
Communication Efficient Perfectly Secure VSS

and MPC in Asynchronous Networks with
Optimal Resilience

Arpita Patra ⋆, Ashish Choudhary ⋆⋆, and C. Pandu Rangan⋆ ⋆ ⋆

Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpitapatra10@gmail.com, partho 31@yahoo.co.in, prangan55@gmail.com

Abstract. Verifiable Secret Sharing (VSS) is a fundamental primitive
used in many distributed cryptographic tasks, such as Multiparty Com-
putation (MPC) and Byzantine Agreement (BA). It is a two phase (shar-
ing, reconstruction) protocol. The VSS and MPC protocols are carried
out among n parties, where t out of n parties can be under the influence
of a Byzantine (active) adversary, having unbounded computing power.
It is well known that protocols for perfectly secure VSS and perfectly se-
cure MPC exist in an asynchronous network iff n ≥ 4t+1. Hence, we call
any perfectly secure VSS (MPC) protocol designed over an asynchronous
network with n = 4t + 1 as optimally resilient VSS (MPC) protocol.

A secret is d-shared among the parties if there exists a random degree-
d polynomial whose constant term is the secret and each honest party
possesses a distinct point on the degree-d polynomial. Typically VSS is
used as a primary tool to generate t-sharing of secret(s). In this paper, we
present an optimally resilient, perfectly secure Asynchronous VSS (AVSS)
protocol that can generate d-sharing of secret for any d, where t ≤ d ≤ 2t.
This is the first optimally resilient, perfectly secure AVSS of its kind in
the literature. Specifically, our AVSS can generate d-sharing of ℓ ≥ 1
secrets from F concurrently, with a communication cost of O(ℓn2 log |F|)
bits, where F is a finite field. Communication complexity wise, the best
known optimally resilient, perfectly secure AVSS is reported in [2]. The
protocol of [2] can generate t-sharing of ℓ secrets concurrently, with the
same communication complexity as our AVSS. However, the AVSS of [2]
and [4] (the only known optimally resilient perfectly secure AVSS, other
than [2]) does not generate d-sharing, for any d > t.

Interpreting in a different way, we may also say that our AVSS shares
ℓ(d+1−t) secrets simultaneously with a communication cost of O(ℓn2 log |F|)
bits. Putting d = 2t (the maximum value of d), we notice that the amor-
tized cost of sharing a single secret using our AVSS is only O(n log |F|)
bits. This is a clear improvement over the AVSS of [2] whose amortized
cost of sharing a single secret is O(n2 log |F|) bits.

⋆ Financial Support from Microsoft Research India Acknowledged
⋆⋆ Financial Support from Infosys Technology India Acknowledged

⋆ ⋆ ⋆ Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

As an interesting application of our AVSS, we propose a new optimally re-
silient, perfectly secure Asynchronous Multiparty Computation (AMPC)
protocol that communicates O(n2 log |F|) bits per multiplication gate.
The best known optimally resilient perfectly secure AMPC is due to
[2], which communicates O(n3 log |F|) bits per multiplication gate. Thus
our AMPC improves the communication complexity of the best known
AMPC of [2] by a factor of Ω(n).

Keywords: Verifiable Secret Sharing, Multiparty Computation.

1 Introduction
VSS or MPC protocol is carried out among a set of n parties, sayP = {P1, . . . , Pn},
where every two parties are directly connected by a secure channel and t parties
can be under the influence of a computationally unbounded Byzantine (active)
adversary At. The adversary At completely dictates the parties under its control
and can force them to deviate from a protocol, in any arbitrary manner.

VSS: Any VSS scheme consists of two phases: (i) a sharing phase in which a
special party in P , called dealer (denoted as D), on having a secret s ∈ F (an
element from a finite field F), shares it among all the parties; (ii) a reconstruction
phase, in which the parties reconstruct the secret from their shares. Informally,
the goal of any VSS scheme is to allow D to share his secret s during the sharing
phase, among the parties in P in such a way that the shares would later allow for
a unique reconstruction of s in the reconstruction phase. Moreover, if D is hon-
est, then the secrecy of s from At should be preserved until the reconstruction
phase. VSS is one of the fundamental building blocks for many secure distributed
computing tasks, such as MPC, Byzantine Agreement (BA), etc. VSS has been
studied extensively over the past three decades in different settings and compu-
tational models (see [15, 5, 24, 14, 13, 18, 19] and their references).

MPC: MPC [26, 10, 5, 24] allows the parties in P to securely compute an agreed
function f , even in the presence of At. More specifically, assume that the agreed
function f can be expressed as f : F

n → F
n and party Pi has input xi ∈ F, where

F is a finite field and |F| ≥ n. At the end of the computation of f , each honest
Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior
of At (Correctness). Moreover, At should not get any information about the
input and output of the honest parties, other than what can be inferred from
the input and output of the corrupted parties (Secrecy). In any general MPC
protocol, the function f is specified by an arithmetic circuit over F, consisting
of input, linear (e.g. addition), multiplication, random and output gates. We
denote the number of gates of these types in the circuit by cI , cA, cM , cR and
cO respectively. Among all the different type of gates, evaluation of a multipli-
cation gate requires the most communication complexity. So the communication
complexity of any general MPC is usually given in terms of the communication
complexity per multiplication gate [3, 2, 1, 11, 17, 22].

The VSS and MPC problem has been studied extensively over synchronous
network, which assumes that there is a global clock and the delay of any message

in the network channel is bounded. However, VSS and MPC in asynchronous
network has got comparatively less attention, due to its inherent hardness. As
asynchronous networks model the real life networks like Internet more appropri-
ately than synchronous networks, the fundamental problems like VSS and MPC
are worthy of deep investigation over asynchronous networks.

1.1 Definitions

Asynchronous Networks: In an asynchronous network, the communication
channels have arbitrary, yet finite delay (i.e the messages are guaranteed to
reach eventually). To model this, At is given the power to schedule delivery of
all messages in the network. However, At can only schedule the messages com-
municated between honest parties, without having any access to them. Here the
inherent difficulty in designing a protocol comes from the fact that when a party
does not receive an expected message then he cannot decide whether the sender
is corrupted (and did not send the message at all) or the message is just delayed.
So a party can not wait to consider the values sent by all parties, as waiting for
them could turn out to be endless. Hence the values of up to t (potentially hon-
est) parties may have to be ignored. Due to this the protocols in asynchronous
network are generally involved in nature and require new set of primitives. For
comprehensive introduction to asynchronous protocols, see [8].

Asynchronous Verifiable Secret Sharing (AVSS) [4, 8]: Let (Sh, Rec) be a
pair of protocols in which a dealer D ∈ P shares a secret s from a finite field
F using Sh. We say that (Sh, Rec) is a t-resilient perfectly secure AVSS scheme
with n parties if the following hold for every possible At:

• Termination: (1) If D is honest then each honest party will eventually ter-
minate protocol Sh. (2) If some honest party has terminated protocol Sh, then
irrespective of the behavior of D, each honest party will eventually terminate
Sh. (3) If all the honest parties have terminated Sh and all the honest parties
invoke protocol Rec, then each honest party will eventually terminate Rec.

• Correctness: (1) If D is honest then each honest party upon completing pro-
tocol Rec, outputs the shared secret s. (2) If D is faulty and some honest party
has terminated Sh, then there exists a fixed s ∈ F, such that each honest party
upon completing Rec, will output s.

• Secrecy: If D is honest and no honest party has begun Rec, then At has no
information about s.

The above definition of AVSS can be extended for secret S containing multiple
elements (say ℓ with ℓ > 1) from F.

Asynchronous Multi Party Computation (AMPC) [8]: A perfectly secure
AMPC should satisfy the Correctness and Secrecy property of MPC. In ad-
dition, it should also satisfy Termination property, according to which, every
honest party should eventually terminate the protocol.

d-sharing and (t, 2t)-sharing [1, 3]: A value s ∈ F is d-shared among a set of

parties P ⊆ P with |P| ≥ d + 1 if there exists a degree-d polynomial f(x) with
f(0) = s such that each honest Pi ∈ P holds si = f(i). The vector of shares of
s belonging to the honest parties is called d-sharing of s and is denoted by [s]d.
A value s is said to be (t, 2t)-shared among the parties in P , denoted as [s](t,2t),
if s is simultaneously t-shared, as well as 2t-shared among the parties in P .

A-cast[9, 8]: It is an asynchronous broadcast primitive, which allows a special
party in P (called the sender) to distribute a message identically among the
parties in P . If sender is honest, then every honest party eventually terminates
A-cast with the sender’s message. For a corrupted sender, if some honest party
terminates with some message, then every other honest party will eventually ter-
minate with same message. A-cast is elegantly implemented in [7] with n = 3t+1,
which incurs a private communication of O(n2b) bits, for a b-bit message.

Agreement on Common Subset (ACS)[2, 6]: It is an asynchronous primi-
tive presented in [4, 6]. It is used to determine and output a common set, con-
taining at least n−t parties, who correctly shared their values. Each honest party
will eventually get a share, corresponding to each value, shared by the parties in
the common set. ACS requires private communication of O(poly(n) log |F|) bits.

1.2 Our Contributions and Comparison with Existing Results
Our Contribution: From [4, 8], perfectly secure AVSS and AMPC is possible
iff n ≥ 4t + 1. Hence, we call any perfectly secure AVSS (AMPC) protocol
with n = 4t + 1 as optimally resilient, perfectly secure AVSS (AMPC) protocol.
Typically, AVSS is used as a tool for generating t-sharing of secrets. In this paper,
we present a novel optimally resilient, perfectly secure AVSS protocol that can
generate d-sharing of ℓ secrets concurrently for any d, where t ≤ d ≤ 2t, with a
private communication of O(ℓn2 log(|F|)) bits and A-cast of O(n2 log(|F|)) bits.
Interpreting in a different way, we may also say that the amortized cost of sharing
a single secret using our AVSS is only O(n log |F|) bits (this will be discussed in
detail after the presentation of AVSS protocol in section 4).

To design our AVSS, we exploit several interesting properties of (n, t)-star (a
graph theoretic concept presented in section 4.4.2 of [8]) in conjunction with some
properties of bivariate polynomial with different degree in variable x and y. The
(n, t)-star was used to design a perfectly secure optimally resilient AVSS protocol
in [8] (the details of (n, t)-star is presented in Section 2 of current article). While
the properties of (n, t)-star that our AVSS explores were not required in the
AVSS of [8] (which generates only t-sharing of secrets), our AVSS uses them for
the first time for generating d-sharing of secrets, where t ≤ d ≤ 2t.

As an interesting application of our AVSS, we design a new optimally re-
silient, perfectly secure AMPC protocol that communicates O(n2 log |F|) bits
per multiplication gate. This solves an open problem posed in [22]. Using our
AVSS, we first design an efficient protocol that generates (t, 2t)-sharing of a se-
cret with a communication cost of O(n2 log |F|) bits. Then following the approach
of [11, 2], given (t, 2t)-sharing of a secret, a multiplication gate is evaluated by
communicating O(n2 log |F|) bits. This is how our AMPC attains quadratic com-
munication complexity per multiplication gate.

Comparison of Our AVSS with Existing AVSS Protocols: In Table 1, we
compare our AVSS with existing optimally resilient, perfectly secure AVSS proto-
cols. We emphasize that the AVSS protocols of [4, 2] does not generate d-sharing
for any d > t. When negligible error probability is allowed in Termination
and/or Correctness, we arrive at the notion of statistical AVSS. Statistical
AVSS is possible iff n ≥ 3t + 1 [9, 6]. To the best of our knowledge, the AVSS
protocols of [9, 6, 21, 20] are the only known optimally resilient statistical AVSS
(i.e., with n = 3t+1). As these protocols have comparatively high communication
complexity and are designed with n = 3t + 1 (with which perfectly secure AVSS
is impossible), we do not compare our AVSS with the statistical AVSS protocols
of [9, 6, 21, 20]. Recently in [22], a statistical AVSS with n = 4t+1 (i.e., with non-
optimal resilience) is reported. Clearly, our AVSS achieves stronger properties
than the AVSS of [22] (the AVSS of [22] involves a negligible error probability,
while our AVSS is perfect), though both of them generate d-sharing for any
t ≤ d ≤ 2t, with same communication complexity. For achieving perfectness, we
use techniques which are completely different from [22].

Reference # Secrets Shared Type of Sharing Generated Communication Complexity
In Bits (CCIB)

[4] 1 Only t-sharing Private–O(n3 log(|F|));
A-cast–O(n2 log(|F|))

[2] ℓ ≥ 1 Only t-sharing Private– O(ℓn2 log(|F|));
A-cast–O(n2 log(|F|))

This article ℓ ≥ 1 d-sharing, for any t ≤ d ≤ 2t Private– O(ℓn2 log(|F|));
A-cast–O(n2 log(|F|))

Table 1. Our AVSS vs with Existing Optimally Resilient Perfectly Secure AVSS

Comparison of Our AMPC with Existing AMPC Protocols: In Table 2,
we compare our AMPC protocol with the existing optimally resilient, perfectly
secure AMPC protocols in terms of communication complexity. We observe that
our AMPC gains by a factor of Ω(n) as compared to the best known perfectly
secure AMPC of [2]. If negligible error probability is allowed in Termination
and/or Correctness, we arrive at the notion of statistical AMPC. Statistical
AMPC is possible iff n ≥ 3t + 1 [6]. Optimally resilient statistical AMPC proto-
cols (i.e., with n = 3t + 1) are reported in [6, 20]. As these protocols have very
high communication complexity and are designed with n = 3t + 1 (with which
perfectly secure AMPC is impossible), we do not compare them with our AMPC
protocol. Statistical AMPC with n = 4t + 1 (i.e., with non-optimal resilience)
are reported in [25, 23, 22]. Among them, the AMPC reported in [22] is the
best, which communicates O(n2 log(|F|)) bits per multiplication gate. Though
the protocol of [22] attains the same communication complexity as our AMPC
protocol (per multiplication gate), our protocol is perfect in all respects, while
the protocol of [22] has error probability in both Termination and Correctness.

Reference CCIB / Multiplication Gate

[4, 8] O(n6 log(|F|))

[2] O(n3 log(|F|))

This Article O(n2 log(|F|))

Table 2. Comparison of Our
AMPC with Existing Opti-
mally Resilient Perfectly Secure
AMPC Protocols

AMPC under cryptographic assumptions is
possible iff n ≥ 3t+1 [16, 17]. The best known
AMPC under cryptographic assumptions is
due to [17], which communicates O(n2κ) bits

per multiplication gate, where κ is the secu-
rity parameter. Our AMPC protocol attains
the same communication complexity as the
AMPC of [17] in stronger security model (i.e
information theoretic security).

2 Finding (n, t)-star Structure in a Graph

We now describe an existing solution for a graph theoretic problem, called finding
(n, t)-star in an undirected graph G = (V, E). Our AVSS protocol exploits several
interesting properties of (n, t)-star.

Definition 1 ((n, t)-star[8, 4]:). Let G be an undirected graph with the n parties
in P as its vertex set. We say that a pair (C,D) of sets with C ⊆ D ⊆ P is an
(n, t)-star in G, if the following hold: (i) |C| ≥ n − 2t; (ii) |D| ≥ n − t; (iii) for
every Pj ∈ C and every Pk ∈ D the edge (Pj , Pk) exists in G.

Ben-Or et. al [4] have presented an elegant and efficient algorithm for finding
an (n, t)-star in a graph of n nodes, provided that the graph contains a clique of
size n − t. The algorithm, called Find-STAR outputs either an (n, t)-star or the
message star-Not-Found. Whenever the input graph contains a clique of size
n − t, Find-STAR always outputs an (n, t)-star in the graph.

Actually, algorithm Find-STAR takes the complementary graph G of G as
input and tries to find (n, t)-star in G where (n, t)-star is a pair (C,D) of sets with
C ⊆ D ⊆ P , satisfying the following conditions: (i) |C| ≥ n− 2t; (ii) |D| ≥ n− t;
(iii) there are no edges between the nodes in C and nodes in C ∪D in G. Clearly,
a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in G. Recasting the
task of Find-STAR in terms of complementary graph G, we say that Find-STAR
outputs either a (n, t)-star, or a message star-Not-Found. Whenever, the input
graph G contains an independent set of size n− t, Find-STAR always outputs an
(n, t)-star. For simple notation, we denote G by H . The algorithm Find-STAR is
presented in the following table and its properties in APPENDIX STAR.

Algorithm Find-STAR(H)

1. Find a maximum matching M in H . Let N be the set of matched nodes (namely,
the endpoints of the edges in M), and let N = P \N .

2. Compute output as follows (which could be either (n, t)-star or a message
star-Not-Found):
(a) Let T = {Pi ∈ N |∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is

called the set of triangle-heads.
(b) Let C = N \ T .
(c) Let B be the set of matched nodes that have neighbors in C. So B = {Pj ∈

N |∃Pi ∈ C s. t. (Pi, Pj) ∈ E}.
(d) Let D = P \ B. If |C| ≥ n − 2t and |D| ≥ n − t, output (C,D). Otherwise,

output star-Not-Found.

3 AVSS for Generating d-sharing of a Single Secret

We now present a novel AVSS protocol consisting of two sub-protocols, namely
AVSS-Share-SS and AVSS-Rec-SS. The AVSS-Share-SS allows a dealer D ∈ P
(dealer can be any party from P) to d-share a single secret from F, among the
parties in P , where t ≤ d ≤ 2t. Protocol AVSS-Rec-SS allows the parties in P
to reconstruct the secret, given its d-sharing. The structure of AVSS-Share-SS is
divided into a sequence of following three phases.

1. Distribution Phase: As the name suggests, in this phase, D on having a
secret s, distributes information to the parties in P .

2. Verification & Agreement on CORE Phase: Here parties jointly per-
form some computation and communication in order to verify consistency of
the information distributed by D in Distribution Phase. In case of suc-
cessful verification, all honest parties agree on a set of at least 3t + 1 parties
called CORE, satisfying certain property (mentioned in the sequel).

3. Generation of d-sharing Phase: If CORE is agreed upon in previous
phase, then here every party performs local computation on the data received
(during Verification & Agreement on CORE Phase) from the parties
in CORE to finally generate the d-sharing of secret s.

An honest party will terminate AVSS-Share-SS, if it successfully completes the
last phase, namely Generation of d-sharing Phase. If D is honest then each
honest party will eventually terminate the last phase. Moreover, if D is corrupted
and some honest party terminates the last phase, then each honest party will
also eventually terminate the last phase (and hence AVSS-Share-SS).

Remark 1. The sharing phase of statistical AVSS protocol of [22] is also struc-
tured into above three phases. However, our implementation of Verification &
Agreement on CORE Phase is completely different from [22]. More impor-
tantly, the last two phases in [22] involves a negligible error probability, whereas
our implementation of all the three phases are perfect (error free) in all respects.

3.1 Distribution Phase

Here D on having a secret s, selects a random bivariate polynomial F (x, y)
of degree-(d, t) (i.e., the degree of the polynomial in x is d and the degree of
the polynomial in y is t), such that F (0, 0) = s and sends fi(x) = F (x, i) and
pi(y) = F (i, y) to party Pi. As in [22], we will call the degree-d fi(x) polynomials
as row polynomials and degree-t pi(y) polynomials as column polynomials.

Protocol Distribution-SS(D,P, s, d)
Code for D:

1. Select a random bivariate polynomial F (x, y) of degree-(d, t) over F, such that
F (0, 0) = s. Send fi(x) = F (x, i) and pi(y) = F (i, y) to party Pi, for i = 1, . . . , n.

3.2 Verification & Agreement on CORE Phase

The goal of this phase is to check the existence of a set of parties called CORE.
If a CORE exists then every honest party will agree on CORE, where CORE

is defined as follows

Definition 2 (Property of CORE:). CORE is a set of at least 3t+1 parties
such that the row polynomials (received in Distribution Phase) of the honest
parties in CORE define a unique bivariate polynomial say, F (x, y) of degree-
(d, t). Moreover, if D is honest, then F (x, y) = F (x, y), where F (x, y) was chosen
by D in Distribution Phase.

The property of CORE ensures that for every j ∈ {1, . . . , n}, the jth point
on row polynomials of honest parties in CORE define degree-t column polyno-
mial pj(y) = F (j, y). So once CORE is constructed and agreed upon by each
honest party then pj(0) can be privately reconstructed by Pj with the help of
the parties in CORE by using online error correction (OEC) [8] 1. This will
generate d-sharing of s = F (0, 0), where s will be d-shared using degree-d poly-
nomial f0(x) = F (x, 0) and each (honest) Pj will have his share f0(j) = pj(0)
of s. Moreover, if D is honest, then s = s as F (x, y) = F (x, y). Note that even
though the degree of row polynomials is more than t (if d > t), we create a
situation where parties need not have to reconstruct them. To obtain the shares
corresponding to d-sharing of s, the parties need to reconstruct degree-t column
polynomials only. We now give an outline of this phase.

Outline of Current Phase: Here the parties upon receiving row and column
polynomials (from D), interact with each other to check the consistency of their
common values (on their polynomials). After successfully verifying the consis-
tency, parties A-cast OK signals. Using these signals, a graph with the parties as
vertex set is formed and applying Find-STAR on the graph, a sequence of distinct
(n, t)-stars are obtained. The reason for constructing a sequence of (n, t)-stars will
be clear in the sequel. Each (n, t)-star in such a graph defines a unique bivariate
polynomial of degree-(d, t).

For every generated (n, t)-star, D tries to find whether CORE can be gener-
ated from it. The generation process of CORE attempts to use several interesting
features of (n, t)-star (mainly its C component). We show that if D is honest and
C component of some (n, t)-star (C,D) contains at least 2t + 1 honest parties,
then CORE will be eventually generated from (C,D). Moreover, we also show
that if D is honest, then eventually some (n, t)-star (C,D) will be generated,
where C will contain at least 2t+1 honest parties (though the dealer D may not
know which (n, t)-star it is). These two important properties of (n, t)-star in our
context are the heart our AVSS protocol. Furthermore, we show that if CORE

is generated from some (n, t)-star (C,D) (irrespective of whether D is honest
or corrupted), then both CORE, as well as (C,D) define the same bivariate
polynomial of degree-(d, t).

1 OEC allows to reconstruct a degree-t polynomial by applying error correction in an
online fashion in asynchronous settings. For details see APPENDIX OEC.

The generation of many (n, t)-stars in our case is essential as the C component
of the first (n, t)-star may not contain at least 2t + 1 honest parties and hence
may never lead to CORE. This implies that if our protocol stops after generating
the first (n, t)-star then the protocol may not terminate even for an honest D.
However, we stress that existing AVSS of [4] need not generate a sequence of
(n, t)-stars because it has to generate only t-sharing. Hence the AVSS of [4]
stops after generating the first (n, t)-star and then using the D component of
the generated (n, t)-star, it could generate t-sharing of s. Finally, once CORE is
obtained, it is then verified and agreed among the set of all honest parties in P .
The steps of this phase are given in protocol Verification-SS.

Lemma 1. For any (n, t)-star (C,D) in graph Gk of honest Pk, the row polyno-
mials held by honest parties in C define a unique polynomial of degree-(d, t), say
F (x, y), such that column polynomial pj(y) held by every honest Pj ∈ D satisfies
pj(y) = F (j, y). Moreover, if D is honest, then F (x, y) = F (x, y).

Proof: For any (n, t)-star (C,D), |C| ≥ n − 2t and |D| ≥ n − t. So C and D
contain at least n − 3t ≥ t + 1 and n − 2t ≥ 2t + 1 honest parties, respectively.
Let l and m be the number of honest parties in C and D respectively where
l ≥ t + 1 and m ≥ 2t + 1. For convenience, we assume P1, . . . , Pl, respectively
P1, . . . , Pm are the set of honest parties in C and D. Now by the construction of
(n, t)-star, for every pair of honest parties (Pi, Pj) with Pi ∈ C and Pj ∈ D, the
row polynomial fi(x) of honest Pi and the column polynomial pj(y) of honest Pj

satisfy fi(j) = pj(i). We now prove that the above statement implies that there
exists a unique bivariate polynomial F (x, y) of degree-(d, t), such that for i =
1, . . . , l, we have F (x, i) = fi(x) and for j = 1, . . . , m, we have F (j, y) = pj(y).

Protocol Verification-SS(D,P, s, d)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive polynomials fi(x) of degree-d and pi(y) of degree-t from D. Upon
receiving, send fij = fi(j) and pij = pi(j) to party Pj , for j = 1, . . . , n.

2. Upon receiving fji and pji from Pj , check if fi(j)
?
= pji and pi(j)

?
= fji. If both

the equalities hold, A-cast OK(Pi, Pj).
3. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk) in

Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and (b) OK(Pj , Pk) from
the A-cast of Pj .

ii. Code for D: Only D executes this code.

1. For every new receipt of some OK(∗, ∗) update GD. If a new edge is added to GD,
then execute Find-STAR(GD). Let there are α ≥ 0 distinct (n, t)-stars that are
found in the past from different executions of Find-STAR(GD).
(a) Now if an (n, t)-star is found from the current execution of Find-STAR(GD)

that is distinct from all the α (n, t)-stars obtained before, do the following:
i. Call the new (n, t)-star as (Cα+1,Dα+1).
ii. Create a list Fα+1 as follows: Add Pj to Fα+1 if Pj has at least 2t + 1

neighbors in Cα+1 in GD.
iii. Create a list Eα+1 as follows: Add Pj to Eα+1 if Pj has at least d+ t+ 1

neighbors in Fα+1 in GD.
iv. For every γ, with γ = 1, . . . , α update Fγ and Eγ :

A. Add Pj to Fγ , if Pj 6∈ Fγ and Pj has at least 2t+ 1 neighbors in Cγ

in GD.
B. Add Pj to Eγ , if Pj 6∈ Eγ and Pj has at least d + t + 1 neighbors in

Fγ in GD.
(b) If no (n, t)-star is found or an (n, t)-star that has been already found in the

past is obtained, then execute step (a).iv(A-B) to update existing Fγ ’s and
Eγ ’s.

(c) Now let β be the first index among already generated {(E1,F1), . . . , (Eδ,Fδ)}
such that both Eβ and Fβ contains at least 3t + 1 parties (Note that if step
(a) is executed, then δ = α + 1; else δ = α). Assign CORE = Eβ and A-cast
((Cβ,Dβ), (Eβ,Fβ)).

iii. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive ((Cβ,Dβ), (Eβ,Fβ)) from the A-cast of D.
2. Wait until (Cβ,Dβ) becomes a valid (n, t)-star in Gi.
3. Wait until every party Pj ∈ Fβ has at least 2t+ 1 neighbors in Cα in Gi.
4. Wait until every party Pj ∈ Eβ has at least d+ t+ 1 neighbors in Fα in Gi.
5. Accept CORE = Eβ.

The proof is similar to the proof of Lemma 4.26 of [8]. Let V (k) denote
k × k Vandermonde matrix, where ith column is [i0, . . . , ik−1]T . Now consider
the polynomials f1(x), . . . , ft+1(x) and let E be the (t + 1) × (d + 1) matrix,
where Eij is the coefficient of xj in fi(x), for i = 1, . . . , t+1 and j = 0, . . . , d. So
for i = 1, . . . , t + 1 and j = 1, . . . , d + 1, the (i, j)th entry in E · V (d+1) is fi(j).

Let H = ((V (t+1))T)
−1

·E be a (t+1)×(d+1) matrix. Let for i = 0, . . . , d, the
(i+1)th column of H be [ri0, ri1, . . . , rit]

T . Now we define a bivariate polynomial

of degree-(d, t), say F (x, y) where F (x, y) =
∑i=d

i=0

∑j=t

j=0 rijx
iyj. Then from the

properties of bivariate polynomial of degree-(d, t), for i = 1, . . . , t + 1 and j =
1, . . . , d + 1, we have

F (j, i) = (V (t+1))T · H · V (d+1) = E · V (d+1) = fi(j) = pj(i)

This implies that for i = 1, . . . , t+1, the polynomials F (x, i) and fi(x) have same
value at d + 1 values of x. But since degree of F (x, i) and fi(x) is d, this implies
that F (x, i) = fi(x). Similarly, for j = 1, . . . , d + 1, we have F (j, y) = pj(y).

Next, we will show that for any t + 1 < i ≤ l, the polynomial fi(x) also lies
on F (x, y). In other words, F (x, i) = fi(x), for t+1 < i ≤ l. This is easy to show
because according to theorem statement, fi(j) = pj(i), for j = 1, . . . , d + 1 and
p1(i), . . . , pd+1(i) lie on F (x, i) and uniquely defines F (x, i). Since both fi(x)
and F (x, i) are of degree d, this implies that F (x, i) = fi(x), for t + 1 < i ≤ l.
Similarly, we can show that F (j, y) = pj(y), for d + 1 < j ≤ m.

It is very easy to see because if D is honest, then F (x, y) = F (x, y) holds. 2

Lemma 2. For an honest D, an (n, t)-star (Cβ,Dβ) with Cβ containing at least
2t + 1 honest parties will be generated eventually.

Proof: For an honest D, eventually the edges between each pair of honest
parties will vanish from the complementary graph GD. So the edges in GD

will be either (a) between an honest and a corrupted party OR (b) between a
corrupted and another corrupted party. Let β be the first index, such that (n, t)-
star (Cβ ,Dβ) is generated in GD, when GD contains edges of above two types
only. Now, by construction of Cβ (see Algorithm Find-STAR), it excludes the
parties in N (set of parties that are endpoints of the edges of maximum matching
M) and T (set of parties that are triangle-head). An honest Pi belonging to N

implies that (Pi, Pj) ∈ M for some Pj and hence Pj is corrupted (as the current
GD does not have edge between two honest parties). Similarly, an honest party
Pi belonging to T implies that there is some (Pj , Pk) ∈ M such that (Pi, Pj) and
(Pj , Pk) are edges in GD. This clearly implies that both Pj and Pk are surely
corrupted. So for every honest Pi outside Cβ, at least one (if Pi belongs to N ,
then one; if Pi belongs to T , then two) corrupted party also remains outside
Cβ. As there are at most t corrupted parties, Cβ may exclude at most t honest
parties. But still Cβ is bound to contain at least 2t + 1 honest parties.

We now show that the above event happens after finite number of steps. We
prove this by showing that an honest D may compute O(n2) distinct (n, t)-stars
in GD. This is because D applies Find-STAR on GD every time after an edge
is added to GD and there can be O(n2) edges in GD. Now (Cβ ,Dβ) with Cβ

containing at least 2t + 1 parties will be one among these O(n2) (n, t)-stars. 2

Lemma 3. In protocol Verification-SS, if D is honest, then eventually CORE

will be generated.

Proof: By Lemma 2, the honest D will eventually generate an (Cβ ,Dβ) in GD,
with Cβ containing at least 2t + 1 honest parties. Furthermore, if D is honest
then eventually there will be edges between every pair of honest parties in the
graph Gi of every honest Pi (including GD). Thus, as all honest parties in P
will have edges with the honest parties in Cβ, they will be eventually added to
Fβ . Similarly, as all honest parties in P will have edges with the honest parties
in Fβ, they will be eventually added to Eβ . Hence |Eβ | ≥ n− t and |Fβ | ≥ n− t

will be satisfied and CORE will be obtained by D. 2

Lemma 4. If an honest Pi has accepted CORE, then the row polynomials of
the honest parties in CORE define a unique bivariate polynomial of degree-(d, t).

Proof: If an honest Pi has accepted CORE, then he has received ((Cβ ,Dβ), (Eβ ,Fβ))
from the A-cast of D and checked their validity with respect to his own graph
Gi. By Lemma 1, the row polynomials of the honest parties in Cβ define a unique
bivariate polynomial of degree-(d, t), say F (x, y). So the row polynomial held by
an honest Pi ∈ C satisfies fi(x) = F (x, i). Now by the construction of Fβ, every
honest Pj ∈ Fβ has at least 2t+1 neighbors in Cβ which implies that fkj values
received from at least 2t + 1 parties in Cβ lie on column polynomial pj(y). This
clearly implies pj(y) = F (j, y), as t + 1 out of these 2t + 1 values are sent by
honest parties in C, who define F (j, y).

Similarly, by construction of Eβ , every honest Pj ∈ Eβ has at least d + t + 1
neighbors in Fβ which implies that pkj values received from at least d + t + 1
parties in Fβ lie on fj(x). This implies that fj(x) = F (x, j), as at least d + 1
out of these d+ t+1 values are sent by honest parties in Fβ , who define F (x, j).
Hence row polynomials of the honest parties in CORE define F (x, y). 2

3.3 Generation of d-sharing Phase

Assuming that the honest parties in P have agreed upon a CORE, proto-
col d-Share-Generation-SS generates d-sharing in the following way: From the
properties of CORE, the row polynomials of honest parties in CORE define a
unique bivariate polynomial say F (x, y) of degree-(d, t), such that each honest
party Pi in CORE possesses fi(x) = F (x, i). So the jth point on fi(x) poly-
nomials corresponding to all honest Pi’s in CORE, define degree-t polynomial
pj(y) = F (j, y). Furthermore, |CORE| ≥ 3t + 1. So the parties in CORE can
enable each Pj ∈ P to privately reconstruct pj(y) using OEC [8]. Once this
is done, every Pj can output pj(0) as the share of D’s committed secret. Since
f0(j) = pj(0), it follows that f0(0)(= F (0, 0)) will be d-shared using the degree-d
polynomial f0(x) = F (x, 0). Clearly if D is honest, D’s secret s will be d-shared
using polynomial f0(x) = F (x, 0), as F (x, y) = F (x, y) for honest D.

Lemma 5. Assume that every honest party has agreed on CORE where the row
polynomials of the honest parties in CORE define a unique bivariate polynomial
of degree-(d, t), say F (x, y). Then protocol d-Share-Generation-SS will generate
d-sharing of s = F (0, 0).

Proof: To achieve d-sharing of s using polynomial f0(x), party Pi should hold
f0(i) as ith share of s. Now f0(i) = pi(0) holds by the property of bivariate
polynomial. Also by property of CORE, the ith point on fj(x) polynomials,
corresponding to honest Pj ’s in CORE define degree-t polynomial pj(y). So Pi

can apply OEC on fji’s received from the parties in CORE (during Protocol
Verification-SS), reconstruct pj(y) and obtain pj(0) which is ith share of s. 2

Protocol d-Share-Generation-SS(D,P, s, d)

Code for Pi:

1. Apply On-line Error Correcting (OEC) technique [8] on fji’s received from every
Pj in CORE (during Protocol Verification-SS) and reconstruct degree-t polynomial
pi(y) and output si = pi(0) = f0(i) as the ith share of s and terminate. s is now
d-shared using polynomial f0(x).

3.4 Protocol AVSS-Share-SS and AVSS-Rec-SS

Protocol AVSS-Share-SS(D,P, s, d)

(a) D executes Distribution-SS(D,P , s, d);
(b) Each party Pi participates in Verification-SS(D,P , s, d);
(c) After agreeing on CORE, each party Pi participates in d-Share-Generation-

SS(D,P , s, d) and terminates AVSS-Share-SS after locally outputting the share
corresponding to D’s committed secret.

Protocol AVSS-Rec-SS(D,P, s, d)
Party Pi ∈ P sends si, the ith share of s to every Pj ∈ P . Party Pi applies OEC on
received sj ’s, reconstructs s and terminates AVSS-Rec-SS.

Theorem 1. Protocols (AVSS-Share-SS, AVSS-Rec-SS) constitute a valid per-
fectly secure AVSS scheme for sharing a single secret from F.

Proof: Termination: Part (1) of Termination says that if D is honest then
every honest party will terminate AVSS-Share-SS eventually. By Lemma 3, D

will eventually generate CORE and A-cast the corresponding information i.e.
((Cβ ,Dβ), (Eβ ,Fβ)). By the property of A-cast (and as graph Gi is constructed
on the basis of A-casted information) every honest party will receive, verify the
validity of D’s A-casted information with respect to his own graph Gi and agree
on the CORE. Now the proof for this part follows from Lemma 5.

Part (2) of Termination says that if an honest party terminated AVSS-
Share-SS, then every other honest party will terminate AVSS-Share-SS eventu-
ally. An honest Pi has terminated the protocol implies that he has agreed on
CORE. This means that Pi has received and verified the validity of D’s A-casted
information with respect to his own graph Gi. The same will happen eventually
for all other honest parties. Hence they will agree on CORE. Now the proof
follows from Lemma 5.

Part (3) of Termination follows from the correctness of OEC.

Correctness: If the honest parties terminate AVSS-Share-SS, then it implies
that s(= F (0, 0)) is properly d-shared among the parties in P (by Lemma 5),
where F (x, y) is the unique bivariate polynomial of degree-(d, t) defined by the
honest parties in CORE. Moreover if D is honest then F (x, y) = F (x, y) (follows
from Lemma 1 and Lemma 4) and hence s = s. Now the Correctness follows
from the correctness of OEC.

Secrecy: Let At controls P1, . . . , Pt. So At will know f1(x), . . . , ft(x) and p1(y), . . . ,
pt(y). Throughout the protocol, the parties exchange common values (on row and
column polynomials), which do not add any extra information to the view of At.
Now by the property of bivariate polynomial of degree-(d, t), d− t+1 coefficients
of f0(x) = F (x, 0) will remain secure, where F (x, y) is the polynomial used by
D to hide his secret s. So s = f0(0) = F (0, 0) will remain secure. 2

Theorem 2. AVSS-Share-SS privately communicates O(n2 log |F|) bits and A-
casts O(n2 log |F|) bits. Protocol AVSS-Rec-SS privately communicates O(n2 log |F|).

Proof: In Distribution-SS, D privately communicates O(n2 log |F|) bits. In Verification-
SS, the parties privately communicate O(n2 log |F|) bits. In addition, the par-
ties also A-cast OK(., .)s, which requires A-cast communication of O(n2 log |F|)
bits. Furthermore, A-casting ((Cβ ,Dβ), (Eβ ,Fβ))) by D requires A-casting of
O(n2 log |F|) bits. In d-Share-Generation-SS, no communication is performed. So
in total, AVSS-Share-SS requires private communication of O(n2 log |F|) bits and
A-cast of O(n2 log |F|) bits.

In AVSS-Rec-SS, the parties in P send their shares to every party in P . So
AVSS-Rec-SS requires O(n2 log |F|) bits of private communication. 2

4 AVSS for Generating d-sharing of Multiple Secrets
We now present an AVSS protocol consisting of two sub-protocols, namely
AVSS-Share-MS and AVSS-Rec-MS: AVSS-Share-MS allows a dealer D ∈ P to
d-share ℓ ≥ 1 secret(s) from F, denoted as S = (s1, . . . , sℓ), among the par-
ties in P , with t ≤ d ≤ 2t; AVSS-Rec-MS allows the parties to reconstruct
the secrets, given their d-sharing. Notice that we can generate d-sharing of S

by concurrently executing protocol AVSS-Share-SS (given in the previous sec-
tion) ℓ times, once for each si ∈ S. But this will require a private communi-
cation of O(ℓn2 log(F)) and A-cast of O(ℓn2 log(F)) bits. However, our protocol
AVSS-Share-MS requires a private communication of O(ℓn2 log |F|) and A-cast of
O(n2 log |F|) bits. Thus, the A-cast communication of our AVSS-Share-MS pro-
tocol is independent of ℓ. The idea behind protocol AVSS-Share-MS is same as
AVSS-Share-SS. Protocol AVSS-Share-MS is divided into a sequence of same three
phases, as in AVSS-Share-SS. We now present the corresponding protocols.

Protocol Distribution-MS(D,P, S = (s1, . . . , sℓ), d)
Code for D:

1. For l = 1, . . . , ℓ, select a random bivariate polynomials F l(x, y) of degree-(d, t),
such that F l(0, 0) = sl and send the row polynomial f l

i (x) = F l(x, i) and column
polynomial pl

i(y) = F l(i, y) to Pi.

Protocol Verification-MS(D,P, S = (s1, . . . , sℓ), d)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive f l
i (x) and pl

i(y) for all l = 1, . . . , ℓ, from D.

2. Upon receiving, check whether (i) f l
i (x) is a degree-d polynomial for all l = 1, . . . , ℓ;

and (ii) pl
i(y) is a degree-t polynomial for all l = 1, . . . , ℓ. If yes, then send f l

ij =

f l
i (j) and pl

ij = pl
i(j) for all l = 1, . . . , ℓ, to Pj .

3. Upon receiving f1
ji, . . . , f

ℓ
ji and p1

ji, . . . , p
ℓ
ji from Pj , check if f l

i (j)
?
= pl

ji and f l
ji

?
=

pl
i(j) for all l = 1, . . . , ℓ. If the equality holds, then confirm the consistency by

A-casting OK(Pi, Pj).
4. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk) in

Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and (b) OK(Pj , Pk) from
the A-cast of Pj .

ii. Code for D: (Only D executes this code): Same as in Protocol Verification-SS.

iii. Code for Pi: (Every party Pi ∈ P (including D) executes this code): Same as in
Protocol Verification-SS.

Protocol d-Share-Generation-MS(D,P, S = (s1, . . . , sℓ), d)

Code for Pi:

1. For l = 1, . . . , ℓ, apply On-line Error Correcting (OEC) technique on f l
ji’s received

from every Pj in CORE (during Protocol Verification-SS) and reconstruct degree-t

polynomial pl
i(y) and output sl

i = pl
i(0) = f l

0(i) as the ith share of sl and terminate.

sl is now d-shared using polynomial f l
0(x).

Protocol AVSS-Share-MS and AVSS-Rec-MS are now given in the following table.

Protocol AVSS-Share-MS(D,P, S = (s1, . . . , sℓ), d)

(a) D executes Distribution-MS(D,P , S = (s1, . . . , sℓ), d);
(b) Each party Pi participates in Verification-MS(D,P , S = (s1, . . . , sℓ), d);
(c) After agreeing on CORE, each party Pi participates in d-Share-Generation-

MS(D,P , S = (s1, . . . , sℓ), d) and terminates AVSS-Share-MS after locally out-
putting the shares corresponding to D’s committed secrets.

Protocol AVSS-Rec-MS(D,P, S = (s1, . . . , sℓ), d)

1. For l = 1, . . . , ℓ, each party Pi ∈ P privately sends the ith share of sl, namely sl
i,

to every party Pj ∈ P .
2. For l = 1, . . . , ℓ, party Pi ∈ P applies OEC on the received sl

j ’s to privately
reconstruct sl and terminate AVSS-Rec-MS.

Theorem 3. (AVSS-Share-MS, AVSS-Rec-MS) constitute a perfectly secure AVSS
scheme for sharing ℓ ≥ 1 secret(s) from F. AVSS-Share-MS privately communi-
cates O(ℓn2 log |F|) bits and A-casts O(n2 log |F|) bits. AVSS-Rec-MS privately
communicates O(ℓn2 log |F|) bits.

Proof: The proof that (AVSS-Share-MS, AVSS-Rec-MS) constitute an AVSS
scheme follows from Theorem 1. The communication complexity follows from
protocol steps and Theorem 2. 2

4.1 A Different Interpretation of AVSS-Share-MS

In AVSS-Share-MS, every secret sl for l = 1, . . . , ℓ is d-shared using degree-d
polynomial f l

0(x) = F l(x, 0). Now by the Secrecy proof of AVSS-Share-SS, given
in Theorem 1, we can claim that (d + 1)− t coefficients of f l

0(x) are information
theoretically secure for every l = 1, . . . , ℓ. This implies that AVSS-Share-MS
shares ℓ(d + 1 − t) secrets with a private communication of O(ℓn2 log |F|) bits
and A-cast O(n2 log |F|) bits. As the A-cast communication is independent of ℓ,
we may ignore it and conclude that the amortized cost of sharing a single secret
using AVSS-Share-MS is only O(n log |F|). This is because by setting d = 2t,
we see that AVSS-Share-MS can share ℓ(t + 1) = Θ(ℓn) secrets by privately
communicating O(ℓn2 log |F|) bits. Now putting it in other way, D can share
ℓ(t+1) secrets using AVSS-Share-MS by choosing a random polynomial f l

0(x) (of
degree d = 2t) with lower order t + 1 coefficients as secrets and then choosing
a random degree-(d, t) bivariate polynomial F l(x, y) with F l(x, 0) = f l

0(x) for
l = 1, . . . , ℓ and finally executing AVSS-Share-MS with F 1(x, y), . . . , F ℓ(x, y).

Through we do not elaborate, we now mention another application of AVSS-
Share-MS which uses the above interpretation (the details of the application
will appear in the full version). We can design an Asynchronous BA (ABA)
protocol with an amortized communication cost of O(n2 log |F|) bits for reaching
agreement on a single bit. To the best of our knowledge, there is only one ABA
with 4t + 1 due to [12] which requires very high communication complexity
(though polynomial in n).

Remark 2. The best known AVSS of [2] requires an amortized cost O(n2 log |F|)
bits for sharing a single secret. Hence AVSS-Share-MS shows a clear improvement
over the AVSS of [2].

5 Protocol for Generating (t, 2t)-sharing
We now present a protocol called (t,2t)-Share-MS that allows a dealer D ∈ P to
concurrently generate (t, 2t)-sharing of ℓ ≥ 1 secrets. We explain the idea of the
protocol for a single secret s. D invokes AVSS-Share-MS to t-share s. Let f(x) be
the degree-t polynomial using which s is t-shared. D also invokes AVSS-Share-MS
to (2t − 1)-share a random value r. Let g(x) be the degree-(2t − 1) polynomial
using which r is (2t − 1)-shared. It is easy to see that h(x) = f(x) + xg(x) will
be a degree-2t polynomial, such that h(0) = s. So if party Pi locally computes
h(i) = f(i) + i · g(i), then this will generate the 2t-sharing of s. Protocol (t,2t)-
Share-MS follows this principle for all the ℓ secrets concurrently.

Theorem 4. Protocol (t,2t)-Share-MS satisfies the following properties:

1. Termination: (a) If D is honest, then each honest Pi will terminate (t,2t)-
Share-MS. (b) If D is corrupted and some honest Pi terminates (t,2t)-Share-
MS, then all honest parties will also eventually terminate the protocol.

2. Correctness: If honest parties terminate (t,2t)-Share-MS, then there are ℓ

values, that are (t, 2t)-shared among the parties in P.
3. Secrecy: At will have no information about the secrets of an honest D.
4. Communication Complexity: The protocol privately communicates O(ℓn2

log |F|) bits and A-cast O(n2 log |F|) bits.

Proof: Follows from the properties of AVSS-Share-MS and protocol steps. 2

Protocol (t,2t)-Share-MS(D,P, S = (s1, . . . , sℓ))
Code for D:

1. Invoke AVSS-Share-MS(D,P , S = (s1, . . . , sℓ), t) and AVSS-Share-MS(D,P , R =
(r1, . . . , rℓ), 2t − 1), where the elements of R are random.

Code for Pi:

1. Participate in AVSS-Share-MS(D,P , S = (s1, . . . , sℓ), t) and AVSS-Share-
MS(D,P , R = (r1, . . . , rℓ), 2t − 1). Wait to terminate AVSS-Share-MS(D,P , S, t)
with ith shares of S = (s1, . . . , sℓ), say (ϕ1

i , . . . , ϕ
ℓ
i). Wait to terminate AVSS-Share-

MS(D,P , R, 2t− 1) with ith shares of R = (r1, . . . , rℓ), say (χ1
i , . . . , χ

ℓ
i).

2. For l = 1, . . . , ℓ, locally compute ψl
i = ϕl

i + i · χl
i, output ϕl

i and ψl
i as ith share of

s corresponding to t and 2t-sharing respectively and terminate (t,2t)-Share-MS.

Remark 3. In [2] the authors presented a perfectly secure protocol, that pri-
vately communicates O(ℓn3 log |F|) bits and A-casts O(n2 log |F|) bits to gen-
erate (t, 2t)-sharing of ℓ secrets (For complete details, see APPENDIX D).
Thus (t,2t)-Share-MS gains a factor of Ω(n) in communication complexity for
generating (t, 2t)-sharing. In fact, it is this gain of Ω(n), which helps our AMPC
protocol to gain Ω(n) in communication complexity, compared to the AMPC of
[2]. In [22], a protocol with same communication complexity as ours is given for
generating (t, 2t)-sharing. However, the protocol has negligible error probability
in correctness and termination.

6 AMPC Protocol Overview

Once we have an efficient protocol for generating (t, 2t)-sharing, our AMPC
protocol proceeds in the same way as that of [2, 22]. Specifically, our AMPC
protocol is a sequence of three phases: preparation, input and computation. In
the preparation phase, corresponding to each multiplication and random gate, a
(t, 2t)-sharing of random secret will be generated. In the input phase the parties
t-share their inputs and agree on a common set of at least n − t parties who
correctly t-shared their inputs. In the computation phase, based on the inputs of
the parties in this common set, the actual circuit will be computed gate by gate,
such that the output of the intermediate gates are always kept as secret and are
t-shared among the parties. We now elaborate on each of the three phases.

6.1 Preparation Phase

The goal of protocol PreparationPhase is to generate (t, 2t)-sharing of cM + cR

random secrets. For this, each individual party acts as a dealer and (t, 2t)-share

cM+cR

n−2t
random values. Then an instance of ACS protocol is executed to agree

on a common set C of n − t parties, who have correctly (t, 2t)-shared cM+cR

n−2t

values. Out of these n − t parties, at least n − 2t are honest, who have indeed
(t, 2t)-shared random values, which are unknown to At. So if we consider the
(t, 2t)-sharing done by the honest parties (each of them has done cM+cR

n−2t
(t, 2t)-

sharing) in common set C, then we will get cM+cR

n−2t
∗ (n− 2t) = cM + cR random

(t, 2t)-sharing. For this, we use Vandermonde Matrix [11] and its ability to ex-
tract randomness which has been exploited in [11, 2]. The same approach is also
used in the preparation phase of [22]. Hence, we present PreparationPhase in
APPENDIX B and state only the following lemma:

Lemma 6. Each honest party will eventually terminate PreparationPhase. The
protocol generates (t, 2t)-sharing of cM + cR secret random values, unknown to
At, by privately communicating O((cM+cR)n2 log |F|) bits, A-casting O(n3 log |F|)
bits and executing one instance of ACS.

6.2 Input Phase

In protocol InputPhase, each party acts as a dealer and t-share his input(s) by
executing an instance of AVSS-Share-MS. The parties then execute ACS to agree
on a common set C of n − t parties, whose instances of AVSS-Share-MS have
terminated. As the input(s) of the parties in C will be considered for computation
(of the circuit), each party considers the t-sharing of all the inputs shared by
parties, only in C. As the protocol is very straight forward, we present it in
APPENDIX B.

Lemma 7. Each honest party terminates InputPhase. The protocol generates t-
sharing of the inputs of the parties in C, such that At has no information about
the inputs of the honest parties in C, by privately communicating O(cIn

2 log |F|)
bits, A-casting O(n3 log |F|) bits and executing one ACS.

6.3 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated
gate by gate, where all inputs and intermediate values are t-shared among the
parties. As soon as a party holds his shares of the input values of a gate, he
joins the computation of the gate. Due to the linearity of the used t-sharing,
linear gates can be computed locally simply by applying the linear function
to the shares. With every random gate, one random (t, 2t)-sharing (from the
preparation phase) is associated, whose t-sharing is directly used as outcome
of the random gate. With every multiplication gate, one random (t, 2t)-sharing
(from the preparation phase) is associated, which is then used to compute t-
sharing of the product, following the technique of [11]: Let z = xy, where x, y

are the inputs of the multiplication gate, where x, y are t-shared, i.e. [x]t, [y]t.
Moreover, let [r](t,2t) be the (t, 2t)-sharing associated with the multiplication
gate, where r is a secret random value. For computing [z]t, the parties compute
[Λ]2t = [x]t.[y]t + [r]2t. Then Λ is privately reconstructed by every Pi ∈ P . Now

every party defines [Λ]t as the default sharing of Λ, e.g., the constant degree-0
polynomial Λ and computes [z]t = [Λ]t − [r]t. The secrecy of z follows from [11,
2]. The same approach is also used in the computation phase of AMPC protocol
of [2, 22]. We present the protocol in APPENDIX B and state the following
lemma:

Lemma 8. Each honest party will eventually terminate ComputationPhase. Given
(t, 2t)-sharing of cM + cR secret random values, the protocol correctly and se-
cretly computes the outputs of the circuit by privately communicating O((cMn2+
cOn) log |F|) bits.

6.4 Final AMPC Protocol

Now our new AMPC protocol called AMPC for evaluating function f is: (1).
Invoke PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 5. Protocol AMPC is an optimally resilient, perfectly secure AMPC
protocol that privately communicates O(((cI + cM + cR)n2 + cOn) log |F|) bits,
A-casts O(n3 log |F|) bits and requires 2 invocations to ACS. Each honest party
will eventually terminate AMPC.

7 Conclusion and Open Problems

We proposed a generic, perfectly secure, optimally resilient AVSS protocol, that
generates d-sharing of secrets with t ≤ d ≤ 2t. In order to design our AVSS,
we exploit: (i) several interesting properties of (n, t)-star that are explored for
the first time; (ii) some properties of bivariate polynomial with different degree
in x and y. Using our AVSS as a building block, we designed a perfectly se-
cure optimally resilient AMPC protocol that communicates O(n2 log |F|) bits
per multiplication gate, improving the best known perfectly secure optimally
resilient AMPC protocol of [2] by a factor of Ω(n). It would be interesting to
further reduce the communication complexity of AMPC protocol with 4t + 1.

References

1. Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dis-
pute control. In TCC, pages 305–328, 2006.

2. Z. Beerliová-Trub́ıniová and M. Hirt. Simple and efficient perfectly-secure asyn-
chronous MPC. In ASIACRYPT, pages 376–392, 2007.

3. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communi-
cation complexity. In TCC, pages 213–230, 2008.

4. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In
STOC, pages 52–61, 1993.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

6. M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience. In PODC, pages 183–192, 1994.

7. G. Bracha. An asynchronous ⌊(n− 1)/3⌋-resilient consensus protocol. In PODC,
pages 154 – 162, 1984.

8. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD
thesis, Weizmann Institute, Israel, 1995.

9. R. Canetti and T. Rabin. Fast asynchronous Byzantine Agreement with optimal
resilience. In STOC, pages 42–51, 1993.

10. D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty unconditionally secure proto-
cols (extended abstract). In STOC, pages 11–19, 1988.

11. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty
computation. In CRYPTO, pages 572–590, 2007.

12. P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine
Agreemet. In STOC, pages 639–648, 1988.

13. M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-
optimal and efficient verifiable secret sharing. In TCC, pages 329–342, 2006.

14. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of
verifiable secret sharing and secure multicast. In STOC, pages 580–589, 2001.

15. O. Golderich, S. Micali, and A. Wigderson. How to play a mental game– a com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

16. M. Hirt, J. B Nielsen, and B. Przydatek. Cryptographic asynchronous multi-party
computation with optimal resilience. In EUROCRYPT, pages 322–340, 2005.

17. M. Hirt, J. B Nielsen, and B. Przydatek. Asynchronous multi-party computation
with quadratic communication. In ICALP, pages 473–485, 2008.

18. J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in
point-to-point networks. In ICALP, pages 499–510, 2008.

19. A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The round complexity
of verifiable secret sharing revisited. In CRYPTO, pages 487–504, 2009.

20. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous multiparty
computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425,
2008.

21. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous Byzantine
Agreement with optimal resilience. In PODC, pages 92–101, 2009.

22. A. Patra, A. Choudhary, and C. Pandu Rangan. Unconditionally secure asyn-
chronous multiparty computation with quadratic communication per multiplica-
tion gate. Cryptology ePrint Archive, Report 2009/087, 2009.

23. B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in
unconditional multiparty computation. In SCN, pages 342–353, 2002.

24. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In STOC, pages 73–85, 1989.

25. K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty
distributed computation. In INDOCRYPT, pages 117–129, 2000.

26. A. C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

APPENDIX STAR: Properties of Algorithm Find-STAR

Lemma 9 ([8]). If Find-STAR outputs (C,D) on input graph H, then (C,D) is
a (n, t)-star in H.

Proof: Clearly, if Find-STAR outputs (C,D) then |C| ≥ n− 2t and |D| ≥ n− t,
and C ⊆ D. We now show that for every Pi ∈ C and every Pj ∈ D, the nodes Pi

and Pj are not neighbours in H .
On the contrary, assume that Pi ∈ C and Pj ∈ D, such that (Pi, Pj) is an

edge in H . As Pj ∈ D, we must have Pj 6∈ B. By the definition of B, we have
Pj 6∈ N (if Pi ∈ C and Pj ∈ N , then Pj ∈ B). Furthermore, Pi ∈ C ⊆ N . Thus,
both Pi and Pj are unmatched. Consequently, the edge (Pi, Pj) can be added to
the maximum matching to create a larger matching, which is a contradiction.2

Lemma 10 ([8]). Let H be a graph with P as its vertex set, containing an
independent set of size n− t. Then algorithm Find-STAR always outputs a (n, t)-
star, say (C,D), in H.

Proof: We show that if H contains an independent set of size n − t, then
Find-STAR can always find |C| and |D| to be large enough (i.e |C ≥ n − 2t| and
|D| ≥ n − t) to output a (n, t)-star (C,D).

We first show that |C| ≥ n − 2t. Let I ⊆ P be an independent set in H , and
let I = P \ I. Since the size of I is n − t, we have |I| ≤ t. Let F = I \ C. We
show that |F | ≤ |I|. Consequently, we have |C| ≥ |I| − |F | ≥ n − 2t. To prove
that |F | ≤ |I|, we show a one-to-one correspondence φ : F → I. Let Pi ∈ F .
Since Pi 6∈ C, we have either Pi ∈ N or Pi ∈ T .

Case I: Pi ∈ N . Then let φ(Pi) be the node matched to Pi in M . Clearly,
φ(Pi) ∈ I: otherwise, we had an edge (Pi, φ(Pi)) where both Pi and φ(Pi)
are in an independent set.

Case II: Pi ∈ T . By the definition of T , node Pi has two neighbours, Pj and
Pk, such that (Pj , Pk) ∈ M . Arbitrarily set φ(Pi) = Pj . Clearly, both Pj and
Pk are in I.

We now show that φ is one-to-one. Consider two distinct nodes, Pl and Pm from
F . We have three cases:

Case 1: Pl, Pm ∈ N . In this case, φ(Pl) 6= φ(Pm) since M is a matching.
Case 2: Pl ∈ N and Pm ∈ T . Since Pm ∈ T , there exists an edge between

Pm and the node matched to φ(Pm). Since, Pl ∈ N , the node matched to
φ(Pl) is Pl. Now assume that φ(Pl) = φ(Pm). Thus, (Pl, Pm) is an edge in
H , which is a contradiction, as Pl and Pm are in the independent set I.

Case 3: Pl, Pm ∈ T . Assume φ(Pl) = φ(Pm). Let Pa be the node matched
to φ(Pm) in M . Both Pl and Pm are neighbours of both φ(Pm) and Pa.
However, in this case the matching M is not maximum since, for instance,
M \ {(φ(Pm), Pa)} ∪ {(φ(Pm), Pl), (Pa, Pm)} is a larger matching.

Now, it remains to show that |D| ≥ n − t. Recall that D = P \ B. We show
that |B| ≤ |M |. Since H contains an independent set of size n − t, we have
|M | ≤ t. Thus, |D| = n − |B| ≥ n − |M | ≥ n − t. To prove |B| ≤ |M |, we
show that at most one of the endpoints of every edge (Pa, Pb) ∈ M is in B. On
the contrary let both Pa and Pb have neighbours in C, and let Pc, Pd ∈ C be
the neighbours of Pa and Pb, respectively. Surely, Pc 6= Pd (otherwise, Pc was
a triangle-head and we had Pc ∈ C). However, in this case M is not maximum,
since, M \ {(Pa, Pb)} ∪ {(Pa, Pc), (Pb, Pd)} is a certainly larger matching. 2

APPENDIX OEC: Online Error Correction

Let s be a secret which is d-shared among a set of parties P ⊆ P , by a degree-
d polynomial f(x), where d < (|P| − 2t). Let Pα ∈ P be a party, called as
receiver, who wants to privately reconstruct s. This is done as follows: every
party Pi ∈ P sends his share si of s to Pα. The shares may reach Pα in any
arbitrary order. Moreover, up to t of the shares may be incorrect or missing.
To reconstruct f(x), Pα applies OEC (Online Error Correcting) technique [4]
on the received si’s. Informally, OEC enables Pα to recognize when the received
shares define a unique degree-d interpolation polynomial. Specifically, Pα waits
to receive d + t + 1 shares from the parties in P, such that these d + t + 1
shares lie on a unique degree-d polynomial f(x). Once Pα receives these values,
he interpolates f(x), outputs s and terminates. For complete details, see [4, 8].

Theorem 6 ([8, 2]). Let s ∈ F be a secret, which is d-shared among a set of
parties P ⊆ P, with d < (|P| − 2t). Then using OEC, any party Pα ∈ P can
privately reconstruct s. Moreover, this will require a private communication of
O(n log |F|) bits.

APPENDIX D: Protocol of [2] for Generating
(t, 2t)-sharing

In [2], the authors have generated (t, 2t)-sharing of a single value, from t-sharing
of 3t + 1 random values. Briefly, the authors have done the following: Let
[r0]t, . . . , [r

3t]t be the t-sharing of 3t+1 random values. Let p(x) be the degree-t
polynomial defined by the t + 1 coefficients r0, . . . , rt. Let q(x) be the degree-2t

polynomial defined by the 2t+1 coefficients r0, rt+1 . . . , r3t. It is to be noted that
both p(x) and q(x) have common constant term (which is r0). Now the parties
jointly perform some computation such that every party Pi receives p(i) and
q(i) at the end. This ensures that r0 is (t, 2t)-shared among the parties. To gen-
erate t-sharing of 3t + 1 random values, the authors in [2] have used the AVSS
protocol of [2], which requires a total private communication of O(n3 log |F|)
bits and A-cast of O(n2 log(|F|)) bits. Thus the protocol of [2] requires a private
communication of O(n3 log |F|) bits and A-cast of O(n2 log(|F|)) bits to generate
(t, 2t) sharing of a single secret. By executing the above protocol concurrently
for ℓ times and by optimizing the A-cast, the authors could get a protocol, which
generates (t, 2t)-sharing of ℓ values by privately communicating O(ℓn3 log |F|)
bits and A-casting O(n2 log(|F|)) bits.

APPENDIX B: AMPC Protocol

Protocol PreparationPhase(P)

Secret Sharing: Code for Pi:

1. Select L = cM +cR

n−2t
random secret elements (s(i,1), . . . , s(i,L)) from F. As a dealer, in-

voke (t,2t)-Share-MS(Pi,P , S
i) to generate (t, 2t)-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in (t,2t)-Share-MS(Pj,P , S
j).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating (t,2t)-Share-MS(Pj,P , S
j),

include Pj in Ci.
2. Take part in ACS with the accumulative set Ci as input.

Generation of Random (t, 2t)-sharing: Code for Pi:

1. Wait until ACS completes with common set C containing n − t parties. Obtain
the ith shares ϕ

(j,1)
i , . . . , ϕ

(j,L)
i corresponding to t-sharing of Sj and ith shares

φ
(j,1)
i , . . . , φ

(j,L)
i corresponding to 2t-sharing of Sj for every Pj ∈ C. Without loss

of generality, let C = {P1, . . . , Pn−t}.
2. Let V denote a (n− t) × (n− 2t) publicly known Vandermonde Matrix over F.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .
(b) Locally compute ith shares corresponding to t-sharing of r(1,k), . . . , r(n−2t,k)

as (ς
(1,k)
i , . . . , ς

(n−2t,k)
i) = (ϕ

(1,k)
i , . . . , ϕ

(n−t,k)
i)V .

(c) Locally compute ith shares corresponding to 2t-sharing of r(1,k), . . . , r(n−2t,k)

as (σ
(1,k)
i , . . . , σ

(n−2t,k)
i) = (φ

(1,k)
i , . . . , φ

(n−t,k)
i)V and terminate Prepara-

tionPhase.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denote the cM + cR random se-
crets which are (t, 2t)-shared.

Protocol InputPhase(P)

Secret Sharing: Code for Pi

1. Having input Xi, invoke AVSS-Share-MS(Pi,P ,Xi, t), as a dealer, to generate
t-sharing of Xi.

2. For every j = 1, . . . , n, participate in AVSS-Share-MS(Pj,P ,Xj , t).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon terminating AVSS-Share-
MS(Pj ,P ,Xj , t), add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

Output Generation: Code for Pi:

1. Wait until ACS completes with output C containing n− t parties. Output the the
shares corresponding to t-sharing of the inputs of the parties in C and terminate
InputPhase.

Protocol ComputationPhase(P)

For every gate in the circuit: Code for Pi

Wait until ith share of each of the inputs of the gate is available. Now depending on
type of gate, proceed as follows:

1. Input Gate: [s]t = IGate([s]t): Simply output si, the ith share of s.
2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute and output zi =

LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .), where xi, yi, . . . denotes
ith share of x, y,

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, [r](t,2t)):
(a) Let [r](t,2t) be the random (t, 2t)-sharing associated with the multiplication

gate. Also let (ϕ1, . . . , ϕn) and (φ1, . . . , φn) denote the t-sharing and 2t-sharing
of r, respectively.

(b) Compute Λi = xi.yi − φi the ith share of Λ which is now 2t-shared.
(c) For j = 1, . . . , n, privately send Λi to party Pj . Apply OEC on received Λj ’s

to privately reconstruct Λ.
(d) Compute and output zi = Λ− ϕi, the ith share of z.

4. Random Gate: [R]t = RGate([r](t,2t)): Let [r](t,2t) be the random (t, 2t)-sharing
associated with the random gate. Also let (ϕ1, . . . , ϕn) denote the t-sharing of r.
Output Ri = ϕi as the ith share of R(= r).

5. Output Gate: x = OGate([x]t): If Pα is entitled to receive x then privately send
xi, the ith share of x to party Pα. If Pi is entitled to receive x then apply OEC on
received xj ’s and output x.

