
Reducing Elliptic Curve Logarithm to

Logarithm in a Finite Field Fq for Some Orders ★

Wei Yu1, Kunpeng Wang2, Bao Li2

1. Department of Information Security, University of Science and Technology of
China, Hefei, 230026

2. State Key Laboratory of Information Security, Beijing, 100049, China

Abstract. We change elliptic curve discrete logarithm problem to dis-
crete logarithm problem of Fq using elliptic divisibility sequences. And
the method works for the situation #E(Fq) = q−1, q±√

q, q±
√
2q − 1, q±√

3q − 2, q +
√
4q − 3.
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1 Introduction

The discrete logarithm problem (DLP) in a finite field Fq can be stated
as follows: given a, b ∈ Fq, find an integer x such that b = ax. Since the
Index Calculus methods for computing logarithms in a finite field runs in
subexponential time. Hence, converting elliptic curve discrete logarithm
problem (ECDLP) to discrete logarithm problem DLP in Fq is effective.

Elliptic curve cryptography relies on the difficulty of solving the ellip-
tic curve discrete logarithm problem(ECDLP). ECDLP can be stated as
follows: an elliptic curve E over Fq,denoted E(Fq), P ∈ E(Fq),where P is
a point of order N on E(Fq), given Q = [k]P,Q ∈ E(Fq), find k.

The best known algorithms for solving ECDLP are Pollard’s � algo-
rithm [1] and its parallel variants [2]. They are generic algorithms, and
work in any finite group and run in O(logN) where N is the order of P .
P. Gaudry [3] solves ECDLP defined over small extension fields faster than
Pollard’s � algorithm. Index calculus methods can not be extended to el-
liptic curve groups [4–6]. Xedni algorithm [7–9] attempted to lift ECDLP
to ℚ, and [10] attempted to lift ECDLP to a local field. None of them
proved to be feasible. In all, the best attack on ECDLP takes exponential
time when elliptic curve E is general.
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Let r satisfy the following conditions: the order N divides qr−1 where
r is the smallest integer answering for the equation N ∣qr − 1. MOV[11]

attack using Weil pairing and FR[12] attack using Tate pairing give an
isomorphism between < P > and the �N (N tℎ roots of unity in Fqr).
These attacks reduce the ECDLP in E(Fq) to DLP over F∗

qr . If k is small,
then MOV attack and FR attack work efficiently.

N.Smart’s attack [13] can solve #E(Fq) = q which are anomalous
elliptic curves. R. Shipsey and C. Swart [14] use elliptic divisibility se-
quences to solve ECDLP in the case where #E(Fq) = q − 1. We gener-
alize the algorithm of [14]. We use elliptic divisibility sequences(EDS) to
convert ECDLP to DLP of Fq in cases where #E(Fq) = q− 1, q±√

q, q±√
2q − 1, q ± √

3q − 2, q +
√
4q − 3. That is to say, we change exponen-

tial time to subexponential time. The process is all elementary level and
without burden in theory.

The paper is organized as follows: In Section 2, we recall some basic
facts about EDS and introduce the properties of EDS. In Section 3, we
introduce the division polynomials of elliptic curves. In Section 4, we
introduce our algorithm. In Section 5, we point out the cases where we
can solve ECDLP to DLP of Fq. The cases are #E(Fq) = q−1, q±√

q, q±√
2q − 1, q ± √

3q − 2, q +
√
4q − 3. In Section 6, we give an example.

Finally, we point out some conclusions.

2 Elliptic Divisibility Sequences

Elliptic divisibility sequences(EDS) are described in detail in Morgan
Ward’s paper [15]. The properties of EDS can be found in his paper which
is published in the same year[16]. Elliptic curves sequences are the se-
quences satisfying the nonlinear recurrence relation

Wm+nWm−n =Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m. (1)

The EDS have the divisibility property that n∣m imply Wn∣Wm. If we let
m = n = 0, then W0 = 0, and if m = 1,m+ n = 0, then W 2

1 = 1.

Fibonacci sequence is the oldest example of a divisibility sequence,
and it satisfies the EDS equation (1).

Theorem 1 [17] Let Wn be an EDS, and p ∤ W2, p ∤ W3. Then there
exists a positive integer N satisfying

Wn ≡ 0( mod p) ⇔ n ≡ 0( mod N).
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Theorem 2 [14] Let Wn be an EDS, and p ∤ W2, p ∤ W3. and let p have
gap N in (Wn). Then there exist constants c and d such that d2 = cN

(modp), then for all s, t ∈ ℤ,

Wt+sN ≡ cstds
2

Wt(modp), (2)

with c ≡ WN−1

W
−1

W
−2

WN−2

(modp), d ≡
(

WN−1

W
−1

)2
W

−2

WN−2

(modp).

For more properties of EDS, please refer to [18–24].

3 Division polynomials of elliptic curves

Let E/Fq be an elliptic curve E defined over Fq, its Weierstrass equation
is

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3)

By Hasse’s Theorem, #E(Fq) = q + 1− t, where ∣t∣ ≤ 2
√
q.

Theorem 3 There exists a sequence of polynomials  n, n ∈ ℤ,such that
for every point (x, y) ∈ E and every integer m,

 m(x, y) = 0 ⇔ [m](x, y) = O,

and otherwise the x-coordinate of [m](x,y) is given by

x[mP ] = x−  m−1(x, y) m+1(x, y)

 m(x, y)2
.

Then  n are called the division polynomials of the curve E/Fq. If
P=(x,y), we denote  n(x, y) by  n(P ).

Theorem 4 Let b2 = a21 + 4a2,b4 = a1a3 + 2a4,b6 = a23 + 4a6,b8 =
a21a6− a1a3a4+4a2a6+ a2a6+ a2a

2
3− a24 be the quantities associated with

elliptic curve defined by equation (3). Then the division polynomials of
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E,  n satisfy

 0 = 0,

 1 = 1,

 2 = 2y + a1x+ a3,

 3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

 4 =
(

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2

+(b2b8 − b4b6)x+ b4b8 − b26
)

 2,

 2k+1 =  k+2 
3
k −  k−1 

3
k+1, k ≥ 2,

 2k =

(

 k+2 
2
k−1 −  k−2 

2
k+1

 2

)

 k, k ≥ 3,

 −n = − n.

(4)

 n satisfy a recursion easy to calculate for a given point. We can
evaluate  n(P ) in O(log n) operations.

Theorem 5 [25] Given an elliptic divisibility sequence W together with
a set of consecutive terms < Wk > and integer l, the term Wlk can be
found in logarithmic time.

Theorem 6 [14] If P ∈ E, then the division polynomials satisfy

 nk(P ) =  k(P )
n2

 n([k]P ),

for all n, k ∈ ℤ.

The theorem can be found in [14],which is proved by L.S. Charlap
and D.P. Robbins [26] using divisor theory. we can also find this theorem
in [27]’s Theorem 6 and can be obtained by a straightforward adaptation
of the main result in [23].

Theorem 7 The division polynomials satisfy

 m+n m−n =  m+1 m−1 
2
n −  n+1 n−1 

2
m, for all m, n ∈ ℤ.

Division polynomials of elliptic curves is an EDS, which is easily
checked. Look the equation (1), if m = k + 1, n = k, then we get the
equation calculating  2k+1, and if m = k + 1, n = k − 1, then we get the
equation calculating  2k.
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Theorem 8 [14] Elliptic curve E/Fq,and let P be a point of order N ⩾ 4,
there exist constants c, d ∈ Fq such that d2 = cN , and for all s, t ∈ ℤ,

 t+sN (P ) = cstds
2

 t(P ) in Fq.

Because  n(P ) = 0 if and only if [n]P = O. The zeros in the sequence
 n(P ) are regularly spaced distance N apart, where n ∈ Z. Then the
order of P corresponds to the gap in EDS.

4 The algorithm

By Hasse’s Theorem, the order of Elliptic curve E/Fq is #E(Fq) = q +
1 − t, wℎere − 2

√
q ≤ t ≤ 2

√
q. Let x = t − 1, then the order can be

represented as q − x,wℎere − 2
√
q − 1 ≤ x ≤ 2

√
q − 1. Let q − x = lN ,

N is the large prime factor of #E(Fq). At present, we start changing
ECDLP to DLP as follows:

By Thoerem 8,

 kq(P ) =  kx+klN(P ) = ck
2lxdk

2l2 kx(P ),

 (k+1)q(P ) =  (k+1)x+(k+1)lN (P ) = c(k+1)2lxd(k+1)2l2 (k+1)x(P ).

Thus, we get
 (k+1)q(P )

 kq(P )
= (clxdl

2

)2k+1 (k+1)x(P )

 kx(P )
, (5)

and because
 q(P ) =  x+lN (P ) = clxdl

2

 x(P ), (6)

then
 (k+1)q(P )

 kq(P )
=

(

 q(P )

 x(P )

)2k+1  (k+1)x(P )

 kx(P )
. (7)

By theorem 6,
 qk(P ) =  k(P )

q2 q([k]P ),

 q(k+1)(P ) =  (k+1)(P )
q2 q([k + 1]P ),

so
 (k+1)q(P )

 kq(P )
=

(

 (k+1)(P )

 k(P )

)q2

 q([k + 1]P )

 q([k]P )
, (8)

and also by theorem 6

 xk(P ) =  k(P )
x2

 x([k]P ),
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 x(k+1)(P ) =  (k+1)(P )
x2

 x([k + 1]P ),

there is
 (k+1)x(P )

 kx(P )
=

(

 (k+1)(P )

 k(P )

)x2

 x([k + 1]P )

 x([k]P )
. (9)

From equation (7,8,9), we get

(

 (k+1)(P )

 k(P )

)q2

 q([k + 1]P )

 q([k]P )
=

(

 q(P )

 x(P )

)2k+1( (k+1)(P )

 k(P )

)x2

 x([k + 1]P )

 x([k]P )
,

rearrange it as
(

 (k+1)(P )

 k(P )

)q2−x2

 q([k + 1]P )

 q([k]P )

 x([k]P )

 x([k + 1]P )
=

(

 q(P )

 x(P )

)2k+1

. (10)

Since Q = [k]P , we can write the equation (10) as

(

 q(P )

 x(P )

)2k+1

=

(

 (k+1)(P )

 k(P )

)q2−x2

 q(P +Q)

 q(Q)

 x(Q)

 x(P +Q)
,

rearrange it as
[

(

 q(P )

 x(P )

)2
]k

=

(

 (k+1)(P )

 k(P )

)q2−x2

 q(P +Q)

 q(Q)

 x(Q)

 x(P +Q)

 x(P )

 q(P )
.

(11)
Since F ∗

q has q − 1 elements, if (q − 1)∣(q2 − x2), then we have

(

 (k+1)(P )

 k(P )

)q2−x2

= 1,

so
[

(

 q(P )

 x(P )

)2
]k

=
 q(P +Q)

 q(Q)

 x(Q)

 x(P +Q)

 x(P )

 q(P )
. (12)

Since we can compute  q(P ),  x(P ),  q(Q),  x(Q),  q(P +Q),  x(P +Q)
in logarithmic time(Theorem 5), we successfully change ECDLP to DLP
in Fq. Then we discuss when (q − 1) divides (q2 − x2).

From theorem 8 then we get
(

 q(P )

 x(P )

)2

= c2lxd2l
2

= c2lxcl
2N = c2lx+l(q−x) = cl(q+x) = cl(x+1) = clt.

(13)
Thus, from equation (13), if lt ≡ 0(modq − 1), then the algorithm

fails.
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5 When the algorithm works

When (q − 1) divides (q2 − x2), where −2
√
q − 1 ≤ x ≤ 2

√
q − 1, we can

get (q2 − x2) = q(q − 1) + y(q − 1), then x2 = y + (1− y)q. We consider
the different values of y.

case 1: y = 1,=⇒ x2 = 1,=⇒ x = ±1. In this case, #E(Fq) = q ± 1.
when #E(Fq) = q − 1,[11, 12, 14] all can convert ECDLP to DLP in
Fq.when #E(Fq) = q + 1,[11, 12] can convert ECDLP to DLP in Fq2 .
in this case, t=0,then our algorithms fail.

case 2: y = 0,=⇒ x2 = q,=⇒ x = ±√
q. In this case, #E(Fq) = q±√

q =√
q(
√
q±1), which is not security curve. We change these cases to DLP

in Fq.
case 3: y = −1,=⇒ x2 = 2q − 1,=⇒ x = ±√

2q − 1. In this case,
#E(Fq) = q ±√

2q − 1, which is not security curve. We change these
cases to DLP in Fq.

case 4: y = −2,=⇒ x2 = 3q − 2,=⇒ x = ±√
3q − 2. In this case,

#E(Fq) = q ± √
3q − 2, which is security curve. We change these

cases to DLP in Fq.
case 5: y = −3,=⇒ x2 = 4q − 3,=⇒ x = −√

4q − 3. In this case,
#E(Fq) = q +

√
4q − 3, which is security curve. We change these

cases to DLP in Fq.

If y > 1, then x2 < 0 which is not possible. And if y ⩽ −4, then x can’t
satisfy −2

√
q − 1 ≤ x ≤ 2

√
q − 1.

When (q−1)∣(q2−x2), we get equation (12). We compute  q(P ),  x(P ),
 q(Q),  x(Q),  q(P +Q),  x(P +Q) in logarithmic time(Theorem 5).

When #E(Fq) =

⎧













⎨













⎩

q − 1

q ±√
q

q ±√
2q − 1

q ±√
3q − 2

q +
√
4q − 3

, we change ECDLP to DLP in

logarithmic time.

6 Example

An example of the order #E(Fq) = q − 1 can be found in [14]. Let us
consider #E(F457) = q − x = 494, where q = 45, x = −37, t = −36. Its
weierstrass equation is

y2 = x3 + x+ 94, q = 457. (14)
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Let P = (4, 194), the order of P is 19.

[1]P = (4, 194), [2]P = (452, 197), [3]P = (255, 42), [4]P = (173, 54),
[5]P = (314, 125), [6]P = (376, 163), [7]P = (150, 199), [8]P = (115, 62),
[9]P = (284, 386), [10]P = (284, 71), [11]P = (115, 395), [12]P = (150,
258), [13]P = (376, 294), [14]P = (314, 332), [15]P = (173, 403), [16]P =
(255, 415), [17]P = (452, 260), [18]P = (4, 263), [19]P = O.

If Q = (150, 258), then P +Q = (376, 294).

According to Theorem 4,

 (P ) mod 457 = 0, 1, 388, 348, 407, 304, 84, 193, 32, 389, 213, 250,
443, 412, 77, 222, 69, 169, 427, 0, 11 . . .

 (Q) mod 457 = 0, 1, 59, 366, 129, 208, 6, 163, 139, 453, 454, 280,
331, 385, 424, 160, 351, 431, 175, 0, 357 . . .

 (P + Q) mod 457 = 0, 1, 131, 284, 207, 327, 88, 126, 250, 80, 447,
37, 384, 113, 191, 226, 142, 76, 336, 0, 423. . .

Using algorithm of [25] compute  −x(P ) =50,  q(P ) =200,  −x(Q) =
110,  q(P ) =407,  −x(P +Q) =17,  q(P ) =256. Then

(

 q(P )

 x(P )

)2

= 16, (15)

 q(P +Q)

 q(Q)

 x(Q)

 x(P +Q)

 x(P )

 q(P )
= 347. (16)

and by equation (12), we get 16k = 347mod457. At last, compute k = 12
using Index Calculus method.

7 Conclusion

We have successfully reduced ECDLP of the order in cases where #E(Fq)
= q − 1, q ±√

q, q ±√
2q − 1, q ±√

3q − 2, q −√
4q − 3 to DLP based on

the principle of EDS. In fact, our algorithm can do something more. The
algorithm can solve N ∣q2 − x2, where q − 1∣q2 − x2.
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