Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience

Arpita Patra *, Ashish Choudhary **, and C. Pandu Rangan***
Dept of Computer Science and Engineering IIT Madras, Chennai India 600036
arpitapatra10@gmail.com, partho_31@yahoo.co.in, prangan55@gmail.com

Abstract

Verifiable Secret Sharing (VSS) is a fundamental primitive used in many distributed cryptographic tasks, such as Multiparty Computation (MPC) and Byzantine Agreement (BA). It is a two phase (sharing, reconstruction) protocol. The VSS and MPC protocols are carried out among n parties, where t out of n parties can be under the influence of a Byzantine (active) adversary, having unbounded computing power. It is well known that protocols for perfectly secure VSS and perfectly secure MPC exist in an asynchronous network iff $n \geq 4 t+1$. Hence, we call any perfectly secure VSS (MPC) protocol designed over an asynchronous network with $n=4 t+1$ as optimally resilient VSS (MPC) protocol. A secret is d-shared among the parties if there exists a random degreed polynomial whose constant term is the secret and each honest party possesses a distinct point on the degree- d polynomial. Typically VSS is used as a primary tool to generate t-sharing of secret(s). In this paper, we present an optimally resilient, perfectly secure Asynchronous VSS (AVSS) protocol that can generate d-sharing of secret for any d, where $t \leq d \leq 2 t$. This is the first optimally resilient, perfectly secure AVSS of its kind in the literature. Specifically, our AVSS can generate d-sharing of $\ell \geq 1$ secrets from \mathbb{F} concurrently, with a communication cost of $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ bits, where \mathbb{F} is a finite field. Communication complexity wise, the best known optimally resilient, perfectly secure AVSS is reported in [2]. The protocol of [2] can generate t-sharing of ℓ secrets concurrently, with the same communication complexity as our AVSS. However, the AVSS of [2] and [4] (the only known optimally resilient perfectly secure AVSS, other than [2]) does not generate d-sharing, for any $d>t$. Interpreting in a different way, we may also say that our AVSS shares $\ell(d+1-t)$ secrets simultaneously with a communication cost of $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ bits. Putting $d=2 t$ (the maximum value of d), we notice that the amortized cost of sharing a single secret using our AVSS is only $\mathcal{O}(n \log |\mathbb{F}|)$ bits. This is a clear improvement over the AVSS of [2] whose amortized cost of sharing a single secret is $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits.

[^0]
Abstract

As an interesting application of our AVSS, we propose a new optimally resilient, perfectly secure Asynchronous Multiparty Computation (AMPC) protocol that communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits per multiplication gate. The best known optimally resilient perfectly secure AMPC is due to [2], which communicates $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits per multiplication gate. Thus our AMPC improves the communication complexity of the best known AMPC of [2] by a factor of $\Omega(n)$.

Keywords: Verifiable Secret Sharing, Multiparty Computation.

1 Introduction

VSS or MPC protocol is carried out among a set of n parties, say $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, where every two parties are directly connected by a secure channel and t parties can be under the influence of a computationally unbounded Byzantine (active) adversary \mathcal{A}_{t}. The adversary \mathcal{A}_{t} completely dictates the parties under its control and can force them to deviate from a protocol, in any arbitrary manner.

VSS: Any VSS scheme consists of two phases: (i) a sharing phase in which a special party in \mathcal{P}, called dealer (denoted as D), on having a secret $s \in \mathbb{F}$ (an element from a finite field \mathbb{F}), shares it among all the parties; (ii) a reconstruction phase, in which the parties reconstruct the secret from their shares. Informally, the goal of any VSS scheme is to allow D to share his secret s during the sharing phase, among the parties in \mathcal{P} in such a way that the shares would later allow for a unique reconstruction of s in the reconstruction phase. Moreover, if D is honest, then the secrecy of s from \mathcal{A}_{t} should be preserved until the reconstruction phase. VSS is one of the fundamental building blocks for many secure distributed computing tasks, such as MPC, Byzantine Agreement (BA), etc. VSS has been studied extensively over the past three decades in different settings and computational models (see [$15,5,24,14,13,18,19]$ and their references).
MPC: MPC [26, 10, 5, 24] allows the parties in \mathcal{P} to securely compute an agreed function f, even in the presence of \mathcal{A}_{t}. More specifically, assume that the agreed function f can be expressed as $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ and party P_{i} has input $x_{i} \in \mathbb{F}$, where \mathbb{F} is a finite field and $|\mathbb{F}| \geq n$. At the end of the computation of f, each honest P_{i} gets $y_{i} \in \mathbb{F}$, where $\left(y_{1}, \ldots, y_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$, irrespective of the behavior of \mathcal{A}_{t} (Correctness). Moreover, \mathcal{A}_{t} should not get any information about the input and output of the honest parties, other than what can be inferred from the input and output of the corrupted parties (Secrecy). In any general MPC protocol, the function f is specified by an arithmetic circuit over \mathbb{F}, consisting of input, linear (e.g. addition), multiplication, random and output gates. We denote the number of gates of these types in the circuit by $c_{I}, c_{A}, c_{M}, c_{R}$ and c_{O} respectively. Among all the different type of gates, evaluation of a multiplication gate requires the most communication complexity. So the communication complexity of any general MPC is usually given in terms of the communication complexity per multiplication gate $[3,2,1,11,17,22]$.

The VSS and MPC problem has been studied extensively over synchronous network, which assumes that there is a global clock and the delay of any message
in the network channel is bounded. However, VSS and MPC in asynchronous network has got comparatively less attention, due to its inherent hardness. As asynchronous networks model the real life networks like Internet more appropriately than synchronous networks, the fundamental problems like VSS and MPC are worthy of deep investigation over asynchronous networks.

1.1 Definitions

Asynchronous Networks: In an asynchronous network, the communication channels have arbitrary, yet finite delay (i.e the messages are guaranteed to reach eventually). To model this, \mathcal{A}_{t} is given the power to schedule delivery of all messages in the network. However, \mathcal{A}_{t} can only schedule the messages communicated between honest parties, without having any access to them. Here the inherent difficulty in designing a protocol comes from the fact that when a party does not receive an expected message then he cannot decide whether the sender is corrupted (and did not send the message at all) or the message is just delayed. So a party can not wait to consider the values sent by all parties, as waiting for them could turn out to be endless. Hence the values of up to t (potentially honest) parties may have to be ignored. Due to this the protocols in asynchronous network are generally involved in nature and require new set of primitives. For comprehensive introduction to asynchronous protocols, see [8].

Asynchronous Verifiable Secret Sharing (AVSS) [4, 8]: Let (Sh, Rec) be a pair of protocols in which a dealer $D \in \mathcal{P}$ shares a secret s from a finite field \mathbb{F} using Sh. We say that (Sh, Rec) is a t-resilient perfectly secure AVSS scheme with n parties if the following hold for every possible \mathcal{A}_{t} :

- Termination: (1) If D is honest then each honest party will eventually terminate protocol Sh. (2) If some honest party has terminated protocol Sh, then irrespective of the behavior of D, each honest party will eventually terminate Sh. (3) If all the honest parties have terminated Sh and all the honest parties invoke protocol Rec, then each honest party will eventually terminate Rec.
- Correctness: (1) If D is honest then each honest party upon completing protocol Rec, outputs the shared secret s. (2) If D is faulty and some honest party has terminated Sh , then there exists a fixed $\bar{s} \in \mathbb{F}$, such that each honest party upon completing Rec, will output \bar{s}.
- Secrecy: If D is honest and no honest party has begun Rec, then \mathcal{A}_{t} has no information about s.
The above definition of AVSS can be extended for secret S containing multiple elements (say ℓ with $\ell>1$) from \mathbb{F}.

Asynchronous Multi Party Computation (AMPC) [8]: A perfectly secure AMPC should satisfy the Correctness and Secrecy property of MPC. In addition, it should also satisfy Termination property, according to which, every honest party should eventually terminate the protocol.
d-sharing and $(t, 2 t)$-sharing [1, 3]: A value $s \in \mathbb{F}$ is d-shared among a set of
parties $\overline{\mathcal{P}} \subseteq \mathcal{P}$ with $|\overline{\mathcal{P}}| \geq d+1$ if there exists a degree- d polynomial $f(x)$ with $f(0)=s$ such that each honest $P_{i} \in \overline{\mathcal{P}}$ holds $s_{i}=f(i)$. The vector of shares of s belonging to the honest parties is called d-sharing of s and is denoted by $[s]_{d}$. A value s is said to be $(t, 2 t)$-shared among the parties in \mathcal{P}, denoted as $[s]_{(t, 2 t)}$, if s is simultaneously t-shared, as well as $2 t$-shared among the parties in \mathcal{P}.

A-cast $[9,8]$: It is an asynchronous broadcast primitive, which allows a special party in \mathcal{P} (called the sender) to distribute a message identically among the parties in \mathcal{P}. If sender is honest, then every honest party eventually terminates A-cast with the sender's message. For a corrupted sender, if some honest party terminates with some message, then every other honest party will eventually terminate with same message. A-cast is elegantly implemented in [7] with $n=3 t+1$, which incurs a private communication of $\mathcal{O}\left(n^{2} b\right)$ bits, for a b-bit message.
$\underline{\text { Agreement on Common Subset (ACS) }[2,6]: \text { It is an asynchronous primi- }}$ tive presented in $[4,6]$. It is used to determine and output a common set, containing at least $n-t$ parties, who correctly shared their values. Each honest party will eventually get a share, corresponding to each value, shared by the parties in the common set. ACS requires private communication of $\mathcal{O}(\operatorname{poly}(n) \log |\mathbb{F}|)$ bits.

1.2 Our Contributions and Comparison with Existing Results

Our Contribution: From [4, 8], perfectly secure AVSS and AMPC is possible iff $n \geq 4 t+1$. Hence, we call any perfectly secure AVSS (AMPC) protocol with $n=4 t+1$ as optimally resilient, perfectly secure AVSS (AMPC) protocol. Typically, AVSS is used as a tool for generating t-sharing of secrets. In this paper, we present a novel optimally resilient, perfectly secure AVSS protocol that can generate d-sharing of ℓ secrets concurrently for any d, where $t \leq d \leq 2 t$, with a private communication of $\mathcal{O}\left(\ell n^{2} \log (|\mathbb{F}|)\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \log (|\mathbb{F}|)\right)$ bits. Interpreting in a different way, we may also say that the amortized cost of sharing a single secret using our AVSS is only $\mathcal{O}(n \log |\mathbb{F}|)$ bits (this will be discussed in detail after the presentation of AVSS protocol in section 4).

To design our AVSS, we exploit several interesting properties of (n, t)-star (a graph theoretic concept presented in section 4.4 .2 of [8]) in conjunction with some properties of bivariate polynomial with different degree in variable x and y. The (n, t)-star was used to design a perfectly secure optimally resilient AVSS protocol in [8] (the details of (n, t)-star is presented in Section 2 of current article). While the properties of (n, t)-star that our AVSS explores were not required in the AVSS of [8] (which generates only t-sharing of secrets), our AVSS uses them for the first time for generating d-sharing of secrets, where $t \leq d \leq 2 t$.

As an interesting application of our AVSS, we design a new optimally resilient, perfectly secure AMPC protocol that communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits per multiplication gate. This solves an open problem posed in [22]. Using our AVSS, we first design an efficient protocol that generates $(t, 2 t)$-sharing of a secret with a communication cost of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. Then following the approach of $[11,2]$, given $(t, 2 t)$-sharing of a secret, a multiplication gate is evaluated by communicating $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. This is how our AMPC attains quadratic communication complexity per multiplication gate.

Comparison of Our AVSS with Existing AVSS Protocols: In Table 1, we compare our AVSS with existing optimally resilient, perfectly secure AVSS protocols. We emphasize that the AVSS protocols of [4, 2] does not generate d-sharing for any $d>t$. When negligible error probability is allowed in Termination and/or Correctness, we arrive at the notion of statistical AVSS. Statistical AVSS is possible iff $n \geq 3 t+1[9,6]$. To the best of our knowledge, the AVSS protocols of $[9,6,21,20]$ are the only known optimally resilient statistical AVSS (i.e., with $n=3 t+1$). As these protocols have comparatively high communication complexity and are designed with $n=3 t+1$ (with which perfectly secure AVSS is impossible), we do not compare our AVSS with the statistical AVSS protocols of $[9,6,21,20]$. Recently in [22], a statistical AVSS with $n=4 t+1$ (i.e., with nonoptimal resilience) is reported. Clearly, our AVSS achieves stronger properties than the AVSS of [22] (the AVSS of [22] involves a negligible error probability, while our AVSS is perfect), though both of them generate d-sharing for any $t \leq d \leq 2 t$, with same communication complexity. For achieving perfectness, we use techniques which are completely different from [22].

Reference	\# Secrets Shared	Type of Sharing Generated	Communication Complexity In Bits (CCIB)
$[4]$	1	Only t-sharing	Private- $\mathcal{O}\left(n^{3} \log (\|\mathbb{F}\|)\right) ;$ A-cast- $\mathcal{O}\left(n^{2} \log (\|\mathbb{F}\|)\right)$
$[2]$	$\ell \geq 1$	Only t-sharing	Private- $\mathcal{O}\left(\ell n^{2} \log (\|\mathbb{F}\|)\right) ;$ A-cast- $\mathcal{O}\left(n^{2} \log (\|\mathbb{F}\|)\right)$
This article	$\ell \geq 1$	d-sharing, for any $t \leq d \leq 2 t$	Private- $\mathcal{O}\left(\ell n^{2} \log (\|\mathbb{F}\|)\right) ;$ A-cast- $\mathcal{O}\left(n^{2} \log (\|\mathbb{F}\|)\right)$

Table 1. Our AVSS vs with Existing Optimally Resilient Perfectly Secure AVSS
Comparison of Our AMPC with Existing AMPC Protocols: In Table 2, we compare our AMPC protocol with the existing optimally resilient, perfectly secure AMPC protocols in terms of communication complexity. We observe that our AMPC gains by a factor of $\Omega(n)$ as compared to the best known perfectly secure AMPC of [2]. If negligible error probability is allowed in Termination and/or Correctness, we arrive at the notion of statistical AMPC. Statistical AMPC is possible iff $n \geq 3 t+1$ [6]. Optimally resilient statistical AMPC protocols (i.e., with $n=3 t+1$) are reported in $[6,20]$. As these protocols have very high communication complexity and are designed with $n=3 t+1$ (with which perfectly secure AMPC is impossible), we do not compare them with our AMPC protocol. Statistical AMPC with $n=4 t+1$ (i.e., with non-optimal resilience) are reported in $[25,23,22]$. Among them, the AMPC reported in [22] is the best, which communicates $\mathcal{O}\left(n^{2} \log (|\mathbb{F}|)\right)$ bits per multiplication gate. Though the protocol of [22] attains the same communication complexity as our AMPC protocol (per multiplication gate), our protocol is perfect in all respects, while the protocol of [22] has error probability in both Termination and Correctness. AMPC under cryptographic assumptions is possible iff $n \geq 3 t+1[16,17]$. The best known AMPC under cryptographic assumptions is due to [17], which communicates $\mathcal{O}\left(n^{2} \kappa\right)$ bits

Reference	CCIB / Multiplication Gate
$[4,8]$	$\mathcal{O}\left(n^{6} \log (\|\mathbb{F}\|)\right)$
$[2]$	$\mathcal{O}\left(n^{3} \log (\|\mathbb{F}\|)\right)$
This Article	$\mathcal{O}\left(n^{2} \log (\|\mathbb{F}\|)\right)$

Table 2. Comparison of Our AMPC with Existing Optimally Resilient Perfectly Secure AMPC Protocols
per multiplication gate, where κ is the security parameter. Our AMPC protocol attains the same communication complexity as the AMPC of [17] in stronger security model (i.e information theoretic security).

2 Finding (n, t)-star Structure in a Graph

We now describe an existing solution for a graph theoretic problem, called finding (n, t)-star in an undirected graph $G=(V, E)$. Our AVSS protocol exploits several interesting properties of (n, t)-star.

Definition 1 ((n, t)-star [8, 4]:). Let G be an undirected graph with the n parties in \mathcal{P} as its vertex set. We say that a pair $(\mathcal{C}, \mathcal{D})$ of sets with $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{P}$ is an (n, t)-star in G, if the following hold: (i) $|\mathcal{C}| \geq n-2 t$; (ii) $|\mathcal{D}| \geq n-t$; (iii) for every $P_{j} \in \mathcal{C}$ and every $P_{k} \in \mathcal{D}$ the edge $\left(P_{j}, P_{k}\right)$ exists in G.

Ben-Or et. al [4] have presented an elegant and efficient algorithm for finding an (n, t)-star in a graph of n nodes, provided that the graph contains a clique of size $n-t$. The algorithm, called Find-STAR outputs either an (n, t)-star or the message star-Not-Found. Whenever the input graph contains a clique of size $n-t$, Find-STAR always outputs an (n, t)-star in the graph.

Actually, algorithm Find-STAR takes the complementary graph \bar{G} of G as input and tries to find (n, t)-star in \bar{G} where (n, t)-star is a pair $(\mathcal{C}, \mathcal{D})$ of sets with $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{P}$, satisfying the following conditions: (i) $|\mathcal{C}| \geq n-2 t$; (ii) $|\mathcal{D}| \geq n-t$; (iii) there are no edges between the nodes in \mathcal{C} and nodes in $\mathcal{C} \cup \mathcal{D}$ in \bar{G}. Clearly, a pair $(\mathcal{C}, \mathcal{D})$ representing an (n, t)-star in \bar{G}, is an (n, t)-star in G. Recasting the task of Find-STAR in terms of complementary graph \bar{G}, we say that Find-STAR outputs either a (n, t)-star, or a message star-Not-Found. Whenever, the input graph \bar{G} contains an independent set of size $n-t$, Find-STAR always outputs an (n, t)-star. For simple notation, we denote \bar{G} by H. The algorithm Find-STAR is presented in the following table and its properties in APPENDIX STAR.

Algorithm Find-STAR(H)

1. Find a maximum matching M in H. Let N be the set of matched nodes (namely, the endpoints of the edges in M), and let $\bar{N}=\mathcal{P} \backslash N$.
2. Compute output as follows (which could be either $(n, t)-\overline{\operatorname{star}}$ or a message star-Not-Found):
(a) Let $T=\left\{P_{i} \in \bar{N} \mid \exists P_{j}, P_{k}\right.$ s.t $\left(P_{j}, P_{k}\right) \in M$ and $\left.\left(P_{i}, P_{j}\right),\left(P_{i}, P_{k}\right) \in E\right\}$. T is called the set of triangle-heads.
(b) Let $\mathcal{C}=\bar{N} \backslash T$.
(c) Let B be the set of matched nodes that have neighbors in \mathcal{C}. So $B=\left\{P_{j} \in\right.$ $N \mid \exists P_{i} \in \mathcal{C}$ s. t. $\left.\left(P_{i}, P_{j}\right) \in E\right\}$.
(d) Let $\mathcal{D}=\mathcal{P} \backslash B$. If $|\mathcal{C}| \geq n-2 t$ and $|\mathcal{D}| \geq n-t$, output $(\mathcal{C}, \mathcal{D})$. Otherwise, output star-Not-Found.

3 AVSS for Generating d-sharing of a Single Secret

We now present a novel AVSS protocol consisting of two sub-protocols, namely AVSS-Share-SS and AVSS-Rec-SS. The AVSS-Share-SS allows a dealer $D \in \mathcal{P}$ (dealer can be any party from \mathcal{P}) to d-share a single secret from \mathbb{F}, among the parties in \mathcal{P}, where $t \leq d \leq 2 t$. Protocol AVSS-Rec-SS allows the parties in \mathcal{P} to reconstruct the secret, given its d-sharing. The structure of AVSS-Share-SS is divided into a sequence of following three phases.

1. Distribution Phase: As the name suggests, in this phase, D on having a secret s, distributes information to the parties in \mathcal{P}.
2. Verification \& Agreement on CORE Phase: Here parties jointly perform some computation and communication in order to verify consistency of the information distributed by D in Distribution Phase. In case of successful verification, all honest parties agree on a set of at least $3 t+1$ parties called $C O R E$, satisfying certain property (mentioned in the sequel).
3. Generation of d-sharing Phase: If $C O R E$ is agreed upon in previous phase, then here every party performs local computation on the data received (during Verification \& Agreement on CORE Phase) from the parties in $C O R E$ to finally generate the d-sharing of secret s.

An honest party will terminate AVSS-Share-SS, if it successfully completes the last phase, namely Generation of d-sharing Phase. If D is honest then each honest party will eventually terminate the last phase. Moreover, if D is corrupted and some honest party terminates the last phase, then each honest party will also eventually terminate the last phase (and hence AVSS-Share-SS).

Remark 1. The sharing phase of statistical AVSS protocol of [22] is also structured into above three phases. However, our implementation of Verification \& Agreement on CORE Phase is completely different from [22]. More importantly, the last two phases in [22] involves a negligible error probability, whereas our implementation of all the three phases are perfect (error free) in all respects.

3.1 Distribution Phase

Here D on having a secret s, selects a random bivariate polynomial $F(x, y)$ of degree- (d, t) (i.e., the degree of the polynomial in x is d and the degree of the polynomial in y is t), such that $F(0,0)=s$ and sends $f_{i}(x)=F(x, i)$ and $p_{i}(y)=F(i, y)$ to party P_{i}. As in [22], we will call the degree- $d f_{i}(x)$ polynomials as row polynomials and degree- $t p_{i}(y)$ polynomials as column polynomials.

Protocol Distribution-SS(D, \mathcal{P}, s, d)

Code for D :

1. Select a random bivariate polynomial $F(x, y)$ of degree- (d, t) over \mathbb{F}, such that $F(0,0)=s$. Send $f_{i}(x)=F(x, i)$ and $p_{i}(y)=F(i, y)$ to party P_{i}, for $i=1, \ldots, n$.

3.2 Verification \& Agreement on CORE Phase

The goal of this phase is to check the existence of a set of parties called CORE. If a $C O R E$ exists then every honest party will agree on $C O R E$, where $C O R E$ is defined as follows

Definition 2 (Property of CORE:). CORE is a set of at least $3 t+1$ parties such that the row polynomials (received in Distribution Phase) of the honest parties in CORE define a unique bivariate polynomial say, $\bar{F}(x, y)$ of degree($d, t)$. Moreover, if D is honest, then $\bar{F}(x, y)=F(x, y)$, where $F(x, y)$ was chosen by D in Distribution Phase.

The property of $C O R E$ ensures that for every $j \in\{1, \ldots, n\}$, the $j^{\text {th }}$ point on row polynomials of honest parties in CORE define degree- t column polynomial $\overline{p_{j}}(y)=\bar{F}(j, y)$. So once $C O R E$ is constructed and agreed upon by each honest party then $\overline{p_{j}}(0)$ can be privately reconstructed by P_{j} with the help of the parties in CORE by using online error correction (OEC) [8] ${ }^{1}$. This will generate d-sharing of $\bar{s}=\bar{F}(0,0)$, where \bar{s} will be d-shared using degree- d polynomial $\overline{f_{0}}(x)=\bar{F}(x, 0)$ and each (honest) P_{j} will have his share $\overline{f_{0}}(j)=\overline{p_{j}}(0)$ of \bar{s}. Moreover, if D is honest, then $\bar{s}=s$ as $\bar{F}(x, y)=F(x, y)$. Note that even though the degree of row polynomials is more than t (if $d>t$), we create a situation where parties need not have to reconstruct them. To obtain the shares corresponding to d-sharing of s, the parties need to reconstruct degree- t column polynomials only. We now give an outline of this phase.

Outline of Current Phase: Here the parties upon receiving row and column polynomials (from D), interact with each other to check the consistency of their common values (on their polynomials). After successfully verifying the consistency, parties A-cast OK signals. Using these signals, a graph with the parties as vertex set is formed and applying Find-STAR on the graph, a sequence of distinct (n, t)-stars are obtained. The reason for constructing a sequence of (n, t)-stars will be clear in the sequel. Each (n, t)-star in such a graph defines a unique bivariate polynomial of degree- (d, t).

For every generated (n, t)-star, D tries to find whether $C O R E$ can be generated from it. The generation process of $C O R E$ attempts to use several interesting features of (n, t)-star (mainly its \mathcal{C} component). We show that if D is honest and \mathcal{C} component of some (n, t)-star $(\mathcal{C}, \mathcal{D})$ contains at least $2 t+1$ honest parties, then $C O R E$ will be eventually generated from $(\mathcal{C}, \mathcal{D})$. Moreover, we also show that if D is honest, then eventually some (n, t)-star $(\mathcal{C}, \mathcal{D})$ will be generated, where \mathcal{C} will contain at least $2 t+1$ honest parties (though the dealer D may not know which (n, t)-star it is). These two important properties of (n, t)-star in our context are the heart our AVSS protocol. Furthermore, we show that if CORE is generated from some (n, t)-star $(\mathcal{C}, \mathcal{D})$ (irrespective of whether D is honest or corrupted), then both $C O R E$, as well as $(\mathcal{C}, \mathcal{D})$ define the same bivariate polynomial of degree- (d, t).

[^1]The generation of many (n, t)-stars in our case is essential as the \mathcal{C} component of the first (n, t)-star may not contain at least $2 t+1$ honest parties and hence may never lead to CORE. This implies that if our protocol stops after generating the first (n, t)-star then the protocol may not terminate even for an honest D. However, we stress that existing AVSS of [4] need not generate a sequence of (n, t)-stars because it has to generate only t-sharing. Hence the AVSS of [4] stops after generating the first (n, t)-star and then using the \mathcal{D} component of the generated (n, t)-star, it could generate t-sharing of s. Finally, once $C O R E$ is obtained, it is then verified and agreed among the set of all honest parties in \mathcal{P}. The steps of this phase are given in protocol Verification-SS.

Lemma 1. For any (n, t)-star $(\mathcal{C}, \mathcal{D})$ in graph G_{k} of honest P_{k}, the row polyno\underline{m} mals held by honest parties in \mathcal{C} define a unique polynomial of degree- (d, t), say $\bar{F}(x, y)$, such that column polynomial $\overline{p_{j}}(y)$ held by every honest $P_{j} \in \mathcal{D}$ satisfies $\overline{p_{j}}(y)=\bar{F}(j, y)$. Moreover, if D is honest, then $\bar{F}(x, y)=F(x, y)$.

Proof: For any (n, t)-star $(\mathcal{C}, \mathcal{D}),|\mathcal{C}| \geq n-2 t$ and $|\mathcal{D}| \geq n-t$. So \mathcal{C} and \mathcal{D} contain at least $n-3 t \geq t+1$ and $n-2 t \geq 2 t+1$ honest parties, respectively. Let l and m be the number of honest parties in \mathcal{C} and \mathcal{D} respectively where $l \geq t+1$ and $m \geq 2 t+1$. For convenience, we assume P_{1}, \ldots, P_{l}, respectively P_{1}, \ldots, P_{m} are the set of honest parties in \mathcal{C} and \mathcal{D}. Now by the construction of (n, t)-star, for every pair of honest parties $\left(P_{i}, P_{j}\right)$ with $P_{i} \in \mathcal{C}$ and $P_{j} \in \mathcal{D}$, the row polynomial $\overline{f_{i}}(x)$ of honest P_{i} and the column polynomial $\overline{p_{j}}(y)$ of honest P_{j} satisfy $\overline{f_{i}}(j)=\overline{p_{j}}(i)$. We now prove that the above statement implies that there exists a unique bivariate polynomial $\bar{F}(x, y)$ of degree- (d, t), such that for $i=$ $1, \ldots, l$, we have $\bar{F}(x, i)=\overline{f_{i}}(x)$ and for $j=1, \ldots, m$, we have $\bar{F}(j, y)=\overline{p_{j}}(y)$.

Protocol Verification-SS (D, \mathcal{P}, s, d)

i. Code for P_{i} : Every party $P_{i} \in \mathcal{P}$ (including D) executes this code.

1. Wait to receive polynomials $\overline{\bar{f}_{i}}(x)$ of degree- d and $\overline{p_{i}}(y)$ of degree- t from D. Upon receiving, send $\overline{f_{i j}}=\overline{f_{i}}(j)$ and $\overline{p_{i j}}=\overline{p_{i}}(j)$ to party P_{j}, for $j=1, \ldots, n$.
2. Upon receiving $\overline{f_{j i}}$ and $\overline{p_{j i}}$ from P_{j}, check if $\overline{f_{i}}(j) \stackrel{?}{=} \overline{p_{j i}}$ and $\overline{p_{i}}(j) \stackrel{?}{=} \overline{f_{j i}}$. If both the equalities hold, A-cast $\mathrm{OK}\left(P_{i}, P_{j}\right)$.
3. Construct an undirected graph G_{i} with \mathcal{P} as vertex set. Add an edge $\left(P_{j}, P_{k}\right)$ in G_{i} upon receiving (a) $\mathrm{OK}\left(P_{k}, P_{j}\right)$ from the A-cast of P_{k} and (b) $\mathrm{OK}\left(P_{j}, P_{k}\right)$ from the A-cast of P_{j}.
ii. Code for D : Only D executes this code.
4. For every new receipt of some $\mathrm{OK}(*, *)$ update G_{D}. If a new edge is added to G_{D}, then execute Find-STAR $\left(\overline{G_{D}}\right)$. Let there are $\alpha \geq 0$ distinct (n, t)-stars that are found in the past from different executions of Find- $\operatorname{STAR}\left(\overline{G_{D}}\right)$.
(a) Now if an (n, t)-star is found from the current execution of Find-STAR $\left(\overline{G_{D}}\right)$ that is distinct from all the $\alpha(n, t)$-stars obtained before, do the following:
i. Call the new (n, t)-star as $\left(\mathcal{C}^{\alpha+1}, \mathcal{D}^{\alpha+1}\right)$.
ii. Create a list $\mathcal{F}^{\alpha+1}$ as follows: Add P_{j} to $\mathcal{F}^{\alpha+1}$ if P_{j} has at least $2 t+1$ neighbors in $\mathcal{C}^{\alpha+1}$ in G_{D}.
iii. Create a list $\mathcal{E}^{\alpha+1}$ as follows: Add P_{j} to $\mathcal{E}^{\alpha+1}$ if P_{j} has at least $d+t+1$ neighbors in $\mathcal{F}^{\alpha+1}$ in G_{D}.
iv. For every γ, with $\gamma=1, \ldots, \alpha$ update \mathcal{F}^{γ} and \mathcal{E}^{γ} :
A. Add P_{j} to \mathcal{F}^{γ}, if $P_{j} \notin \mathcal{F}^{\gamma}$ and P_{j} has at least $2 t+1$ neighbors in \mathcal{C}^{γ} in G_{D}.
B. Add P_{j} to \mathcal{E}^{γ}, if $P_{j} \notin \mathcal{E}^{\gamma}$ and P_{j} has at least $d+t+1$ neighbors in \mathcal{F}^{γ} in G_{D}.
(b) If no (n, t)-star is found or an ($n, t)$-star that has been already found in the past is obtained, then execute step (a).iv(A-B) to update existing \mathcal{F}^{γ} 's and \mathcal{E}^{γ} 's.
(c) Now let β be the first index among already generated $\left\{\left(\mathcal{E}^{1}, \mathcal{F}^{1}\right), \ldots,\left(\mathcal{E}^{\delta}, \mathcal{F}^{\delta}\right)\right\}$ such that both \mathcal{E}^{β} and \mathcal{F}^{β} contains at least $3 t+1$ parties (Note that if step (a) is executed, then $\delta=\alpha+1$; else $\delta=\alpha$). Assign $\operatorname{CORE}=\mathcal{E}^{\beta}$ and A-cast $\left(\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right),\left(\mathcal{E}^{\beta}, \mathcal{F}^{\beta}\right)\right)$.
iii. Code for P_{i} : Every party $P_{i} \in \mathcal{P}$ (including D) executes this code.
5. Wait to receive $\left(\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right),\left(\mathcal{E}^{\beta}, \mathcal{F}^{\beta}\right)\right)$ from the A-cast of D.
6. Wait until $\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right)$ becomes a valid (n, t)-star in G_{i}.
7. Wait until every party $P_{j} \in \mathcal{F}^{\beta}$ has at least $2 t+1$ neighbors in \mathcal{C}^{α} in G_{i}.
8. Wait until every party $P_{j} \in \mathcal{E}^{\beta}$ has at least $d+t+1$ neighbors in \mathcal{F}^{α} in G_{i}.
9. Accept $C O R E=\mathcal{E}^{\beta}$.

The proof is similar to the proof of Lemma 4.26 of [8]. Let $V^{(k)}$ denote $k \times k$ Vandermonde matrix, where $i^{\text {th }}$ column is $\left[i^{0}, \ldots, i^{k-1}\right]^{T}$. Now consider the polynomials $\overline{f_{1}}(x), \ldots, \overline{f_{t+1}}(x)$ and let E be the $(t+1) \times(d+1)$ matrix, where $E_{i j}$ is the coefficient of x^{j} in $\overline{f_{i}}(x)$, for $i=1, \ldots, t+1$ and $j=0, \ldots, d$. So for $i=1, \ldots, t+1$ and $j=1, \ldots, d+1$, the $(i, j)^{t h}$ entry in $E \cdot V^{(d+1)}$ is $\overline{f_{i}}(j)$.

Let $H=\left(\left(V^{(t+1)}\right)^{T}\right)^{-1} \cdot E$ be a $(t+1) \times(d+1)$ matrix. Let for $i=0, \ldots, d$, the $(i+1)^{t h}$ column of H be $\left[r_{i 0}, r_{i 1}, \ldots, r_{i t}\right]^{T}$. Now we define a bivariate polynomial of degree- (d, t), say $\bar{F}(x, y)$ where $\bar{F}(x, y)=\sum_{i=0}^{i=d} \sum_{j=0}^{j=t} r_{i j} x^{i} y^{j}$. Then from the properties of bivariate polynomial of degree- (d, t), for $i=1, \ldots, t+1$ and $j=$ $1, \ldots, d+1$, we have

$$
\bar{F}(j, i)=\left(V^{(t+1)}\right)^{T} \cdot H \cdot V^{(d+1)}=E \cdot V^{(d+1)}=\overline{f_{i}}(j)=\overline{p_{j}}(i)
$$

This implies that for $i=1, \ldots, t+1$, the polynomials $\bar{F}(x, i)$ and $\overline{f_{i}}(x)$ have same value at $d+1$ values of x. But since degree of $\bar{F}(x, i)$ and $\overline{f_{i}}(x)$ is d, this implies that $\bar{F}(x, i)=\overline{f_{i}}(x)$. Similarly, for $j=1, \ldots, d+1$, we have $\bar{F}(j, y)=\overline{p_{j}}(y)$.

Next, we will show that for any $t+1<i \leq l$, the polynomial $\overline{f_{i}}(x)$ also lies on $\bar{F}(x, y)$. In other words, $\bar{F}(x, i)=\overline{f_{i}}(x)$, for $t+1<i \leq l$. This is easy to show because according to theorem statement, $\overline{f_{i}}(j)=\overline{p_{j}}(i)$, for $j=1, \ldots, d+1$ and $\overline{p_{1}}(i), \ldots, \overline{p_{d+1}}(i)$ lie on $\bar{F}(x, i)$ and uniquely defines $\bar{F}(x, i)$. Since both $\overline{f_{i}}(x)$ and $\bar{F}(x, i)$ are of degree d, this implies that $\bar{F}(x, i)=\overline{f_{i}}(x)$, for $t+1<i \leq l$. Similarly, we can show that $\bar{F}(j, y)=\overline{p_{j}}(y)$, for $d+1<j \leq m$.

It is very easy to see because if D is honest, then $\bar{F}(x, y)=F(x, y)$ holds.
Lemma 2. For an honest D, an $(n, t)-\operatorname{star}\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right)$ with \mathcal{C}^{β} containing at least $2 t+1$ honest parties will be generated eventually.

Proof: For an honest D, eventually the edges between each pair of honest parties will vanish from the complementary graph $\overline{G_{D}}$. So the edges in $\overline{G_{D}}$ will be either (a) between an honest and a corrupted party OR (b) between a corrupted and another corrupted party. Let β be the first index, such that (n, t) $\operatorname{star}\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right)$ is generated in $\overline{G_{D}}$, when $\overline{G_{D}}$ contains edges of above two types only. Now, by construction of \mathcal{C}^{β} (see Algorithm Find-STAR), it excludes the parties in N (set of parties that are endpoints of the edges of maximum matching $M)$ and T (set of parties that are triangle-head). An honest P_{i} belonging to N implies that $\left(P_{i}, P_{j}\right) \in M$ for some P_{j} and hence P_{j} is corrupted (as the current $\overline{G_{D}}$ does not have edge between two honest parties). Similarly, an honest party P_{i} belonging to T implies that there is some $\left(P_{j}, P_{k}\right) \in M$ such that $\left(P_{i}, P_{j}\right)$ and $\left(P_{j}, P_{k}\right)$ are edges in $\overline{G_{D}}$. This clearly implies that both P_{j} and P_{k} are surely corrupted. So for every honest P_{i} outside \mathcal{C}^{β}, at least one (if P_{i} belongs to N, then one; if P_{i} belongs to T, then two) corrupted party also remains outside \mathcal{C}^{β}. As there are at most t corrupted parties, C^{β} may exclude at most t honest parties. But still \mathcal{C}^{β} is bound to contain at least $2 t+1$ honest parties.

We now show that the above event happens after finite number of steps. We prove this by showing that an honest D may compute $\mathcal{O}\left(n^{2}\right)$ distinct ($\left.n, t\right)$-stars in G_{D}. This is because D applies Find-STAR on $\overline{G_{D}}$ every time after an edge is added to G_{D} and there can be $\mathcal{O}\left(n^{2}\right)$ edges in G_{D}. Now $\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right)$ with \mathcal{C}^{β} containing at least $2 t+1$ parties will be one among these $\mathcal{O}\left(n^{2}\right)(n, t)$-stars.

Lemma 3. In protocol Verification-SS, if D is honest, then eventually $C O R E$ will be generated.

Proof: By Lemma 2, the honest D will eventually generate an $\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right)$ in G_{D}, with \mathcal{C}^{β} containing at least $2 t+1$ honest parties. Furthermore, if D is honest then eventually there will be edges between every pair of honest parties in the graph G_{i} of every honest P_{i} (including G_{D}). Thus, as all honest parties in \mathcal{P} will have edges with the honest parties in \mathcal{C}^{β}, they will be eventually added to \mathcal{F}^{β}. Similarly, as all honest parties in \mathcal{P} will have edges with the honest parties in \mathcal{F}^{β}, they will be eventually added to \mathcal{E}^{β}. Hence $\left|\mathcal{E}^{\beta}\right| \geq n-t$ and $\left|\mathcal{F}^{\beta}\right| \geq n-t$ will be satisfied and $C O R E$ will be obtained by D.

Lemma 4. If an honest P_{i} has accepted CORE, then the row polynomials of the honest parties in CORE define a unique bivariate polynomial of degree- (d, t).

Proof: If an honest P_{i} has accepted $C O R E$, then he has received $\left(\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right),\left(\mathcal{E}^{\beta}, \mathcal{F}^{\beta}\right)\right)$ from the A-cast of D and checked their validity with respect to his own graph G_{i}. By Lemma 1, the row polynomials of the honest parties in \mathcal{C}^{β} define a unique bivariate polynomial of degree- (d, t), say $\bar{F}(x, y)$. So the row polynomial held by an honest $P_{i} \in \mathcal{C}$ satisfies $\overline{f_{i}}(x)=\bar{F}(x, i)$. Now by the construction of \mathcal{F}^{β}, every honest $P_{j} \in \mathcal{F}^{\beta}$ has at least $2 t+1$ neighbors in \mathcal{C}^{β} which implies that $\overline{f_{k j}}$ values received from at least $2 t+1$ parties in \mathcal{C}^{β} lie on column polynomial $\overline{p_{j}}(y)$. This clearly implies $\overline{p_{j}}(y)=\bar{F}(j, y)$, as $t+1$ out of these $2 t+1$ values are sent by honest parties in \mathcal{C}, who define $\bar{F}(j, y)$.

Similarly, by construction of \mathcal{E}^{β}, every honest $P_{j} \in \mathcal{E}^{\beta}$ has at least $d+t+1$ neighbors in \mathcal{F}^{β} which implies that $\overline{p_{k j}}$ values received from at least $d+t+1$ parties in \mathcal{F}^{β} lie on $\overline{f_{j}}(x)$. This implies that $\overline{f_{j}}(x)=\bar{F}(x, j)$, as at least $d+1$ out of these $d+t+1$ values are sent by honest parties in \mathcal{F}^{β}, who define $\bar{F}(x, j)$. Hence row polynomials of the honest parties in CORE define $\bar{F}(x, y)$.

3.3 Generation of d-sharing Phase

Assuming that the honest parties in \mathcal{P} have agreed upon a CORE, protocol d-Share-Generation-SS generates d-sharing in the following way: From the properties of CORE, the row polynomials of honest parties in CORE define a unique bivariate polynomial say $\bar{F}(x, y)$ of degree- (d, t), such that each honest party P_{i} in CORE possesses $\overline{f_{i}}(x)=\bar{F}(x, i)$. So the $j^{\text {th }}$ point on $\overline{f_{i}}(x)$ polynomials corresponding to all honest P_{i} 's in $C O R E$, define degree- t polynomial $\overline{p_{j}}(y)=\bar{F}(j, y)$. Furthermore, $|C O R E| \geq 3 t+1$. So the parties in $C O R E$ can enable each $P_{j} \in \mathcal{P}$ to privately reconstruct $\overline{p_{j}}(y)$ using OEC [8]. Once this is done, every P_{j} can output $\overline{p_{j}}(0)$ as the share of D 's committed secret. Since $\overline{f_{0}}(j)=\overline{p_{j}}(0)$, it follows that $\overline{f_{0}}(0)(=\bar{F}(0,0))$ will be d-shared using the degree- d polynomial $\overline{f_{0}}(x)=\bar{F}(x, 0)$. Clearly if D is honest, D 's secret s will be d-shared using polynomial $f_{0}(x)=F(x, 0)$, as $\bar{F}(x, y)=F(x, y)$ for honest D.

Lemma 5. Assume that every honest party has agreed on CORE where the row polynomials of the honest parties in CORE define a unique bivariate polynomial of degree- (d, t), say $\bar{F}(x, y)$. Then protocol d-Share-Generation-SS will generate d-sharing of $\bar{s}=\bar{F}(0,0)$.

Proof: To achieve d-sharing of \bar{s} using polynomial $\overline{f_{0}}(x)$, party P_{i} should hold $\overline{f_{0}}(i)$ as $i^{\text {th }}$ share of \bar{s}. Now $\overline{f_{0}}(i)=\overline{p_{i}}(0)$ holds by the property of bivariate polynomial. Also by property of $C O R E$, the $i^{\text {th }}$ point on $\overline{f_{j}}(x)$ polynomials, corresponding to honest P_{j} 's in $C O R E$ define degree- t polynomial $\overline{p_{j}}(y)$. So P_{i} can apply OEC on $\overline{f_{j i}}$'s received from the parties in CORE (during Protocol Verification-SS), reconstruct $\overline{p_{j}}(y)$ and obtain $\overline{p_{j}}(0)$ which is $i^{\text {th }}$ share of \bar{s}.

Protocol d-Share-Generation-SS(D, \mathcal{P}, s, d)

CODE FOR P_{i} :

1. Apply On-line Error Correcting (OEC) technique [8] on $\overline{f_{j i}}$'s received from every P_{j} in CORE (during Protocol Verification-SS) and reconstruct degree- t polynomial $\overline{p_{i}}(y)$ and output $\overline{s_{i}}=\overline{p_{i}}(0)=\overline{f_{0}}(i)$ as the $i^{t h}$ share of \bar{s} and terminate. \bar{s} is now d-shared using polynomial $\overline{f_{0}}(x)$.

3.4 Protocol AVSS-Share-SS and AVSS-Rec-SS

Protocol AVSS-Share-SS (D, \mathcal{P}, s, d)

(a) D executes Distribution- $\mathrm{SS}(D, \mathcal{P}, s, d)$;
(b) Each party P_{i} participates in Verification- $\mathrm{SS}(D, \mathcal{P}, s, d)$;
(c) After agreeing on $C O R E$, each party P_{i} participates in d-Share-Generation$\mathrm{SS}(D, \mathcal{P}, s, d)$ and terminates AVSS-Share-SS after locally outputting the share corresponding to D 's committed secret.

Protocol AVSS-Rec-SS (D, \mathcal{P}, s, d)
Party $P_{i} \in \mathcal{P}$ sends s_{i}, the $i^{\text {th }}$ share of s to every $P_{j} \in \mathcal{P}$. Party P_{i} applies OEC on received s_{j} 's, reconstructs s and terminates AVSS-Rec-SS.

Theorem 1. Protocols (AVSS-Share-SS, AVSS-Rec-SS) constitute a valid perfectly secure AVSS scheme for sharing a single secret from \mathbb{F}.

Proof: Termination: Part (1) of Termination says that if D is honest then every honest party will terminate AVSS-Share-SS eventually. By Lemma 3, D will eventually generate $C O R E$ and A-cast the corresponding information i.e. $\left(\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right),\left(\mathcal{E}^{\beta}, \mathcal{F}^{\beta}\right)\right)$. By the property of A-cast (and as graph G_{i} is constructed on the basis of A-casted information) every honest party will receive, verify the validity of D 's A-casted information with respect to his own graph G_{i} and agree on the CORE. Now the proof for this part follows from Lemma 5.

Part (2) of Termination says that if an honest party terminated AVSS-Share-SS, then every other honest party will terminate AVSS-Share-SS eventually. An honest P_{i} has terminated the protocol implies that he has agreed on CORE. This means that P_{i} has received and verified the validity of D 's A-casted information with respect to his own graph G_{i}. The same will happen eventually for all other honest parties. Hence they will agree on $C O R E$. Now the proof follows from Lemma 5.

Part (3) of Termination follows from the correctness of OEC.

Correctness: If the honest parties terminate AVSS-Share-SS, then it implies that $\bar{s}(=\bar{F}(0,0))$ is properly d-shared among the parties in \mathcal{P} (by Lemma 5), where $\bar{F}(x, y)$ is the unique bivariate polynomial of degree- (d, t) defined by the honest parties in CORE. Moreover if D is honest then $\bar{F}(x, y)=F(x, y)$ (follows from Lemma 1 and Lemma 4) and hence $\bar{s}=s$. Now the Correctness follows from the correctness of OEC.
Secrecy: Let \mathcal{A}_{t} controls P_{1}, \ldots, P_{t}. So \mathcal{A}_{t} will know $f_{1}(x), \ldots, f_{t}(x)$ and $p_{1}(y), \ldots$, $p_{t}(y)$. Throughout the protocol, the parties exchange common values (on row and column polynomials), which do not add any extra information to the view of \mathcal{A}_{t}. Now by the property of bivariate polynomial of degree- $(d, t), d-t+1$ coefficients of $f_{0}(x)=F(x, 0)$ will remain secure, where $F(x, y)$ is the polynomial used by D to hide his secret s. So $s=f_{0}(0)=F(0,0)$ will remain secure.
Theorem 2. AVSS-Share-SS privately communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits and A casts $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. Protocol AVSS-Rec-SS privately communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$.

Proof: In Distribution-SS, D privately communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. In VerificationSS, the parties privately communicate $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. In addition, the parties also A-cast $\mathrm{OK}(.,)$.s , which requires A -cast communication of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. Furthermore, A-casting $\left.\left(\left(\mathcal{C}^{\beta}, \mathcal{D}^{\beta}\right),\left(\mathcal{E}^{\beta}, \mathcal{F}^{\beta}\right)\right)\right)$ by D requires A-casting of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. In d-Share-Generation-SS, no communication is performed. So in total, AVSS-Share-SS requires private communication of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits.

In AVSS-Rec-SS, the parties in \mathcal{P} send their shares to every party in \mathcal{P}. So AVSS-Rec-SS requires $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits of private communication.

4 AVSS for Generating d-sharing of Multiple Secrets

We now present an AVSS protocol consisting of two sub-protocols, namely AVSS-Share-MS and AVSS-Rec-MS: AVSS-Share-MS allows a dealer $D \in \mathcal{P}$ to d-share $\ell \geq 1 \operatorname{secret}(\mathrm{~s})$ from \mathbb{F}, denoted as $S=\left(s^{1}, \ldots, s^{\ell}\right)$, among the parties in \mathcal{P}, with $t \leq d \leq 2 t$; AVSS-Rec-MS allows the parties to reconstruct the secrets, given their \bar{d}-sharing. Notice that we can generate d-sharing of S by concurrently executing protocol AVSS-Share-SS (given in the previous section) ℓ times, once for each $s^{i} \in S$. But this will require a private communication of $\mathcal{O}\left(\ell n^{2} \log (\mathbb{F})\right)$ and A-cast of $\mathcal{O}\left(\ell n^{2} \log (\mathbb{F})\right)$ bits. However, our protocol AVSS-Share-MS requires a private communication of $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ and A-cast of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. Thus, the A-cast communication of our AVSS-Share-MS protocol is independent of ℓ. The idea behind protocol AVSS-Share-MS is same as AVSS-Share-SS. Protocol AVSS-Share-MS is divided into a sequence of same three phases, as in AVSS-Share-SS. We now present the corresponding protocols.

> | Protocol Distribution-MS $\left(D, \mathcal{P}, S=\left(s^{l}, \ldots, s^{\ell}\right), d\right)$ |
| :--- |
| Code for $D:$ |
| 1. For $l=1, \ldots, \ell$, select a random bivariate polynomials $F^{l}(x, y)$ of degree- (d, t), |
| such that $F^{l}(0,0)=s^{l}$ and send the row polynomial $f_{i}^{l}(x)=F^{l}(x, i)$ and column |
| polynomial $p_{i}^{l}(y)=F^{l}(i, y)$ to P_{i}. |

Protocol Verification-MS($\left.D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$

i. Code for P_{i} : Every party $P_{i} \in \mathcal{P}$ (including D) executes this code.

1. Wait to receive $\overline{f_{i}^{l}}(x)$ and $\overline{p_{i}^{l}}(y)$ for all $l=1, \ldots, \ell$, from D.
2. Upon receiving, check whether (i) $\overline{f_{i}^{l}}(x)$ is a degree- d polynomial for all $l=1, \ldots, \ell$; and (ii) $\overline{p_{i}^{l}}(y)$ is a degree- t polynomial for all $l=1, \ldots, \ell$. If yes, then send $\overline{f_{i j}^{l}}=$ $\overline{f_{i}^{l}}(j)$ and $\overline{p_{i j}^{l}}=\overline{p_{i}^{l}}(j)$ for all $l=1, \ldots, \ell$, to P_{j}.
3. Upon receiving $\overline{f_{j i}^{1}}, \ldots, \overline{f_{j i}^{\ell}}$ and $\overline{p_{j i}^{1}}, \ldots, \overline{p_{j i}^{\ell}}$ from P_{j}, check if $\overline{f_{i}^{l}}(j) \stackrel{?}{=} \overline{p_{j i}^{l}}$ and $\overline{f_{j i}^{l}} \stackrel{?}{=}$ $\overline{p_{i}^{l}}(j)$ for all $l=1, \ldots, \ell$. If the equality holds, then confirm the consistency by A-casting $\mathrm{OK}\left(P_{i}, P_{j}\right)$.
4. Construct an undirected graph G_{i} with \mathcal{P} as vertex set. Add an edge $\left(P_{j}, P_{k}\right)$ in G_{i} upon receiving (a) $\mathrm{OK}\left(P_{k}, P_{j}\right)$ from the A-cast of P_{k} and (b) $\mathrm{OK}\left(P_{j}, P_{k}\right)$ from the A-cast of P_{j}.
ii. Code for D : (Only D executes this code): Same as in Protocol Verification-SS.
iii. Code for P_{i} : (Every party $P_{i} \in \mathcal{P}$ (including D) executes this code): Same as in Protocol Verification-SS.

Protocol d-Share-Generation-MS($\left.D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$ Code for P_{i} :

1. For $l=1, \ldots, \ell$, apply On-line Error Correcting (OEC) technique on $\overline{f_{j i}^{l}}$,s received from every P_{j} in CORE (during Protocol Verification-SS) and reconstruct degree- t polynomial $\overline{p_{i}^{l}}(y)$ and output $\overline{s_{i}^{l}}=\overline{p_{i}^{l}}(\underline{0})=\overline{f_{0}^{l}}(i)$ as the $i^{\text {th }}$ share of $\overline{s^{l}}$ and terminate. $\overline{s^{l}}$ is now d-shared using polynomial $\overline{f_{0}^{l}}(x)$.

Protocol AVSS-Share-MS and AVSS-Rec-MS are now given in the following table.

$$
\text { Protocol AVSS-Share-MS(} \left.D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)
$$

(a) D executes Distribution-MS $\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$;
(b) Each party P_{i} participates in Verification-MS $\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$;
(c) After agreeing on $C O R E$, each party P_{i} participates in d-Share-Generation$\mathrm{MS}\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$ and terminates AVSS-Share-MS after locally outputting the shares corresponding to D 's committed secrets.

Protocol AVSS-Rec-MS($\left.D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), d\right)$

1. For $l=1, \ldots, \ell$, each party $P_{i} \in \mathcal{P}$ privately sends the $i^{\text {th }}$ share of s^{l}, namely s_{i}^{l}, to every party $P_{j} \in \mathcal{P}$.
2. For $l=1, \ldots, \ell$, party $P_{i} \in \mathcal{P}$ applies OEC on the received s_{j}^{l} 's to privately reconstruct s^{l} and terminate AVSS-Rec-MS.

Theorem 3. (AVSS-Share-MS, AVSS-Rec-MS) constitute a perfectly secure AVSS scheme for sharing $\ell \geq 1 \operatorname{secret}(s)$ from \mathbb{F}. AVSS-Share-MS privately communicates $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ bits and A-casts $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. AVSS-Rec-MS privately communicates $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ bits.

Proof: The proof that (AVSS-Share-MS, AVSS-Rec-MS) constitute an AVSS scheme follows from Theorem 1. The communication complexity follows from protocol steps and Theorem 2.

4.1 A Different Interpretation of AVSS-Share-MS

In AVSS-Share-MS, every secret s^{l} for $l=1, \ldots, \ell$ is d-shared using degree- d polynomial $f_{0}^{l}(x)=F^{l}(x, 0)$. Now by the Secrecy proof of AVSS-Share-SS, given in Theorem 1, we can claim that $(d+1)-t$ coefficients of $f_{0}^{l}(x)$ are information theoretically secure for every $l=1, \ldots, \ell$. This implies that AVSS-Share-MS shares $\ell(d+1-t)$ secrets with a private communication of $\mathcal{O}\left(\ell n^{2} \log |\mathbb{F}|\right)$ bits and A-cast $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits. As the A-cast communication is independent of ℓ, we may ignore it and conclude that the amortized cost of sharing a single secret using AVSS-Share-MS is only $\mathcal{O}(n \log |\mathbb{F}|)$. This is because by setting $d=2 t$, we see that AVSS-Share-MS can share $\ell(t+1)=\Theta(\ell n)$ secrets by privately communicating $\mathcal{O}\left(\ell^{2} \log |\mathbb{F}|\right)$ bits. Now putting it in other way, D can share $\ell(t+1)$ secrets using AVSS-Share-MS by choosing a random polynomial $f_{0}^{l}(x)$ (of degree $d=2 t$) with lower order $t+1$ coefficients as secrets and then choosing a random degree- (d, t) bivariate polynomial $F^{l}(x, y)$ with $F^{l}(x, 0)=f_{0}^{l}(x)$ for $l=1, \ldots, \ell$ and finally executing AVSS-Share-MS with $F^{1}(x, y), \ldots, F^{\ell}(x, y)$.

Through we do not elaborate, we now mention another application of AVSS-Share-MS which uses the above interpretation (the details of the application will appear in the full version). We can design an Asynchronous BA (ABA) protocol with an amortized communication cost of $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits for reaching agreement on a single bit. To the best of our knowledge, there is only one ABA with $4 t+1$ due to [12] which requires very high communication complexity (though polynomial in n).

Remark 2. The best known AVSS of [2] requires an amortized cost $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits for sharing a single secret. Hence AVSS-Share-MS shows a clear improvement over the AVSS of [2].

5 Protocol for Generating ($t, 2 t$)-sharing

We now present a protocol called ($\mathrm{t}, 2 \mathrm{t}$)-Share-MS that allows a dealer $D \in \mathcal{P}$ to concurrently generate $(t, 2 t)$-sharing of $\ell \geq 1$ secrets. We explain the idea of the protocol for a single secret s. D invokes AVSS-Share-MS to t-share s. Let $f(x)$ be the degree- t polynomial using which s is t-shared. D also invokes AVSS-Share-MS to $(2 t-1)$-share a random value r. Let $g(x)$ be the degree- $(2 t-1)$ polynomial using which r is $(2 t-1)$-shared. It is easy to see that $h(x)=f(x)+x g(x)$ will be a degree- $2 t$ polynomial, such that $h(0)=s$. So if party P_{i} locally computes $h(i)=f(i)+i \cdot g(i)$, then this will generate the $2 t$-sharing of s. Protocol $(\mathrm{t}, 2 \mathrm{t})-$ Share-MS follows this principle for all the ℓ secrets concurrently.

Theorem 4. Protocol ($t, 2 t$)-Share-MS satisfies the following properties:

1. Termination: (a) If D is honest, then each honest P_{i} will terminate $(t, 2 t)-$ Share-MS. (b) If D is corrupted and some honest P_{i} terminates $(t, 2 t)$-ShareMS, then all honest parties will also eventually terminate the protocol.
2. Correctness: If honest parties terminate ($t, 2 t$)-Share-MS, then there are ℓ values, that are $(t, 2 t)$-shared among the parties in \mathcal{P}.
3. SECRECY: \mathcal{A}_{t} will have no information about the secrets of an honest D.
4. Communication Complexity: The protocol privately communicates $\mathcal{O}\left(\ell n^{2}\right.$ $\log |\mathbb{F}|)$ bits and A-cast $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits.
Proof: Follows from the properties of AVSS-Share-MS and protocol steps.
Protocol (t,2t)-Share-MS($D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right)$)
CoDE FOR D :
5. Invoke $\operatorname{AVSS}-\operatorname{Share-MS}\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), t\right)$ and $\operatorname{AVSS}-\operatorname{Share-MS}(D, \mathcal{P}, R=$ $\left.\left(r^{1}, \ldots, r^{\ell}\right), 2 t-1\right)$, where the elements of R are random.

Code for P_{i} :

1. Participate in AVSS-Share-MS $\left(D, \mathcal{P}, S=\left(s^{1}, \ldots, s^{\ell}\right), t\right)$ and AVSS-Share$\operatorname{MS}\left(D, \mathcal{P}, R=\left(r^{1}, \ldots, r^{\ell}\right), 2 t-1\right)$. Wait to terminate $\operatorname{AVSS-Share-MS~}(D, \mathcal{P}, S, t)$ with $i^{\text {th }}$ shares of $S=\left(s^{1}, \ldots, s^{\ell}\right)$, say $\left(\varphi_{i}^{1}, \ldots, \varphi_{i}^{\ell}\right)$. Wait to terminate AVSS-Share$\operatorname{MS}(D, \mathcal{P}, R, 2 t-1)$ with $i^{t h}$ shares of $R=\left(r^{1}, \ldots, r^{\ell}\right)$, say $\left(\chi_{i}^{1}, \ldots, \chi_{i}^{\ell}\right)$.
2. For $l=1, \ldots, \ell$, locally compute $\psi_{i}^{l}=\varphi_{i}^{l}+i \cdot \chi_{i}^{l}$, output φ_{i}^{l} and ψ_{i}^{l} as $i^{\text {th }}$ share of s corresponding to t and $2 t$-sharing respectively and terminate ($\mathrm{t}, 2 \mathrm{t}$)-Share-MS.

Remark 3. In [2] the authors presented a perfectly secure protocol, that privately communicates $\mathcal{O}\left(\ell n^{3} \log |\mathbb{F}|\right)$ bits and A-casts $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits to generate $(t, 2 t)$-sharing of ℓ secrets (For complete details, see APPENDIX D). Thus ($\mathrm{t}, 2 \mathrm{t}$)-Share-MS gains a factor of $\Omega(n)$ in communication complexity for generating $(t, 2 t)$-sharing. In fact, it is this gain of $\Omega(n)$, which helps our AMPC protocol to gain $\Omega(n)$ in communication complexity, compared to the AMPC of [2]. In [22], a protocol with same communication complexity as ours is given for generating $(t, 2 t)$-sharing. However, the protocol has negligible error probability in Correctiness and termination.

6 AMPC Protocol Overview

Once we have an efficient protocol for generating $(t, 2 t)$-sharing, our AMPC protocol proceeds in the same way as that of $[2,22]$. Specifically, our AMPC protocol is a sequence of three phases: preparation, input and computation. In the preparation phase, corresponding to each multiplication and random gate, a $(t, 2 t)$-sharing of random secret will be generated. In the input phase the parties t-share their inputs and agree on a common set of at least $n-t$ parties who correctly t-shared their inputs. In the computation phase, based on the inputs of the parties in this common set, the actual circuit will be computed gate by gate, such that the output of the intermediate gates are always kept as secret and are t-shared among the parties. We now elaborate on each of the three phases.

6.1 Preparation Phase

The goal of protocol PreparationPhase is to generate $(t, 2 t)$-sharing of $c_{M}+c_{R}$ random secrets. For this, each individual party acts as a dealer and $(t, 2 t)$-share
$\frac{c_{M}+c_{R}}{n-2 t}$ random values. Then an instance of ACS protocol is executed to agree on a common set C of $n-t$ parties, who have correctly $(t, 2 t)$-shared $\frac{c_{M}+c_{R}}{n-2 t}$ values. Out of these $n-t$ parties, at least $n-2 t$ are honest, who have indeed $(t, 2 t)$-shared random values, which are unknown to \mathcal{A}_{t}. So if we consider the $(t, 2 t)$-sharing done by the honest parties (each of them has done $\frac{c_{M}+c_{R}}{n-2 t}(t, 2 t)-$ sharing) in common set C, then we will get $\frac{c_{M}+c_{R}}{n-2 t} *(n-2 t)=c_{M}+c_{R}$ random $(t, 2 t)$-sharing. For this, we use Vandermonde Matrix [11] and its ability to extract randomness which has been exploited in [11,2]. The same approach is also used in the preparation phase of [22]. Hence, we present PreparationPhase in APPENDIX B and state only the following lemma:

Lemma 6. Each honest party will eventually terminate PreparationPhase. The protocol generates $(t, 2 t)$-sharing of $c_{M}+c_{R}$ secret random values, unknown to \mathcal{A}_{t}, by privately communicating $O\left(\left(c_{M}+c_{R}\right) n^{2} \log |\mathbb{F}|\right)$ bits, A-casting $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits and executing one instance of ACS.

6.2 Input Phase

In protocol InputPhase, each party acts as a dealer and t-share his input(s) by executing an instance of AVSS-Share-MS. The parties then execute ACS to agree on a common set C of $n-t$ parties, whose instances of AVSS-Share-MS have terminated. As the input(s) of the parties in C will be considered for computation (of the circuit), each party considers the t-sharing of all the inputs shared by parties, only in C. As the protocol is very straight forward, we present it in

APPENDIX B.

Lemma 7. Each honest party terminates InputPhase. The protocol generates tsharing of the inputs of the parties in C, such that \mathcal{A}_{t} has no information about the inputs of the honest parties in C, by privately communicating $O\left(c_{I} n^{2} \log |\mathbb{F}|\right)$ bits, A-casting $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits and executing one $A C S$.

6.3 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated gate by gate, where all inputs and intermediate values are t-shared among the parties. As soon as a party holds his shares of the input values of a gate, he joins the computation of the gate. Due to the linearity of the used t-sharing, linear gates can be computed locally simply by applying the linear function to the shares. With every random gate, one random $(t, 2 t)$-sharing (from the preparation phase) is associated, whose t-sharing is directly used as outcome of the random gate. With every multiplication gate, one random $(t, 2 t)$-sharing (from the preparation phase) is associated, which is then used to compute t sharing of the product, following the technique of [11]: Let $z=x y$, where x, y are the inputs of the multiplication gate, where x, y are t-shared, i.e. $[x]_{t},[y]_{t}$. Moreover, let $[r]_{(t, 2 t)}$ be the $(t, 2 t)$-sharing associated with the multiplication gate, where r is a secret random value. For computing $[z]_{t}$, the parties compute $[\Lambda]_{2 t}=[x]_{t} \cdot[y]_{t}+[r]_{2 t}$. Then Λ is privately reconstructed by every $P_{i} \in \mathcal{P}$. Now
every party defines $[\Lambda]_{t}$ as the default sharing of Λ, e.g., the constant degree- 0 polynomial Λ and computes $[z]_{t}=[\Lambda]_{t}-[r]_{t}$. The secrecy of z follows from [11, 2]. The same approach is also used in the computation phase of AMPC protocol of $[2,22]$. We present the protocol in APPENDIX B and state the following lemma:

Lemma 8. Each honest party will eventually terminate ComputationPhase. Given $(t, 2 t)$-sharing of $c_{M}+c_{R}$ secret random values, the protocol correctly and secretly computes the outputs of the circuit by privately communicating $O\left(\left(c_{M} n^{2}+\right.\right.$ $\left.\left.c_{O} n\right) \log |\mathbb{F}|\right)$ bits.

6.4 Final AMPC Protocol

Now our new AMPC protocol called AMPC for evaluating function f is: (1). Invoke PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 5. Protocol AMPC is an optimally resilient, perfectly secure AMPC protocol that privately communicates $\mathcal{O}\left(\left(\left(c_{I}+c_{M}+c_{R}\right) n^{2}+c_{O} n\right) \log |\mathbb{F}|\right)$ bits, A-casts $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits and requires 2 invocations to ACS. Each honest party will eventually terminate AMPC.

7 Conclusion and Open Problems

We proposed a generic, perfectly secure, optimally resilient AVSS protocol, that generates d-sharing of secrets with $t \leq d \leq 2 t$. In order to design our AVSS, we exploit: (i) several interesting properties of (n, t)-star that are explored for the first time; (ii) some properties of bivariate polynomial with different degree in x and y. Using our AVSS as a building block, we designed a perfectly secure optimally resilient AMPC protocol that communicates $\mathcal{O}\left(n^{2} \log |\mathbb{F}|\right)$ bits per multiplication gate, improving the best known perfectly secure optimally resilient AMPC protocol of [2] by a factor of $\Omega(n)$. It would be interesting to further reduce the communication complexity of AMPC protocol with $4 t+1$.

References

1. Z. Beerliová-Trubíniová and M. Hirt. Efficient multi-party computation with dispute control. In TCC, pages 305-328, 2006.
2. Z. Beerliová-Trubíniová and M. Hirt. Simple and efficient perfectly-secure asynchronous MPC. In ASIACRYPT, pages 376-392, 2007.
3. Z. Beerliová-Trubíniová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In TCC, pages 213-230, 2008.
4. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In STOC, pages 52-61, 1993.
5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1-10, 1988.
6. M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience. In $P O D C$, pages 183-192, 1994.
7. G. Bracha. An asynchronous $\lfloor(n-1) / 3\rfloor$-resilient consensus protocol. In $P O D C$, pages $154-162,1984$.
8. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel, 1995.
9. R. Canetti and T. Rabin. Fast asynchronous Byzantine Agreement with optimal resilience. In STOC, pages 42-51, 1993.
10. D. Chaum, C. Crpeau, and I. Damgård. Multiparty unconditionally secure protocols (extended abstract). In STOC, pages 11-19, 1988.
11. I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In CRYPTO, pages 572-590, 2007.
12. P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine Agreemet. In STOC, pages 639-648, 1988.
13. M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Roundoptimal and efficient verifiable secret sharing. In TCC, pages 329-342, 2006.
14. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable secret sharing and secure multicast. In STOC, pages 580-589, 2001.
15. O. Golderich, S. Micali, and A. Wigderson. How to play a mental game- a completeness theorem for protocols with honest majority. In STOC, pages 218-229, 1987.
16. M. Hirt, J. B Nielsen, and B. Przydatek. Cryptographic asynchronous multi-party computation with optimal resilience. In EUROCRYPT, pages 322-340, 2005.
17. M. Hirt, J. B Nielsen, and B. Przydatek. Asynchronous multi-party computation with quadratic communication. In $I C A L P$, pages 473-485, 2008.
18. J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in point-to-point networks. In ICALP, pages 499-510, 2008.
19. A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The round complexity of verifiable secret sharing revisited. In CRYPTO, pages 487-504, 2009.
20. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous multiparty computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425, 2008.
21. A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient asynchronous Byzantine Agreement with optimal resilience. In PODC, pages 92-101, 2009.
22. A. Patra, A. Choudhary, and C. Pandu Rangan. Unconditionally secure asynchronous multiparty computation with quadratic communication per multiplication gate. Cryptology ePrint Archive, Report 2009/087, 2009.
23. B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in unconditional multiparty computation. In SCN, pages 342-353, 2002.
24. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In STOC, pages $73-85,1989$.
25. K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed computation. In INDOCRYPT, pages 117-129, 2000.
26. A. C. Yao. Protocols for secure computations. In FOCS, pages 160-164, 1982.

APPENDIX STAR: Properties of Algorithm Find-STAR

Lemma 9 ([8]). If Find-STAR outputs $(\mathcal{C}, \mathcal{D})$ on input graph H, then $(\mathcal{C}, \mathcal{D})$ is $a(n, t)$-star in H.

Proof: Clearly, if Find-STAR outputs $(\mathcal{C}, \mathcal{D})$ then $|\mathcal{C}| \geq n-2 t$ and $|\mathcal{D}| \geq n-t$, and $\mathcal{C} \subseteq \mathcal{D}$. We now show that for every $P_{i} \in \mathcal{C}$ and every $P_{j} \in \mathcal{D}$, the nodes P_{i} and P_{j} are not neighbours in H.

On the contrary, assume that $P_{i} \in \mathcal{C}$ and $P_{j} \in \mathcal{D}$, such that $\left(P_{i}, P_{j}\right)$ is an edge in H. As $P_{j} \in \mathcal{D}$, we must have $P_{j} \notin B$. By the definition of B, we have $P_{j} \notin N$ (if $P_{i} \in \mathcal{C}$ and $P_{j} \in N$, then $P_{j} \in B$). Furthermore, $P_{i} \in \mathcal{C} \subseteq \bar{N}$. Thus, both P_{i} and P_{j} are unmatched. Consequently, the edge $\left(P_{i}, P_{j}\right)$ can be added to the maximum matching to create a larger matching, which is a contradiction. \square
Lemma 10 ([8]). Let H be a graph with \mathcal{P} as its vertex set, containing an independent set of size $n-t$. Then algorithm Find-STAR always outputs a $(n, t)-$

Proof: We show that if H contains an independent set of size $n-t$, then Find-STAR can always find $|\mathcal{C}|$ and $|\mathcal{D}|$ to be large enough (i.e $|\mathcal{C} \geq n-2 t|$ and $|\mathcal{D}| \geq n-t)$ to output a (n, t)-star $(\mathcal{C}, \mathcal{D})$.

We first show that $|\mathcal{C}| \geq n-2 t$. Let $I \subseteq \mathcal{P}$ be an independent set in H, and let $\bar{I}=\mathcal{P} \backslash I$. Since the size of I is $n-t$, we have $|\bar{I}| \leq t$. Let $F=I \backslash C$. We show that $|F| \leq|\bar{I}|$. Consequently, we have $|\mathcal{C}| \geq|I|-|F| \geq n-2 t$. To prove that $|F| \leq|\bar{I}|$, we show a one-to-one correspondence $\phi: F \rightarrow \bar{I}$. Let $P_{i} \in F$. Since $P_{i} \notin \mathcal{C}$, we have either $P_{i} \in N$ or $P_{i} \in T$.
Case I: $\quad P_{i} \in N$. Then let $\phi\left(P_{i}\right)$ be the node matched to P_{i} in M. Clearly, $\phi\left(P_{i}\right) \in \bar{I}$: otherwise, we had an edge $\left(P_{i}, \phi\left(P_{i}\right)\right)$ where both P_{i} and $\phi\left(P_{i}\right)$ are in an independent set.
Case II: $\quad P_{i} \in T$. By the definition of T, node P_{i} has two neighbours, P_{j} and P_{k}, such that $\left(P_{j}, P_{k}\right) \in M$. Arbitrarily set $\phi\left(P_{i}\right)=P_{j}$. Clearly, both P_{j} and P_{k} are in \bar{I}.

We now show that ϕ is one-to-one. Consider two distinct nodes, P_{l} and P_{m} from F. We have three cases:

Case 1: $P_{l}, P_{m} \in N$. In this case, $\phi\left(P_{l}\right) \neq \phi\left(P_{m}\right)$ since M is a matching.
Case 2: $\quad P_{l} \in N$ and $P_{m} \in T$. Since $P_{m} \in T$, there exists an edge between P_{m} and the node matched to $\phi\left(P_{m}\right)$. Since, $P_{l} \in N$, the node matched to $\phi\left(P_{l}\right)$ is P_{l}. Now assume that $\phi\left(P_{l}\right)=\phi\left(P_{m}\right)$. Thus, $\left(P_{l}, P_{m}\right)$ is an edge in H, which is a contradiction, as P_{l} and P_{m} are in the independent set I.
Case 3: $P_{l}, P_{m} \in T$. Assume $\phi\left(P_{l}\right)=\phi\left(P_{m}\right)$. Let P_{a} be the node matched to $\phi\left(P_{m}\right)$ in M. Both P_{l} and P_{m} are neighbours of both $\phi\left(P_{m}\right)$ and P_{a}. However, in this case the matching M is not maximum since, for instance, $M \backslash\left\{\left(\phi\left(P_{m}\right), P_{a}\right)\right\} \cup\left\{\left(\phi\left(P_{m}\right), P_{l}\right),\left(P_{a}, P_{m}\right)\right\}$ is a larger matching.

Now, it remains to show that $|\mathcal{D}| \geq n-t$. Recall that $\mathcal{D}=\mathcal{P} \backslash B$. We show that $|B| \leq|M|$. Since H contains an independent set of size $n-t$, we have $|M| \leq t$. Thus, $|\mathcal{D}|=n-|B| \geq n-|M| \geq n-t$. To prove $|B| \leq|M|$, we show that at most one of the endpoints of every edge $\left(P_{a}, P_{b}\right) \in M$ is in B. On the contrary let both P_{a} and P_{b} have neighbours in C, and let $P_{c}, P_{d} \in C$ be the neighbours of P_{a} and P_{b}, respectively. Surely, $P_{c} \neq P_{d}$ (otherwise, P_{c} was a triangle-head and we had $\left.P_{c} \in \mathcal{C}\right)$. However, in this case M is not maximum, since, $M \backslash\left\{\left(P_{a}, P_{b}\right)\right\} \cup\left\{\left(P_{a}, P_{c}\right),\left(P_{b}, P_{d}\right)\right\}$ is a certainly larger matching.

APPENDIX OEC: Online Error Correction

Let s be a secret which is d-shared among a set of parties $\overline{\mathcal{P}} \subseteq \mathcal{P}$, by a degree$d$ polynomial $f(x)$, where $d<(|\overline{\mathcal{P}}|-2 t)$. Let $P_{\alpha} \in \mathcal{P}$ be a party, called as receiver, who wants to privately reconstruct s. This is done as follows: every party $P_{i} \in \overline{\mathcal{P}}$ sends his share s_{i} of s to P_{α}. The shares may reach P_{α} in any arbitrary order. Moreover, up to t of the shares may be incorrect or missing. To reconstruct $f(x), P_{\alpha}$ applies OEC (Online Error Correcting) technique [4] on the received s_{i} 's. Informally, OEC enables P_{α} to recognize when the received shares define a unique degree- d interpolation polynomial. Specifically, P_{α} waits to receive $d+t+1$ shares from the parties in $\overline{\mathcal{P}}$, such that these $d+t+1$ shares lie on a unique degree- d polynomial $f(x)$. Once P_{α} receives these values, he interpolates $f(x)$, outputs s and terminates. For complete details, see $[4,8]$.

Theorem $6([8,2])$. Let $s \in \mathbb{F}$ be a secret, which is d-shared among a set of parties $\overline{\mathcal{P}} \subseteq \mathcal{P}$, with $d<(|\overline{\mathcal{P}}|-2 t)$. Then using $O E C$, any party $P_{\alpha} \in \mathcal{P}$ can privately reconstruct s. Moreover, this will require a private communication of $\mathcal{O}(n \log |\mathbb{F}|)$ bits.

APPENDIX D: Protocol of [2] for Generating $(t, 2 t)$-sharing

In [2], the authors have generated $(t, 2 t)$-sharing of a single value, from t-sharing of $3 t+1$ random values. Briefly, the authors have done the following: Let $\left[r^{0}\right]_{t}, \ldots,\left[r^{3 t}\right]_{t}$ be the t-sharing of $3 t+1$ random values. Let $p(x)$ be the degree- t polynomial defined by the $t+1$ coefficients r^{0}, \ldots, r^{t}. Let $q(x)$ be the degree- $2 t$ polynomial defined by the $2 t+1$ coefficients $r^{0}, r^{t+1} \ldots, r^{3 t}$. It is to be noted that both $p(x)$ and $q(x)$ have common constant term (which is r^{0}). Now the parties jointly perform some computation such that every party P_{i} receives $p(i)$ and $q(i)$ at the end. This ensures that r^{0} is $(t, 2 t)$-shared among the parties. To generate t-sharing of $3 t+1$ random values, the authors in [2] have used the AVSS protocol of [2], which requires a total private communication of $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \log (|\mathbb{F}|)\right)$ bits. Thus the protocol of [2] requires a private communication of $\mathcal{O}\left(n^{3} \log |\mathbb{F}|\right)$ bits and A-cast of $\mathcal{O}\left(n^{2} \log (|\mathbb{F}|)\right)$ bits to generate $(t, 2 t)$ sharing of a single secret. By executing the above protocol concurrently for ℓ times and by optimizing the A-cast, the authors could get a protocol, which generates $(t, 2 t)$-sharing of ℓ values by privately communicating $\mathcal{O}\left(\ell n^{3} \log |\mathbb{F}|\right)$ bits and A-casting $\mathcal{O}\left(n^{2} \log (|\mathbb{F}|)\right)$ bits.

APPENDIX B: AMPC Protocol

Protocol PreparationPhase(\mathcal{P})

Secret Sharing: Code for P_{i} :

1. Select $L=\frac{c_{M}+c_{R}}{n-2 t}$ random secret elements $\left(s^{(i, 1)}, \ldots, s^{(i, L)}\right)$ from \mathbb{F}. As a dealer, invoke $(\mathrm{t}, 2 \mathrm{t})$-Share-MS $\left(P_{i}, \mathcal{P}, S^{i}\right)$ to generate $(t, 2 t)$-sharing of $S^{i}=\left(s^{(i, 1)}, \ldots, s^{(i, L)}\right)$.
2. For $j=1, \ldots, n$, participate in $(\mathrm{t}, 2 \mathrm{t})$-Share- $\mathrm{MS}\left(P_{j}, \mathcal{P}, S^{j}\right)$.

Agreement on a Core-Set: Code for P_{i}

1. Create an accumulative set $C^{i}=\emptyset$. Upon terminating $(\mathrm{t}, 2 \mathrm{t})-\operatorname{Share-MS}\left(P_{j}, \mathcal{P}, S^{j}\right)$, include P_{j} in C^{i}.
2. Take part in ACS with the accumulative set C^{i} as input.

Generation of Random $(t, 2 t)$-sharing: Code for P_{i} :

1. Wait until ACS completes with common set C containing $n-t$ parties. Obtain the $i^{\text {th }}$ shares $\varphi_{i}^{(j, 1)}, \ldots, \varphi_{i}^{(j, L)}$ corresponding to t-sharing of S^{j} and $i^{\text {th }}$ shares $\phi_{i}^{(j, 1)}, \ldots, \phi_{i}^{(j, L)}$ corresponding to $2 t$-sharing of S^{j} for every $P_{j} \in C$. Without loss of generality, let $C=\left\{P_{1}, \ldots, P_{n-t}\right\}$.
2. Let V denote a $(n-t) \times(n-2 t)$ publicly known Vandermonde Matrix over \mathbb{F}.
(a) For every $k \in\{1, \ldots, L\}$, let $\left(r^{(1, k)}, \ldots, r^{(n-2 t, k)}\right)=\left(s^{(1, k)}, \ldots, s^{(n-t, k)}\right) V$.
(b) Locally compute $i^{\text {th }}$ shares corresponding to t-sharing of $r^{(1, k)}, \ldots, r^{(n-2 t, k)}$ as $\left(\varsigma_{i}^{(1, k)}, \ldots, \varsigma_{i}^{(n-2 t, k)}\right)=\left(\varphi_{i}^{(1, k)}, \ldots, \varphi_{i}^{(n-t, k)}\right) V$.
(c) Locally compute $i^{\text {th }}$ shares corresponding to $2 t$-sharing of $r^{(1, k)}, \ldots, r^{(n-2 t, k)}$ as $\left(\sigma_{i}^{(1, k)}, \ldots, \sigma_{i}^{(n-2 t, k)}\right)=\left(\phi_{i}^{(1, k)}, \ldots, \phi_{i}^{(n-t, k)}\right) V$ and terminate PreparationPhase.

The values $r^{(1,1)}, \ldots, r^{(n-2 t, 1)}, \ldots, r^{(1, L)}, \ldots, r^{(n-2 t, L)}$ denote the $c_{M}+c_{R}$ random secrets which are $(t, 2 t)$-shared.

Protocol InputPhase(\mathcal{P})

SECRET Sharing: Code for P_{i}

1. Having input X_{i}, invoke AVSS-Share-MS $\left(P_{i}, \mathcal{P}, X_{i}, t\right)$, as a dealer, to generate t-sharing of X_{i}.
2. For every $j=1, \ldots, n$, participate in AVSS-Share-MS $\left(P_{j}, \mathcal{P}, X_{j}, t\right)$.

Agreement on a Core-Set: Code for P_{i}

1. Create an accumulative set $C^{i}=\emptyset$. Upon terminating AVSS-Share$\operatorname{MS}\left(P_{j}, \mathcal{P}, X_{j}, t\right)$, add P_{j} in C^{i}.
2. Participate in ACS with the accumulative set C^{i} as input.

Output Generation: Code for P_{i} :

1. Wait until ACS completes with output C containing $n-t$ parties. Output the the shares corresponding to t-sharing of the inputs of the parties in C and terminate InputPhase.

Protocol ComputationPhase(\mathcal{P})

For every gate in the circuit: Code for P_{i}
Wait until $i^{t h}$ share of each of the inputs of the gate is available. Now depending on type of gate, proceed as follows:

1. Input Gate: $[s]_{t}=\operatorname{IGate}\left([s]_{t}\right)$: Simply output s_{i}, the $i^{\text {th }}$ share of s.
2. Linear Gate: $[z]_{t}=\operatorname{LGate}\left([x]_{t},[y]_{t}, \ldots\right)$: Compute and output $z_{i}=$ $\operatorname{LGate}\left(x_{i}, y_{i}, \ldots\right)$, the $i^{\text {th }}$ share of $z=\operatorname{LGate}(x, y, \ldots)$, where x_{i}, y_{i}, \ldots denotes $i^{\text {th }}$ share of x, y, \ldots.
3. Multiplication Gate: $[z]_{t}=\operatorname{MGate}\left([x]_{t},[y]_{t},[r]_{(t, 2 t)}\right)$:
(a) Let $[r]_{(t, 2 t)}$ be the random $(t, 2 t)$-sharing associated with the multiplication gate. Also let $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ and $\left(\phi_{1}, \ldots, \phi_{n}\right)$ denote the t-sharing and $2 t$-sharing of r, respectively.
(b) Compute $\Lambda_{i}=x_{i} \cdot y_{i}-\phi_{i}$ the $i^{\text {th }}$ share of Λ which is now $2 t$-shared.
(c) For $j=1, \ldots, n$, privately send Λ_{i} to party P_{j}. Apply OEC on received Λ_{j} 's to privately reconstruct Λ
(d) Compute and output $z_{i}=\Lambda-\varphi_{i}$, the $i^{\text {th }}$ share of z.
4. Random Gate: $[R]_{t}=\operatorname{RGate}\left([r]_{(t, 2 t)}\right)$: Let $[r]_{(t, 2 t)}$ be the random $(t, 2 t)$-sharing associated with the random gate. Also let $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ denote the t-sharing of r. Output $R_{i}=\varphi_{i}$ as the $i^{t h}$ share of $R(=r)$.
5. Output Gate: $x=\operatorname{OGate}\left([x]_{t}\right)$: If P_{α} is entitled to receive x then privately send x_{i}, the $i^{t h}$ share of x to party P_{α}. If P_{i} is entitled to receive x then apply OEC on received x_{j} 's and output x.

[^0]: * Financial Support from Microsoft Research India Acknowledged
 ${ }^{\star \star}$ Financial Support from Infosys Technology India Acknowledged
 *** Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Computation Sponsored by Department of Information Technology, Government of India.

[^1]: ${ }^{1}$ OEC allows to reconstruct a degree- t polynomial by applying error correction in an online fashion in asynchronous settings. For details see APPENDIX OEC.

