
The Lower Bounds on the Second Order Nonlinearity of Cubic
Boolean Functions

Xuelian Li1,2 Yupu Hu2 Juntao Gao2

1.Department of Applied Mathematics of Xidian University, Xi’an 710071, China. E-mail: xuelian202@163.com.
2. Key Laboratory of Computer Networks and Information Security of Xidian University, Ministry of Education,

Xi’an 710071, China.

Abstract. It is a difficult task to compute the r-th order nonlinearity of a given function with algebraic
degree strictly greater than r > 1. Even the lower bounds on the second order nonlinearity is known
only for a few particular functions. We investigate the lower bounds on the second order nonlinearity
of cubic Boolean functions Fu(x) = Tr(

Pm
l=1 µlx

dl), where ul ∈ F ∗2n , dl = 2il + 2jl + 1, il and jl are
positive integers, n > il > jl. Especially, for a class of Boolean functions Gu(x) = Tr(

Pm
l=1 µlx

dl),
we deduce a tighter lower bound on the second order nonlinearity of the functions, where ul ∈ F ∗2n ,
dl = 2ilγ + 2jlγ + 1, il > jl and γ 6= 1 is a positive integer such that gcd(n, γ) = 1.
The lower bounds on the second order nonlinearity of cubic monomial Boolean functions, represented

by fµ(x) = Tr(µx2i+2j+1), µ ∈ F ∗2n , i and j are positive integers such that i > j, have recently (2009)
been obtained by Gode and Gangopadhvay. Our results have the advantages over those of Gode and
Gangopadhvay as follows. We first extend the results from monomial Boolean functions to Boolean
functions with more trace terms. We further generalize and improve the results to a wider range of n.
Also, our bounds are better than those of Gode and Gangopadhvay for monomial functions fµ(x).
Key Words: cryptography, derivative, the second nonlinearity, trace function, quadratic
form

1 Introduction

Boolean functions are important components in the design of stream ciphers as well as block ciphers.
Nonlinearity profile of a Boolean function is a cryptographic criterion which plays an important
role with respect to the security of the cryptosystems in which the functions are involved. It is
also important in coding theory as it is related to the covering radii of Reed-Muller code [1]. Let
f be an n-variable Boolean function. The r-th order nonlinearity of f , denoted by nlr(f), is the
minimum Hamming distance between f and all n-variable Boolean functions of degree at most r,
a nonnegative integer less than or equal to n. The sequence of values nlr(f) for r ranging from 1
to n− 1 is said to be the nonlinearity profile of f . The first order nonlinearity of f is referred to as
the nonlinearity of f and denoted by nl(f).

Computation of the r-th order nonlinearity (even the second-order nonlinearity) of a given
function with algebraic degree strictly greater than r is itself a difficult problem for r > 1. Instead
of computing the r-th order nonlinearity, one hopes to obtain a tight lower bound of r-th order
nonlinearity which can be useful to estimate the security of Boolean functions. However, it is also
a quite difficult task to find a good lower bound, even for the second order nonlinearity. Efforts
are made to compute the second order nonlinearity by using decoding techniques of the second
order Reed-Muller codes. As far as we known, there are only the algorithms developed in [2] [3] [4]
which compute the second order nonlinearity for n ≤ 11 and for n ≤ 13 for some special cases. In
2008, Carlet [5] introduced a method to determine the lower bound of the r-th order nonlinearity
of a function from the maximum value or the lower bounds of the (r − 1)-th order nonlinearity



of its first derivatives, and obtained the lower bounds on the second order nonlinearities of some
functions including Welch function and multiplicative inverse function and so on. Sun and Wu [6],
Gangopadhvay, Sarkar and Telang [7] gained the lower bounds on the second nonlinearity of some
particular cubic monomial Boolean functions with high nonlinearities. Gode and Gangopadhvay
[8] recently have obtained the lower bounds on the second order nonlinearity of cubic monomial
Boolean functions of the form fµ(x) = Tr(µx2i+2j+1) for n > 2i where µ ∈ F ∗

2n , i > j are positive
integers, and the ones of a class of functions gµ(x) = Tr(µx22γ+2γ+1) for n ≥ 4, where µ ∈ F ∗

2n and
γ is a positive integer such that gcd(n, γ) = 1. However, both of the two bounds are valid only if
n 6= i + j and n 6= 2i− j.

In this paper we study the lower bounds on the second order nonlinearity of cubic functions on
F2n . The cubic function can be represented by a polynomial form of

Fu(x) = Tr(
m∑

l=1

µlx
dl),

where ul ∈ F ∗
2n , dl = 2il + 2jl + 1 and n > il > jl. For a class of Boolean functions, represented by

Gu(x) = Tr(
∑m

l=1 µlx
dl) which are different from the functions in [6] and [7], we deduce a tighter

lower bound of the second order nonlinearity, where ul ∈ F ∗
2n , dl = 2ilγ + 2jlγ + 1, il > jl, γ 6= 1 is

a positive integer such that gcd(n, γ) = 1. Most interesting, we improve and generalize the results
of [8]. More specifically,

1. we extend the results from monomial Boolean functions to Boolean functions with more trace
terms. Our functions include the monomial Boolean functions fµ(x) and gµ(x) in [8] as proper
subsets;

2. we give better lower bounds than those of [8] for functions fµ(x);
3. Our lower bounds are valid for a wider range of n. For example, Gode and Gangopadhvay [8]

deduced the lower bounds on the second order nonlinearity of fµ(x) for n > 2i. However, for
fµ(x), our lower bounds not only hold for n > 2i, but also hold for n ≤ 2i. Moreover, we deduce
the lower bounds on the second order nonlinearity of some fµ(x) for n = i + j and n = 2i− j.

This paper is organized as follows. In Section 2, we introduce some concepts and definitions which
will be used throughout this paper. In Section 3, we first deduce the general lower bounds on
the second order nonlinearity of a class of functions Fu(x). We further give the improvement of
the bounds for the functions satisfying the conditions of Theorem 1 (2) and (3). The tighter lower
bounds on a class of functions Gu(x) are also given in Section 3. Concluding remarks and discussions
will be given in Section 4.

2 Preliminaries

A Boolean function on F2n is a function of the form Tr(R(x)), where R(x) is any polynomial in
F2n [x] and Tr is the trace function from F2n to F2.

For any t dividing n and n = mt, we denote the trace function from F2n onto F2t as follows:

Tn
t (x) = x + x2t

+ · · ·+ x2t(m−1)
, x ∈ F2n .

The notation Tr is used for t = 1.
Let d be a positive integer whose binary representation is (d1, d2, . . . , dn). If the Hamming weight

of d is w, then Tr(xd) is called a Boolean function with degree w.



Lemma 1 [9] The trace function Tn
t (x) from F2n onto F2t satisfies the following properties:

1. Tn
t (α + β) = Tn

t (α) + Tn
t (β) for all α, β ∈ F2n;

2. Tn
t (α2t

) = Tn
t (α) for all α ∈ F2n;

3. Tn
t (x) is a linear transformation from F2n onto F2t.

Let f be any Boolean function on F2n . The Walsh transform of function f at u ∈ F2n is defined by

Wf (u) =
∑

x∈F2n

(−1)f(x)+Tr(ux), u ∈ F2n .

We define the Walsh spectrum of f as the set {Wf (u) : u ∈ F2n}. The relation between the
nonlinearity and the Walsh transform of f is well known:

nl(f) = 2n−1 − 1
2

max
u∈F2n

|Wf (u)|.

The derivative of f with respect to b ∈ F2n , denoted by Dbf , is the Boolean function Dbf : x 7→
f(x) + f(x + b).

Definition 1 [10] Let V be an n-dimensional vector space over F2t. A map Q : V 7→ F2t is called
a quadratic form on V if

1. Q(cx) = c2Q(x) for any c ∈ F2t and x ∈ V ;
2. B(x, y) = Q(x + y) + Q(x) + Q(y) is bilinear on V .

The kernel K of a quadratic form Q is the subspace of V defined by K = {x ∈ V : B(x, y) = 0 for
any y ∈ V }.

Obviously, the vast majority of derivatives of the cubic Boolean functions are quadratic func-
tions. The kernel K of quadratic Boolean functions have the following properties.

Lemma 2 [10] Let f be any quadratic Boolean function. The kernel K of f is the subspace of those
b such that the derivative Dbf is constant.

Lemma 3 [10] Let V be a vector space over a field F2t and Q : V 7→ F2t be a quadratic form. Then
the dimension of V and the dimension of the kernel of Q have the same parity.

Table 1. The Walsh spectrum of f

Wf (u) Number of u

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f(0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f(0)2(n−k−2)/2

It is easy to show that for any quadratic form Q : F2n 7→ F2 there is a unique δi ∈ F2n , 0 ≤ i ≤ bn/2c,
such that

Q(x) = Tr(
bn/2c∑

i=0

δix
2i+1),



except when n is even, in which case bn/2c is only unique modulo F2bn/2c [11]. If f : F2n 7→ F2 is a
Boolean quadratic form, then its Walsh spectrum only depends on the dimension k (0 ≤ k ≤ n−2)
of the kernel of f . More precisely, the Walsh spectrum of f is given in Table 1.

Definition 2 [12] A cyclotomic coset Cs modulo pn − 1 (with respect to p) is defined to be

Cs = {s, sp, . . . , spns−1},

where ns is the smallest positive integer such that s ≡ spns(modpn − 1). The subscript s is chosen
as the smallest integer in Cs, and s is called the coset leader of Cs.

3 The lower bounds on the second order nonlinearity of Boolean function
Fµ(x)

Before showing the main result, we firstly cite two useful propositions.

Proposition 1 [5] Let f be any n-variable function and r a positive integer smaller than n. We
have

nlr(f) ≥ 1
2

max
a∈F n

2

nlr−1(Daf).

Carlet [5] has also given a potentially stronger lower bound on the r-th order nonlinearity than
that of Proposition 1, valid when a lower bound on the (r − 1)-th order nonlinearity is known for
all the derivatives (in nonzero directions) of the function.

Proposition 2 [5] Let f be any n-variable function and r a positive integer smaller than n. We
have

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nlr−1(Daf).

Carlet has pointed out that both lower bounds are tight. Moreover, the bound of Proposition 2
will actually lead to an efficient bound.

Corollary 1 Let f be any n-variable function and r a positive integer smaller than n. Assume
that, for some nonnegative integers K and k, we have nlr−1(Daf)
≥ 2n−1 −K2k for every nonzero a ∈ Fn

2 , then

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)K2k+1 + 2n.

In [8], the authors give the lower bound on the second order nonlinearity of the Boolean function
fµ(x) = Tr(µx2i+2j+1) for n > 2i, where µ ∈ F ∗

2n and i > j are positive integers.

Lemma 4 [8] The function fµ(x) possesses no affine derivative if n 6= i + j or n 6= 2i− j, where
i > j.

Thus, Dafµ is always quadratic as n ≥ 2i (In this case, n 6= i + j and n 6= 2i− j).

Lemma 5 [8] The lower bound on the second order nonlinearity of fµ(x) = Tr(µx2i+2j+1) for
n > 2i is given as



If n is an even, then

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i)/2 + 2n ≈ 2n−1 − 2(3n+2i−4)/4;

If n is an odd, then

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i−1)/2 + 2n ≈ 2n−1 − 2(3n+2i−5)/4.

We consider the following cubic Boolean function:

fµ(x) = Tr(
m∑

l=1

µlx
dl),

where µl ∈ F ∗
2n , dl = 2il + 2jl + 1 and n > il > jl. Let all of the power of 2 be positive integers in

this paper.
We will deduce the lower bound on the second order nonlinearity of the Boolean function Fµ(x),

and demonstrate that our results are the improvements and generalizations of those of [8].
By Proposition 2, if we can calculate the nonlinearity of DaFµ(x) for any a ∈ F ∗

2n or their
lower bounds on the nonlinearity, then it is possible to obtain a lower bound on the second order
nonlinearity of Fµ(x).

3.1 The derivative of Fµ(x)

The derivative of Fµ(x) with respect to a ∈ F ∗
2n is the function

DaFµ(x) = Tr(
m∑

l=1

µlx
dl) + Tr(

m∑

l=1

µl(x + a)dl)

= Tr(
m∑

l=1

µla
dl(a−1x)dl) + Tr(

m∑

l=1

µla
dl(a−1x + 1)dl)

= D1Fµla
dl (a

−1x).

Let λl = µla
dl and D1Fµla

dl (a−1x) = g(x).

g(x) = Tr(
m∑

l=1

λlx
dl) + Tr(

m∑

l=1

λl(x + 1)dl)

=
m∑

l=1

Tr(λl(x2il+2jl+1 + (x + 1)2
il+2jl+1))

=
m∑

l=1

Tr(λl(x2il+2jl + x2il+1 + x2jl+1 + x2il + x2jl + x + 1))

=
m∑

l=1

Tr(λ2n−jl

l x2il−jl+1 + λlx
2il+1 + λlx

2jl+1 + λlx
2il + λlx

2jl + λlx + λl))

=
m∑

l=1

Tr(λ2n−jl

l x2il−jl+1 + λlx
2il+1 + λlx

2jl+1 + (λ2n−il

l + λ2n−jl

l + λl)x + λl)).



To obtain the Walsh spectrum of the function DaFµ(x) for any a ∈ F ∗
2n it is enough to consider

the spectrum of the functions g(x) because of a 6= 0. The Walsh spectrum of the function g(x)
coincides with that of the following function:

gλl
(x) =

m∑

l=1

Tr(λ2n−jl

l x2il−jl+1 + λlx
2il+1 + λlx

2jl+1), (1)

where λl 6= 0. Merging similar items, for your convenience, we can rewrite gλl
(x) as

gc(x) =
∑

i

Tr(cix
2i+1). (2)

It is well known that 2i+1 and 2j+1 are in different cyclotomic cosets for n 6= i+j. Now, we improve
the conclusions of Lemma 4 as follows.

Theorem 1 If function
∑

i Tr(cix
2i+1) satisfies one of the following conditions, then it is a quadratic

Boolean function.

1. All of the power 2i+1 of x are in different cyclotomic cosets.
2. At least one power 2i+1 of x is in different cyclotomic coset from all the other power of x. Let

all of the power 2i+1 of x are in different e cyclotomic cosets,
∑

i Tr(cix
2i+1) can be rewritten

as
∑e

j=1 Tr(
∑

jl
cijl

x2
ijl +1) =

∑e
j=1 Tr(cijx

2ij +1), where 2ij + 1 (1 ≤ j ≤ e) is the smallest
positive integer of x′s powers in the j-th cosets, and one of the following conditions is valid.
(a) all cij 6= 0;
(b) some cij = 0.

3. All of the power 2i+1 of x are in different e cyclotomic cosets, and every cyclotomic coset
contains at least two powers of x. Then function

∑
i Tr(cix

2i+1) can be rewritten as

e∑

j=1

Tr(
∑

jl

cijl
x2

ijl +1) =
e∑

j=1

Tr(cijx
2ij +1),

where 2ij + 1 (1 ≤ j ≤ e) is the smallest positive integer of x′s powers in the j-th cosets, and
one of the following conditions is valid.
(a) All cij 6= 0;
(b) Some cij = 0, and at least one cij for all a ∈ F ∗

2n is not equal to zero.

If the quadratic terms of Daf satisfy the conditions of Theorem 1, we also call that f(x) satisfies
the conditions of Theorem 1.
Obviously gc(x) is belonging to the following class of functions:

h(x) = Tr(
n−1∑

i=1

cix
2i+1), (3)

where ci ∈ F2n , and at least one ci is not equal to zero. Let s = min{i|ci 6= 0, 1 ≤ i ≤ n − 1},
t = max{i|ci 6= 0, 1 ≤ i ≤ n− 1} and t1 = max{i|ci 6= 0 and ci 6= ct} if s 6= t or n 6= 2t.



3.2 The Walsh spectrum of h(x)

In this section, we study the quadratic Boolean function h(x) on F2n . Firstly, we determine the
dimension k of the kernel of h(x) by the properties of their derivatives. Then we evaluate the Walsh
spectrum of h(x).

Note that h(x) is a quadratic form from F2n into F2. Thus we can use the results of Section 2
to evaluate the Walsh spectrum of h(x) as soon as the dimension of its kernel is known. Our next
goal is to describe this kernel.
The following theorem implies that the kernel of h(x) is determined by the roots of certain poly-
nomial P (x) or L(x).

Theorem 2 Let K(h) be the kernel of the quadratic form h(x). Then K(h) is the subspace of the
roots of P (x) or L(x) in F2n [x] given by

P (x) =
t∑

i=s

((cix)2
n−i

+ cix
2i

), L(x) =
t∑

i=s

((cix)2
t−i

+ c2t

i x2i+t
).

where s = min{i|ci 6= 0, 1 ≤ i ≤ n− 1}, t = max{i|ci 6= 0, 1 ≤ i ≤ n− 1}.
Proof: We compute the derivatives of h(x) with respect to any b ∈ F ∗

2n . From Lemma 1, we have

Dbh(x) = Tr(
t∑

i=s

cix
2i+1) + Tr(

t∑

i=s

ci(x + b)2
i+1)

= Tr(
t∑

i=s

ci(x2i+1 + bx2i
+ b2i

x + b2i+1) + cix
2i+1)

= Tr(
t∑

i=s

cibx
2i

+ cib
2i

x) + h(b)

= Tr(x
t∑

i=s

((cib)2
n−i

+ cib
2i

) + h(b).

Let

P (x) =
t∑

i=s

((cix)2
n−i

+ cix
2i

),

L(x) = (
t∑

i=s

((cix)2
n−i

+ cix
2i

))2
t
=

t∑

i=s

((cix)2
t−i

+ c2t

i x2i+t
).

Obviously, Dbh(x) = h(b) if P (b) = 0 or L(b) = 0. From Lemma 2, we have

K(h) = {x ∈ F2n | P (x) = 0 orL(x) = 0}.
ut

Definition 3 [9] A polynomial of the form
∑n−1

i=0 aix
qi

with coefficients in an extension field Fqn

of Fq is called a q-polynomial (a linearized polynomial) over Fqn.



We known that the kernel and the image set of a q-polynomial are subspaces of Fqn over Fq.
In particular, these sets have cardinality qk for some k. The polynomial P (x) and L(x) considered
here is a 2-polynomial. If n − s ≥ t, P (x) = P ′(x)2

s
, then n − t ≥ s(i.e., n ≥ s + t), the degree

of P ′(x)2
s

is 2n−2s, and K(h) has at most 2n−2s elements; Otherwise, n − s < t (i.e., n < s + t),
then n − t < s, P (x) = P ′′(x)2

n−t
, the degree of P ′′(x)2

n−t
is 22t−n, and K(h) has at most 22t−n

elements. On the other hand, let n > 2t, then the degree of L(x) is 22t, and K(h) has at most 22t

elements; If n = 2t, then the degree of L(x) is 22t1 , and K(h) has at most 22t1 elements.

Theorem 3 1. If n < s + t, then Wh(u) ≤ 2t ;
2. If s + t ≤ n < 2t, then Wh(u) ≤ 2n−s;
3. If n = 2t, let p = min{n− 2s, 2t1}, then Wh(u) ≤ 2(n+p)/2;
4. If n > 2t is an even, let p = min{n − 2s, 2t}, then Wh(u) ≤ 2(n+p)/2; If n > 2t is an odd, let

q = min{n− 2s, 2t− 1}, then Wh(u) ≤ 2(n+q)/2.

Proof: Here, we only prove (1). From Lemma 3, when n < s+ t is an even (or odd), then k ≤ 2t−n
must be even (or odd) too. By Table 1, we have Wh(u) ≤ 2t. In a similar way, one can obtain (2),
(3) and (4). ut

From section 3.1, we know the function gc(x) satisfying the conditions of Theorem 1 is the form
of functions h(x). So we can evaluate the Walsh spectrum of gc(x)(i.e. the one of DaFµ(x)) applying
Theorem 3, and deduce its lower bound of nonlinearity.

Corollary 2 1. If n < s + t, then WDaFµ(u) ≤ 2t, and nl(DaFµ) ≥ 2n−1 − 2t−1;
2. If s + t ≤ n < 2t, then WDaFµ(u) ≤ 2n−s, and nl(DaFµ) ≥ 2n−1 − 2n−s−1;
3. If n = 2t, let p = min{n − 2s, 2t1}, then WDaFµ(u) ≤ 2(n+p)/2, and nl(DaFµ) ≥ 2n−1 −

2(n+p−2)/2;
4. If n > 2t is an even, let p = min{n − 2s, 2t}, then WDaFµ(u) ≤ 2(n+p)/2, and nl(DaFu) ≥

2n−1 − 2(n+p−2)/2; If n > 2t is an odd, let q = min{n− 2s, 2t− 1}, then WDaFµ(u) ≤ 2(n+q)/2,
and nl(DaFµ) ≥ 2n−1 − 2(n+q−2)/2.

3.3 The lower bound of nl2(Fµ)

Gode and Gangopadhvay [8] have derived the lower bounds on the second order nonlinearity of
fµ(x) = Tr(µx2i+2j+1) for n > 2i (Therefore, n 6= i + j and n 6= 2i− j). Now, we derive the lower
bounds of nl2(Fµ) for n ≥ 3 in the following theorem, and demonstrate that our bounds are better
than those of fµ(x).

Theorem 4 Let Fµ(x) satisfy the conditions of Theorem 1, then

1. If n < s + t,

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2t + 2n ≈ 2n−1 − 2(n+t−2)/2;

2. If s + t ≤ n < 2t,

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2n−s + 2n ≈ 2n−1 − 2(2n−s−2)/2;



3. If n = 2t and s 6= t, let p = min{n− 2s, 2t1},

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+p)/2 + 2n ≈ 2n−1 − 2(3n+p−4)/4;

4. If n > 2t is an even, let p = min{n− 2s, 2t},

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+p)/2 + 2n ≈ 2n−1 − 2(3n+p−4)/4;

If n > 2t is an odd, let q = min{n− 2s, 2t− 1},

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+q)/2 + 2n ≈ 2n−1 − 2(3n+q−4)/4;

Proof: Case 1: Fµ(x) satisfies the conditions of Theorem 1 (1) or (2a) or (3a).
From Corollary 2, we have
(1). Corollary 1 with K = 1 and k = t− 1 implies that

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2t + 2n ≈ 2n−1 − 2(n+t−2)/2;

In a similar way, one can obtain (2), (3)and (4).
Case 2: Fµ(x) satisfies the conditions of Theorem 1 (2b) or (3b).
Let s′ = min{i|ci 6= 0, 1 ≤ i ≤ n − 1}, t′ = max{i|ci 6= 0, 1 ≤ i ≤ n − 1} and t′1 = max{i|ci 6=
0 and ci 6= ct′}. So s′ ≥ s, t′ ≤ t and t′1 ≤ t1, where s, t and t1 are the ones of Case 1. We only
prove (1), let n < s + t.

– If s′ ≥ s, t′ = t, then n < s + t ≤ s′ + t, from Corollary 2 WDaFµ(u) ≤ 2t′ = 2t, and
nl(DaFµ) ≥ 2n−1 − 2t−1;

– If s′ = s, t′ ≤ t, then, (1). if n < s + t′ ≤ s + t, from Corollary 2 WDaFµ(u) ≤ 2t′ . Therefore
WDaFµ(u) ≤ 2t, and nl(DaFµ) ≥ 2n−1 − 2t−1; (2). if s + t′ ≤ n < s + t, from Corollary 2
WDaFµ(u) ≤ 2n−s′ = 2n−s. Therefore WDaFµ(u) < 2t, and nl(DaFµ) > 2n−1 − 2t−1;

– If s′ ≥ s, t′ ≤ t, one can also have WDaFµ(u) ≤ 2t, and nl(DaFµ) ≥ 2n−1 − 2t−1.

Therefore, WDaFµ(u) ≤ 2t, and nl(DaFµ) ≥ 2n−1 − 2t−1 for n < s + t. Applying Corollary 1 the
proof can be completed for n < s + t. ut

Example 1 : Let Fµ(x) = fu(x) = Tr(µx2i+2j+1) for n > 2i and 0 < i−j < j, then Fµ(x) satisfies
the condition (1) of Theorem 1. And equation (1) is

gλ(x) = Tr(λ2n−j
x2i−j+1 + λx2i+1 + λx2j+1).

Hence s = i−j and t = i. Let n = 20, i = 9 and j = 5. By Theorem 4 we have p = min{n−2s, 2t} =
min{12, 18} = 12, and

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+p)/2 + 2n = 219 − 1

2

√
(220 − 1)216 + 220 ≈ 219 − 217.

While, by Lemma 5 one can obtain

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i)/2 + 2n = 219 − 1

2

√
(220 − 1)219 + 220 ≈ 219 − 218.5.



Let n = 19, i = 9 and j = 5. By Theorem 4 we have q = min{n− 2s, 2t− 1} = min{11, 17} = 11,
and

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+q)/2 + 2n = 218 − 1

2

√
(219 − 1)215 + 219 ≈ 218 − 216.

While, by Lemma 5 one can obtain

nl2(Fµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i−1)/2 + 2n = 218 − 1

2

√
(219 − 1)218 + 219 ≈ 218 − 217.5.

Obviously, our lower bounds of fu(x) are tighter than those of [8] for n > 2i. And our results are
valid for smaller n.
For fu(x), it is possible to deduce the lower bounds when n ≤ 2i from Theorem 4. This case has
not been considered in [8]. For example, n = i + j and n = 2i− j.

Corollary 3 Let n = i+ j and n = 2i− j(i.e. i = 2n/3, j = n/3.). If Trn
n/3(µ) 6= 0, then the lower

bound of the second order nonlinearity of fµ(x) = Tr(µx2i+2j+1) is given as follows,

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1)22n/3 + 2n ≈ 2n−1 − 2(5n−6)/6.

Proof: The derivative of fµ(x) with respect to a ∈ F ∗
2n is the function

Dafµ(x) = Tr(µx2i+2j+1) + Tr(µ(x + a)2
i+2j+1)

= Tr(µ(ax2i+2j
+ a2j

x2i+1 + a2i
x2j+1 + a2j+1x2i

+ a2i+1x2j
+ a2i+2j

x + a2i+2j+1)).

The Walsh spectrum of Dafµ(x) is equivalent to the Walsh spectrum of the following function,

gλ(x) = Tr(µ(ax2i+2j
+ a2j

x2i+1 + a2i
x2j+1).

If n = i + j, then 2i + 1 and 2j + 1 are in the same cyclotomic coset, 2i + 1 = 2n−j + 1 =
2−j(2n + 2j)mod(2n − 1) = 2n−j(2j + 1)mod(2n − 1). If n = 2i − j, then 2i + 2j = 2i + 22i−n =
2i−n(2n + 2i)mod(2n − 1) = 2i−n(2i + 1)mod(2n − 1). If n = i + j and n = 2i − j, then 2i + 2j =
2i−n(2i + 1)mod(2n − 1) = 2i−j(2j + 1)mod(2n − 1).

gλ(x) = Tr(µ(ax2i+2j
+ a2j

x2i+1 + a2i
x2j+1))

= Tr(µax2i−j(2j+1) + µa2j
x2n−j(2j+1) + µa2i

x2j+1)

= Tr((µa)2
j−i

x2j+1 + (µa2j
)2

j−n
x(2j+1) + µa2i

x2j+1)

= Tr(((µa)2
−n/3

+ (µa2n/3
)2

n/3
+ µa22n/3

)x2j+1)

= Tr((µ22n/3
a22n/3

+ µ2n/3
a22n/3

+ µa22n/3
)x2j+1)

= Tr((µ22n/3
+ µ2n/3

+ µ)a22n/3
x2j+1).

It is known from Theorem 1(3a) that gλ(x) is quadratic for all a ∈ F ∗
2n if µ22n/3

+ µ2n/3
+ µ 6= 0,

equivalently, Trn
n/3(µ) 6= 0. Applying Theorem 4(4), we obtain s = t = j = n/3, n > 2t = 2n/3,

p = min{n− 2s, 2t} = n/3, q = min{n− 2s, 2t− 1} = n/3 and

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1)22n/3 + 2n ≈ 2n−1 − 2(5n−6)/6.



ut
For the functions in case (2) or (3) of Theorem 1, we can improve the results of Theorem 4. For

example, we obtain the following corollary when fµ(x) = Tr(µx2i+2j+1) for n = i+j and n 6= 2i−j.

Corollary 4 Let n = i + j, n 6= 2i − j and β = ]{a|µ2j
a22j

+ µa2n−j
= 0}, then the lower bound

on the second order nonlinearity of fµ(x) = Tr(µx2i+2j+1) is given as

1. if n < 3j, for even n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)22j + β2(n+min{4j−n,2n−4j})/2 + 2n;

for odd n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)22j + β2(n+min{4j−n,2n−4j−1})/2) + 2n.

2. if 3j < n < 4j, for even n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2(n+min{4j−n,2n−4j})/2 + 2n;

for odd n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2(n+min{4j−n,2n−4j−1})/2) + 2n.

3. if n = 4j,

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)23j + (β + 1)2n.

4. if n > 4j,

nl2(fµ) ≥ 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2n−2j + 2n.

Proof: From the proof of Corollary 3, we can have the Walsh spectrum of Dafµ(x) is equivalent to
the Walsh spectrum of the following function,

gλ(x) = Tr(µ(ax2i+2j
+ a2j

x2i+1 + a2i
x2j+1))

= Tr((µa)2
n−j

x2i−j+1 + µa2j
x2i+1 + µa2i

x2j+1)

= Tr((µa)2
n−j

x2i−j+1 + (µa2j
)2

j−n
x2j+1 + µa2i

x2j+1)

= Tr((µa)2
n−j

x2i−j+1 + ((µa2j
)2

j
+ µa2i

)x2j+1)

= Tr((µa)2
n−j

x2n−2j+1 + (µ2j
a22j

+ µa2n−j
)x2j+1).

Clearly n = i + j > 2j and n 6= 3j.

(1) If µ2j
a22j

+ µa2n−j 6= 0, applying Theorem 3, we obtain,
if n < 3j, then s = n− 2j, t = j and n > 2t. Wgλ

(u) ≤ 2(n+p)/2, and nl(gλ) ≥ 2n−1− 2(n+p−2)/2

for even n; Wgλ
(u) ≤ 2(n+q)/2, and nl(gλ) ≥ 2n−1 − 2(n+q−2)/2 for odd n, where p = min{n −

2s, 2t} = min{4j − n, 2j} = 4j − n, q = min{n− 2s, 2t− 1} = min{4j − n, 2j − 1} = 4j − n.
if 3j < n < 4j, then s = j, t = n − 2j and n > 2t. Wgλ

(u) ≤ 2(n+p)/2, and nl(gλ) ≥
2n−1 − 2(n+p−2)/2 for even n; Wgλ

(u) ≤ 2(n+q)/2, and nl(gλ) ≥ 2n−1 − 2(n+q−2)/2 for odd n,



where p = min{n − 2s, 2t} = min{n − 2j, 2(n − 2j)} = n − 2j, q = min{n − 2s, 2t − 1} =
min{n− 2j, 2(n− 2j)− 1} = n− 2j.
if n = 4j, then s = t1 = j, t = n− 2j = 2j, n = 2t and n− 2s = 2t1 = 2j. Wgλ

(u) ≤ 2(n+2j)/2 =
23j , and nl(gλ) ≥ 2n−1 − 23j−1.
if n > 4j, then s = j, t = n − 2j and s + t < n < 2t. Wgλ

(u) ≤ 2n−s = 2n−j , and
nl(gλ) ≥ 2n−1 − 2n−j−1.

(2) If µ2j
a22j

+ µa2n−j
= 0, let β = ]{a|µ2j

a22j
+ µa2n−j

= 0}. Obviously β < 2n.

gλ(x) = Tr((µa)2
n−j

x2n−2j+1).

Clearly, s = t = n− 2j. Applying Theorem 3, we have
if n < 4j, then n > 2t. Wgλ

(u) ≤ 2(n+p)/2, and nl(gλ) ≥ 2n−1− 2(n+p−2)/2 for even n; Wgλ
(u) ≤

2(n+q)/2, and nl(gλ) ≥ 2n−1 − 2(n+q−2)/2 for odd n, where p = min{n − 2s, 2t} = min{4j −
n, 2n− 4j}, q = min{n− 2s, 2t− 1} = min{4j − n, 2n− 4j − 1}.
if n = 4j, then n = 2t and s = t. Clearly Wgλ

(u) ≤ 2(n+n)/2 = 2n, and nl(gλ) ≥ 2n−1−2n−1 = 0.
if n > 4j, then n < s + t. So Wgλ

(u) ≤ 2n−2j , and nl(gλ) ≥ 2n−1 − 2(n−2j−1).

So, if n < 3j, for even n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 2(n+4j−n−2)/2) + β(2n−1 − 2(n+min{4j−n,2n−4j}−2)/2))

= 2n−1 − 1
2

√
(2n − 1− β)22j + β2(n+min{4j−n,2n−4j})/2 + 2n;

for odd n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 2(n+4j−n−2)/2) + β(2n−1 − 2(n+min{4j−n,2n−4j−1}−2)/2))

= 2n−1 − 1
2

√
(2n − 1− β)22j + β2(n+min{4j−n,2n−4j−1})/2 + 2n.

If 3j < n < 4j, for even n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 2(n+n−2j−2)/2) + β(2n−1 − 2(n+min{4j−n,2n−4j}−2)/2))

= 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2(n+min{4j−n,2n−4j})/2 + 2n;



for odd n we have

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 2(n+n−2j−2)/2) + β(2n−1 − 2(n+min{4j−n,2n−4j−1}−2)/2))

= 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2(n+min{4j−n,2n−4j−1})/2 + 2n.

If n = 4j,

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 23j−1) + β ∗ 0)

= 2n−1 − 1
2

√
(2n − 1− β)23j + (β + 1)2n.

If n > 4j,

nl2(fµ) ≥ 2n−1 − 1
2

√
22n − 2

∑

a∈F n
2

nl(Dafµ)

= 2n−1 − 1
2

√
22n − 2((2n − 1− β)(2n−1 − 2n−j−1) + β(2n−1 − 2(n−2j−1)))

= 2n−1 − 1
2

√
(2n − 1− β)2n−j + β2n−2j + 2n.

ut

Remark 1 If µ2j
a22j

+ µa2n−j
= 0, equivalently a23j−1 = ( 1

µ2j−1
)2

j
. This is possible only if µ is a

(22j + 2j + 1)th power in F2n. Let µ = ν22j+2j+1, then a = ν−2j
, where ν ∈ F2n. It is well known

that the monomial νd is a permutation polynomial of F2n if and only if gcd(d, 2n − 1) = 1. Hence,
if µ is a (22j + 2j + 1)th power in F2n, then β = 1 when gcd(−2j , 2n − 1) = 1; otherwise, β = 0.

3.4 The lower bound on the second order nonlinearity of Boolean function Gµ(x)

Gode and Gangopadhyay [8] obtained the lower bound on the second order nonlinearity of gµ(x) =
Tr(µx22γ+2γ+1), where µ ∈ F ∗

2n and γ is a positive integer such that gcd(n, γ) = 1.

Lemma 6 [13] Let g(x) =
∑ν

i=0 cix
2iγ

be a linearized polynomial over F2n, where gcd(n, γ) = 1.
Then the equation g(x) = 0 has at most 2ν solutions in F2n.

Lemma 7 [8] Suppose gµ(x) be defined as gµ(x) = Tr(µx22γ+2γ+1), where µ ∈ F ∗
2n and γ is a

positive integer such that gcd(n, γ) = 1. Then for n ≥ 4,
if n is an even,

nl2(gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+4)/2 + 2n ≈ 2n−1 − 2(3n)/4;



if n is an odd,

nl2(gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+3)/2 + 2n ≈ 2n−1 − 2(3n−1)/4.

Now, we study the lower bounds on the second order nonlinearity of a larger class of functions
given by

Gµ(x) = Tr(
m∑

l=1

µlx
dl),

where µl ∈ F ∗
2n , dl = 2ilγ + 2jlγ + 1, il > jl, γ 6= 1 is a positive integer and gcd(n, γ) = 1.

Theorem 5 Suppose t = max{il|1 ≤ l ≤ m}. If the function Gµ(x) satisfies the conditions of
Theorem 1, then for n ≥ 2t,
if n is an even,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2t)/2 + 2n ≈ 2n−1 − 2(3n+2t−4)/4;

if n is an odd,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2t−1)/2 + 2n ≈ 2n−1 − 2(3n+2t−5)/4.

Proof: The first derivative DaGµ of Gµ(x) with respect to a ∈ F ∗
2n is

DaGµ(x) = Tr(
∑m

l=1 µlx
2ilγ+2jlγ+1) + Tr(

∑m
l=1 µl(x + a)2

ilγ+2jlγ+1).

We get the Walsh spectrum of DaGµ(x) is equivalent to the Walsh spectrum of the following
function,

gλl
(x) =

m∑

l=1

Tr(λ2n−jlγ

l x2ilγ−jlγ+1 + λlx
2ilγ+1 + λlx

2jlγ+1),

where λl = µla
2ilγ+2jlγ+1. Clearly, λl 6= 0, and gλl

(x) satisfies the conditions of Theorem 1 (1) or
(2). gλl

(x) can be rewritten as
∑

i Tr(cix
2iγ+1) and t = max{il|1 ≤ l ≤ m} = max{i}. By Theorem

2, we have
L(x) =

∑

i

Tr((cix)2
tγ−iγ

+ c2tγ

i x2iγ+tγ
).

The degree of L(x) is 22tγ . From Lemma 6 K(h) has at most 22t elements for n ≥ 2t. So k ≤ 2t
for even n and k ≤ 2t − 1 for odd n. For all u ∈ F ∗

2n , if n is an even, WDaGµ(u) ≤ 2(n+2t)/2,
and nl(DaGµ) ≥ 2n−1 − 2(n+2t−2)/2; if n is an odd, WDaGµ(u) ≤ 2(n+2t−1)/2, and nl(DaGµ) ≥
2n−1 − 2(n+2t−3)/2. Applying Corollary 1, we get,
if n is an even,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2t)/2 + 2n ≈ 2n−1 − 2(3n+2t−4)/4;

if n is an odd,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2t−1)/2 + 2n ≈ 2n−1 − 2(3n+2t−5)/4.



ut
If m = 1, Gµ(x) can be written as Tr(µx2iγ+2jγ+1). By Theorem 5, t = i. Therefore, one can

get the following corollary.

Corollary 5 Suppose Gµ(x) be defined as Gµ(x) = Tr(µx2iγ+2jγ+1), where µ ∈ F ∗
2n, i > j , γ 6= 1

and gcd(n, γ) = 1. Then for n ≥ 2i,
if n is an even,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i)/2 + 2n ≈ 2n−1 − 2(3n+2i−4)/4;

if n is an odd,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i−1)/2 + 2n ≈ 2n−1 − 2(3n+2i−5)/4.

Proof: The first derivative DaGµ of Gµ(x) with respect to a ∈ F ∗
2n is

DaGµ(x) = Tr((µa)2
−jγ

x2(i−j)γ
+ µa2jγ

x2iγ+1 + µa2iγ
x2jγ+1

+ a(2jγ+1)2−iγ
x + a(2iγ+1)2−jγ

x + ax + a2iγ+2jγ+1).

Clearly, n 6= (iγ + jγ) and n 6= (2iγ − jγ). Gµ(x) satisfies the conditions of Theorem 1 (1) or (2),
and t = i. So we have the Walsh spectrum of DaGµ(x) is equivalent to the Walsh spectrum of the
following function,

h(x) = Tr((µa)2
−jγ

x2(i−j)γ+1 + µa2jγ
x2iγ+1 + µa2iγ

x2jγ+1).

If n ≥ 2i, in the same way as Theorem 5 one can obtain
if n is an even,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i)/2 + 2n ≈ 2n−1 − 2(3n+2i−4)/4;

if n is an odd,

nl2(Gµ) ≥ 2n−1 − 1
2

√
(2n − 1)2(n+2i−1)/2 + 2n ≈ 2n−1 − 2(3n+2i−5)/4.

ut
If γ 6= 1, i = 2 and j = 1, the function Gµ(x) of Corollary 5 has the same conclusions as the

function gµ(x) of Lemma 7.
It is well known that nl(f) ≥ nl2(f) for any Boolean function f . So one can evaluated the

nonlinearity of Fµ(x) and Gµ(x) by the lower bounds of their second order nonlinearity.

4 Conclusion

We have given a lower bound on the second order nonlinearity of a class of Boolean functions Fµ(x).
For gcd(n, γ) = 1, the tighter lower bounds on the second order nonlinearity of a class of functions
Gµ(x) are also given where γ 6= 1 is a positive integer. Our results show that the Boolean functions
investigated here have large Hamming distance to the affine functions and quadratic functions



when n is not too small. Therefore, these functions can resist the affine and quadratic function
approximation attack.

Carlet [14] [15] have presented a relationship between algebraic immunity and the r-th order
nonlinearity. For a cubic Boolean function, the algebraic immunity is at most 3. The lower bound on
the second order nonlinearity of our cubic Boolean functions can not be obtained by the relationship
in [14] [15].
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