$ $\left.a_{0}\right)\left(b_{2} x^{2}+b_{1} x+b_{0}\right)$ in $G F(2)[x]$ using 6 multiplications.

For the purpose of comparison, we first present the formula derived from the conventional CRT. The moduli polynomials used in this example are $f_{\infty}=x-\infty, f_{0}=x, f_{1}=x+1$ and $f_{2}=x^{2}+x+1$. We will not present the detailed procedure to construct the whole Karatsuba-like formula. Instead, we present only the computation procedure of the term $\left\langle y_{2}^{\prime} \cdot M_{2} \cdot\left\langle M_{2}^{-1}\right\rangle_{f_{2}}\right\rangle_{M}$ appeared in the conventional CRT, which will be called the product term in the following.

For moduli polynomial $f_{2}=x^{2}+x+1$. We first compute parameters $M=f_{0} \cdot f_{1} \cdot f_{2}=x^{4}+x$, $M_{2}=\frac{M}{f_{2}}=x^{2}+x$ and $\left\langle M_{2}^{-1}\right\rangle_{f_{2}}=1$. Then we compute the product term as follows:

$$
\begin{align*}
& \left\langle\langle A B\rangle_{f_{2}} \cdot M_{2} \cdot\left\langle M_{2}^{-1}\right\rangle_{f_{2}}\right\rangle_{M} \\
= & \left\langle\left\langle\langle A\rangle_{f_{2}} \cdot\langle B\rangle_{f_{2}}\right\rangle_{f_{2}} \cdot M_{2} \cdot\left\langle M_{2}^{-1}\right\rangle_{f_{2}}\right\rangle_{M} \\
= & \left\langle\left\langle\left[\left(a_{1}+a_{2}\right) x+\left(a_{0}+a_{2}\right)\right] \cdot\left[\left(b_{1}+b_{2}\right) x+\left(b_{0}+b_{2}\right)\right]\right\rangle_{f_{2}} \cdot\left(x^{2}+x\right) \cdot 1\right\rangle_{M} \\
= & \left\langle\left\langle m_{4} x^{2}+\left(m_{3}+m_{4}+m_{5}\right) x+m_{3}\right\rangle_{f_{2}} \cdot\left(x^{2}+x\right)\right\rangle_{M} \\
= & {\left[\left(m_{3}+m_{5}\right) x+\left(m_{3}+m_{4}\right)\right] \cdot\left(x^{2}+x\right) } \\
= & \left(m_{3}+m_{5}\right) x^{3}+\left(m_{4}+m_{5}\right) x^{2}+\left(m_{3}+m_{4}\right) x, \tag{4}
\end{align*}
$$

where $m_{3}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right), m_{4}=\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)$ and $m_{5}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)$.

After getting the two product terms corresponding to two other moduli polynomials $f_{0}=x$ and $f_{1}=x+1$, we can obtain the CRT-based 3-term Karatsuba-like formula using the construction multiplication modulo $(x-\infty)^{w}$ [5, Lemma 2]. The formula is listed in table I as \mathcal{F}_{1}.

TABLE I

All 3-TERM KARATSUBA-LIKE FORMULAE OBTAINED FROM THEOREM 5

No.	$\left(R_{A}, R_{B}\right)$	c_{i} 's	The six multiplications
\mathcal{F}_{1}	$\begin{gathered} (1,1), \\ (x, x), \\ (x+1, x+1) \end{gathered}$	$\begin{aligned} & c_{0}=m_{0} \\ & c_{1}=m_{1}+m_{2}+m_{3}+m_{4} \\ & c_{2}=m_{1}+m_{4}+m_{5} \\ & c_{3}=m_{0}+m_{1}+m_{3}+m_{5} \\ & c_{4}=m_{2} \end{aligned}$	$\begin{aligned} & m_{0}=a_{0} b_{0} \\ & m_{1}=\left(a_{0}+a_{1}+a_{2}\right)\left(b_{0}+b_{1}+b_{2}\right) \\ & m_{2}=a_{2} b_{2} \\ & m_{3}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right) \\ & m_{4}=\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right) \\ & m_{5}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right) \end{aligned}$
\mathcal{F}_{2}	$\begin{gathered} (x, 1), \\ (1, x+1), \\ (x+1, x) \end{gathered}$	$\begin{aligned} & c_{0}=m_{0} \\ & c_{1}=m_{1}+m_{2}+m_{4}+m_{5} \\ & c_{2}=m_{1}+m_{3}+m_{5} \\ & c_{3}=m_{0}+m_{1}+m_{3}+m_{4} \\ & c_{4}=m_{2}, \end{aligned}$	$\begin{aligned} & m_{0}=a_{0} b_{0} \\ & m_{1}=\left(a_{0}+a_{1}+a_{2}\right)\left(b_{0}+b_{1}+b_{2}\right) \\ & m_{2}=a_{2} b_{2} \\ & m_{3}=\left(a_{1}+a_{2}\right)\left(b_{0}+b_{2}\right) \\ & m_{4}=\left(a_{0}+a_{1}\right)\left(b_{1}+b_{2}\right) \\ & m_{5}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{1}\right) \end{aligned}$
\mathcal{F}_{3}	$\begin{gathered} (1, x), \\ (x+1,1), \\ (x, x+1) \end{gathered}$	$\begin{aligned} & c_{0}=m_{0} \\ & c_{1}=m_{1}+m_{2}+m_{4}+m_{5} \\ & c_{2}=m_{1}+m_{3}+m_{5} \\ & c_{3}=m_{0}+m_{1}+m_{3}+m_{4} \\ & c_{4}=m_{2} \end{aligned}$	$\begin{aligned} & m_{0}=a_{0} b_{0} \\ & m_{1}=\left(a_{0}+a_{1}+a_{2}\right)\left(b_{0}+b_{1}+b_{2}\right) \\ & m_{2}=a_{2} b_{2} \\ & m_{3}=\left(a_{0}+a_{2}\right)\left(b_{1}+b_{2}\right) \\ & m_{4}=\left(a_{1}+a_{2}\right)\left(b_{0}+b_{1}\right) \\ & m_{5}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{2}\right) \end{aligned}$

Now we present the new formula derived from the generalized CRT Theorem 5. We need to generalize the two remainders $\langle A\rangle_{f_{2}}=\langle A\rangle_{\left(f_{2}, 1\right)}$ and $\langle B\rangle_{f_{2}}=\langle B\rangle_{\left(f_{2}, 1\right)}$ appeared in (4) to $\langle A\rangle_{\left(f_{2}, R_{A}\right)}$ and $\langle B\rangle_{\left(f_{2}, R_{B}\right)}$, where R_{A} and R_{B} belong to the multiplicative group $G F(2)[x] /\left(f_{2}\right)^{*}=$ $\{1, x, x+1\}$. Setting $\left(R_{A}, R_{B}\right)=(x, 1)$, we have $\langle A\rangle_{\left(f_{2}, R_{A}\right)}=\langle A \cdot x\rangle_{f_{2}}=\left(a_{0}+a_{1}\right) x+\left(a_{1}+a_{2}\right)$
and $\left\langle R_{A}^{-1}\right\rangle_{f_{2}}=x+1$. Then we obtain the following product term by (1).

$$
\begin{aligned}
& \left\langle\langle A B\rangle_{f_{2}} \cdot M_{2} \cdot\left\langle M_{2}^{-1}\right\rangle_{f_{2}}\right\rangle_{M} \\
= & \left\langle\left\langle\left(A \cdot R_{A} \cdot R_{A}^{-1}\right) \cdot\left(B \cdot R_{B} \cdot R_{B}^{-1}\right)\right\rangle_{f_{2}} \cdot M_{2} \cdot\left\langle M_{2}^{-1}\right\rangle_{f_{2}}\right\rangle_{M} \\
= & \left\langle\left\langle\langle A\rangle_{\left(f_{2}, R_{A}\right)} \cdot\langle B\rangle_{\left(f_{2}, R_{B}\right)}\right\rangle_{f_{2}} \cdot M_{2} \cdot\left\langle M_{2}^{-1} \cdot R_{A}^{-1} \cdot R_{B}^{-1}\right\rangle_{f_{2}}\right\rangle_{M} \\
= & \left\langle\left\langle\langle A\rangle_{\left(f_{2}, x\right)} \cdot\langle B\rangle_{f_{2}}\right\rangle_{f_{2}} \cdot\left(x^{2}+x\right) \cdot(x+1)\right\rangle_{M} \\
= & \left\langle\left\langle\left[\left(a_{0}+a_{1}\right) x+\left(a_{1}+a_{2}\right)\right] \cdot\left[\left(b_{1}+b_{2}\right) x+\left(b_{0}+b_{2}\right)\right]\right\rangle_{f_{2}} \cdot\left(x^{3}+x\right)\right\rangle_{M} \\
= & \left\langle\left\langle m_{4} x^{2}+\left(m_{3}+m_{4}+m_{5}\right) x+m_{3}\right\rangle_{f_{2}} \cdot\left(x^{3}+x\right)\right\rangle_{M} \\
= & \left\langle\left[\left(m_{3}+m_{5}\right) x+\left(m_{3}+m_{4}\right)\right] \cdot\left(x^{3}+x\right)\right\rangle_{x^{4}+x} \\
= & \left(m_{3}+m_{4}\right) x^{3}+\left(m_{3}+m_{5}\right) x^{2}+\left(m_{4}+m_{5}\right) x,
\end{aligned}
$$

where $m_{3}=\left(a_{1}+a_{2}\right)\left(b_{0}+b_{2}\right), m_{4}=\left(a_{0}+a_{1}\right)\left(b_{1}+b_{2}\right)$ and $m_{5}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{1}\right)$.
The remaining steps to construct the new 3-term Karatsuba-like formula are the same as those in the CRT, and we list this new formula \mathcal{F}_{2} in the middle of table I.

It is clear that the CRT-based formula \mathcal{F}_{1} is symmetrical, namely, it does not change if we exchange " a " and " b " in m_{i} 's. But if we exchange " a " and " b " in the new formula \mathcal{F}_{2}, we will obtain a brand new formula \mathcal{F}_{3}, which can be obtained by setting $\left(R_{A}, R_{B}\right)=(1, x)$. Therefore, formula \mathcal{F}_{2} (or \mathcal{F}_{3}) is not symmetrical from this point of view.

Since there are 3 elements in $G F(2)[x] /\left(f_{2}\right)^{*}=\{1, x, x+1\}$, we have 9 different combinations of pair $\left(R_{A}, R_{B}\right)$. For each of these pairs, we can obtain one 3-term Karatsuba-like formula. But some of them are the same. For example, the CRT-based formula \mathcal{F}_{1}, which is derived by setting $\left(R_{A}, R_{B}\right)=(1,1)$, can also be obtained by setting $\left(R_{A}, R_{B}\right)=(x, x)$ or $\left(R_{A}, R_{B}\right)=$ $(x+1, x+1)$. In table I , all three distinct formulae are listed. Here we note that f_{2} is the only moduli polynomial that the generalized CRT can be applied to because there is only one element, i.e., 1 , in either $G F(2)[x] /\left(f_{0}\right)^{*}$ or $G F(2)[x] /\left(f_{1}\right)^{*}$.

B. Another 9-term Karatsuba-like Formula

A 9-term CRT-based Karatsuba-like formula, which computes $C=\sum_{i=0}^{16} c_{i} x^{i}=A \cdot B=$ $\sum_{i=0}^{8} a_{i} x^{i} \cdot \sum_{i=0}^{8} b_{i} x^{i}$ in $G F(2)[x]$, was given in [6]. They selected the moduli polynomials $(x-\infty)^{3}, f_{11}^{3}=x^{3}, f_{12}^{3}=(x+1)^{3}, f_{21}=x^{2}+x+1, f_{31}=x^{3}+x+1$ and $f_{32}=x^{3}+x^{2}+1$.

In the following, we will also use these moduli polynomials and derive a new Karatsuba-like formula by generalizing product terms corresponding to moduli polynomials f_{31} and f_{32}.

For moduli polynomial f_{31}, we select $R_{A}=R_{B}=x$ and compute $\langle A\rangle_{\left(f_{31}, R_{A}\right)}=\langle A \cdot x\rangle_{f_{31}}$ and $\langle B\rangle_{\left(f_{31}, R_{B}\right)}=\langle B \cdot x\rangle_{f_{31}}$ first. Then we compute its product term as follows.

$$
\begin{aligned}
& \left\langle\langle A B\rangle_{f_{31}} \cdot M_{31} \cdot\left\langle\frac{1}{M_{31}}\right\rangle_{f_{31}}\right\rangle_{M} \\
= & \left\langle\left\langle\langle A\rangle_{\left(f_{31}, R_{A}\right)} \cdot\langle B\rangle_{\left(f_{31}, R_{B}\right)}\right\rangle_{f_{31}} \cdot M_{31} \cdot\left\langle\frac{1}{M_{31}} \cdot \frac{1}{R_{A} \cdot R_{B}}\right\rangle_{f_{31}}\right\rangle_{M}
\end{aligned}
$$

For moduli polynomial f_{32}, we select $R_{A}=R_{B}=x+1$ and perform similar computation. Finally, we can obtain a new formula. This formula also consists of 30 multiplication m_{i} 's. Except for m_{9} and m_{11}, all other m_{i} 's are the same as those in [6]. Careful comparison shows that coefficient c_{13} in [6] is a summation of $20 m_{i}$'s, but every c_{i} in the new formula is a summation of no more than $19 m_{i}$'s. However, if we set $R_{A}=R_{B}=x^{2}$ for f_{31} and $R_{A}=R_{B}=x$ for f_{32}, we will obtain another formula in which c_{13} is a summation of $21 m_{i}$'s.

Summarizing the method used in the above two examples, we can obtained an algorithm to derive more Karatsuba-like formulae in $G F(2)[x]$, namely,

1. For each moduli polynomial f_{i}, define $S_{i}=G F(2)[x] /\left(f_{i}\right)^{*}$;
2. For each pair $\left(R_{A}, R_{B}\right) \in S_{i} \times S_{i}$, derive a formula using the generalized CRT;
3. Save this formula if it is a new one.

IV. Conclusions

We have generalized the division algorithm, and presented a method to obtain more n-term Karatsuba-like formulae in $G F(2)[x]$ for a fixed set of moduli polynomials. These new n-term formulae have the same multiplication complexity as that obtained from the conventional CRT. As for the addition complexity, we have checked some $4,5,6,7,8$, and 9 -term new formulae, but have not found obvious advantage or disadvantage. Even though, the proposed method can provide us with a broader understanding of Karatsuba-like formulae.

Acknowledgment

The work was supported by NSFC under grant No. 60970147.

$$
\begin{aligned}
& m_{1}=\left(a_{0}+a_{1}+a_{2}+a_{4}+a_{3}+a_{5}+a_{6}+a_{7}+a_{8}\right)\left(b_{0}+b_{1}+b_{2}+b_{4}+b_{3}+b_{5}+b_{6}+b_{7}+b_{8}\right) ; \\
& m_{2}=\left(a_{0}+a_{2}+a_{4}+a_{6}+a_{8}\right)\left(b_{0}+b_{2}+b_{4}+b_{6}+b_{8}\right) ; \\
& m_{3}=\left(a_{3}+a_{5}+a_{8}+a_{1}+a_{2}\right)\left(b_{1}+b_{5}+b_{8}+b_{2}+b_{3}\right) ; \\
& m_{4}=\left(a_{0}+a_{2}+a_{3}+a_{5}+a_{6}+a_{8}\right)\left(b_{0}+b_{2}+b_{3}+b_{5}+b_{6}+b_{8}\right) ; \\
& m_{5}=\left(a_{0}+a_{3}+a_{6}+a_{1}+a_{4}+a_{7}\right)\left(b_{0}+b_{3}+b_{6}+b_{1}+b_{4}+b_{7}\right) ; \\
& m_{6}=\left(a_{0}+a_{3}+a_{4}+a_{5}+a_{7}\right)\left(b_{0}+b_{3}+b_{4}+b_{5}+b_{7}\right) ; \\
& m_{7}=\left(a_{2}+a_{6}+a_{1}+a_{3}+a_{8}\right)\left(b_{2}+b_{6}+b_{1}+b_{3}+b_{8}\right) ; \\
& m_{8}=\left(a_{2}+a_{4}+a_{5}+a_{6}\right)\left(b_{2}+b_{4}+b_{5}+b_{6}\right) ; \\
& m_{9}=\left(a_{0}+a_{1}+a_{2}+a_{5}+a_{7}+a_{8}\right)\left(b_{0}+b_{1}+b_{2}+b_{5}+b_{7}+b_{8}\right) ; \\
& m_{10}=\left(a_{1}+a_{3}+a_{5}+a_{7}\right)\left(b_{1}+b_{3}+b_{5}+b_{7}\right) ; \\
& m_{11}=\left(a_{0}+a_{1}+a_{2}+a_{4}+a_{7}+a_{8}\right)\left(b_{0}+b_{1}+b_{2}+b_{4}+b_{7}+b_{8}\right) ; \\
& m_{12}=\left(a_{7}+a_{0}+a_{3}+a_{5}+a_{6}\right)\left(b_{7}+b_{0}+b_{3}+b_{5}+b_{6}\right) ; \\
& m_{13}=\left(a_{0}+a_{1}+a_{4}+a_{5}+a_{8}\right)\left(b_{0}+b_{1}+b_{4}+b_{5}+b_{8}\right) ; \\
& m_{14}=\left(a_{1}+a_{2}+a_{4}+a_{5}+a_{7}+a_{8}\right)\left(b_{1}+b_{2}+b_{4}+b_{5}+b_{7}+b_{8}\right) ; \\
& m_{15}=\left(a_{0}+a_{1}+a_{3}+a_{6}+a_{7}+a_{8}\right)\left(b_{0}+b_{1}+b_{3}+b_{6}+b_{7}+b_{8}\right) ; \\
& m_{16}=\left(a_{1}+a_{3}+a_{4}+a_{5}+a_{8}\right)\left(b_{1}+b_{3}+b_{4}+b_{5}+b_{8}\right) ; \\
& m_{17}=\left(a_{0}+a_{2}+a_{3}+a_{4}+a_{7}\right)\left(b_{0}+b_{2}+b_{3}+b_{4}+b_{7}\right) ; \\
& m_{18}=\left(a_{1}+a_{4}+a_{5}+a_{6}+a_{8}\right)\left(b_{1}+b_{4}+b_{5}+b_{6}+b_{8}\right) ; \\
& m_{19}=\left(a_{0}+a_{2}+a_{5}+a_{6}+a_{7}\right)\left(b_{0}+b_{2}+b_{5}+b_{6}+b_{7}\right) ; \\
& m_{20}=\left(a_{2}+a_{3}+a_{6}+a_{7}\right)\left(b_{2}+b_{3}+b_{6}+b_{7}\right) ; \\
& m_{21}=\left(a_{6}+a_{8}\right)\left(b_{6}+b_{8}\right) ; \\
& m_{22}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right) ; \\
& m_{23}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right) ; \\
& m_{24}=a_{0} b_{0} ; \\
& m_{25}=a_{1} b_{1} ; \\
& m_{26}=a_{7} b_{7} ; \\
& m_{27}=\left(a_{7}+a_{8}\right)\left(b_{7}+b_{8}\right) ; \\
& m_{28}=a_{6} b_{6} ; \\
& m_{29}=a_{8} b_{8} ; \\
& m_{30}=a_{2} b_{2} ; \\
&
\end{aligned}
$$

$$
\begin{aligned}
& c_{0}=m_{24} ; \\
& c_{1}=m_{24}+m_{25}+m_{23} ; \\
& c_{2}=m_{22}+m_{24}+m_{30}+m_{25} ; \\
& c_{3}=m_{22}+m_{30}+m_{23}+m_{13}+m_{20}+m_{10}+m_{14}+m_{4}+m_{16}+m_{7} \\
& +m_{8}+m_{12}+m_{18}+m_{6}+m_{3}+m_{21}+m_{28}+m_{29}+m_{27} ; \\
& c_{4}=m_{24}+m_{25}+m_{23}+m_{10}+m_{2}+m_{5}+m_{4}+m_{16}+m_{9}+m_{17} \\
& +m_{8}+m_{18}+m_{6}+m_{11}+m_{19}+m_{21}+m_{28}+m_{29}+m_{26} ; \\
& c_{5}=m_{22}+m_{24}+m_{30}+m_{25}+m_{1}+m_{10}+m_{2}+m_{14}+m_{4}+m_{16} \\
& +m_{17}+m_{12}+m_{6}+m_{15}+m_{19}+m_{29}+m_{26}+m_{27} ; \\
& c_{6}=m_{22}+m_{24}+m_{30}+m_{23}+m_{13}+m_{20}+m_{2}+m_{5}+m_{4}+m_{6} \\
& +m_{15}+m_{19}+m_{21}+m_{28}+m_{27} ; \\
& c_{7}=m_{24}+m_{1}+m_{16}+m_{7}+m_{8}+m_{12}+m_{6}+m_{15}+m_{19}+m_{21} \\
& +m_{28}+m_{29}+m_{26} ; \\
& c_{8}=m_{24}+m_{25}+m_{23}+m_{1}+m_{9}+m_{17}+m_{7}+m_{12}+m_{18}+m_{15} \\
& +m_{19}+m_{3}+m_{29}+m_{26}+m_{27} ; \\
& c_{9}=m_{22}+m_{24}+m_{30}+m_{25}+m_{1}+m_{16}+m_{9}+m_{7}+m_{18}+m_{15} \\
& +m_{11}+m_{29} ; \\
& c_{10}=m_{22}+m_{30}+m_{23}+m_{13}+m_{1}+m_{20}+m_{10}+m_{14}+m_{4}+m_{16} \\
& +m_{9}+m_{7}+m_{21}+m_{28}+m_{29}+m_{27} ; \\
& c_{11}=m_{24}+m_{25}+m_{23}+m_{1}+m_{10}+m_{2}+m_{5}+m_{4}+m_{16}+m_{9} \\
& +m_{7}+m_{18}+m_{6}+m_{3}+m_{21}+m_{28}+m_{29}+m_{26} ; \\
& c_{12}=m_{22}+m_{24}+m_{30}+m_{25}+m_{10}+m_{2}+m_{14}+m_{4}+m_{9}+m_{8} \\
& +m_{12}+m_{11}+m_{19}+m_{3}+m_{29}+m_{26}+m_{27} ; \\
& c_{13}=m_{22}+m_{24}+m_{30}+m_{23}+m_{13}+m_{1}+m_{20}+m_{2}+m_{5}+m_{4} \\
& +m_{16}+m_{17}+m_{12}+m_{18}+m_{15}+m_{11}+m_{21}+m_{28}+m_{27} ; \\
& c_{14}=m_{21}+m_{28}+m_{29}+m_{26} ; \\
& c_{15}=m_{29}+m_{26}+m_{27} ; \\
& c_{16}=m_{29} ;
\end{aligned}
$$

REFERENCES

[1] A. Karatsuba and Y. Ofman, "Multiplication of Multidigit Numbers on Automata," Soviet Physics-Doklady (English translation), vol. 7, no. 7, pp. 595-596, 1963.
[2] A. Lempel, G. Seroussi and S. Winograd, "On the Complexity of Multiplication in Finite Fields," Theoretical Computer Science, vol. 22, pp. 285-296, 1983
[3] A. Weimerskirch, and C. Paar, "Generalizations of the Karatsuba Algorithm for Efficient Implementations," http : //eprint.iacr.org/2006/224, 2003.
[4] P. L. Montgomery, "Five, Six, and Seven-Term Karatsuba-Like Formulae," IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, Mar. 2005.
[5] H. Fan and M. A. Hasan, "Comments on "Five, Six, and Seven-Term Karatsuba-Like Formulae"," IEEE Transactions on Computers, vol. 56, no. 5, pp. 716-717, May 2007.
[6] M. Cenk and F. Özbudak, "Improved Polynomial Multiplication Formulas over \mathbb{F}_{2} Using Chinese Remainder theorem," IEEE Transactions on Computers, vol. 58, no. 4, pp. 572-576, April 2009.
[7] I. Oseledets, "Optimal Karatsuba-like formulae for certain bilinear forms in $G F(2)$," Linear Algebra and its Applications, vol. 429 pp. 2052-2066, 2008.
[8] M. Cenk, Ç. K. Koç and F. Özbudak, "Polynomial Multiplication over Finite Fields using Field Extensions and Interpolation," Proc. 19th IEEE International Symposium on Computer Arithmetic, 2009.
[9] J. V. Z. Gathen and J. Gerhard, "Modern Computer Algebra," Cambridge Univ. Press, First ed., 1999, Second ed., 2003.
[10] P. L. Montgomery, "Modular multiplication without trial division," Mathematics of Computation, 44(170), pp. 519-521, 1985.
[11] T. M. Apostol, "Introduction to Analytic Number Theory," Springer, 1976.

[^0]: Haining Fan, Ming Gu, Jiaguang Sun and Kwok-Yan Lam are with the School of Software, Tsinghua University, Beijing, China. E-mails: $\{$ fhn, guming, sunjg, lamky $\}$ @tsinghua.edu.cn

